JP5633251B2 - Oxygen compressor sealing device - Google Patents

Oxygen compressor sealing device Download PDF

Info

Publication number
JP5633251B2
JP5633251B2 JP2010193210A JP2010193210A JP5633251B2 JP 5633251 B2 JP5633251 B2 JP 5633251B2 JP 2010193210 A JP2010193210 A JP 2010193210A JP 2010193210 A JP2010193210 A JP 2010193210A JP 5633251 B2 JP5633251 B2 JP 5633251B2
Authority
JP
Japan
Prior art keywords
oxygen
pocket
compressor
recovery
shaft seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010193210A
Other languages
Japanese (ja)
Other versions
JP2012052564A (en
Inventor
直紀 西山
直紀 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2010193210A priority Critical patent/JP5633251B2/en
Publication of JP2012052564A publication Critical patent/JP2012052564A/en
Application granted granted Critical
Publication of JP5633251B2 publication Critical patent/JP5633251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は酸素圧縮機のシール装置に関するものである。   The present invention relates to a sealing device for an oxygen compressor.

空気、二酸化炭素、窒素をはじめとする種々のガスを圧縮して昇圧させる手段として、遠心圧縮機は広く用いられている。   Centrifugal compressors are widely used as means for compressing and pressurizing various gases including air, carbon dioxide, and nitrogen.

助燃性が高い酸素を昇圧させる酸素圧縮機では、インペラ回転軸と、該インペラ回転軸が挿通される静止部のハウジング部との間に、ラビリンス方式の軸封装置を設け、昇圧した酸素がハウジング部の外へ漏れることを抑制している。   In an oxygen compressor that pressurizes oxygen with high combustion resistance, a labyrinth-type shaft seal device is provided between an impeller rotating shaft and a stationary housing portion through which the impeller rotating shaft is inserted. Leaks out of the part.

酸素圧縮機に用いる軸封装置としては、ハウジング部の内周面とインペラ回転軸の外周面との間に、第1ラビリンスシール部、第2ラビリンスシール部、第3ラビリンスシール部、第4ラビリンスシール部、第5ラビリンスシール部、及び第6ラビリンスシール部を、高圧側(インペラ側)から低圧側(反インペラ側)へ向けて、インペラ回転軸の軸線方向に間隔を置いて設け、隣接するラビリンスシール部の間にそれぞれに圧溜室を形成したものが知られている(例えば、特許文献1参照)。   As a shaft seal device used for an oxygen compressor, a first labyrinth seal portion, a second labyrinth seal portion, a third labyrinth seal portion, and a fourth labyrinth are provided between an inner peripheral surface of a housing portion and an outer peripheral surface of an impeller rotary shaft. The seal portion, the fifth labyrinth seal portion, and the sixth labyrinth seal portion are provided adjacent to each other in the axial direction of the impeller rotating shaft from the high pressure side (impeller side) to the low pressure side (anti-impeller side). One in which a pressure chamber is formed between the labyrinth seal portions is known (for example, see Patent Document 1).

第1ラビリンスシール部と第2ラビリンスシール部との間の圧溜室、第2ラビリンスシール部と第3ラビリンスシール部との間の圧溜室、及び第3ラビリンスシール部と第4ラビリンスシール部との間の圧溜室には、プロセスガス回収ラインが接続されている。このプロセスガス回収ラインは、インペラの回転により昇圧された酸素が、該インペラの背面側を経て高圧側の圧溜室に入ってきた際に、前記酸素を回収する役割を担っている。   A pressure chamber between the first labyrinth seal portion and the second labyrinth seal portion, a pressure chamber between the second labyrinth seal portion and the third labyrinth seal portion, and a third labyrinth seal portion and a fourth labyrinth seal portion A process gas recovery line is connected to the pressure chamber between the two. This process gas recovery line plays a role of recovering oxygen when the pressure increased by the rotation of the impeller enters the high pressure side pressure chamber through the back side of the impeller.

第4ラビリンスシール部と第5ラビリンスシール部との間の圧溜室には、大気パージラインが接続され、第5ラビリンスシール部と第6ラビリンスシール部との間の圧溜室には、シールガス供給ラインが接続されている。シールガス供給ラインは、最も低圧側の圧溜室に窒素を供給し、酸素がハウジング部の外へ漏れないようにする役割を担っている。大気パージラインは、高圧側の圧溜室において回収しきれずに第4ラビリンスシール部と第5ラビリンスシール部との間の圧溜室にはいってきた酸素と、最も低圧側の圧溜室を経て前記第4ラビリンスシール部と第5ラビリンスシール部との間の圧溜室にはいってきた窒素混合気体を、大気中に放風する役割を担っている。   An atmospheric purge line is connected to the pressure chamber between the fourth labyrinth seal portion and the fifth labyrinth seal portion, and a seal is provided to the pressure chamber between the fifth labyrinth seal portion and the sixth labyrinth seal portion. Gas supply line is connected. The seal gas supply line plays a role of supplying nitrogen to the pressure chamber on the lowest pressure side so that oxygen does not leak out of the housing portion. The atmospheric purge line passes through the pressure chamber which is not fully recovered in the pressure chamber on the high pressure side and enters the pressure chamber between the fourth labyrinth seal portion and the fifth labyrinth seal portion, and the pressure chamber on the lowest pressure side. The nitrogen mixed gas that has entered the pressure chamber between the fourth labyrinth seal portion and the fifth labyrinth seal portion plays a role of releasing air into the atmosphere.

特開2007−247566号公報、段落0006−0011、図3Japanese Unexamined Patent Publication No. 2007-247466, paragraphs 0006-0011, FIG.

