JP5632304B2 - Circuit breaker for wiring and DC power system - Google Patents

Circuit breaker for wiring and DC power system Download PDF

Info

Publication number
JP5632304B2
JP5632304B2 JP2011015001A JP2011015001A JP5632304B2 JP 5632304 B2 JP5632304 B2 JP 5632304B2 JP 2011015001 A JP2011015001 A JP 2011015001A JP 2011015001 A JP2011015001 A JP 2011015001A JP 5632304 B2 JP5632304 B2 JP 5632304B2
Authority
JP
Japan
Prior art keywords
circuit breaker
wiring
terminal
circuit
power system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011015001A
Other languages
Japanese (ja)
Other versions
JP2012156043A (en
Inventor
恩地 俊行
俊行 恩地
浜田 佳伸
佳伸 浜田
芳准 山内
芳准 山内
磯崎 優
優 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011015001A priority Critical patent/JP5632304B2/en
Publication of JP2012156043A publication Critical patent/JP2012156043A/en
Application granted granted Critical
Publication of JP5632304B2 publication Critical patent/JP5632304B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、直流回路用の配線用遮断器、およびこの配線用遮断器を適用する太陽光発電システムなどの直流電力システムに関する。   The present invention relates to a circuit breaker for a DC circuit and a DC power system such as a solar power generation system to which the circuit breaker is applied.

まず、太陽光発電システムを例に、複数基の太陽電池パネルを連係して構築した直流電力システムの系統図を図2に示す。
図2において、1は太陽電池モジュールの集合体からなる太陽電池パネル、2はグループに分けて太陽電池パネル1に接続した接続箱、3は集電箱、4は接続箱2,集電箱3に設置して各系統の過電流保護,切換えを行う配線用遮断器、5は商用電源系統(不図示)に連系するパワーコンディショナ、6は配線ケーブルであり、図示例では8基の太陽電池パネル1を4基ずつ二つのグループに分けた上で、パワーコンディショナ5との間に接続箱2,集電箱3を介して配線用遮断器4を階層的に接続し、その相互間をケーブル6で連係接続している。
First, FIG. 2 shows a system diagram of a DC power system constructed by linking a plurality of solar battery panels, taking a solar power generation system as an example.
In FIG. 2, 1 is a solar cell panel composed of an assembly of solar cell modules, 2 is a connection box divided into groups and connected to the solar cell panel 1, 3 is a current collection box, 4 is a connection box 2, and a current collection box 3. 5 is a power conditioner linked to a commercial power supply system (not shown), 6 is a wiring cable, and in the illustrated example, eight solar modules are installed. The battery panel 1 is divided into two groups of four, and the circuit breaker 4 is connected hierarchically to the power conditioner 5 via the connection box 2 and the current collection box 3. Are connected by a cable 6.

なお、図2の太陽光発電システムはパワーコンディショナ5を介して商用電源系統に連系させた系統連系タイプであるが、直流出力をそのまま直流負荷(直流用の機器)に給電するようにした独立系の太陽光発電システムではパワーコンディショナ5の代わりDC/DCコンバータを使用して直流配電路に連係する。また、前記の配線用遮断器4は直流回路用の遮断器として必要な責務,機能を備えたものを使用している。   The photovoltaic power generation system in FIG. 2 is a grid-connected type that is linked to a commercial power supply system via a power conditioner 5, but the DC output is directly fed to a DC load (DC equipment). In the independent photovoltaic power generation system, a DC / DC converter is used instead of the power conditioner 5 to link to the DC distribution path. Moreover, the said circuit breaker 4 for wiring has used the duty and function required as a circuit breaker for DC circuits.

ところで、図2の直流電力システムにおいて、各基の太陽電池パネル1とパワーコンディショナ5との間に配線用遮断器4を階層的に接続するケーブル6の途中地点が通電中に万一断線したり、ケーブル6が機器の端子から外れたりして回路がオープンすると、交流(サイクルごとに電流ゼロ点を通過する)とは異なり、オープン箇所に発弧したアークが持続して火災などの二次災害を引き起こす危険がある。   By the way, in the DC power system of FIG. 2, the middle point of the cable 6 that hierarchically connects the circuit breakers 4 between the solar panel 1 and the power conditioner 5 is disconnected during energization. Or when the circuit is opened because the cable 6 is disconnected from the terminal of the device, unlike the alternating current (passing through the current zero point for each cycle), the arc ignited at the open location continues and secondary such as a fire There is a danger of causing a disaster.

