JP5633851B2 - Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate - Google Patents

Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate Download PDF

Info

Publication number
JP5633851B2
JP5633851B2 JP2011533122A JP2011533122A JP5633851B2 JP 5633851 B2 JP5633851 B2 JP 5633851B2 JP 2011533122 A JP2011533122 A JP 2011533122A JP 2011533122 A JP2011533122 A JP 2011533122A JP 5633851 B2 JP5633851 B2 JP 5633851B2
Authority
JP
Japan
Prior art keywords
film
resins
resin
retardation
retardation film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011533122A
Other languages
Japanese (ja)
Other versions
JP2012507040A (en
Inventor
チュン、ビョング−クー
ハン、チャング−ハン
カング、ビョング−イル
キム、ス−キュング
サング、ダ−エウン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LG Chem Ltd
Original Assignee
LG Chem Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080119610A external-priority patent/KR101361561B1/en
Application filed by LG Chem Ltd filed Critical LG Chem Ltd
Publication of JP2012507040A publication Critical patent/JP2012507040A/en
Application granted granted Critical
Publication of JP5633851B2 publication Critical patent/JP5633851B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • C08L33/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2469/00Characterised by the use of polycarbonates; Derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133634Birefringent elements, e.g. for optical compensation the refractive index Nz perpendicular to the element surface being different from in-plane refractive indices Nx and Ny, e.g. biaxial or with normal optical axis
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133635Multifunctional compensators
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/40Materials having a particular birefringence, retardation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Materials Engineering (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Description

本発明は、耐熱性及び光学的透明性に優れ、ヘイズが小さく、機械的強度に優れて壊れにくく、耐久性にも優れた位相差フィルム、その製造方法及び当該位相差フィルムを含む液晶表示装置に関する。   The present invention relates to a retardation film excellent in heat resistance and optical transparency, small in haze, excellent in mechanical strength, hardly broken, and excellent in durability, a method for producing the same, and a liquid crystal display device including the retardation film About.

本願は、2008年11月28日に韓国特許庁に出願された韓国特願10−2008−0119610号の出願日の利益を主張し、その全内容は本明細書に含まれる。   This application claims the benefit of the filing date of Korean Patent Application No. 10-2008-0119610 filed with the Korean Patent Office on November 28, 2008, the entire contents of which are included in this specification.

近年、光学技術の発展を基に、従来のブラウン管を代替するプラズマディスプレイパネル(Plasma Display Panel、PDP)、液晶ディスプレイ(Liquid Crystal Display、LCD)等の多様な方式を利用したディスプレイ技術が提案され市販されている。このようなディスプレイのためのポリマー素材は、その要求特性がより一層高度化している。例えば、液晶ディスプレイの場合、薄膜化、軽量化及び画面面積の大型化による広視野角化、高コントラスト化、視野角による画像色調変化の抑制及び画面表示の均一化が特に重要な問題となっている。   In recent years, based on the development of optical technology, display technologies using various methods such as a plasma display panel (PDP) and a liquid crystal display (LCD) that replace the conventional cathode ray tube have been proposed and marketed. Has been. The polymer material for such a display has a higher degree of required characteristics. For example, in the case of a liquid crystal display, wide viewing angle, high contrast, suppression of image color tone change due to viewing angle and uniformity of screen display are particularly important issues due to thinning, weight reduction, and enlargement of the screen area. Yes.

これにより、偏光フィルム、偏光子保護フィルム、位相差フィルム、プラスチック基板、導光板等に多様なポリマーフィルムが用いられており、液晶としてツイストネマチック(Twisted Nematic、TN)、スーパーツイストネマチック(Super Twisted Nematic、STN)、バーチカルアライメント(Vertical Alignment、VA)、イン−プレインスイッチング(In−Plane Switching、IPS)液晶セル等を利用した多様なモードの液晶表示装置が開発されている。これら液晶セルは、全て固有の液晶配列をしているため、固有の光学異方性を有しており、当該光学異方性を補償するために、多様な種類のポリマーを延伸して位相差機能を与えたフィルムが提案されて来ている。   As a result, various polymer films are used for polarizing films, polarizer protective films, retardation films, plastic substrates, light guide plates, etc., and twisted nematic (TN) and super twisted nematic (Super Twisted Nematic) are used as liquid crystals. , STN), vertical alignment (VA), in-plane switching (IPS) liquid crystal cells and the like have been developed. Since these liquid crystal cells all have a unique liquid crystal alignment, they have a unique optical anisotropy. In order to compensate for the optical anisotropy, various types of polymers are stretched to obtain a phase difference. Films that provide functionality have been proposed.

具体的には、液晶表示装置は、液晶分子が有する高い複屈折特性と配向を利用するため、視野角に応じて屈折率が変わり、それにより画面の色相と明るさが変わる。例えば、バーチカルアライメント方式に用いられる殆どの液晶分子は、液晶表示面の厚さ方向に陽の位相差を有するため、これを補償するために、厚さ方向に陰の位相差を有する補償フィルムが必要である。また、直交する二つの偏光板の正面においては、光が通過しないが、角度を傾けると、二つの偏光板の光軸が直交しなくなって光漏れ現象が示されるため、これを補償するために、面方向の位相差を有する補償フィルムが必要である。さらに、液晶を利用した表示装置は、視野角を広げるために、厚さ方向の位相差補償と面方向の位相差補償が共に必要である。   Specifically, since the liquid crystal display device uses the high birefringence characteristics and orientation of the liquid crystal molecules, the refractive index changes according to the viewing angle, thereby changing the hue and brightness of the screen. For example, since most liquid crystal molecules used in the vertical alignment method have a positive phase difference in the thickness direction of the liquid crystal display surface, a compensation film having a negative phase difference in the thickness direction is used to compensate for this. is necessary. In addition, light does not pass in front of the two orthogonal polarizing plates, but if the angle is tilted, the optical axes of the two polarizing plates are not orthogonal and a light leakage phenomenon is shown. A compensation film having a retardation in the plane direction is required. Furthermore, in order to widen the viewing angle, a display device using liquid crystal requires both thickness direction retardation compensation and surface direction retardation compensation.

位相差補償フィルムとして備えられるべき要件は、複屈折が容易に調節されるべきであることである。しかしながら、フィルムの複屈折は、物質が有する根本的な複屈折のみならず、フィルムにおける高分子鎖の配向によっても行われる。高分子鎖の配向は、殆ど外部から加えられる力によって強制的に行われたり物質が有している固有特性に基づいて行われたりするもので、外部の力によって分子を配向する方法は、高分子フィルムを一軸又は二軸に延伸するものである。   The requirement to be provided as a retardation compensation film is that the birefringence should be easily adjusted. However, the birefringence of the film is performed not only by the fundamental birefringence of the substance but also by the orientation of the polymer chains in the film. The orientation of polymer chains is almost forced by externally applied force or based on the intrinsic properties of the substance. The method of orienting molecules by external force is a A molecular film is stretched uniaxially or biaxially.

当技術分野では、ディスプレイに用いるために、前述した要求特性を満たすポリマー素材の開発が求められている。   There is a need in the art for the development of polymer materials that meet the aforementioned required characteristics for use in displays.

本発明は、延伸方法を介してフィルムの面内位相差、厚さ方向位相差等を調節することができ、光学的特性に優れると共に光学的透明性にも優れたフィルムを製造することができ、延伸配向を介して壊れやすいアクリル系フィルムの短所を解消することができ、加工性及び耐熱性等の耐久性にも優れた位相差フィルムを提供することを目的とする。   The present invention can adjust the in-plane retardation, thickness direction retardation, etc. of the film through a stretching method, and can produce a film having excellent optical properties and optical transparency. It is an object of the present invention to provide a retardation film that can eliminate the disadvantages of an acrylic film that is easily broken through stretched orientation and is excellent in durability such as workability and heat resistance.

また、本発明は、上記位相差フィルムの製造方法及び上記位相差フィルムを含む液晶表示装置を提供することを目的とする。   Moreover, an object of this invention is to provide the manufacturing method of the said retardation film, and the liquid crystal display device containing the said retardation film.

本発明は、1)アルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体を含むアクリル系共重合体樹脂と、2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂とのブレンド樹脂を含む位相差フィルムを提供する。   The present invention provides a blend of 1) an acrylic copolymer resin containing an alkyl methacrylate monomer and a cycloalkyl methacrylate monomer, and 2) a resin containing an aromatic ring or an aliphatic ring in the polymer main chain. A retardation film containing a resin is provided.