複数基の酸素生成設備から酸素が送給される圧縮機では、全ての酸素生成設備が並列運転されている場合と一基の酸素生成設備だけが単独運転されている場合とでは、圧縮機の酸素吸入圧力は大きく異なる。例えば、酸素生成設備の全基を運転しているときに、圧縮機の酸素吸入圧力が25kPa(G)であっても、酸素生成設備の一基だけを運転しているときは、圧縮機の酸素吸入圧力が5kPa(G)になってしまう[ここで(G)はゲージ圧であることを意味している]。   In a compressor in which oxygen is supplied from a plurality of oxygen generation facilities, the compressor is operated in a case where all the oxygen generation facilities are operated in parallel or in a case where only one oxygen generation facility is operated independently. The oxygen suction pressure varies greatly. For example, when all the oxygen generation facilities are operating, even if the oxygen suction pressure of the compressor is 25 kPa (G), when only one oxygen generation facility is operating, The oxygen suction pressure becomes 5 kPa (G) [where (G) means a gauge pressure].

前述した軸封装置において、圧縮機の酸素吸入圧力に対して最も低圧側の圧溜室に供給する窒素の量が過剰である場合には、窒素が高圧側の圧溜室にまで到達して、該圧溜室から回収されて圧縮機へ戻る酸素に窒素が混入し、その結果、圧縮機により昇圧される酸素の純度が低下することが懸念される。   In the above-described shaft seal device, when the amount of nitrogen supplied to the pressure chamber on the lowest pressure side with respect to the oxygen suction pressure of the compressor is excessive, the nitrogen reaches the pressure chamber on the high pressure side. There is a concern that nitrogen is mixed in oxygen recovered from the pressure chamber and returned to the compressor, and as a result, the purity of oxygen pressurized by the compressor is lowered.

本発明は上述した実情に鑑みてなしたもので、酸素純度の低下を抑止できる酸素圧縮機のシール装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an oxygen compressor sealing device that can suppress a decrease in oxygen purity.

上記目的を達成するため、請求項1に記載の酸素圧縮機のシール装置は、
酸素生成設備から酸素が酸素吸入配管を介して吸入口に送給される圧縮機に付帯し、インペラ回転軸が挿通されるハウジング部に高圧側から低圧側へ向けて順に回収ポケット、放出ポケット、及び密封ポケットを形成したラビリンス方式の軸封装置本体を備え、
この軸封装置本体の回収ポケットに、酸素回収配管を介して前記酸素吸入配管を接続し、
この軸封装置本体の放出ポケットに、下流端が大気開放された放風配管を接続し、
この軸封装置本体の密封ポケットに、シールガス供給源に連通するシールガス送給配管を接続し、
前記酸素回収配管に流量調整弁に組み込み、
前記回収ポケットの内圧を検出する圧力センサを設け、
該圧力センサの検出値が、予め設定してある内圧下限範囲を上回るように前記流量調整弁の開度を調整して前記酸素回収配管における酸素の流通量を減少、あるいは増加させるコントローラを設けている。
In order to achieve the above object, a sealing device for an oxygen compressor according to claim 1,
Attached to the compressor from which oxygen is supplied from the oxygen generation facility to the suction port via the oxygen suction pipe, a recovery pocket, a discharge pocket, in order from the high pressure side to the low pressure side in the housing part through which the impeller rotary shaft is inserted, And a labyrinth-type shaft seal device body formed with a sealing pocket,
The oxygen suction pipe is connected to the recovery pocket of the shaft seal device body through an oxygen recovery pipe,
The discharge pocket of the shaft seal device body is connected to a discharge pipe whose downstream end is open to the atmosphere,
Connect the seal gas supply piping connected to the seal gas supply source to the seal pocket of the shaft seal device body,
Incorporated into the oxygen recovery pipe into the flow rate adjustment valve,
A pressure sensor for detecting the internal pressure of the recovery pocket is provided;
A controller is provided for adjusting the opening of the flow rate adjustment valve so that the detected value of the pressure sensor exceeds a preset lower limit of the internal pressure, thereby reducing or increasing the amount of oxygen flowing through the oxygen recovery pipe. Yes.

請求項2に記載の酸素圧縮機のシール装置は、
前記圧縮機で昇圧された酸素が酸素送給配管を介して吸入口に送給される後段圧縮機に付帯し、インペラ回転軸が挿通されるハウジング部に高圧側から低圧側へ向けて順に回収ポケット、放出ポケット、及び密封ポケットを形成したラビリンス方式の後段軸封装置本体を備え、
この後段軸封装置本体の回収ポケットに、前記軸封装置本体の回収ポケットを連通させ、
この後段軸封装置本体の放出ポケットに、前記軸封装置本体の放出ポケットを連通させ、
この後段軸封装置本体の密封ポケットに、前記軸封装置本体の密封ポケットを連通させている。
The oxygen compressor sealing device according to claim 2,
Oxygen boosted by the compressor is attached to the latter stage compressor that is supplied to the suction port via the oxygen supply pipe, and is sequentially recovered from the high pressure side to the low pressure side in the housing portion through which the impeller rotary shaft is inserted. A labyrinth-type rear shaft sealing device body having a pocket, a discharge pocket, and a sealing pocket,
The recovery pocket of the shaft seal device main body is communicated with the recovery pocket of the main shaft seal device body,
The discharge pocket of the shaft seal device main body is communicated with the discharge pocket of the shaft seal device main body,
The sealing pocket of the shaft sealing device main body is communicated with the sealing pocket of the rear shaft sealing device main body.

本発明の酸素圧縮機のシール装置によれば、下記のような優れた作用効果を奏し得る。   According to the sealing device for an oxygen compressor of the present invention, the following excellent effects can be obtained.

(1)請求項1に記載の酸素圧縮機のシール装置では、圧縮機に付帯の軸封装置本体の回収ポケットの内圧が、予め設定してある内圧下限範囲を上回るように酸素回収配管の流量調整弁の開度を調整し、前記回収ポケットの内圧の低下を防止するので、圧縮機における酸素吸入圧力が低くなった際に、放出ポケットから酸素吸入配管へ窒素が流入せず、酸素純度の低下を抑止できる。   (1) In the oxygen compressor sealing device according to claim 1, the flow rate of the oxygen recovery pipe is set so that the internal pressure of the recovery pocket of the shaft seal device main body attached to the compressor exceeds a preset lower limit range of the internal pressure. Since the opening of the regulating valve is adjusted to prevent a decrease in the internal pressure of the recovery pocket, when the oxygen suction pressure in the compressor becomes low, nitrogen does not flow from the discharge pocket to the oxygen suction pipe, and the oxygen purity is reduced. Decline can be suppressed.