そこで、前記したケーブル6の不測な断線事故などに起因するアークの発生を防止するための対策として、直流配線路の途中で回路の+極と−極との間にコンデンサ素子を接続して常時はコンデンサ素子を配線路の電位とほぼ同じ電位に充電しておき、このコンデンサ素子の接続地点よりも上流側で配線ケーブルの断線事故が生じた場合に、その断線箇所の両端の電位差を小さく抑えてアークの発生を防ぐようにした電流遮断支援回路が知られている(例えば、特許文献1参照)。   Therefore, as a measure for preventing the occurrence of an arc due to the unexpected disconnection accident of the cable 6 described above, a capacitor element is connected between the positive electrode and the negative electrode of the circuit in the middle of the DC wiring path. The capacitor element is charged to approximately the same potential as the potential of the wiring path, and when a wiring cable disconnection accident occurs upstream from the connection point of this capacitor element, the potential difference between both ends of the disconnection point is kept small. A current interruption support circuit that prevents the occurrence of arcs is known (for example, see Patent Document 1).

特開2009−181864号公報(図3)JP2009-181864A (FIG. 3)

図2に示した太陽光発電システムなどの直流電力システムに前記特許文献1の電流遮断支援回路を適用すれば、系統内の配線路に生じたケーブル断線事故などに起因してその断線箇所に発生するアークを抑制することが期待できるものの、電流遮断支援回路のコンデンサ接続地点と配線路の断線地点との間の距離が離れていると、線路インピーダンスの影響を受けて断線箇所の電位差が拡大することになるためにアーク抑制機能の効果が発揮できなくなる。   If the current interruption support circuit of Patent Document 1 is applied to a DC power system such as the photovoltaic power generation system shown in FIG. 2, it occurs at the disconnection point due to a cable disconnection accident or the like occurring in the wiring path in the system. Although it can be expected to suppress arcing, if the distance between the capacitor connection point of the current interruption support circuit and the disconnection point of the wiring path is long, the potential difference at the disconnection point is expanded due to the influence of the line impedance. Therefore, the effect of the arc suppression function cannot be exhibited.

一方、多数基の太陽電池パネルを分散配置して構築した大規模な太陽光発電システムでは、各基の太陽電池パネル,接続箱,集電箱の相互間に配線したケーブルの長さが数百メートルにも達することから、その線路インピーダンスの影響を無視することができない。そこで、このような大規模の系統で前記電流遮断支援回路のアーク抑制機能を有効に発揮させるには、系統内の配線経路に電流遮断支援回路を短い間隔距離ごとに多数配置する必要があり、その施工に要する配線作業,費用も嵩むことになる。   On the other hand, in a large-scale solar power generation system constructed by dispersing and arranging a large number of solar cell panels, the length of cables wired between each solar cell panel, junction box, and current collection box is several hundred. Since it reaches even a meter, the influence of the line impedance cannot be ignored. Therefore, in order to effectively demonstrate the arc suppression function of the current interruption support circuit in such a large-scale system, it is necessary to arrange a large number of current interruption assistance circuits for each short distance in the wiring path in the system, The wiring work and cost required for the construction will also increase.

本発明は上記の点に鑑みなされたものであり、先記した太陽光発電システムなどの直流電力システムを構築する上で、その系統内の要所に配置した接続箱,集電箱の配線用遮断器を活用することで、その系統配線路のケーブル断線,端子からの抜けなどに伴うアーク発生を抑制できるようにした配線用遮断器,および直流電力システムを提供することを目的とする。   The present invention has been made in view of the above points. In constructing a DC power system such as the above-described photovoltaic power generation system, the present invention is intended for wiring of connection boxes and current collection boxes arranged at important points in the system. It is an object of the present invention to provide a circuit breaker for wiring and a DC power system that can suppress the occurrence of arcs due to cable disconnection of the system wiring path, disconnection from the terminal, etc. by utilizing the circuit breaker.