また、本発明は、1)アルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体を含むアクリル系共重合体樹脂と高分子主鎖に芳香族環又は脂肪族環を含む樹脂とのブレンド樹脂組成物を用意する段階と、2)上記樹脂組成物を用いてフィルムを成形する段階とを含む位相差フィルムの製造方法を提供する。この製造方法は、上記フィルムを一軸又は二軸延伸する段階をさらに含むことができる。   The present invention also relates to 1) a blend resin of an acrylic copolymer resin containing an alkyl methacrylate monomer and a cycloalkyl methacrylate monomer and a resin containing an aromatic ring or an aliphatic ring in the polymer main chain. Provided is a method for producing a retardation film, comprising a step of preparing a composition, and 2) a step of forming a film using the resin composition. The manufacturing method may further include a step of uniaxially or biaxially stretching the film.

また、本発明は、上記位相差フィルムを1つ以上含む液晶表示装置を提供する。   The present invention also provides a liquid crystal display device including one or more of the above retardation films.

本発明による位相差フィルムは、光学的特性に優れると共に光学的透明性にも優れ、機械的物性、加工性、耐熱性及び位相差具現特性に優れる。また、本発明による位相差フィルムは、従来の位相差フィルム、偏光子保護フィルム、例えば、TACフィルムと比較して低い光弾性係数を有することができる特性がある。   The retardation film according to the present invention is excellent in optical characteristics and optical transparency, and is excellent in mechanical properties, workability, heat resistance, and retardation implementation characteristics. In addition, the retardation film according to the present invention has a characteristic that it can have a low photoelastic coefficient as compared with conventional retardation films and polarizer protective films, for example, TAC films.

本発明による位相差フィルムは、1)アルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体を含むアクリル系共重合体樹脂と、2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂とのブレンド樹脂を含むことを特徴とする。   The retardation film according to the present invention includes 1) an acrylic copolymer resin containing an alkyl methacrylate monomer and a cycloalkyl methacrylate monomer, and 2) an aromatic ring or an aliphatic ring in the polymer main chain. A resin blended with a resin is included.

本発明による位相差フィルムにおいて、上記1)のアルキルメタクリレート系単量体のアルキル基は、炭素数1〜10であることが好ましく、1〜4であることがより好ましく、メチル基又はエチル基であることがさらに好ましい。上記アルキルメタクリレート系単量体の具体的な例としては、メチルメタクリレート、エチルメタクリレート等が挙げられ、メチルメタクリレートであることがより好ましいが、これに限定されるものではない。   In the retardation film according to the present invention, the alkyl group of the alkyl methacrylate monomer of the above 1) preferably has 1 to 10 carbon atoms, more preferably 1 to 4 carbon atoms, and a methyl group or an ethyl group. More preferably it is. Specific examples of the alkyl methacrylate monomer include methyl methacrylate, ethyl methacrylate and the like, and methyl methacrylate is more preferable, but is not limited thereto.

本発明による位相差フィルムにおいて、上記1)のシクロアルキルメタクリレート系単量体は、シクロヘキシルメタクリレートであることがより好ましいが、これに限定されるものではない。   In the retardation film according to the present invention, the cycloalkyl methacrylate monomer of 1) is more preferably cyclohexyl methacrylate, but is not limited thereto.

本発明による位相差フィルムにおいて、上記1)アクリル系共重合体樹脂中のアルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体の含量は、それぞれ0.1から99.9重量%の範囲内で選択されることができる。特に、上記アルキルメタクリレート系単量体は、70〜99.9重量%であることが好ましく、上記シクロアルキルメタクリレート系単量体は、0.1〜30重量%であることが好ましいが、これに限定されるものではない。   In the retardation film according to the present invention, the content of the alkyl methacrylate monomer and the cycloalkyl methacrylate monomer in the 1) acrylic copolymer resin is within the range of 0.1 to 99.9% by weight, respectively. Can be selected. In particular, the alkyl methacrylate monomer is preferably 70 to 99.9% by weight, and the cycloalkyl methacrylate monomer is preferably 0.1 to 30% by weight. It is not limited.

上記1)アクリル系共重合体樹脂は、スチレン、アルファメチルスチレン等のスチレン系単量体をさらに含むことができる。   The 1) acrylic copolymer resin may further contain a styrene monomer such as styrene or alphamethylstyrene.

本発明による位相差フィルムにおいて、上記1)アクリル系共重合体樹脂は、メチルメタクリレートとシクロヘキシルメタクリレートとの共重合体樹脂であることがより好ましいが、これに限定されるものではない。   In the retardation film according to the present invention, the 1) acrylic copolymer resin is more preferably a copolymer resin of methyl methacrylate and cyclohexyl methacrylate, but is not limited thereto.

本発明による位相差フィルムにおいて、上記2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂としては、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリナフタレン系樹脂、ポリノルボルネン系樹脂、ポリスルホン系樹脂、ポリイミド系樹脂等を用いることができ、ポリカーボネート系樹脂であることがより好ましいが、これに限定されるものではない。   In the retardation film according to the present invention, the above 2) resins containing an aromatic ring or an aliphatic ring in the polymer main chain include polycarbonate resins, polyarylate resins, polynaphthalene resins, polynorbornene resins, polysulfone resins. Resin, polyimide resin and the like can be used, and polycarbonate resin is more preferable, but is not limited thereto.

本発明による位相差フィルムにおいて、上記ブレンド樹脂中、1)アクリル系共重合体樹脂の含量が60〜99重量%、2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂の含量が1〜40重量%であることが好ましく、上記ブレンド樹脂中、1)アクリル系共重合体樹脂の含量が70〜99重量%、2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂の含量が1〜30重量%であることがより好ましい。   In the retardation film according to the present invention, in the blend resin, 1) the content of the acrylic copolymer resin is 60 to 99% by weight, and 2) the content of the resin containing an aromatic ring or an aliphatic ring in the polymer main chain is included. 1 to 40% by weight, preferably 1) acrylic copolymer resin content of 70 to 99% by weight, and 2) a resin containing an aromatic ring or an aliphatic ring in the polymer main chain. The content of is more preferably 1 to 30% by weight.

本発明による位相差フィルムにおいて、上記ブレンド樹脂のガラス転移温度は、100℃以上であることが好ましく、115℃以上であることがより好ましい。また、上記ブレンド樹脂の重量平均分子量は、耐熱性、十分な加工性、生産性等の面において40,000〜200,000であることが好ましい。   In the retardation film according to the present invention, the glass transition temperature of the blend resin is preferably 100 ° C. or higher, and more preferably 115 ° C. or higher. Moreover, it is preferable that the weight average molecular weights of the said blend resin are 40,000-200,000 in terms of heat resistance, sufficient workability, productivity, etc.

本発明による位相差フィルムの厚さは、20〜200μmであることが好ましく、40〜140μmであることがより好ましいが、これに限定されるものではない。   The thickness of the retardation film according to the present invention is preferably 20 to 200 μm, more preferably 40 to 140 μm, but is not limited thereto.

本発明による位相差フィルムは、下記式1で表示される面方向位相差の値が30〜80nmであり、下記式2で表示される厚さ方向位相差の値が−50〜−200nmであることが好ましい。   The retardation film according to the present invention has a plane direction retardation value represented by the following formula 1 of 30 to 80 nm, and a thickness direction retardation value represented by the following formula 2 of −50 to −200 nm. It is preferable.

[式1]
in=(n−n)×d
[Formula 1]
R in = (n x -n y ) × d

[式2]
th=(n−n)×d
[Formula 2]
R th = (n z -n y ) × d

上記式1及び式2中、nは、フィルムの面方向において最も屈折率が大きい方向の屈折率であり、nは、フィルムの面方向においてn方向の垂直方向の屈折率であり、nは、厚さ方向の屈折率であり、dは、フィルムの厚さである。 Among the above formulas 1 and 2, n x is the most refractive index is larger refractive index in the direction in the plane direction of the film, n y is the refractive index in the plane direction of the n x direction in the vertical direction of the film, nz is the refractive index in the thickness direction, and d is the thickness of the film.