(2)請求項2に記載の酸素圧縮機のシール装置では、後段圧縮機に付帯の後段軸封装置本体の密封ポケットが、圧縮機に付帯の軸封装置本体の密封ポケットに連通し、後段圧縮機に付帯の後段軸封装置本体の放出ポケットが、圧縮機に付帯の軸封装置本体の放出ポケットに連通し、後段圧縮機に付帯の後段軸封装置本体の回収ポケットが、圧縮機に付帯の軸封装置本体の回収ポケットに連通しているので、圧縮機、及び後段圧縮機における酸素純度の低下抑止を一つの流量調整弁と一台のコントローラで行うことができる。   (2) In the oxygen compressor sealing device according to claim 2, the sealing pocket of the main shaft sealing device attached to the rear compressor communicates with the sealing pocket of the main shaft sealing device attached to the compressor. The discharge pocket of the main shaft seal device attached to the compressor communicates with the discharge pocket of the main shaft seal device attached to the compressor, and the recovery pocket of the main shaft seal device attached to the rear compressor is connected to the compressor. Since it communicates with the collection pocket of the attached shaft seal device main body, it is possible to suppress the decrease in oxygen purity in the compressor and the downstream compressor by using one flow rate adjusting valve and one controller.

本発明の酸素圧縮機のシール装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the sealing apparatus of the oxygen compressor of this invention.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の酸素圧縮機のシール装置の一例を示すもので、多段ターボ圧縮機を対象としている。   FIG. 1 shows an example of a sealing device for an oxygen compressor according to the present invention, which is intended for a multi-stage turbo compressor.

Aは、ラビリンス方式の軸封装置本体であり、該軸封装置本体Aは、複数基の酸素生成設備(図示せず)から酸素が、酸素吸入配管10を介して圧縮機ケーシング2の吸入口に送給される圧縮機1に付帯している。   A is a labyrinth shaft seal device main body, and the shaft seal device main body A receives oxygen from a plurality of oxygen generation facilities (not shown) through the oxygen suction pipe 10 and the suction port of the compressor casing 2. Is attached to the compressor 1 fed to the compressor.

インペラ回転軸4の外周面と、該インペラ回転軸4が挿通されるハウジング部5の内周面との間には、第1ラビリンスシール部9a、第2ラビリンスシール部9b、第3ラビリンスシール部9c、及び第4ラビリンスシール部9dが、高圧側(インペラ側)から低圧側(反インペラ側)へ向けて、インペラ回転軸4の軸線方向に間隔を置いて設けてあり、第1ラビリンスシール部9aと第2ラビリンスシール部9bとの間に回収ポケット6を形成し、第2ラビリンスシール部9bと第3ラビリンスシール部9cとの間に放出ポケット7を形成し、第3ラビリンスシール部9cと第4ラビリンスシール部9dとの間に密封ポケット8を形成している。
これらのポケット6,7,8は、特許文献1における圧溜室に相当し、 また、インペラ回転軸4には、歯車箱3内の増速機構を介して電動モータ35の回転が伝達される。
Between the outer peripheral surface of the impeller rotary shaft 4 and the inner peripheral surface of the housing part 5 through which the impeller rotary shaft 4 is inserted, a first labyrinth seal portion 9a, a second labyrinth seal portion 9b, and a third labyrinth seal portion. 9c and the fourth labyrinth seal portion 9d are provided at intervals in the axial direction of the impeller rotating shaft 4 from the high pressure side (impeller side) to the low pressure side (anti-impeller side), and the first labyrinth seal portion A recovery pocket 6 is formed between 9a and the second labyrinth seal portion 9b, a discharge pocket 7 is formed between the second labyrinth seal portion 9b and the third labyrinth seal portion 9c, and the third labyrinth seal portion 9c A sealing pocket 8 is formed between the fourth labyrinth seal portion 9d.
These pockets 6, 7, and 8 correspond to the pressure chambers in Patent Document 1, and the rotation of the electric motor 35 is transmitted to the impeller rotary shaft 4 through a speed increasing mechanism in the gear box 3. .

この軸封装置本体Aの回収ポケット6には、下流端が前記酸素吸入配管10に連通する基幹酸素回収配管14が接続されている。
この軸封装置本体Aの放出ポケット7には、下流端が建屋12の外部で大気開放した基幹放風配管13の上流端が接続されている。
この軸封装置本体Aの密封ポケット8には、上流端がシールガスとして窒素を貯留したガス槽36に連通する基幹シールガス送給配管11の下流端が接続されている。
A basic oxygen recovery pipe 14 whose downstream end communicates with the oxygen suction pipe 10 is connected to the recovery pocket 6 of the shaft seal device main body A.
To the discharge pocket 7 of the shaft seal device main body A, the upstream end of the main air discharge pipe 13 whose downstream end is open to the atmosphere outside the building 12 is connected.
Connected to the sealing pocket 8 of the shaft seal device main body A is the downstream end of the main seal gas feed pipe 11 communicating with the gas tank 36 whose upstream end stores nitrogen as a seal gas.

圧縮機ケーシング2の酸素吸入圧力は、段落0008で記述したように酸素生成設備の運転状況に応じて、例えば、5〜25kPa(G)で変動する。また、ガス槽から基幹シールガス送給配管11へのシールガス供給圧力は、酸素吸入圧力よりも2kPa(G)以上高くなるように、27kPa(G)としてある[ここで(G)はゲージ圧であることを意味している]。   As described in paragraph 0008, the oxygen suction pressure of the compressor casing 2 varies, for example, in the range of 5 to 25 kPa (G) depending on the operation status of the oxygen generation facility. Further, the seal gas supply pressure from the gas tank to the main seal gas supply pipe 11 is set to 27 kPa (G) so as to be 2 kPa (G) or more higher than the oxygen suction pressure [where (G) is the gauge pressure. It means that].