上記目的を達成するために、本発明によれば、外郭ケースに複数極の接点機構,接点開閉機構,過電流引外し装置、および電源側端子,負荷側端子を搭載した構成になる直流回路用の配線用遮断器において、
前記負荷側端子の+極端子と−極端子との間にコンデンサ素子を接続して配線用遮断器の外郭ケースに内装する(請求項1)。また、前記コンデンサ素子は、整流素子と抵抗素子の並列回路を介して前記負荷側端子の+極端子と−極端子との間に直列接続する(請求項2)。
In order to achieve the above object, according to the present invention, a multi-pole contact mechanism, a contact switching mechanism, an overcurrent trip device, a power supply side terminal, and a load side terminal are mounted on the outer case. In the circuit breaker for
A capacitor element is connected between the positive electrode terminal and the negative electrode terminal of the load side terminal, and is built in the outer case of the circuit breaker for wiring. Further, the capacitor element, and the rectifying device and the + terminal of said load terminal via a parallel circuit of a resistor element - connected in series between the terminal (claim 2).

そして、複数の分散型直流電源を連係して構築し、かつその直流電源に関連付けて系統内に配線用遮断器を階層的に接続した直流電力システムにおいて、その配線用遮断器に前記したコンデンサ素子内蔵形の配線用遮断器を適用する(請求項3)。   In a DC power system in which a plurality of distributed DC power supplies are linked and constructed, and the circuit breakers for wiring are hierarchically connected in the system in association with the DC power supplies, the capacitor elements described above are used for the circuit breakers for wiring. A built-in wiring circuit breaker is applied (claim 3).

上記のように直流配線路のケーブル断線,端子外れに伴うアーク発生の抑制対策として、その配線路に接続して使用する配線用遮断器にはその負荷側端子の+極端子と−極端子の間にコンデンサ素子を接続しておくことにより、この配線用遮断器を適用する直流電力システムの上流側で配線路に不測なケーブルの断線事故などが発生した場合でも、その断線箇所にアークが発生するのを防ぐことできる。また、このコンデンサ素子を配線用遮断器の負荷側端子に接続しておくことで、配線用遮断器の本来の遮断性能が損なわれることもない。   As described above, as a countermeasure to suppress the occurrence of arcs due to cable disconnection and terminal disconnection of the DC wiring path, the load circuit breaker used for the wiring breaker connected to the wiring path has a positive terminal and a negative terminal. By connecting a capacitor element between them, even if an unexpected cable disconnection accident occurs in the wiring path upstream of the DC power system to which this circuit breaker is applied, an arc is generated at the disconnection point. Can be prevented. Further, by connecting this capacitor element to the load side terminal of the circuit breaker for wiring, the original circuit breaker performance of the circuit breaker for wiring is not impaired.

そして、太陽光発電システム(図2参照)などの直流電力システムに対し、本発明によるコンデンサ素子内蔵形の配線用遮断器をその系統に階層をなして接続することにより、系統内の配線路に不測なケーブル断線事故などが生じた場合でも、特許文献1の電流遮断支援回路と同じ原理でその断線箇所近くの下流側に接続されている配線用遮断器のコンデンサ素子が機能して断線箇所にアークが発生するのを防止することができ、これにより直流電力システムの安全性,信頼性を高めることができる。しかも、コンデンサ素子内蔵形の配線用遮断器を適用することで、直流電力システムを構築する際には、配線用遮断器とは別に特許文献1の電流遮断支援回路を系統内に分散して多数接続するなどの作業も必要なくて施工コストの低減化が図れる。   Then, by connecting the circuit breaker with a built-in capacitor element according to the present invention to the DC power system such as a photovoltaic power generation system (see FIG. 2) in a hierarchy in the system, Even if an unexpected cable disconnection accident occurs, the capacitor element of the circuit breaker connected to the downstream side near the disconnection point functions on the same principle as the current interrupting support circuit of Patent Document 1 and functions as a disconnection point. It is possible to prevent the occurrence of an arc, thereby improving the safety and reliability of the DC power system. Moreover, when a DC power system is constructed by applying a wiring breaker with a built-in capacitor element, the current interruption support circuit of Patent Document 1 is dispersed in the system and separated from the circuit breaker. Construction work can be reduced without the need for work such as connection.