また、本発明による製造方法は、1)アルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体を含むアクリル系共重合体樹脂と高分子主鎖に芳香族環又は脂肪族環を含む樹脂とのブレンド樹脂組成物を用意する段階と、2)上記樹脂組成物を用いてフィルムを成形する段階とを含む。上記位相差フィルムの製造方法は、上記フィルムを一軸又は二軸延伸する段階をさらに含むことができる。   The production method according to the present invention includes: 1) an acrylic copolymer resin containing an alkyl methacrylate monomer and a cycloalkyl methacrylate monomer; and a resin containing an aromatic ring or an aliphatic ring in the polymer main chain; Preparing a blend resin composition, and 2) forming a film using the resin composition. The method for producing the retardation film may further include a step of uniaxially or biaxially stretching the film.

上記アクリル系共重合体樹脂、高分子主鎖に芳香族環又は脂肪族環を含む樹脂等の具体的な内容は、前述と同様であるため、当該内容は省略する。   Since the specific contents of the acrylic copolymer resin and the resin containing an aromatic ring or an aliphatic ring in the polymer main chain are the same as described above, the contents are omitted.

本発明による位相差フィルムの製造方法において、上記1)段階の樹脂組成物は、前述した成分を溶融混合することで製造されることができる。上記成分の溶融混合は、溶液キャスト法、押出法等を利用して行われることができる。   In the method for producing a retardation film according to the present invention, the resin composition in the step 1) can be produced by melt-mixing the aforementioned components. The melt mixing of the above components can be performed using a solution casting method, an extrusion method, or the like.

本発明による位相差フィルムの製造方法では、溶液キャスト法を利用してフィルムに製造し、延伸工程を行うことがより好ましい。   In the method for producing a retardation film according to the present invention, it is more preferable to produce a film using a solution casting method and perform a stretching step.

なお、場合によっては、改良剤を添加して押出法を行うことも可能である。   In some cases, it is also possible to carry out the extrusion method by adding an improving agent.

上記樹脂組成物は、当技術分野で一般的に用いられる酸化防止剤、UV安定剤、熱安定剤等をさらに含むことができる。   The resin composition may further include an antioxidant, a UV stabilizer, a heat stabilizer and the like that are generally used in the art.

本発明による位相差フィルムの製造方法は、上記フィルムを一軸又は二軸延伸する段階をさらに含むことができる。上記延伸工程は、縦方向(MD)延伸、横方向(TD)延伸を別々に行うこともでき、全て行うこともできる。縦方向と横方向に全て延伸する場合は、いずれか一方向に先に延伸した後に他方向に延伸することができ、両方向に同時に延伸することもできる。延伸は、一段階で延伸することもでき、多段階にわたって延伸することもできる。縦方向に延伸する場合には、ロール間の速度差による延伸をすることができ、横方向に延伸する場合には、テンターを用いることができる。テンターのレール開始角は、通常10℃以内とすることで、横方向の延伸時に生じるボーイング(Bowing)現象を抑制し、光学軸の角度を規則的に制御する。横方向の延伸を多段階にわたって行うことで、同様のボーイング抑制効果を得ることもできる。   The method for producing a retardation film according to the present invention may further include a step of uniaxially or biaxially stretching the film. In the stretching step, longitudinal (MD) stretching and transverse (TD) stretching can be performed separately or all. When all of the film is stretched in the longitudinal direction and the transverse direction, the film can be stretched in one direction and then stretched in the other direction, and can be simultaneously stretched in both directions. Stretching can be performed in one step, or can be performed in multiple steps. When extending | stretching to the vertical direction, it can extend | stretch by the speed difference between rolls, and when extending | stretching to a horizontal direction, a tenter can be used. The rail start angle of the tenter is normally within 10 ° C., so that the bowing phenomenon that occurs during stretching in the lateral direction is suppressed and the angle of the optical axis is regularly controlled. A similar bowing suppression effect can be obtained by performing the stretching in the transverse direction in multiple stages.

上記延伸は、上記樹脂組成物のガラス転移温度をTgとする時、(Tg−20℃)〜(Tg+30℃)の温度で行うことができる。上記ガラス転移温度とは、樹脂組成物の貯蔵弾性率が低下し始め、これにより、損失弾性率が貯蔵弾性率より大きくなる温度から、高分子鎖の配向が緩和されて消失される温度までの領域を指す。上記ガラス転移温度は、示差走査型熱量計(DSC)で測定されることができる。上記延伸工程時の温度は、フィルムのガラス転移温度であることがより好ましい。   The stretching can be performed at a temperature of (Tg−20 ° C.) to (Tg + 30 ° C.) when the glass transition temperature of the resin composition is Tg. The glass transition temperature is from the temperature at which the storage elastic modulus of the resin composition starts to decrease, thereby causing the loss elastic modulus to be greater than the storage elastic modulus, to the temperature at which the orientation of the polymer chain is relaxed and disappears. Refers to an area. The glass transition temperature can be measured with a differential scanning calorimeter (DSC). The temperature during the stretching step is more preferably the glass transition temperature of the film.

延伸速度においては、小型延伸器(Universal testing machine、ZwickZ010)の場合、1〜100mm/minの範囲で、パイロット延伸装備の場合、0.1〜2m/minの範囲で延伸操作を行うことが好ましく、5〜300%の延伸率を適用してフィルムを延伸することが好ましい。   Regarding the stretching speed, it is preferable to perform the stretching operation in the range of 1 to 100 mm / min in the case of a small stretching machine (Universal testing machine, ZwickZ010), and in the range of 0.1 to 2 m / min in the case of the pilot stretching equipment. The film is preferably stretched by applying a stretch ratio of 5 to 300%.

本発明による光学フィルムは、前述した方法によって一軸又は二軸に延伸されることによって、位相差特性を調節することができる。   The optical film according to the present invention can be adjusted in retardation characteristics by being uniaxially or biaxially stretched by the method described above.

また、本発明は、上記位相差フィルムを1つ又は2つ以上含む液晶表示装置を提供する。   The present invention also provides a liquid crystal display device including one or more of the retardation films.

上記液晶表示装置は、VA(Vertical Alignment)モード液晶表示装置であることが好ましい。   The liquid crystal display device is preferably a VA (Vertical Alignment) mode liquid crystal display device.

本発明による位相差フィルムは、従来の位相差フィルム、偏光子保護フィルム、例えば、TACフィルムと比較して低い光弾性係数を有することができる特性がある。   The retardation film according to the present invention has a characteristic that it can have a low photoelastic coefficient as compared with a conventional retardation film and a polarizer protective film, for example, a TAC film.

VAモード液晶表示装置では、位相差フィルムを視野角補償に用いることができるが、2つの補償すべき要素を有する。第一は、液晶表示装置を傾斜観察した場合、2枚の偏光板の吸収軸が外観上直交ではないことによる偏光板の光漏洩補償であり、第二は、VAセルを傾斜方向から観察する場合、液晶分子の複屈折が増加して黒色表示時にセルによる光漏出が発生しコントラストの低下が見られるため必要な補償である。   In the VA mode liquid crystal display device, the retardation film can be used for viewing angle compensation, but has two elements to be compensated. The first is the light leakage compensation of the polarizing plate because the absorption axes of the two polarizing plates are not orthogonal in appearance when the liquid crystal display device is tilted, and the second is to observe the VA cell from the tilting direction. In this case, the birefringence of the liquid crystal molecules is increased, and light leakage due to the cell occurs at the time of black display, so that a reduction in contrast is seen, which is necessary compensation.

位相差フィルムと組み合わせる偏光子は、二色性色素を含有する一軸延伸されたポリビニルアルコールフィルムからなって非常に衰弱し温度や水分への耐久性が落ちるため、保護フィルムで貼り合わせられている。保護フィルムの代わりに位相差フィルムを直接偏光子に接着できるのであれば、保護フィルム1層分の薄型化した位相差フィルム一体型偏光フィルムが得られる。   A polarizer combined with a phase difference film is made of a uniaxially stretched polyvinyl alcohol film containing a dichroic dye and is very weakened, and its durability to temperature and moisture is lowered. If the retardation film can be directly bonded to the polarizer instead of the protective film, a retardation film-integrated polarizing film reduced in thickness by one layer of the protective film can be obtained.