Bは、ラビリンス方式の後段軸封装置本体であり、該後段軸封装置本体Bは、前記圧縮機1で昇圧された酸素が、酸素送給配管23を介して圧縮機ケーシング16の吸入口に送給される後段圧縮機15に付帯している。   B is a rear shaft seal device main body of the labyrinth type, and the rear shaft seal device main body B is supplied with oxygen boosted by the compressor 1 to the suction port of the compressor casing 16 via the oxygen supply pipe 23. It is attached to the latter stage compressor 15 to be fed.

インペラ回転軸17の外周面と、該インペラ回転軸17が挿通されるハウジング部18の内周面との間には、第1ラビリンスシール部9e、第2ラビリンスシール部9f、第3ラビリンスシール部9g、第4ラビリンスシール部9h、及び第5ラビリンスシール部9iが、高圧側(インペラ側)から低圧側(反インペラ側)へ向けて、インペラ回転軸17の軸線方向に間隔を置いて設けてあり、第1ラビリンスシール部9eと第2ラビリンスシール部9fとの間に回収ポケット19を形成し、第2ラビリンスシール部9fと第3ラビリンスシール部9gとの間に回収ポケット20を形成し、第3ラビリンスシール部9gと第4ラビリンスシール部9hとの間に放出ポケット21を形成し、第4ラビリンスシール部9hと第5ラビリンスシール部9iとの間に密封ポケット22を形成している。
これらのポケット19,20,21,22は、特許文献1における圧溜室に相当し、また、インペラ回転軸17には、歯車箱3内の増速機構を介して電動モータ35の回転が伝達される。
Between the outer peripheral surface of the impeller rotating shaft 17 and the inner peripheral surface of the housing part 18 through which the impeller rotating shaft 17 is inserted, a first labyrinth seal portion 9e, a second labyrinth seal portion 9f, and a third labyrinth seal portion. 9g, the fourth labyrinth seal portion 9h, and the fifth labyrinth seal portion 9i are provided at intervals in the axial direction of the impeller rotary shaft 17 from the high pressure side (impeller side) to the low pressure side (anti-impeller side). Yes, a recovery pocket 19 is formed between the first labyrinth seal portion 9e and the second labyrinth seal portion 9f, and a recovery pocket 20 is formed between the second labyrinth seal portion 9f and the third labyrinth seal portion 9g, A discharge pocket 21 is formed between the third labyrinth seal portion 9g and the fourth labyrinth seal portion 9h, and the fourth labyrinth seal portion 9h and the fifth labyrinth seal. To form a sealed pocket 22 between the 9i.
These pockets 19, 20, 21, and 22 correspond to the pressure chambers in Patent Document 1, and the rotation of the electric motor 35 is transmitted to the impeller rotary shaft 17 through the speed increasing mechanism in the gear box 3. Is done.

この後段軸封装置本体Bの回収ポケット19には、インタクーラ(図示せず)の上流側に連通する酸素返送配管27の上流端が接続されている。
この後段軸封装置本体Bの回収ポケット20には、下流端が前記基幹酸素回収配管14に連通する後段酸素回収配管26の上流端が接続されている。
この後段軸封装置本体Bの放出ポケット21には、下流端が前記基幹放風配管13に連通する後段放風配管25の上流端が接続されている。
この後段軸封装置本体Bの密封ポケット22には、上流端が前記基幹シールガス送給配管11に連通する後段シールガス送給配管24の下流端が接続されている。
An upstream end of an oxygen return pipe 27 communicating with the upstream side of an intercooler (not shown) is connected to the recovery pocket 19 of the rear shaft seal device main body B.
The upstream end of a rear oxygen recovery pipe 26 whose downstream end communicates with the basic oxygen recovery pipe 14 is connected to the recovery pocket 20 of the rear shaft seal device main body B.
The discharge pocket 21 of the latter-stage shaft seal device main body B is connected to the upstream end of a rear-stage air discharge pipe 25 whose downstream end communicates with the basic air-discharge pipe 13.
The downstream end of the rear seal gas supply pipe 24 whose upstream end communicates with the basic seal gas supply pipe 11 is connected to the sealing pocket 22 of the rear shaft seal device main body B.

従って、
圧縮機1に付帯の軸封装置本体Aの密封ポケット8の内圧、及び後段圧縮機15に付帯の後段軸封装置本体Bの密封ポケット22の内圧は、基幹シールガス送給配管11の内圧に等しくなり、
圧縮機1に付帯の軸封装置本体Aの放出ポケット7の内圧、及び後段圧縮機15に付帯の後段軸封装置本体Bの放出ポケット21の内圧は、理論上、大気圧となり[実際には、基幹放風配管13の圧力損失のため、例えば、5kPa(G)程度の圧力を呈する]、
圧縮機1に付帯の軸封装置本体Aの回収ポケット6の内圧、及び後段圧縮機15に付帯の後段軸封装置本体Bの回収ポケット20の内圧は、基幹酸素回収配管14、及び酸素吸入配管10の内圧に等しくなる。
Therefore,
The internal pressure of the sealing pocket 8 of the shaft seal device main body A attached to the compressor 1 and the internal pressure of the seal pocket 22 of the rear shaft seal device main body B attached to the rear compressor 15 are equal to the internal pressure of the basic seal gas supply pipe 11. Equal,
The internal pressure of the discharge pocket 7 of the shaft seal device main body A attached to the compressor 1 and the internal pressure of the discharge pocket 21 of the rear shaft seal device main body B attached to the rear compressor 15 are theoretically atmospheric pressure [actually, Because of the pressure loss of the main ventilating pipe 13, for example, a pressure of about 5 kPa (G) is exhibited]
The internal pressure of the recovery pocket 6 of the shaft seal device main body A attached to the compressor 1 and the internal pressure of the recovery pocket 20 of the rear shaft seal device main body B attached to the rear compressor 15 are the basic oxygen recovery pipe 14 and the oxygen suction pipe. Equal to 10 internal pressures.