本発明の実施例による配線用遮断器を表す図であり、(a)は等価回路図、(b)は組立構造を表す分解斜視図である。It is a figure showing the circuit breaker for wiring by the Example of this invention, (a) is an equivalent circuit schematic, (b) is a disassembled perspective view showing an assembly structure. 直流電力システムの例である太陽光発電システムのシステム構成図である。1 is a system configuration diagram of a photovoltaic power generation system that is an example of a DC power system. FIG.

以下、本発明の実施の形態を図1,図2に示す実施例に基づいて説明する。まず、図1(a),(b)に示す配線用遮断器4において、7はフレーム7aとカバー7bからなる分割構造の外郭ケースであり、該外郭ケース7には電源側端子8,負荷側端子9,主回路の接点機構10,開閉機構11,消弧装置12,過電流引外し装置13,開閉操作ハンドル14などに加えて、負荷側端子9の近傍にはアーク抑制回路15が組み込まれ、該アーク抑制回路15が負荷側端子の+極端子9aと−極端子9bの端子導体間に接続されている。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below based on the examples shown in FIGS. First, in the circuit breaker 4 shown in FIGS. 1 (a) and 1 (b), reference numeral 7 denotes an outer case having a divided structure composed of a frame 7a and a cover 7b. The outer case 7 includes a power supply side terminal 8 and a load side. In addition to the terminal 9, the main circuit contact mechanism 10, the switching mechanism 11, the arc extinguishing device 12, the overcurrent tripping device 13, the switching operation handle 14, etc., an arc suppression circuit 15 is incorporated in the vicinity of the load side terminal 9. The arc suppression circuit 15 is connected between the terminal conductors of the positive electrode terminal 9a and the negative electrode terminal 9b of the load side terminal.

このアーク抑制回路15は、図1(a)のようにコンデンサ素子16,抵抗素子(充電抵抗)17,整流素子であるダイオード18を図示のように直並列に接続した構成であり、ここでダイオード18は+極端子9aに対して逆極性に接続している。なお、図示例の回路ではコンデンサ素子16に抵抗素子17を直列に接続して充電初期のラッシュ電流を抑制するようにしているが、太陽光発電システムなどのようにインピーダンスの低い負荷を接続した場合でも太陽電池の電圧/電流特性から大電流が流れるおそれの無い系統では、抵抗素子17を省略してコンデンサ素子16を端子間に直接接続してもよい。   The arc suppression circuit 15 has a configuration in which a capacitor element 16, a resistance element (charging resistor) 17, and a diode 18 as a rectifying element are connected in series and parallel as shown in FIG. 18 is connected with a reverse polarity with respect to the positive electrode terminal 9a. In the circuit of the illustrated example, the resistor element 17 is connected in series with the capacitor element 16 so as to suppress the rush current at the initial stage of charging. However, when a load with low impedance is connected as in a solar power generation system or the like. However, in a system in which a large current does not flow because of the voltage / current characteristics of the solar cell, the resistor element 17 may be omitted and the capacitor element 16 may be directly connected between the terminals.

そして、図2に示した太陽光発電システムに対して、その系統内で階層的に配置した接続箱2,集電箱3には前記したコンデンサ内蔵形の配線用遮断器4を設置して各基の太陽電池パネル1を連係接続するようにしている。   Then, with respect to the photovoltaic power generation system shown in FIG. 2, the connection box 2 and the current collection box 3 arranged hierarchically in the system are provided with the above-described built-in capacitor type circuit breaker 4. The base solar cell panel 1 is connected in a linked manner.