セルロース誘導体は、透水性に優れるため、偏光板の製造工程において偏光子に含有された水分をフィルムを介して揮散させることができる利点を有している。しかしながら、一方では、高温・高湿の雰囲気下での吸湿による寸法の変化や光学特性の変動が比較的大きく、室温付近で湿度が変わった時の位相差値の変化が大きいことから、安定した視野角の改善に限界があるため、偏光板の光学特性の耐久性が低下する問題がある。   Since the cellulose derivative is excellent in water permeability, it has an advantage that moisture contained in the polarizer can be volatilized through the film in the manufacturing process of the polarizing plate. However, on the other hand, the change in dimensions and optical characteristics due to moisture absorption in a high-temperature and high-humidity atmosphere are relatively large, and the change in phase difference when the humidity changes near room temperature is stable. Since there is a limit in improving the viewing angle, there is a problem that the durability of the optical characteristics of the polarizing plate is lowered.

なお、ポリカーボネート系では、ガラス転移温度が高いため、高温での延伸加工が必要である上、フィルムの光弾性係数が大きいため、応力による光学変形が生じる。ノルボルネン系フィルムを延伸処理する場合、延伸時の応力が高くなったり、延伸時の応力不均一が発生したりする等の問題がある。このような問題は、視野角補償効果に優れると共に、環境の変化にも位相差値の変化が少ないアクリル系位相差フィルムを採用することによって解決することができる。   In the polycarbonate system, since the glass transition temperature is high, drawing at a high temperature is necessary, and the film has a large photoelastic coefficient, so that optical deformation due to stress occurs. When a norbornene-based film is stretched, there are problems such as an increase in stress during stretching and uneven stress during stretching. Such a problem can be solved by adopting an acrylic phase difference film that has an excellent viewing angle compensation effect and that has little change in retardation value even with environmental changes.

上記位相差フィルムを1つ又は2つ以上含む液晶表示装置をより具体的に説明すると、次の通りである。   The liquid crystal display device including one or more retardation films will be described in more detail as follows.

液晶セル及びこの液晶セルの両面にそれぞれ備えられた第1の偏光板及び第2の偏光板を含む液晶表示装置において、位相差フィルムは、当該液晶セルと上記第1の偏光板及び/又は第2の偏光板との間に備えられることができる。即ち、第1の偏光板と液晶セルとの間、第2の偏光板と液晶セルとの間、又は第1の偏光板と液晶セルとの間・第2の偏光板と液晶セルとの間の両方ともに、位相差フィルムが1つ又は2つ以上備えられることができる。   In a liquid crystal display device including a liquid crystal cell and a first polarizing plate and a second polarizing plate respectively provided on both surfaces of the liquid crystal cell, the retardation film includes the liquid crystal cell and the first polarizing plate and / or the first polarizing plate. It can be provided between two polarizing plates. That is, between the first polarizing plate and the liquid crystal cell, between the second polarizing plate and the liquid crystal cell, or between the first polarizing plate and the liquid crystal cell, between the second polarizing plate and the liquid crystal cell. In both cases, one or more retardation films can be provided.

上記第1の偏光板及び第2の偏光板は、一面又は両面に保護フィルムを含むことができる。上記内部保護フィルムとしては、トリアセテートセルロース(TAC)フィルム、開環メタセシス重合(Ring Opening Metathesis Polymerization;ROMP)で製造されたポリノルボルネン系フィルム、開環重合された環状オレフィン系重合体を再び水素添加して得られたHROMP(Ring Opening Metathesis Polymerization followed by Hydrogenation)重合体フィルム、ポリエステルフィルム又は付加重合(addition polymerization)で製造されたポリノルボルネン系フィルム等であることができる。他にも、透明な高分子材料で製造されたフィルムを保護フィルム等として用いることができるが、これらに限定されるものではない。   The first polarizing plate and the second polarizing plate may include a protective film on one side or both sides. Examples of the internal protective film include hydrogenation of a triacetate cellulose (TAC) film, a polynorbornene film produced by ring opening metathesis polymerization (ROMP), and a ring-opening polymerized cyclic olefin polymer. The resulting film may be a polymer film, polyester film, or polynorbornene-based film produced by addition polymerization (HROMP (Ring Opening Metathesis polymerization by hydrogenation)). In addition, a film made of a transparent polymer material can be used as a protective film or the like, but is not limited thereto.

また、本発明は、偏光膜を含み、当該偏光膜の一面又は両面に本発明による位相差フィルムを保護フィルムとして含む一体型偏光板を提供する。   The present invention also provides an integrated polarizing plate including a polarizing film and including the retardation film according to the present invention as a protective film on one surface or both surfaces of the polarizing film.

偏光膜の一面のみに本発明による位相差フィルムが備えられる場合、他面には、当技術分野における公知の保護フィルムが備えられることができる。   When the retardation film according to the present invention is provided on only one surface of the polarizing film, a protective film known in the art can be provided on the other surface.

上記偏光膜としては、ヨード又は二色性染料を含むポリビニルアルコール(PVA)からなるフィルムを用いることができる。上記偏光膜は、PVAフィルムにヨード又は二色性染料を染着させることで製造されることができるが、その製造方法は特に限定されない。本明細書において、偏光膜は、保護フィルムを含まない状態を意味し、偏光板は、偏光膜と保護フィルムとを含む状態を意味する。   As the polarizing film, a film made of polyvinyl alcohol (PVA) containing iodine or a dichroic dye can be used. Although the said polarizing film can be manufactured by dye | staining an iodine or a dichroic dye to a PVA film, the manufacturing method is not specifically limited. In this specification, a polarizing film means the state which does not contain a protective film, and a polarizing plate means the state containing a polarizing film and a protective film.

本発明の一体型偏光板において、保護フィルムと偏光膜とは、当技術分野における公知の方法で貼り合わせられることができる。   In the integrated polarizing plate of the present invention, the protective film and the polarizing film can be bonded together by a known method in this technical field.

例えば、保護フィルムと偏光膜との貼り合わせは、接着剤を利用した接着方式によってなされることができる。即ち、まず偏光膜の保護フィルム又は偏光膜であるPVAフィルムの表面上にロールコーター、グラビアコーター、バーコーター、ナイフコーター又はキャピラリーコーター等を用いて接着剤をコーティングする。接着剤が完全に乾燥する前に保護フィルムと偏光膜とを貼り合わせロールで加熱圧着又は常温圧着して貼り合わせる。ホットメルト型接着剤を用いる場合は、加熱圧着ロールを用いなければならない。   For example, the protective film and the polarizing film can be bonded by an adhesive method using an adhesive. That is, first, an adhesive is coated on the surface of a protective film for a polarizing film or a PVA film that is a polarizing film using a roll coater, a gravure coater, a bar coater, a knife coater, a capillary coater or the like. Before the adhesive is completely dried, the protective film and the polarizing film are bonded together by hot pressing or room temperature pressing with a bonding roll. When using a hot-melt adhesive, a hot pressing roll must be used.

上記保護フィルムと偏光板との貼り合わせの際に使用可能な接着剤は、1液型又は2液型のPVA接着剤、ポリウレタン系接着剤、エポキシ系接着剤、スチレンブタジエンゴム系(SBR系)接着剤又はホットメルト型接着剤等があるが、これらに限定されるものではない。ポリウレタン系接着剤を用いる場合、光によって黄変されない脂肪族イソシアネート系化合物を用いて製造されたポリウレタン系接着剤を利用することが好ましい。1液型又は2液型のドライラミネート用接着剤又はイソシアネートとヒドロキシ基との反応性が比較的低い接着剤を用いる場合は、アセテート系溶剤、ケトン系溶剤、エーテル系溶剤又は芳香族系溶剤等で希釈された溶液型接着剤を用いることもできる。この際、接着剤の粘度は、5,000cps以下の低粘度型であることが好ましい。上記接着剤は、貯蔵安定性に優れながらも400〜800nmでの光透過度が90%以上であることが好ましい。   Adhesives that can be used for bonding the protective film and the polarizing plate are one-component or two-component PVA adhesives, polyurethane adhesives, epoxy adhesives, styrene butadiene rubber (SBR) Examples include, but are not limited to, adhesives or hot melt adhesives. When using a polyurethane-based adhesive, it is preferable to use a polyurethane-based adhesive produced using an aliphatic isocyanate compound that is not yellowed by light. When using one-component or two-component dry laminating adhesives or adhesives with relatively low reactivity between isocyanate and hydroxy groups, acetate solvents, ketone solvents, ether solvents, aromatic solvents, etc. It is also possible to use a solution type adhesive diluted with 1. At this time, the adhesive preferably has a low viscosity of 5,000 cps or less. Although the said adhesive agent is excellent in storage stability, it is preferable that the light transmittance in 400-800 nm is 90% or more.

十分な粘着力を発揮できるのであれば、粘着剤も用いることができる。粘着剤は、貼り合わせ後、熱又は紫外線によって十分に硬化が起きて機械的強度が接着剤水準に向上することが好ましく、界面接着力も大きくて粘着剤が付着された両方のフィルムのいずれか一方の破壊なしには剥離されない程度の粘着力を有することが好ましい。   An adhesive can also be used as long as sufficient adhesive strength can be exhibited. It is preferable that the adhesive is sufficiently cured by heat or ultraviolet rays after bonding to improve the mechanical strength to the adhesive level, and either one of the both films to which the adhesive is attached with a large interfacial adhesive force. It is preferable to have such an adhesive strength that it cannot be peeled off without breaking.

使用可能な粘着剤の具体例としては、光学透明性に優れた天然ゴム、合成ゴム又はエラストマー、塩化ビニル/アセト酸ビニル共重合体、ポリビニルアルキルエーテル、ポリアクリレート又は変性ポリオレフィン系粘着剤等とここにイソシアネート等の硬化剤を添加した硬化型粘着剤が挙げられる。   Specific examples of the pressure-sensitive adhesive that can be used include natural rubber, synthetic rubber or elastomer excellent in optical transparency, vinyl chloride / vinyl acetoate copolymer, polyvinyl alkyl ether, polyacrylate, or modified polyolefin pressure-sensitive adhesive. And a curable pressure-sensitive adhesive in which a curing agent such as isocyanate is added.

また、本発明は、上記一体型偏光板を含む液晶表示装置を提供する。   The present invention also provides a liquid crystal display device including the integrated polarizing plate.

本発明による液晶表示装置が前述した一体型偏光板を含む場合にも、本発明による位相差フィルム1枚以上を偏光板と液晶セルとの間にさらに含むことができる。   Also when the liquid crystal display device according to the present invention includes the above-described integrated polarizing plate, one or more retardation films according to the present invention may be further included between the polarizing plate and the liquid crystal cell.

以下、実施例を挙げて本発明をより詳細に説明する。しかしながら、下記実施例は、本発明を例示するためのものであり、これによって本発明の範囲が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the following examples are intended to illustrate the present invention and are not intended to limit the scope of the present invention.

<実施例1>
メチルメタクリレート(80重量部)とシクロヘキシルメタクリレート(20重量部)との共重合体90重量部とポリカーボネート10重量部で樹脂を製造した。製造された樹脂のガラス転移温度と分子量を測定した結果、ガラス転移温度122℃、分子量110,000の樹脂が得られた。この樹脂を溶液キャスティング法を利用してフィルムを製造した後、ガラス転移温度で延伸を行い、そのフィルムの位相差値を測定した。その結果、面方向位相差の値/厚さ方向位相差の値が37nm/−75nmであることを得た。
<Example 1>
A resin was prepared from 90 parts by weight of a copolymer of methyl methacrylate (80 parts by weight) and cyclohexyl methacrylate (20 parts by weight) and 10 parts by weight of polycarbonate. As a result of measuring the glass transition temperature and molecular weight of the produced resin, a resin having a glass transition temperature of 122 ° C. and a molecular weight of 110,000 was obtained. A film was produced from this resin using the solution casting method, and then stretched at the glass transition temperature, and the retardation value of the film was measured. As a result, it was found that the value of plane direction retardation / thickness direction retardation was 37 nm / −75 nm.

<実施例2>
メチルメタクリレート(90重量部)とシクロヘキシルメタクリレート(10重量部)との共重合体90重量部とポリカーボネート10重量部で樹脂を製造した。製造された樹脂のガラス転移温度と分子量を測定した結果、ガラス転移温度121℃、分子量130,000の樹脂が得られた。この樹脂を溶液キャスティング法を利用してフィルムを製造した後、ガラス転移温度で延伸を行い、そのフィルムの位相差値を測定した。その結果、面方向位相差の値/厚さ方向位相差の値が32nm/−64nmであることを得た。
<Example 2>
A resin was prepared from 90 parts by weight of a copolymer of methyl methacrylate (90 parts by weight) and cyclohexyl methacrylate (10 parts by weight) and 10 parts by weight of polycarbonate. As a result of measuring the glass transition temperature and molecular weight of the produced resin, a resin having a glass transition temperature of 121 ° C. and a molecular weight of 130,000 was obtained. A film was produced from this resin using the solution casting method, and then stretched at the glass transition temperature, and the retardation value of the film was measured. As a result, it was found that the value of the surface direction retardation / thickness direction retardation was 32 nm / −64 nm.

<比較例1>
メチルメタクリレート(80重量部)とフェニルメタクリレート(20重量部)との共重合体90重量部とポリカーボネート10重量部で樹脂を製造したことを除き、それ以外は上記実施例1と同様の方法で実験を行った。その結果、ガラス転移温度120℃、分子量100,000の樹脂が得られた。この樹脂を溶液キャスティング法を利用してフィルムを製造した後、ガラス転移温度で延伸を行い、そのフィルムの位相差値を測定した。その結果、面方向位相差の値/厚さ方向位相差の値が10nm/−20nmを得た。
<Comparative Example 1>
Except that the resin was produced with 90 parts by weight of a copolymer of methyl methacrylate (80 parts by weight) and phenyl methacrylate (20 parts by weight) and 10 parts by weight of polycarbonate, the experiment was performed in the same manner as in Example 1 above. Went. As a result, a resin having a glass transition temperature of 120 ° C. and a molecular weight of 100,000 was obtained. A film was produced from this resin using the solution casting method, and then stretched at the glass transition temperature, and the retardation value of the film was measured. As a result, the value of the surface direction retardation value / thickness direction retardation value was 10 nm / −20 nm.

<比較例2>
メチルメタクリレート(80重量部)とシクロヘキシルアクリレート(20重量部)との共重合体90重量部とポリカーボネート10重量部で樹脂を製造したことを除き、それ以外は上記実施例1と同様の方法で実験を行った。しかしながら、両樹脂間の相溶性が足りないため、ブレンド樹脂が得られなかった。
<Comparative example 2>
Except that the resin was produced with 90 parts by weight of a copolymer of methyl methacrylate (80 parts by weight) and cyclohexyl acrylate (20 parts by weight) and 10 parts by weight of polycarbonate, the experiment was performed in the same manner as in Example 1 above. Went. However, since the compatibility between the two resins is insufficient, a blend resin cannot be obtained.

<比較例3>
メチルメタクリレート(80重量部)とフェノキシエチルアクリレート(20重量部)との共重合体90重量部とポリカーボネート10重量部で樹脂を製造したことを除き、それ以外は上記実施例1と同様の方法で実験を行った。しかしながら、両樹脂間の相溶性が足りないため、ブレンド樹脂が得られなかった。
<Comparative Example 3>
Except that the resin was produced with 90 parts by weight of a copolymer of methyl methacrylate (80 parts by weight) and phenoxyethyl acrylate (20 parts by weight) and 10 parts by weight of polycarbonate, the rest was the same as in Example 1 above. The experiment was conducted. However, since the compatibility between the two resins is insufficient, a blend resin cannot be obtained.

<比較例4>
メチルメタクリレート(80重量部)と3,3,5−トリメチルシクロヘキシルメタクリレート(20重量部)との共重合体90重量部とポリカーボネート10重量部で樹脂を製造したことを除き、それ以外は上記実施例1と同様の方法で実験を行った。しかしながら、両樹脂間の相溶性が足りないため、ブレンド樹脂が得られなかった。
<Comparative example 4>
Except that the resin was produced with 90 parts by weight of a copolymer of methyl methacrylate (80 parts by weight) and 3,3,5-trimethylcyclohexyl methacrylate (20 parts by weight) and 10 parts by weight of polycarbonate, the other examples described above were used. The experiment was conducted in the same manner as in 1. However, since the compatibility between the two resins is insufficient, a blend resin cannot be obtained.

Figure 0005633851
Figure 0005633851

MMA:メチルメタクリレート
CHMA:シクロヘキシルメタクリレート
PhMA:フェニルメタクリレート
CHA:シクロヘキシルアクリレート
PhEA:2−フェノキシエチルアクリレート
MCHM:3,3,5−トリメチルシクロヘキシルメタクリレート
MMA: methyl methacrylate CHMA: cyclohexyl methacrylate PhMA: phenyl methacrylate CHA: cyclohexyl acrylate PhEA: 2-phenoxyethyl acrylate MCHM: 3,3,5-trimethylcyclohexyl methacrylate

(1)重量平均分子量(Mw):製造された樹脂をテトラヒドロフランに溶かしてゲル浸透クロマトグラフィー(GPC)を用いて測定した。   (1) Weight average molecular weight (Mw): The produced resin was dissolved in tetrahydrofuran and measured using gel permeation chromatography (GPC).

(2)ガラス転移温度(Tg):TA Instrument社製のDSC(Differential Scanning Calorimeter)を用いて測定した。   (2) Glass transition temperature (Tg): Measured using a DSC (Differential Scanning Calorimeter) manufactured by TA Instrument.

(3)位相差値(Rin/Rth):フィルムのガラス転移温度で延伸後、Axometrics社製のAxoScanを用いて測定した。 (3) Retardation value (R in / R th ): After stretching at the glass transition temperature of the film, it was measured using AxoScan manufactured by Axometrics.

上記表1の結果から、本発明による位相差フィルムは、光学的特性に優れると共に光学的透明性にも優れ、機械的物性、加工性、耐熱性及び位相差具現特性に優れることが分かる。
[項目1]
1)アルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体を含むアクリル系共重合体樹脂と、
2)高分子主鎖に芳香族環又は脂肪族環と、
を含む樹脂とのブレンド樹脂を含む、位相差フィルム。
[項目2]
上記1)のアルキルメタクリレート系単量体は、メチルメタクリレート又はエチルメタクリレートである、項目1に記載の位相差フィルム。
[項目3]
上記1)のシクロアルキルメタクリレート系単量体は、シクロヘキシルメタクリレートである、項目1または2に記載の位相差フィルム。
[項目4]
上記1)アクリル系共重合体樹脂は、アルキルメタクリレート系単量体70〜99.9重量%と、上記シクロアルキルメタクリレート系単量体0.1〜30重量%とを含む、項目1から3の何れか1項に記載の位相差フィルム。
[項目5]
上記1)アクリル系共重合体樹脂は、スチレン系単量体をさらに含む、項目1から4の何れか1項に記載の位相差フィルム。
[項目6]
上記1)アクリル系共重合体樹脂は、メチルメタクリレートとシクロヘキシルメタクリレートとの共重合体樹脂である、項目1から5の何れか1項に記載の位相差フィルム。
[項目7]
上記2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂は、ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリナフタレン系樹脂、ポリノルボルネン系樹脂、ポリスルホン系樹脂及びポリイミド系樹脂からなる群から選択される1種以上を含む、項目1から6の何れか1項に記載の位相差フィルム。
[項目8]
上記ブレンド樹脂中、1)アクリル系共重合体樹脂の含量が60〜99重量%であり、2)高分子主鎖に芳香族環又は脂肪族環を含む樹脂の含量が1〜40重量%である、項目1から7の何れか1項に記載の位相差フィルム。
[項目9]
上記ブレンド樹脂の重量平均分子量は、40,000〜200,000である、項目1から8の何れか1項に記載の位相差フィルム。
[項目10]
上記位相差フィルムの厚さは、20〜200μmである、項目1から9の何れか1項に記載の位相差フィルム。
[項目11]
上記位相差フィルムの下記式1で表示される面方向位相差の値が30〜80nmであり、下記式2で表示される厚さ方向位相差の値が−50〜−200nmである、項目1から10の何れか1項に記載の位相差フィルム。
[式1]R in =(n −n )×d
[式2]R th =(n −n )×d
上記式1及び式2中、n は、フィルムの面方向において最も屈折率が大きい方向の屈折率であり、n は、フィルムの面方向においてn 方向の垂直方向の屈折率であり、n は、厚さ方向の屈折率であり、dは、フィルムの厚さである。
[項目12]
上記ブレンド樹脂のガラス転移温度は、100℃以上である、項目1から11の何れか1項に記載の位相差フィルム。
[項目13]
1)アルキルメタクリレート系単量体及びシクロアルキルメタクリレート系単量体を含むアクリル系共重合体樹脂と、高分子主鎖に芳香族環又は脂肪族環を含む樹脂とのブレンド樹脂組成物を用意する段階と、
2)上記樹脂組成物を用いてフィルムを成形する段階と、
を含む、位相差フィルムの製造方法。
[項目14]
上記位相差フィルムの製造方法は上記フィルムを一軸又は二軸延伸する段階をさらに含む、項目13に記載の位相差フィルムの製造方法。
[項目15]
項目1〜12のいずれか一項に記載の位相差フィルムを1つ又は2つ以上含む、液晶表示装置。
[項目16]
上記液晶表示装置は、VA(Vertical Alignment)モード液晶表示装置である、項目15に記載の液晶表示装置。
[項目17]
偏光膜を含み、当該偏光膜の一面又は両面に項目1〜12のいずれか一項に記載の位相差フィルムを保護フィルムとして含む、一体型偏光板。
[項目18]
項目17に記載の一体型偏光板を含む、液晶表示装置。

From the results of Table 1, it can be seen that the retardation film according to the present invention is excellent in optical properties and optical transparency, and is excellent in mechanical properties, workability, heat resistance and retardation implementation properties.
[Item 1]
1) an acrylic copolymer resin containing an alkyl methacrylate monomer and a cycloalkyl methacrylate monomer;
2) an aromatic ring or an aliphatic ring in the polymer main chain;
Retardation film containing blend resin with resin containing.
[Item 2]
Item 1. The retardation film according to Item 1, wherein the alkyl methacrylate monomer of 1) is methyl methacrylate or ethyl methacrylate.
[Item 3]
Item 3. The retardation film according to Item 1 or 2, wherein the cycloalkyl methacrylate monomer of 1) is cyclohexyl methacrylate.
[Item 4]
1) The acrylic copolymer resin comprises 70 to 99.9% by weight of an alkyl methacrylate monomer and 0.1 to 30% by weight of the cycloalkyl methacrylate monomer. The retardation film according to any one of the above.
[Item 5]
Item 1) The retardation film according to any one of Items 1 to 4, wherein the acrylic copolymer resin further comprises a styrene monomer.
[Item 6]
6. The retardation film according to any one of items 1 to 5, wherein the 1) acrylic copolymer resin is a copolymer resin of methyl methacrylate and cyclohexyl methacrylate.
[Item 7]
2) The resin containing an aromatic ring or an aliphatic ring in the polymer main chain is selected from the group consisting of polycarbonate resins, polyarylate resins, polynaphthalene resins, polynorbornene resins, polysulfone resins and polyimide resins. The retardation film according to any one of items 1 to 6, comprising one or more selected.
[Item 8]
In the blended resin, 1) the content of the acrylic copolymer resin is 60 to 99% by weight, and 2) the content of the resin containing an aromatic ring or an aliphatic ring in the polymer main chain is 1 to 40% by weight. The retardation film according to any one of items 1 to 7,
[Item 9]
9. The retardation film according to any one of items 1 to 8, wherein the blend resin has a weight average molecular weight of 40,000 to 200,000.
[Item 10]
10. The retardation film according to any one of items 1 to 9, wherein the retardation film has a thickness of 20 to 200 μm.
[Item 11]
Item 1 wherein the value of the surface direction retardation represented by the following formula 1 of the retardation film is 30 to 80 nm, and the value of the thickness direction retardation represented by the following formula 2 is −50 to −200 nm. The retardation film according to any one of 1 to 10.
[Expression 1] R in = (n x -n y) × d
Expression 2] R th = (n z -n y) × d
Among the above formulas 1 and 2, n x is the most refractive index is larger refractive index in the direction in the plane direction of the film, n y is the refractive index in the plane direction of the n x direction in the vertical direction of the film, n z is the refractive index in the thickness direction, d is the thickness of the film.
[Item 12]
12. The retardation film according to any one of items 1 to 11, wherein the blend resin has a glass transition temperature of 100 ° C. or higher.
[Item 13]
1) A blend resin composition of an acrylic copolymer resin containing an alkyl methacrylate monomer and a cycloalkyl methacrylate monomer and a resin containing an aromatic ring or an aliphatic ring in the polymer main chain is prepared. Stages,
2) forming a film using the resin composition;
A method for producing a retardation film.
[Item 14]
14. The method for producing a retardation film according to Item 13, wherein the method for producing a retardation film further comprises a step of uniaxially or biaxially stretching the film.
[Item 15]
A liquid crystal display device comprising one or more retardation films according to any one of items 1 to 12.
[Item 16]
Item 16. The liquid crystal display device according to item 15, wherein the liquid crystal display device is a VA (Vertical Alignment) mode liquid crystal display device.
[Item 17]
An integrated polarizing plate comprising a polarizing film and comprising the retardation film according to any one of Items 1 to 12 as a protective film on one surface or both surfaces of the polarizing film.
[Item 18]
18. A liquid crystal display device comprising the integrated polarizing plate according to item 17.

Claims (13)

1)アルキルメタクリレート系単量体70〜99.9重量%及びシクロアルキルメタクリレート系単量体0.1〜30重量%を含むアクリル系共重合体樹脂と、
2)ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリナフタレン系樹脂、ポリノルボルネン系樹脂、ポリスルホン系樹脂、及びポリイミド系樹脂からなる群から選択される1種以上の樹脂と、のブレンド樹脂を含み、
前記ブレンド樹脂中、1)アクリル系共重合体樹脂の含量が60〜99重量%であり、2)ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリナフタレン系樹脂、ポリノルボルネン系樹脂、ポリスルホン系樹脂、及びポリイミド系樹脂からなる群から選択される1種以上の樹脂の含量が1〜40重量%であることを特徴とし、
下記式1で表示される面方向位相差の値が30〜80nmであり、下記式2で表示される厚さ方向位相差の値が−50〜−200nmである、位相差フィルム。
[式1]Rin=(n−n)×d
[式2]Rth=(n−n)×d
前記式1及び式2中、nは、フィルムの面方向において最も屈折率が大きい方向の屈折率であり、nは、フィルムの面方向においてn方向の垂直方向の屈折率であり、nは、厚さ方向の屈折率であり、dは、フィルムの厚さである。
1) an acrylic copolymer resin containing 70 to 99.9% by weight of an alkyl methacrylate monomer and 0.1 to 30% by weight of a cycloalkyl methacrylate monomer;
2) including a blend resin of at least one resin selected from the group consisting of polycarbonate resins, polyarylate resins, polynaphthalene resins, polynorbornene resins, polysulfone resins, and polyimide resins,
In the blend resin, 1) the content of acrylic copolymer resin is 60 to 99% by weight, 2) polycarbonate resin, polyarylate resin, polynaphthalene resin, polynorbornene resin, polysulfone resin, and The content of one or more resins selected from the group consisting of polyimide resins is 1 to 40% by weight,
A retardation film having a surface direction retardation value represented by the following formula 1 of 30 to 80 nm and a thickness direction retardation value represented by the following formula 2 of −50 to −200 nm.
[Expression 1] R in = (n x -n y) × d
Expression 2] R th = (n z -n y) × d
In the formulas 1 and 2, n x is the most refractive index is larger refractive index in the direction in the plane direction of the film, n y is the refractive index in the plane direction of the n x direction in the vertical direction of the film, nz is the refractive index in the thickness direction, and d is the thickness of the film.
前記1)のアルキルメタクリレート系単量体は、メチルメタクリレート又はエチルメタクリレートである、請求項1に記載の位相差フィルム。   The retardation film according to claim 1, wherein the alkyl methacrylate monomer of 1) is methyl methacrylate or ethyl methacrylate. 前記1)のシクロアルキルメタクリレート系単量体は、シクロヘキシルメタクリレートである、請求項1または2に記載の位相差フィルム。   The retardation film according to claim 1, wherein the cycloalkyl methacrylate monomer of 1) is cyclohexyl methacrylate. 前記1)アクリル系共重合体樹脂は、メチルメタクリレートとシクロヘキシルメタクリレートとの共重合体樹脂である、請求項1から3の何れか1項に記載の位相差フィルム。   The retardation film according to any one of claims 1 to 3, wherein the 1) acrylic copolymer resin is a copolymer resin of methyl methacrylate and cyclohexyl methacrylate. 前記ブレンド樹脂の重量平均分子量は、40,000〜200,000である、請求項1から4の何れか1項に記載の位相差フィルム。   The retardation film according to any one of claims 1 to 4, wherein the blend resin has a weight average molecular weight of 40,000 to 200,000. 前記位相差フィルムの厚さは、20〜200μmである、請求項1から5の何れか1項に記載の位相差フィルム。   The retardation film according to claim 1, wherein the retardation film has a thickness of 20 to 200 μm. 前記ブレンド樹脂のガラス転移温度は、100℃以上である、請求項1から6の何れか1項に記載の位相差フィルム。   The retardation film according to any one of claims 1 to 6, wherein the glass transition temperature of the blend resin is 100 ° C or higher. 1)アルキルメタクリレート系単量体70〜99.9重量%及びシクロアルキルメタクリレート系単量体0.1〜30重量%を含むアクリル系共重合体樹脂と、
ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリナフタレン系樹脂、ポリノルボルネン系樹脂、ポリスルホン系樹脂、及びポリイミド系樹脂からなる群から選択される1種以上の樹脂と、のブレンド樹脂組成物を用意する段階と、
2)前記ブレンド樹脂組成物を用いてフィルムを成形する段階と、
を含み、
前記ブレンド樹脂中、前記アクリル系共重合体樹脂の含量が60〜99重量%であり、前記ポリカーボネート系樹脂、ポリアリレート系樹脂、ポリナフタレン系樹脂、ポリノルボルネン系樹脂、ポリスルホン系樹脂、及びポリイミド系樹脂からなる群から選択される1種以上の樹脂の含量が1〜40重量%であることを特徴とする位相差フィルムの製造方法であって、
該位相差フィルムは、下記式1で表示される面方向位相差の値が30〜80nmであり、下記式2で表示される厚さ方向位相差の値が−50〜−200nmである、位相差フィルムの製造方法。
[式1]Rin=(n−n)×d
[式2]Rth=(n−n)×d
前記式1及び式2中、nは、フィルムの面方向において最も屈折率が大きい方向の屈折率であり、nは、フィルムの面方向においてn方向の垂直方向の屈折率であり、nは、厚さ方向の屈折率であり、dは、フィルムの厚さである。
1) an acrylic copolymer resin containing 70 to 99.9% by weight of an alkyl methacrylate monomer and 0.1 to 30% by weight of a cycloalkyl methacrylate monomer;
The step of preparing a blend resin composition of at least one resin selected from the group consisting of polycarbonate resins, polyarylate resins, polynaphthalene resins, polynorbornene resins, polysulfone resins, and polyimide resins When,
2) forming a film using the blend resin composition;
Including
During the blending resin, wherein a content of 60-99% by weight of the acrylic copolymer resin, the polycarbonate resins, polyarylate resins, poly naphthalene resins, polynorbornene resins, polysulfone resins, and polyimide A method for producing a retardation film, wherein the content of one or more resins selected from the group consisting of resins is 1 to 40% by weight,
The retardation film has a plane direction retardation value represented by the following formula 1 of 30 to 80 nm, and a thickness direction retardation value represented by the following formula 2 of −50 to −200 nm. A method for producing a phase difference film.
[Expression 1] R in = (n x -n y) × d
Expression 2] R th = (n z -n y) × d
In the formulas 1 and 2, n x is the most refractive index is larger refractive index in the direction in the plane direction of the film, n y is the refractive index in the plane direction of the n x direction in the vertical direction of the film, nz is the refractive index in the thickness direction, and d is the thickness of the film.
前記フィルムを一軸又は二軸延伸する段階をさらに含む、請求項8に記載の位相差フィルムの製造方法。   The method for producing a retardation film according to claim 8, further comprising a step of stretching the film uniaxially or biaxially. 請求項1〜7のいずれか一項に記載の位相差フィルムを1つ又は2つ以上含む、液晶表示装置。   The liquid crystal display device containing 1 or 2 or more of retardation films as described in any one of Claims 1-7. 前記液晶表示装置は、VA(Vertical Alignment)モード液晶表示装置である、請求項10に記載の液晶表示装置。   The liquid crystal display device according to claim 10, wherein the liquid crystal display device is a VA (Vertical Alignment) mode liquid crystal display device. 偏光膜を含み、当該偏光膜の一面又は両面に請求項1〜7のいずれか一項に記載の位相差フィルムを保護フィルムとして含む、一体型偏光板。   An integrated polarizing plate comprising a polarizing film and comprising the retardation film according to any one of claims 1 to 7 as a protective film on one or both surfaces of the polarizing film. 請求項12に記載の一体型偏光板を含む、液晶表示装置。   A liquid crystal display device comprising the integrated polarizing plate according to claim 12.
JP2011533122A 2008-11-28 2009-11-27 Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate Active JP5633851B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020080119610A KR101361561B1 (en) 2008-08-28 2008-11-28 Retardation films and liquid crystal display comprising the sames
KR10-2008-0119610 2008-11-28
PCT/KR2009/007036 WO2010062133A2 (en) 2008-11-28 2009-11-27 Retardation film and a liquid-crystal display device comprising the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2014159838A Division JP2015007787A (en) 2008-11-28 2014-08-05 Retardation film and liquid-crystal display device comprising the same
JP2014159693A Division JP5888757B2 (en) 2008-11-28 2014-08-05 Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate

Publications (2)

Publication Number Publication Date
JP2012507040A JP2012507040A (en) 2012-03-22
JP5633851B2 true JP5633851B2 (en) 2014-12-03

Family

ID=44246443

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2011533122A Active JP5633851B2 (en) 2008-11-28 2009-11-27 Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate
JP2014159838A Pending JP2015007787A (en) 2008-11-28 2014-08-05 Retardation film and liquid-crystal display device comprising the same
JP2014159693A Active JP5888757B2 (en) 2008-11-28 2014-08-05 Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2014159838A Pending JP2015007787A (en) 2008-11-28 2014-08-05 Retardation film and liquid-crystal display device comprising the same
JP2014159693A Active JP5888757B2 (en) 2008-11-28 2014-08-05 Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate

Country Status (4)

Country Link
EP (1) EP2352059B1 (en)
JP (3) JP5633851B2 (en)
CN (2) CN102216838A (en)
WO (1) WO2010062133A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101304592B1 (en) 2010-06-08 2013-09-05 주식회사 엘지화학 Acryl-based copolymers with heatresistance and high strength, and an optical film comprising the same
CN103571118B (en) * 2012-08-09 2017-07-18 住友化学株式会社 Resin composition for optical material and its manufacture method
KR20170013273A (en) 2014-06-03 2017-02-06 주식회사 쿠라레 Methacrylic resin composition
CN107446080A (en) * 2017-09-02 2017-12-08 佛山市北朝源科技服务有限公司 A kind of blending resin for phase shift films
CN107501894A (en) * 2017-09-03 2017-12-22 苏建 A kind of blending resin for phase shift films
KR102176880B1 (en) * 2018-05-11 2020-11-10 주식회사 엘지화학 Retardation film, method for manufacturing retardation film, polarizing plate comprising same, and liquid crystal display device comprising the same

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3632946A1 (en) * 1986-09-27 1988-03-31 Roehm Gmbh COMPATIBLE MIXTURES OF POLYCARBONATE AND METHYL METHACRYLATE COPOLYMERS
DE3719239A1 (en) * 1987-06-06 1988-12-15 Roehm Gmbh COMPATIBLE POLYCARBONATE-POLYMETHACRYLATE MIXTURES
US5200492A (en) * 1990-10-29 1993-04-06 Kuraray Co., Ltd. Polymer blends
JP3119457B2 (en) * 1992-04-29 2000-12-18 株式会社クラレ Transparent film
US20020021400A1 (en) * 1997-05-29 2002-02-21 Lyu Jae-Jin Liquid crystal displays
JP2002139621A (en) * 2000-08-22 2002-05-17 Fuji Photo Film Co Ltd Optical compensation sheet, polarization plate and liquid crystal display
TW200506467A (en) * 2002-12-19 2005-02-16 Nitto Denko Corp Birefringent optical film, elliptically polarizing plate using the same, and liquid crystal
JP2004212971A (en) * 2002-12-19 2004-07-29 Nitto Denko Corp Birefringent optical film, elliptic polarizing plate using the film and liquid crystal display device using these
CN1816439A (en) * 2003-05-02 2006-08-09 通用电气公司 Polymeric blends for optical devices and method of manufacture thereof
US7087682B2 (en) * 2003-05-02 2006-08-08 General Electric Polymeric blends for optical devices and method of manufacture thereof
CN101122648B (en) * 2003-08-08 2011-05-04 日东电工株式会社 Polarizing film, laminated film, and liquid crystal display
WO2005093476A1 (en) * 2004-03-25 2005-10-06 Fuji Photo Film Co., Ltd. Transparent film and optical compensatory film, polarizing plate and liquid-crystal display device employing it
JP2005292229A (en) * 2004-03-31 2005-10-20 Teijin Dupont Films Japan Ltd Film for polarizer supporting base and polarizing plate
CN101014635A (en) * 2004-08-30 2007-08-08 三菱丽阳株式会社 Optical copolymer and molded product comprising the same
CN100407001C (en) * 2004-10-22 2008-07-30 日东电工株式会社 Lc panel and LCD device
JP5126925B2 (en) * 2005-03-16 2013-01-23 日東電工株式会社 Optical pressure-sensitive adhesive, pressure-sensitive adhesive optical film, image display device, and pressure-sensitive adhesive film peeling method
JP2007191706A (en) * 2005-12-22 2007-08-02 Toray Ind Inc Thermoplastic copolymer, method for producing the same and thermoplastic resin composition composed thereof
TWI375053B (en) * 2006-02-28 2012-10-21 Nippon Catalytic Chem Ind Phase difference film
JP4907387B2 (en) * 2006-02-28 2012-03-28 株式会社日本触媒 Retardation film
JP4140736B2 (en) * 2006-03-15 2008-08-27 日東電工株式会社 Adhesive optical film, laminated optical film, and image display device
KR100850794B1 (en) * 2006-07-06 2008-08-06 주식회사 엘지화학 A method preparing an optical anisotropic film with high heat resistance and a film prepared by the same, and a liquid crystal display device comprising the film
JP5057807B2 (en) * 2006-09-14 2012-10-24 旭化成イーマテリアルズ株式会社 Retardation film containing acrylic resin and styrene resin
JP5004770B2 (en) * 2007-02-28 2012-08-22 株式会社日本触媒 Retardation film

Also Published As

Publication number Publication date
JP5888757B2 (en) 2016-03-22
JP2015007787A (en) 2015-01-15
EP2352059B1 (en) 2017-11-01
WO2010062133A3 (en) 2010-10-21
EP2352059A4 (en) 2012-06-20
CN106939111A (en) 2017-07-11
WO2010062133A2 (en) 2010-06-03
CN102216838A (en) 2011-10-12
EP2352059A2 (en) 2011-08-03
JP2012507040A (en) 2012-03-22
JP2014238602A (en) 2014-12-18
CN106939111B (en) 2019-06-18

Similar Documents

Publication Publication Date Title
JP5550153B2 (en) Optical film, manufacturing method thereof, and liquid crystal display device including the same
JP5429759B2 (en) Resin composition, optical film, and liquid crystal display device
TWI412550B (en) Optical film and information technology apparatus comprising the same
KR101304591B1 (en) Retardation film, preparation method thereof, and liquid crystal display comprising the same
JP5823298B2 (en) Retardation film, method for producing the same, and liquid crystal display device including the same
JP5888757B2 (en) Retardation film, method for producing retardation film, liquid crystal display device and integrated polarizing plate
JP2011509435A (en) Optical film and information electronic device including the same
KR101127914B1 (en) Optical films and liquid crystal display comprising the sames
KR101206721B1 (en) Retardation films and liquid crystal display comprising the sames
KR101361561B1 (en) Retardation films and liquid crystal display comprising the sames
JP5679492B2 (en) Resin composition, optical film, polarizing plate and liquid crystal display device
KR101243716B1 (en) Retardation films having excellent adhesive property and liquid crystal display comprising the sames
KR101206720B1 (en) Retardation films and liquid crystal display comprising the sames
KR101477847B1 (en) Acryl-based copolymers for an optical film, and an optical film comprising the same
KR101226935B1 (en) Optical film comprising acryl-based resin, and liquid-crystal-display comprising the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141003

R150 Certificate of patent or registration of utility model

Ref document number: 5633851

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250