本発明の酸素圧縮機のシール装置の特徴部分は、基幹酸素回収配管14に流量調整弁32を組み込み、圧縮機1に付帯の軸封装置本体Aの回収ポケット6の内圧を検出する圧力センサ33を設け、当該圧力センサ33の検出値33sが予め設定してある内圧下限範囲を上回るように、流量調整弁32へ開度調整信号34sを送信して酸素の流通量を増加、あるいは減少させるコントローラ34を設けた点にあり、前記圧力センサ33は、基幹酸素回収配管14の流量調整弁32の上流側個所に取り付けられている。   A characteristic part of the sealing device of the oxygen compressor according to the present invention is that a flow rate adjusting valve 32 is incorporated in the basic oxygen recovery pipe 14 and a pressure sensor 33 for detecting the internal pressure of the recovery pocket 6 of the shaft seal device main body A attached to the compressor 1. And a controller for increasing or decreasing the flow rate of oxygen by transmitting an opening adjustment signal 34 s to the flow rate adjustment valve 32 so that the detected value 33 s of the pressure sensor 33 exceeds a preset lower limit range of the internal pressure. The pressure sensor 33 is attached to a location upstream of the flow rate adjustment valve 32 of the basic oxygen recovery pipe 14.

コントローラ34に設定される内圧下限範囲の上限値は、例えば、圧縮機1の酸素吸入圧力の下限値[5kPa(G)]と上限値[25kPa(G)]との中間値である15kPa(G)としてあり、同コントローラ34に設定される内圧下限範囲の下限値は、例えば、圧縮機1の酸素吸入圧力の下限値[5kPa(G)]と前記内圧下限範囲の上限値
[15kPa(G)]との中間値である10kPa(G)としてある。
The upper limit value of the internal pressure lower limit range set in the controller 34 is, for example, 15 kPa (G) which is an intermediate value between the lower limit value [5 kPa (G)] and the upper limit value [25 kPa (G)] of the oxygen suction pressure of the compressor 1. The lower limit value of the inner pressure lower limit range set in the controller 34 is, for example, the lower limit value [5 kPa (G)] of the oxygen suction pressure of the compressor 1 and the upper limit value [15 kPa (G) of the inner pressure lower limit range. ] 10 kPa (G), which is an intermediate value between

そして、コントローラ34は、圧力センサ33の検出値33sが内圧下限範囲の下限値[(10kPa(G)]を上回るように、流量調整弁32へ開度調整信号34sを送信して当該流量調整弁32の開度を調整し、基幹酸素回収配管14における酸素の流通量を減少させる、もしくは最大にする機能を具備している。   Then, the controller 34 transmits an opening degree adjustment signal 34s to the flow rate adjustment valve 32 so that the detected value 33s of the pressure sensor 33 exceeds the lower limit value [(10 kPa (G)] of the internal pressure lower limit range, and the flow rate adjustment valve. The opening degree of 32 is adjusted, and the function of decreasing or maximizing the oxygen circulation amount in the basic oxygen recovery pipe 14 is provided.

圧縮機1、及び後段圧縮機15を運転し、酸素生成設備から送出される酸素を昇圧するときには、常時、ガス貯留槽にシールガスとして蓄えてある窒素を、基幹シールガス送給配管11へ送給する。   When the compressor 1 and the downstream compressor 15 are operated to increase the pressure of oxygen delivered from the oxygen generation facility, nitrogen stored as a seal gas in the gas storage tank is always sent to the basic seal gas supply pipe 11. To pay.

基幹シールガス送給配管11を流通する窒素は、
圧縮機1に付帯の軸封装置本体Aの密封ポケット8に、直接流れ込み、
後段圧縮機15に付帯の後段軸封装置本体Bの密封ポケット22に、後段シールガス送給配管24を経て流れ込む。
Nitrogen flowing through the basic seal gas supply pipe 11 is
Directly flows into the sealing pocket 8 of the shaft seal device main body A attached to the compressor 1,
The latter compressor 15 flows into the sealing pocket 22 of the accompanying latter-stage shaft seal device main body B via the latter-stage seal gas supply pipe 24.

圧縮機1によって昇圧された酸素の一部は軸封装置本体A内へ漏洩し、回収ポケット6に流入した酸素の大半は、基幹酸素回収配管14から酸素吸入配管10を経て、昇圧前の圧力雰囲気である圧縮機ケーシング2の吸入口へ戻る。   Part of the oxygen boosted by the compressor 1 leaks into the shaft seal device main body A, and most of the oxygen flowing into the recovery pocket 6 passes through the oxygen suction pipe 10 from the basic oxygen recovery pipe 14 and the pressure before pressure increase. It returns to the suction port of the compressor casing 2 which is the atmosphere.

圧縮機ケーシング2の吸入口へと戻らなかった残りの酸素は、放出ポケット7に流入するが、この酸素は、密封ポケット8に窒素が、圧縮機1の酸素吸入圧力よりも高い圧力で供給されているので、軸封装置本体Aのハウジング部5から外へは漏洩しない。   The remaining oxygen that has not returned to the suction port of the compressor casing 2 flows into the discharge pocket 7, and this oxygen is supplied to the sealing pocket 8 at a pressure higher than the oxygen suction pressure of the compressor 1. Therefore, it does not leak out from the housing part 5 of the shaft seal device main body A.

そして、放出ポケット7に流入した酸素は、前記密封ポケット8を経た窒素とともに、下流端が大気圧雰囲気である基幹放風配管13を経て大気中へと排出される。   The oxygen that has flowed into the discharge pocket 7 is discharged into the atmosphere along with the nitrogen that has passed through the sealing pocket 8 through the main air discharge pipe 13 whose downstream end is an atmospheric pressure atmosphere.

後段圧縮機15の圧縮機ケーシング16の吸入口には、前記圧縮機1によって昇圧された酸素が、酸素送給配管23を経て流入する。後段圧縮機15によって昇圧された酸素の一部は後段軸封装置本体B内へ漏洩し、回収ポケット19に流入した酸素の大半は、酸素返送配管27を経てインタクーラ(図示せず)へと送り込まれる。   Oxygen boosted by the compressor 1 flows into the suction port of the compressor casing 16 of the rear-stage compressor 15 through the oxygen supply pipe 23. Part of the oxygen boosted by the rear-stage compressor 15 leaks into the rear-stage shaft seal body B, and most of the oxygen flowing into the recovery pocket 19 is sent to the intercooler (not shown) via the oxygen return pipe 27. It is.