上記の直流電力システムで、その各階層の配電路に接続した配線用遮断器4に通電すると、コンデンサ素子16が配電路の線間電圧とほぼ同電位まで充電される。したがって、この状態で配電路のケーブル6が不測に断線したり、あるいは接続端子から外れたりして配線路の一部がオープンした場合でも、そのオープン箇所の上位と下位の間に電位差が生じないために、断線箇所におけるアークの発生を防ぐことができる。しかも、図2の系統図で示すよう配線用遮断器4は系統内の要所に分散して接続箱2,集電箱3に設置されているので、どの地点でケーブル断線事故が発生しても、線路インピーダンスの影響を大きく受けることなく断路箇所の近くに位置するコンデンサ素子内蔵形の配線用遮断器が対応してアークの発生を有効に防止できる。   In the DC power system described above, when the circuit breaker 4 connected to the distribution line at each level is energized, the capacitor element 16 is charged to substantially the same potential as the line voltage of the distribution line. Therefore, even when the cable 6 of the distribution path is unexpectedly disconnected or disconnected from the connection terminal in this state, a potential difference does not occur between the upper part and the lower part of the open part. Therefore, it is possible to prevent the occurrence of an arc at the disconnection point. In addition, as shown in the system diagram of FIG. 2, the circuit breakers 4 are distributed at important points in the system and installed in the junction box 2 and the current collector box 3. However, the occurrence of an arc can be effectively prevented by the wiring breaker with a built-in capacitor element located near the disconnection point without being greatly affected by the line impedance.

なお、図1のコンデンサ素子内蔵形の配線用遮断器を適用する直流電力システムは、図2に示した太陽光発電システムに限定されるものではなく、例えば太陽電池パネルと燃料電池を組み合わせた多様な分散型直流電源システムにも同様に適用できることは勿論である。   1 is not limited to the photovoltaic power generation system shown in FIG. 2, but various combinations of solar cell panels and fuel cells are possible. Of course, the present invention can be similarly applied to such a distributed DC power supply system.

1 太陽電池パネル
2 接続箱
3 集電箱
4 配線用遮断器
6 ケーブル
7 配線用遮断器の外郭ケース
9 負荷側端子
9a +極端子
9b −極端子
10 接点機構
11 開閉機構
13 過電流引外し装置
15 アーク抑制回路
16 コンデンサ素子
17 抵抗素子
18 ダイオード
DESCRIPTION OF SYMBOLS 1 Solar cell panel 2 Connection box 3 Current collection box 4 Circuit breaker 6 Cable 7 Outer case of circuit breaker 9 Load side terminal 9a + Pole terminal 9b-Pole terminal 10 Contact mechanism 11 Switching mechanism 13 Overcurrent trip device 15 Arc Suppression Circuit 16 Capacitor Element 17 Resistance Element 18 Diode

Claims (3)

外郭ケースに複数極の接点機構,接点開閉機構,過電流引外し装置、および電源側端子,負荷側端子を搭載した直流回路用の配線用遮断器において、
前記負荷側端子の+極端子と−極端子との間にコンデンサ素子を接続して外郭ケースに内装したことを特徴とする配線用遮断器。
In circuit breakers for DC circuits with multi-pole contact mechanisms, contact switching mechanisms, overcurrent trip devices, and power supply side terminals and load side terminals in the outer case.
A + terminal of the load terminal - circuit breaker, characterized in that the interior to the outer casing by connecting a capacitor element between the electrode terminal.
請求項1に記載の配線用遮断器において、前記コンデンサ素子が、整流素子と抵抗素子の並列回路を介して前記負荷側端子の+極端子と−極端子との間に直列接続されていることを特徴とする配線用遮断器。 In MCCB according to claim 1, wherein the capacitor element is, the rectifying element and the + terminal of said load terminal via a parallel circuit of a resistor element - that are serially connected between the terminal The circuit breaker for wiring. 複数の分散型直流電源を連係して構築した直流電力システムで、その直流電源に関連付けてシステム内に配線用遮断器が階層的に接続されているものにおいて、その配線用遮断器に請求項1に記載のコンデンサ素子内蔵形の配線用遮断器を適用したことを特徴とする直流電力システム。   In a DC power system constructed by linking a plurality of distributed DC power supplies, wherein the circuit breakers for wiring are hierarchically connected in association with the DC power supply, the circuit breaker for wiring is claimed in claim 1. A DC power system characterized by applying the built-in capacitor circuit breaker described in 1.
JP2011015001A 2011-01-27 2011-01-27 Circuit breaker for wiring and DC power system Expired - Fee Related JP5632304B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015001A JP5632304B2 (en) 2011-01-27 2011-01-27 Circuit breaker for wiring and DC power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015001A JP5632304B2 (en) 2011-01-27 2011-01-27 Circuit breaker for wiring and DC power system