インタクーラへ送られなかった残りの酸素は、後段軸封装置本体Bの回収ポケット20に流入するが、その大半は、後段酸素回収配管26、及び基幹酸素回収配管14から酸素吸入配管10を経て、昇圧前の圧力雰囲気である前記圧縮機ケーシング2の吸入口へ戻る。   The remaining oxygen that has not been sent to the intercooler flows into the recovery pocket 20 of the rear shaft seal body B, but most of the oxygen passes from the rear oxygen recovery pipe 26 and the main oxygen recovery pipe 14 through the oxygen suction pipe 10. It returns to the suction port of the compressor casing 2 which is the pressure atmosphere before the pressure increase.

圧縮機ケーシング2の吸入口へと戻らなかった残りの酸素は、後段軸封装置本体Bの放出ポケット21に流入するが、この酸素は、後段軸封装置本体Bの密封ポケット22に窒素が、前記圧縮機1の酸素吸入圧力よりも高い圧力で供給されているので、後段軸封装置本体Bのハウジング部18から外へは漏洩しない。   The remaining oxygen that has not returned to the suction port of the compressor casing 2 flows into the discharge pocket 21 of the rear shaft seal device main body B. This oxygen is nitrogen in the sealing pocket 22 of the rear shaft seal device main body B. Since it is supplied at a pressure higher than the oxygen suction pressure of the compressor 1, it does not leak out from the housing portion 18 of the rear shaft seal device main body B.

そして、放出ポケット21に流入した酸素は、前記密封ポケット22を経た窒素とともに、後段放風配管25、及び基幹放風配管13を経て大気中へと排出される。   Then, the oxygen flowing into the discharge pocket 21 is discharged into the atmosphere through the rear air discharge pipe 25 and the main air discharge pipe 13 together with the nitrogen that has passed through the sealing pocket 22.

複数基の酸素生成設備を並列運転している状態から一基の酸素生成設備だけが単独運転される状態に移行すると、圧縮機1の酸素吸入圧力が低下して、最終的には圧縮機1に付帯の軸封装置本体Aの放出ポケット7の実際の内圧[5kPa(G)程度の圧力を呈する]に近づく。   When a state in which a plurality of oxygen generation facilities are operated in parallel to a state in which only one oxygen generation facility is operated independently, the oxygen suction pressure of the compressor 1 decreases, and finally the compressor 1 To the actual internal pressure of the discharge pocket 7 of the incidental shaft seal device main body A [presenting a pressure of about 5 kPa (G)].

圧力センサ33の検出値33sが内圧下限範囲の下限値である10kPa(G)を下回ると、コントローラ34から流量調整弁32に対して開度を狭める開度調整信号34sが送信される。流量調整弁32の開度が狭まると、圧縮機1に付帯の軸封装置本体Aの回収ポケット6、及び後段圧縮機15に付帯の後段軸封装置本体Bの回収ポケット20から酸素が基幹酸素回収配管14へ流れにくくなり、当該回収ポケット6,20の内圧が上昇する。   When the detected value 33 s of the pressure sensor 33 falls below 10 kPa (G) which is the lower limit value of the internal pressure lower limit range, an opening degree adjustment signal 34 s for narrowing the opening degree is transmitted from the controller 34 to the flow rate adjustment valve 32. When the opening degree of the flow rate adjusting valve 32 is narrowed, oxygen becomes basic oxygen from the recovery pocket 6 of the shaft seal device main body A attached to the compressor 1 and the recovery pocket 20 of the rear shaft seal device main body B attached to the rear compressor 15. It becomes difficult to flow to the recovery pipe 14, and the internal pressure of the recovery pockets 6 and 20 increases.

コントローラ34は、圧力センサ33の検出値33sが内圧下限範囲の下限値である10kPa(G)を上回るまで、流量調整弁32に対して開度を狭める開度調整信号34sを送信し続け、これにより、圧縮機1に付帯の軸封装置本体Aの放出ポケット7内の窒素が、回収ポケット6へ流れ込むことが阻止されるとともに、後段圧縮機15に付帯の後段軸封装置本体Bの放出ポケット21内の窒素が、回収ポケット6へ流れ込むことが阻止され、よって、シールガスである窒素が基幹酸素回収配管14を経て酸素吸入配管10へと流入しない。   The controller 34 continues to transmit an opening degree adjustment signal 34s for narrowing the opening degree to the flow rate adjustment valve 32 until the detected value 33s of the pressure sensor 33 exceeds 10 kPa (G) which is the lower limit value of the inner pressure lower limit range. As a result, nitrogen in the discharge pocket 7 of the shaft seal device main body A attached to the compressor 1 is prevented from flowing into the recovery pocket 6, and the discharge pocket of the rear shaft seal device main body B attached to the rear compressor 15 is prevented. The nitrogen in the gas 21 is prevented from flowing into the recovery pocket 6, so that nitrogen as a seal gas does not flow into the oxygen intake pipe 10 through the basic oxygen recovery pipe 14.

この後、例えば、一基の酸素生成設備だけが単独運転される状態から複数基の酸素生成設備を並列運転している状態に移行すると、圧縮機1の酸素吸入圧力が上昇する。圧力センサ33の検出値33sが内圧下限範囲の上限値である15kPa(G)を上回り、圧縮機1に付帯の軸封装置本体Aの回収ポケット6の内圧、及び後段圧縮機15に付帯の後段軸封装置本体Bの回収ポケット20の内圧が、前記軸封装置本体Aの放出ポケット7の内圧、及び前記後段軸封装置本体Bの回収ポケット20の内圧を充分に超えた際には、コントローラ34から流量調整弁32に対して開度を全開とする開度調整信号34sが送信され、回収ポケット6,20に流入した酸素の大半が、基幹酸素回収配管14から酸素吸入配管10を経て、昇圧前の圧力雰囲気である圧縮機ケーシング2の吸入口へ戻る。   Thereafter, for example, when shifting from a state where only one oxygen generating facility is operated independently to a state where a plurality of oxygen generating facilities are operated in parallel, the oxygen suction pressure of the compressor 1 increases. The detection value 33 s of the pressure sensor 33 exceeds 15 kPa (G), which is the upper limit value of the inner pressure lower limit range, the internal pressure of the recovery pocket 6 of the shaft seal device main body A attached to the compressor 1, and the latter stage attached to the rear compressor 15. When the internal pressure of the recovery pocket 20 of the shaft seal device main body B sufficiently exceeds the internal pressure of the discharge pocket 7 of the shaft seal device main body A and the internal pressure of the recovery pocket 20 of the rear shaft seal device main body B, the controller 34, an opening adjustment signal 34s for fully opening the opening is transmitted to the flow rate adjustment valve 32, and most of the oxygen flowing into the recovery pockets 6 and 20 passes from the main oxygen recovery pipe 14 through the oxygen intake pipe 10, It returns to the suction port of the compressor casing 2 which is the pressure atmosphere before the pressure increase.

図1に示す酸素圧縮機のシール装置では、軸封装置本体Aの回収ポケット6、及び後段軸封装置本体Bの回収ポケット20の内圧が、予め設定してある内圧下限範囲を上回るように基幹酸素回収配管14の流量調整弁32の開度を調整し、前記回収ポケット6,20の内圧の低下を防止するので、圧縮機1における酸素吸入圧力が低くなった際に、放出ポケット7、21から酸素吸入配管10へ窒素が流入せず、酸素純度の低下を抑止できる。   In the oxygen compressor sealing device shown in FIG. 1, the basic pressure is such that the internal pressures of the recovery pocket 6 of the shaft seal device main body A and the recovery pocket 20 of the rear shaft seal device main body B exceed the preset lower limit range of the internal pressure. Since the opening degree of the flow rate adjustment valve 32 of the oxygen recovery pipe 14 is adjusted to prevent the internal pressure of the recovery pockets 6 and 20 from being lowered, the discharge pockets 7 and 21 when the oxygen suction pressure in the compressor 1 becomes low. From this, nitrogen does not flow into the oxygen suction pipe 10, and a decrease in oxygen purity can be suppressed.

後段圧縮機15に付帯の後段軸封装置本体Bの密封ポケット22が、圧縮機1に付帯の軸封装置本体Aの密封ポケット8に連通し、後段圧縮機15に付帯の後段軸封装置本体Bの放出ポケット21が、圧縮機1に付帯の軸封装置本体Aの放出ポケット7に連通し、後段圧縮機15に付帯の後段軸封装置本体Bの回収ポケット20が、圧縮機1に付帯の軸封装置本体Aの回収ポケット6に連通しているので、圧縮機1、及び後段圧縮機15における酸素純度の低下抑止を一つの流量調整弁32と一台のコントローラ34で行うことができる。   The sealing pocket 22 of the rear shaft seal device main body B attached to the rear compressor 15 communicates with the sealing pocket 8 of the shaft seal device main body A attached to the compressor 1, and the rear shaft seal device main body attached to the rear compressor 15. The discharge pocket 21 of B communicates with the discharge pocket 7 of the shaft seal device main body A attached to the compressor 1, and the recovery pocket 20 of the rear shaft seal device main body B attached to the rear compressor 15 is attached to the compressor 1. Therefore, it is possible to suppress the decrease in oxygen purity in the compressor 1 and the downstream compressor 15 with one flow rate adjusting valve 32 and one controller 34. .

1 圧縮機
4 インペラ回転軸
5 ハウジング部
6 回収ポケット
7 放出ポケット
8 密封ポケット
10 酸素吸入配管
11 基幹シールガス送給配管(シールガス送給配管)
13 基幹放風配管(放風配管)
14 基幹酸素回収配管(酸素回収配管)
15 後段圧縮機
17 インペラ回転軸
18 ハウジング部
20 回収ポケット
21 放出ポケット
22 密封ポケット
32 流量調整弁
33 圧力センサ
33s 検出値
34 コントローラ
34s 開度調整信号
36 ガス槽(シールガス)
DESCRIPTION OF SYMBOLS 1 Compressor 4 Impeller rotating shaft 5 Housing part 6 Collection | recovery pocket 7 Discharge pocket 8 Sealing pocket 10 Oxygen intake piping 11 Basic seal gas supply piping (seal gas supply piping)
13 Basic air vent piping (air vent piping)
14 Basic oxygen recovery piping (oxygen recovery piping)
DESCRIPTION OF SYMBOLS 15 Back stage compressor 17 Impeller rotating shaft 18 Housing part 20 Collection | recovery pocket 21 Discharge pocket 22 Sealing pocket 32 Flow control valve 33 Pressure sensor 33s Detection value 34 Controller 34s Opening adjustment signal 36 Gas tank (seal gas)

Claims (2)

酸素生成設備から酸素が酸素吸入配管を介して吸入口に送給される圧縮機に付帯し、インペラ回転軸が挿通されるハウジング部に高圧側から低圧側へ向けて順に回収ポケット、放出ポケット、及び密封ポケットを形成したラビリンス方式の軸封装置本体を備え、
この軸封装置本体の回収ポケットに、酸素回収配管を介して前記酸素吸入配管を接続し、
この軸封装置本体の放出ポケットに、下流端が大気開放された放風配管を接続し、
この軸封装置本体の密封ポケットに、シールガス供給源に連通するシールガス送給配管を接続し、
前記酸素回収配管に流量調整弁に組み込み、
前記回収ポケットの内圧を検出する圧力センサを設け、
該圧力センサの検出値が、予め設定してある内圧下限範囲を上回るように前記流量調整弁の開度を調整して前記酸素回収配管における酸素の流通量を減少、あるいは増加させるコントローラを設けたことを特徴とする酸素圧縮機のシール装置。
Attached to the compressor from which oxygen is supplied from the oxygen generation facility to the suction port via the oxygen suction pipe, a recovery pocket, a discharge pocket, in order from the high pressure side to the low pressure side in the housing part through which the impeller rotary shaft is inserted, And a labyrinth-type shaft seal device body formed with a sealing pocket,
The oxygen suction pipe is connected to the recovery pocket of the shaft seal device body through an oxygen recovery pipe,
The discharge pocket of the shaft seal device body is connected to a discharge pipe whose downstream end is open to the atmosphere,
Connect the seal gas supply piping connected to the seal gas supply source to the seal pocket of the shaft seal device body,
Incorporated into the oxygen recovery pipe into the flow rate adjustment valve,
A pressure sensor for detecting the internal pressure of the recovery pocket is provided;
A controller for reducing or increasing the amount of oxygen flowing through the oxygen recovery pipe by adjusting the opening of the flow rate adjusting valve so that the detected value of the pressure sensor exceeds a preset lower limit range of the internal pressure is provided. An oxygen compressor sealing device characterized by the above.
前記圧縮機で昇圧された酸素が酸素送給配管を介して吸入口に送給される後段圧縮機に付帯し、インペラ回転軸が挿通されるハウジング部に高圧側から低圧側へ向けて順に回収ポケット、放出ポケット、及び密封ポケットを形成したラビリンス方式の後段軸封装置本体を備え、
この後段軸封装置本体の回収ポケットに、前記軸封装置本体の回収ポケットを連通させ、
この後段軸封装置本体の放出ポケットに、前記軸封装置本体の放出ポケットを連通させ、
この後段軸封装置本体の密封ポケットに、前記軸封装置本体の密封ポケットを連通させた請求項1に記載の酸素圧縮機のシール装置。
Oxygen boosted by the compressor is attached to the latter stage compressor that is supplied to the suction port via the oxygen supply pipe, and is sequentially recovered from the high pressure side to the low pressure side in the housing portion through which the impeller rotary shaft is inserted. A labyrinth-type rear shaft sealing device body having a pocket, a discharge pocket, and a sealing pocket,
The recovery pocket of the shaft seal device main body is communicated with the recovery pocket of the main shaft seal device body,
The discharge pocket of the shaft seal device main body is communicated with the discharge pocket of the shaft seal device main body,
The sealing device for an oxygen compressor according to claim 1, wherein the sealing pocket of the shaft sealing device body is communicated with the sealing pocket of the latter shaft sealing device body.
JP2010193210A 2010-08-31 2010-08-31 Oxygen compressor sealing device Active JP5633251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010193210A JP5633251B2 (en) 2010-08-31 2010-08-31 Oxygen compressor sealing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010193210A JP5633251B2 (en) 2010-08-31 2010-08-31 Oxygen compressor sealing device

Publications (2)

Publication Number Publication Date
JP2012052564A JP2012052564A (en) 2012-03-15
JP5633251B2 true JP5633251B2 (en) 2014-12-03

Family

ID=45906122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010193210A Active JP5633251B2 (en) 2010-08-31 2010-08-31 Oxygen compressor sealing device

Country Status (1)

Country Link
JP (1) JP5633251B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109854625A (en) * 2018-11-18 2019-06-07 中国电建集团铁路建设有限公司 A kind of shield automatic adjustment main shaft seals rouge injected system
KR102265200B1 (en) * 2020-03-23 2021-06-15 주식회사 포스코 Liguid oxygen pump for air separation plant and methof for supplying sealing gas of liguid oxygen pump

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193603A (en) * 1978-12-21 1980-03-18 Carrier Corporation Sealing system for a turbomachine
JP4232248B2 (en) * 1999-01-12 2009-03-04 株式会社Ihi Oxygen compressor shaft seal device
JP4008151B2 (en) * 1999-04-23 2007-11-14 三菱重工業株式会社 Rotary compressor shaft seal system
JP2001107891A (en) * 1999-10-07 2001-04-17 Mitsubishi Heavy Ind Ltd Centrifugal multi-stage compressor
JP4784354B2 (en) * 2006-03-16 2011-10-05 株式会社Ihi Compressor performance test method and compressor performance test apparatus

Also Published As

Publication number Publication date
JP2012052564A (en) 2012-03-15

Similar Documents

Publication Publication Date Title
GB2444220B (en) Apparatus and method for controlling supply of barrier gas in a compressor module
JP5648407B2 (en) Oxygen compressor sealing device
NO329089B3 (en) Underwater compressor module and pressure control method in the same
EP2664765B1 (en) System and method for heat recovery in a gas turbine engine
JP6652662B2 (en) Turbine and turbine system
WO2013125597A1 (en) Compressor control device and control method therefor, and compressor system
ES2950591T3 (en) Anti-overload speed control for two or more compressors
ITCO20090051A1 (en) SEAL SYSTEM FOR DRY GAS, LOW EMISSION FOR COMPRESSORS
WO2010036432A3 (en) System and method of operating gas turbine engine with an alternative working fluid
JP2015137651A (en) System and method for compressing air
WO2008075158A3 (en) Fan for an apparatus for the regulated delivery of a gas, in particular oxygen
JP5633251B2 (en) Oxygen compressor sealing device
CN109312729A (en) For compressed gas to be supplied to several systems for being provided with gas device
EP3114353B1 (en) Method and system for operating a back-to-back compressor with a side stream
US20120093643A1 (en) Multistage turbocompressor
JP4681458B2 (en) Gas turbine exhaust cooling structure and gas turbine equipment equipped with the structure
AU2011264108B2 (en) Hydrodynamic coupling
US20030084900A1 (en) Respiratory assistance apparatus with two-stage turbine
CN205277471U (en) High and cold construction ventilation of tunnel system in plateau
JP2009024582A (en) Gas compression device and method for controlling gas compression device
CN102418710A (en) Compression device
JP2004522081A (en) System for generating and distributing compressed air
JP2018131922A (en) Evaporative fuel treatment device and method for determining state of evaporative fuel treatment device
JP2004308597A (en) High altitude performance testing device and pressure control method for the same
JP2000303990A (en) Shaft seal system for rotary compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140929

R151 Written notification of patent or utility model registration

Ref document number: 5633251

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250