Publications (2)

Publication Number Publication Date
JP2012156043A JP2012156043A (en) 2012-08-16
JP5632304B2 true JP5632304B2 (en) 2014-11-26

Family

ID=46837557

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015001A Expired - Fee Related JP5632304B2 (en) 2011-01-27 2011-01-27 Circuit breaker for wiring and DC power system

Country Status (1)

Country Link
JP (1) JP5632304B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5903593B2 (en) * 2012-08-30 2016-04-13 パナソニックIpマネジメント株式会社 Input circuit and power converter
DE102013223916A1 (en) * 2013-11-22 2015-05-28 Siemens Aktiengesellschaft Method for increasing the service life of the contact elements of a switching device with separator properties and corresponding switching device
JP6550001B2 (en) * 2016-03-14 2019-07-24 株式会社日立産機システム Power conditioner and method of detecting theft of cable connected thereto
JP6550002B2 (en) * 2016-03-14 2019-07-24 株式会社日立産機システム Power conditioner and method of detecting theft of cable connected thereto
JP6934634B2 (en) * 2017-03-30 2021-09-15 パナソニックIpマネジメント株式会社 Electrical equipment, power conversion systems, and terminal blocks
WO2020133239A1 (en) * 2018-12-28 2020-07-02 华为技术有限公司 Photovoltaic direct current breaking device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7145758B2 (en) * 2002-05-17 2006-12-05 International Rectifier Corporation Arc suppression circuit for electrical contacts
JP2009178032A (en) * 2007-12-25 2009-08-06 Panasonic Electric Works Co Ltd Dc power distribution system
JP2009181864A (en) * 2008-01-31 2009-08-13 Ntt Data Ex Techno Corp High voltage direct current circuit break support circuit and high voltage direct current breaker
JP5456575B2 (en) * 2010-05-21 2014-04-02 日本開閉器工業株式会社 Compact switch for DC current interruption

Also Published As

Publication number Publication date
JP2012156043A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5632304B2 (en) Circuit breaker for wiring and DC power system
JP3189106U (en) Solar power system
CN109167390B (en) Photovoltaic power generation inverter system
JPWO2012046331A1 (en) Failure detection device
WO2016140122A1 (en) Direct-current interruption device
JP2013206642A (en) Battery pack and battery system
US9397235B2 (en) Photovoltaic string combiner with disconnect having provision for converting between grounded and ungrounded systems
JP5820969B2 (en) Power distribution system
WO2021207880A1 (en) Short circuit protection apparatus, short circuit protection method, and photovoltaic power generation system
JP6599700B2 (en) Grid interconnection device
JP2013247787A (en) Photovoltaic power generation system and short circuit current detector
WO2020134815A1 (en) Power conversion and control device and energy storage system having the device
CN205178485U (en) Protection device of wind -powered electricity generation field current collection circuit
JP6223803B2 (en) DC breaker
JP2015154642A (en) Photovoltaic power generation facility for system interconnection
JP2013215060A (en) Distribution board, power conditioner, power distribution system, and power distribution method
CN113508506B (en) Photovoltaic power generation system, photovoltaic inverter and direct current collection flow box
KR101541367B1 (en) Energy Storage System Including Switch for Safety
JP5826131B2 (en) Inverter
JP6347057B2 (en) Connection box for photovoltaic system
JPH10285965A (en) Photovoltaic power generation system
US20130188285A1 (en) Method of operating integrated circuit breaker module for solar power system
US20200028350A1 (en) Dc overvoltage protection for an energy system
JP7072989B2 (en) Power storage system
EP2498360B1 (en) DC electrical power system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140917

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141009

R150 Certificate of patent or registration of utility model

Ref document number: 5632304

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees