JP5630616B2 - Transparent conductive film structure, manufacturing method thereof, and touch panel - Google Patents

Transparent conductive film structure, manufacturing method thereof, and touch panel Download PDF

Info

Publication number
JP5630616B2
JP5630616B2 JP2011160854A JP2011160854A JP5630616B2 JP 5630616 B2 JP5630616 B2 JP 5630616B2 JP 2011160854 A JP2011160854 A JP 2011160854A JP 2011160854 A JP2011160854 A JP 2011160854A JP 5630616 B2 JP5630616 B2 JP 5630616B2
Authority
JP
Japan
Prior art keywords
conductive film
transparent conductive
refractive index
transparent
slit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011160854A
Other languages
Japanese (ja)
Other versions
JP2013025616A (en
Inventor
伊東 雅宏
雅宏 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2011160854A priority Critical patent/JP5630616B2/en
Publication of JP2013025616A publication Critical patent/JP2013025616A/en
Application granted granted Critical
Publication of JP5630616B2 publication Critical patent/JP5630616B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、透明基板とこの基板上に設けられた回路パターン形状を有する透明導電膜とで構成される透明導電膜構造体に係り、例えば、液晶表示装置や有機エレクトロルミネッセンス(有機EL)表示装置等の表面に組み込まれるタッチパネル用構造体として適用された際、透明導電膜の存在に起因して表示装置の視野が妨害されてしまう弊害を解消できる透明導電膜構造体の改良とその製造方法およびタッチパネルに関するものである。   The present invention relates to a transparent conductive film structure composed of a transparent substrate and a transparent conductive film having a circuit pattern shape provided on the substrate, for example, a liquid crystal display device or an organic electroluminescence (organic EL) display device. Of a transparent conductive film structure capable of eliminating the adverse effect of obstructing the field of view of a display device due to the presence of the transparent conductive film when applied as a structure for a touch panel incorporated on the surface of the like, and a manufacturing method thereof, and It relates to a touch panel.

従来、入力装置として「キーボード」が利用され、「キーボード」のキーを人間が操作することで数値や文字を機器に入力していた。しかし、近年、スマートフォン等の携帯電話や携帯電子文書機器、自動販売機、カーナビゲーション、コンビニエンスストアのレジスター等において、人間−マシンインターフェースとしての「タッチパネル」が普及し始めている。そして、「タッチパネル」を用いた手法、すなわち、表示装置の画面に出ている選択肢上に指等を当てることで意志を装置内に伝えられる手法は、細かな機械操作が苦手な人にも直感的で分り易いため、それ程複雑でない入力用途には最適な手法である。更に、最近では、複数本の指を使用して表示画面を拡大し、あるいは、本の頁をまるで捲るような操作も可能となっており、遊び心が豊富な用途も登場してきている。   Conventionally, a “keyboard” has been used as an input device, and numerical values and characters have been input to a device by operating a “keyboard” key. However, in recent years, “touch panels” as human-machine interfaces have begun to spread in mobile phones such as smartphones, portable electronic document devices, vending machines, car navigation, convenience store registers, and the like. And, the method using the “touch panel”, that is, the method that can convey the will to the device by placing a finger etc. on the options on the screen of the display device is intuitive even for those who are not good at fine machine operation. Because it is easy to understand, it is the most suitable method for input applications that are not so complicated. In addition, recently, it has become possible to use a plurality of fingers to enlarge the display screen, or to operate the book as if it were a page, so that a variety of playful uses have emerged.

そして、「タッチパネル」には、大きく分けて抵抗型と静電入力型が存在する。上記「抵抗型のタッチパネル」は、ガラス、透明フィルム等の透明基板と、この基板上に設けられたX座標(またはY座標)検知電極シート並びにY座標(またはX座標)検知電極シートと、これ等シートの間に設けられた絶縁体スペーサーとで主要部が構成されている。そして、上記X座標検知電極シートとY座標検知電極シートは空間的に隔たっているが、ペン等で押さえられたときに両座標検知電極シートは電気的に接触してペンの触った位置(X座標、Y座標)が判るようになっており、ペンを移動させれば、その都度座標を認識して、最終的に文字の形入力が行なえる仕組みとなっている。他方、「静電容量型のタッチパネル」は、絶縁シートで隔離されたX座標(またはY座標)検知電極シートとY座標(またはX座標)検知電極シートが透明基板上に設けられ、更に、これ等の上にガラス等の絶縁体が配置された構造を有している。そして、ガラス等の上記絶縁体に指を近づけたとき、その近傍のX座標検知電極、Y座標検知電極の電気容量が変化するため、位置検知を行なえる仕組みとなっている。   The “touch panel” is roughly classified into a resistance type and an electrostatic input type. The “resistive touch panel” includes a transparent substrate such as glass and a transparent film, an X coordinate (or Y coordinate) detection electrode sheet and a Y coordinate (or X coordinate) detection electrode sheet provided on the substrate, The main part is comprised with the insulator spacer provided between the equal sheets. The X-coordinate detection electrode sheet and the Y-coordinate detection electrode sheet are spatially separated from each other. However, when the X-coordinate detection electrode sheet is pressed with a pen or the like, the two coordinate detection electrode sheets are in electrical contact with each other and touched by the pen (X (Coordinate, Y coordinate) can be understood. When the pen is moved, the coordinates are recognized each time, and finally the character shape can be input. On the other hand, the “capacitance type touch panel” has an X-coordinate (or Y-coordinate) detection electrode sheet and a Y-coordinate (or X-coordinate) detection electrode sheet, which are separated by an insulating sheet, provided on a transparent substrate. It has a structure in which an insulator such as glass is disposed on the top. When a finger is brought close to the insulator such as glass, the electric capacity of the X-coordinate detection electrode and the Y-coordinate detection electrode in the vicinity thereof changes so that the position can be detected.

上記「静電容量型のタッチパネル」では、入力操作を指で行なうことが多いため、検知電極(透明電極)のサイズは指サイズよりやや小さめに設定され、多くは5mm程度の矩形状に形成されている。そして、X座標検知電極(透明電極)とY座標検知電極(透明電極)は、これ等電極サイズより細長い配線パターン形状の透明配線部を介して電気的に繋がった構造になっている。以下、説明を簡略化するため、X軸方向に2本の回路を有し、Y軸方向に1本の回路を有した簡単な構造体(2×1)を図1に示す。上記X座標検知電極(透明電極)、Y座標検知電極(透明電極)および透明配線部で構成された図1に示す構造体(2×1)において、例えば、上下方向に配列されたY座標検知電極(透明電極)に透明配線部を介して交流を流すと、左右方向に配列されたX座標検知電極(透明電極)にも少しの交流電流が検知される。そして、電極の近くに指等の導電体を近づけるとキャパシタが構成され、その近くの電極同士の結合が強くなって流れる電流が多くなるため、位置の同定が可能となる。このような構造体において、矩形状をした検知電極(透明電極)のサイズは指サイズよりやや小さい程度でよく、これ以上の過度な分解能を要しない。そして、矩形状をした検知電極(透明電極)のサイズは、上述したように、通常、1辺5mm程度である。   In the above-mentioned “capacitance-type touch panel”, the input operation is often performed with a finger, so the size of the detection electrode (transparent electrode) is set slightly smaller than the finger size, and many are formed in a rectangular shape of about 5 mm. ing. The X coordinate detection electrode (transparent electrode) and the Y coordinate detection electrode (transparent electrode) are electrically connected via a transparent wiring portion having a wiring pattern shape that is longer than these electrode sizes. In order to simplify the description, FIG. 1 shows a simple structure (2 × 1) having two circuits in the X-axis direction and one circuit in the Y-axis direction. In the structure (2 × 1) shown in FIG. 1 composed of the X coordinate detection electrode (transparent electrode), the Y coordinate detection electrode (transparent electrode), and the transparent wiring portion, for example, Y coordinate detection arranged in the vertical direction When alternating current is passed through the electrode (transparent electrode) through the transparent wiring portion, a small amount of alternating current is also detected by the X coordinate detection electrodes (transparent electrodes) arranged in the left-right direction. When a conductor such as a finger is brought close to the electrode, a capacitor is formed, and the current between the adjacent electrodes is strengthened and the flowing current increases, so that the position can be identified. In such a structure, the size of the rectangular detection electrode (transparent electrode) may be slightly smaller than the finger size and does not require excessive resolution beyond this. The size of the rectangular detection electrode (transparent electrode) is usually about 5 mm per side as described above.

ところで、ガラス等の透明基板と、基板上に設けられたX座標検知電極(透明電極)並びにY座標検知電極(透明電極)と、これ等電極を電気的に繋げる配線パターン形状の透明配線部とで構成されるタッチパネル用構造体の概略拡大斜視図を図2に示す。   By the way, a transparent substrate such as glass, an X-coordinate detection electrode (transparent electrode) and a Y-coordinate detection electrode (transparent electrode) provided on the substrate, and a transparent wiring portion having a wiring pattern shape for electrically connecting these electrodes, FIG. 2 shows a schematic enlarged perspective view of a structure for a touch panel composed of

尚、タッチパネル用構造体を簡略化するため、図2においては、片方の透明電極(例えばX座標検知電極)のみを示している。   In order to simplify the structure for a touch panel, only one transparent electrode (for example, an X coordinate detection electrode) is shown in FIG.

そして、図2に示すタッチパネル用構造体に対し、例えば真上から光が照射されたときのタッチパネル用構造体からの反射を検討する。すなわち、図3の符号丸1と丸2で示すように、真上から光が照射されたときの透明導電膜(例えば、ITOにより構成された透明電極や透明配線部)と透明基板(例えばSiO2により構成)からの反射を考えた場合、透明導電膜を構成するITOの屈折率は約2程度、透明基板を構成するSiO2の屈折率は1.6程度であることから、透明導電膜と透明基板とで反射率は異なる。 And the reflection from the structure for touch panels when light is irradiated, for example from right above with respect to the structure for touch panels shown in FIG. That is, as indicated by reference numerals 1 and 2 in FIG. 3, a transparent conductive film (for example, a transparent electrode or transparent wiring portion made of ITO) and a transparent substrate (for example, SiO 2) when light is irradiated from directly above. 2 ), the refractive index of ITO constituting the transparent conductive film is about 2, and the refractive index of SiO 2 constituting the transparent substrate is about 1.6. The reflectance differs between the transparent substrate and the transparent substrate.

すなわち、透明導電膜と透明基板の各反射率(R)は以下の数式により求められる。   That is, each reflectance (R) of a transparent conductive film and a transparent substrate is calculated | required by the following numerical formula.

反射率(R)=(n0−n12/(n0+n12
ここで、上記n0は第一媒体(例えば空気なら屈折率は1)の屈折率、上記n1は第二媒体(図3に示すタッチパネル用構造体では、透明導電膜を構成するITOおよび透明基板を構成するSiO2)の屈折率である。
Reflectivity (R) = (n 0 −n 1 ) 2 / (n 0 + n 1 ) 2
Here, n 0 is the refractive index of the first medium (for example, the refractive index is 1 for air), and n 1 is the second medium (in the touch panel structure shown in FIG. 3, ITO and transparent transparent conductive film). This is the refractive index of SiO 2 ) constituting the substrate.

そして、ITOで構成された透明導電膜からの反射量と、SiO2で構成された下地部である透明基板からの反射量が異なるため、上記タッチパネル用構造体を真上から見た場合、ITOで構成された透明導電膜の外縁部が際立って見えてしまう。 And, since the amount of reflection from the transparent conductive film made of ITO and the amount of reflection from the transparent substrate which is the base portion made of SiO 2 are different, when the touch panel structure is viewed from directly above, ITO The outer edge part of the transparent conductive film comprised by this will be conspicuously visible.

特に、美しい画像が表示される表示装置の表面にタッチパネル用構造体が組み込まれているような場合、ITOで構成される透明導電膜(透明電極や透明配線部)の存在が視認されて目障になるため、表示装置の視野が妨害されてしまう問題を生ずる。   In particular, when a touch panel structure is incorporated on the surface of a display device that displays a beautiful image, the presence of a transparent conductive film (transparent electrode or transparent wiring portion) made of ITO is visually recognized. Therefore, there arises a problem that the visual field of the display device is obstructed.

そこで、この問題を回避するため、従来からいくつかの方法が提案されている。例えば、特許文献1には、タッチパネル用構造体のフィルム基材(透明基板)にアンダーコート層を設け、このアンダーコート層を介して透明導電膜(ITO)が形成されることを特徴とした透明導電性フィルムが開示されている。しかし、光学薄膜理論に基づいたこの手法、すなわち、透明導電膜(ITO)の下地に数層の誘電体層(アンダーコート層)を積層する手法は、透明導電膜の膜厚を制限してしまい電気抵抗の調整が困難となる問題を有していた。特に、透明導電膜の膜厚が薄くなる程、電気抵抗が大きくなるため、電気抵抗の調整は極めて困難であった。透明導電膜以外の反射率調整用膜についても、同様に、実効的膜厚に制限ができてしまう。更に、多層の膜(アンダーコート層)を形成することは、広幅フィルム上への成膜、高速成膜に大きな制約となるため、歩留まり低下の原因になる問題も有している。   In order to avoid this problem, several methods have heretofore been proposed. For example, Patent Document 1 discloses a transparent film characterized in that an undercoat layer is provided on a film substrate (transparent substrate) of a touch panel structure, and a transparent conductive film (ITO) is formed through the undercoat layer. A conductive film is disclosed. However, this method based on the optical thin film theory, that is, the method of laminating several dielectric layers (undercoat layers) on the base of the transparent conductive film (ITO) limits the film thickness of the transparent conductive film. There was a problem that it was difficult to adjust the electrical resistance. In particular, since the electrical resistance increases as the film thickness of the transparent conductive film decreases, it is extremely difficult to adjust the electrical resistance. Similarly, with respect to the reflectance adjusting film other than the transparent conductive film, the effective film thickness can be limited. Furthermore, forming a multilayer film (undercoat layer) is a major limitation on film formation on a wide film and high-speed film formation, and therefore has a problem of reducing yield.

また、特許文献2では、透明基板上に透明導電膜を一様に成膜し、かつ、この透明導電膜に対し、導電性を必要としない部分にレーザー光を照射してその部位を絶縁膜化し、これにより屈折率が近似しかつ凹凸差のない透明電極基板(タッチパネル用構造体)を製造する方法が開示されている。しかしこの方法では、導電膜として使用しない部分にも導電膜と同じ材料が用いられるためコスト面で問題があった。また、大面積の透明導電膜に対してレーザー光を照射する処理工程は生産性に劣るため、生産面での問題もあった。   Further, in Patent Document 2, a transparent conductive film is uniformly formed on a transparent substrate, and the transparent conductive film is irradiated with a laser beam to a portion that does not require conductivity, and the portion is covered with an insulating film. Thus, a method of manufacturing a transparent electrode substrate (a structure for a touch panel) having a refractive index approximate and no difference in unevenness is disclosed. However, this method has a problem in terms of cost because the same material as that of the conductive film is used in a portion not used as the conductive film. In addition, the treatment process of irradiating a large area transparent conductive film with laser light is inferior in productivity, and thus has a problem in production.

更に、特許文献3では、透明基板上に設けた酸化亜鉛膜(透明導電膜)におけるパターン端面の形状が、透明電極面に対し45度以下の傾きを持つ積層体(タッチパネル用構造体)を開示している。しかし、透明電極の膜厚が薄くなるにつれて、連続的に厚さを変化させて45度以下の傾きを持たせる加工は困難が伴うため、加工面で問題があった。   Furthermore, Patent Document 3 discloses a laminate (a structure for touch panel) in which the shape of the pattern end face in the zinc oxide film (transparent conductive film) provided on the transparent substrate has an inclination of 45 degrees or less with respect to the transparent electrode surface. doing. However, as the thickness of the transparent electrode becomes thinner, there is a problem in processing because it is difficult to continuously change the thickness so as to have an inclination of 45 degrees or less.

特開2009−076432号公報JP 2009-076432 A 特開平06−202126号公報Japanese Patent Laid-Open No. 06-202126 特開2010−158786号公報JP 2010-158786 A

本発明はこのような問題点に着目してなされたもので、その課題とするところは、タッチパネル用構造体として適用された際に透明電極や透明配線部等を構成する透明導電膜の存在に起因して表示装置の視野が妨害されてしまう弊害を解消できる透明導電膜構造体とその製造方法およびタッチパネルを提供することにある。   The present invention has been made paying attention to such problems, and the problem is that the presence of a transparent conductive film constituting a transparent electrode, a transparent wiring portion, and the like when applied as a structure for a touch panel. It is an object of the present invention to provide a transparent conductive film structure, a method for manufacturing the same, and a touch panel that can eliminate the adverse effect of disturbing the visual field of the display device.

そこで、上記課題を解決するため本発明者が鋭意研究を行なったところ、透明電極や透明配線部等を構成する透明導電膜の外縁近傍領域に、透明導電膜を貫通しかつ外縁と平行に設けられた複数のスリット群と非スリット群とで構成される屈折率緩衝部を形成した場合、透明導電膜の外縁部が目立たなくなることを見出すに至った。   In order to solve the above problems, the present inventor conducted extensive research and found that the transparent conductive film penetrates through the transparent conductive film in the vicinity of the outer edge of the transparent conductive film constituting the transparent electrode, the transparent wiring portion, and the like and is provided in parallel with the outer edge. When the refractive index buffer part comprised by the several slit group and non-slit group which were formed was formed, it came to discover that the outer edge part of a transparent conductive film becomes inconspicuous.

すなわち、請求項1に係る発明は、
透明基板と、この透明基板上に設けられた回路パターン形状を有する透明導電膜とで構成される透明導電膜構造体において、
上記透明導電膜の外縁近傍領域に、透明導電膜を貫通すると共に上記外縁と平行に設けられた複数のスリット群と非スリット群とで構成された屈折率緩衝部を有しており、この屈折率緩衝部は、その幅方向に亘って上記外縁と平行でかつ幅寸法が互いに同一の単位領域により区画されており、上記屈折率緩衝部における単位領域の屈折率が、透明基板と略同一の屈折率を有する最外側の単位領域から透明導電膜と略同一の屈折率を有する最内側の単位領域に向かって連続的に変化していることを特徴とする。
That is, the invention according to claim 1
In a transparent conductive film structure composed of a transparent substrate and a transparent conductive film having a circuit pattern shape provided on the transparent substrate,
In the vicinity of the outer edge of the transparent conductive film, there is a refractive index buffering portion that is formed by a plurality of slit groups and non-slit groups penetrating the transparent conductive film and parallel to the outer edge. The rate buffer portion is partitioned by unit regions that are parallel to the outer edge and have the same width dimension across the width direction, and the refractive index of the unit region in the refractive index buffer portion is substantially the same as that of the transparent substrate. It is characterized by continuously changing from the outermost unit region having a refractive index toward the innermost unit region having substantially the same refractive index as that of the transparent conductive film.

但し、上記透明導電膜の外縁と垂直な方向を屈折率緩衝部並びに単位領域の幅方向とし、かつ、各単位領域の屈折率は以下に定める「空間屈折率」とする。   However, the direction perpendicular to the outer edge of the transparent conductive film is defined as the refractive index buffer portion and the width direction of the unit region, and the refractive index of each unit region is defined as the “space refractive index” defined below.

「空間屈折率」=
(透明導電膜の屈折率)×(単位領域内の非スリット部総面積/単位領域総面積)
+(透明基板の屈折率)×(単位領域内のスリット部総面積/単位領域総面積)
"Spatial refractive index" =
(Refractive index of transparent conductive film) x (total non-slit area in unit area / total area of unit area)
+ (Refractive index of transparent substrate) x (total area of slits in unit area / total area of unit area)

次に、請求項2に係る発明は、
請求項1に記載の発明に係る透明導電膜構造体において、
各単位領域の上記幅寸法が、0.1mm以下に設定されていることを特徴とし、
請求項3に係る発明は、
請求項1〜2のいずれかに記載の発明に係る透明導電膜構造体において、
上記屈折率緩衝部の幅方向外側から内側へ向かうに従い、各単位領域内における非スリット部総面積の割合が連続的に大きくなるように設定されていることを特徴とし、
請求項4に係る発明は、
請求項1〜3のいずれかに記載の発明に係る透明導電膜構造体において、
上記屈折率緩衝部の幅寸法が、0.1mmを越え3mm以下に設定されていることを特徴とし、
請求項5に係る発明は、
請求項1〜4のいずれかに記載の発明に係る透明導電膜構造体において、
上記単位領域における非スリット部の幅方向の縦断面構造が、略矩形状を有していることを特徴とし、
請求項6に係る発明は、
請求項1〜5のいずれかに記載の発明に係る透明導電膜構造体において、
上記透明導電膜がITOであることを特徴とする。
Next, the invention according to claim 2
In the transparent conductive film structure according to the invention of claim 1,
The width dimension of each unit region is set to 0.1 mm or less,
The invention according to claim 3
In the transparent conductive film structure according to any one of claims 1 and 2,
The ratio of the total area of the non-slit part in each unit region is set so as to increase continuously from the outside in the width direction of the refractive index buffer part to the inside,
The invention according to claim 4
In the transparent conductive film structure according to any one of claims 1 to 3,
The width dimension of the refractive index buffer is set to be more than 0.1 mm and 3 mm or less,
The invention according to claim 5
In the transparent conductive film structure according to any one of claims 1 to 4,
The longitudinal sectional structure in the width direction of the non-slit portion in the unit region has a substantially rectangular shape,
The invention according to claim 6
In the transparent conductive film structure according to any one of claims 1 to 5,
The transparent conductive film is ITO.

次に、請求項7に係る発明は、
請求項1に記載の透明導電膜構造体の製造方法において、
化学エッチング法によりスリット群と非スリット群とで構成される屈折率緩衝部を形成することを特徴とし、
請求項8に係る発明は、
静電容量型タッチパネルにおいて、
請求項1〜6のいずれかに記載の透明導電膜構造体が適用されていることを特徴とする。
Next, the invention according to claim 7 provides:
In the manufacturing method of the transparent conductive film structure according to claim 1,
It is characterized by forming a refractive index buffer portion composed of a slit group and a non-slit group by a chemical etching method,
The invention according to claim 8 provides:
In capacitive touch panel,
The transparent conductive film structure according to any one of claims 1 to 6 is applied.

透明基板とこの透明基板上に設けられた回路パターン形状を有する透明導電膜とで構成される本発明に係る透明導電膜構造体は、
上記透明導電膜の外縁近傍領域に、透明導電膜を貫通すると共に上記外縁と平行に設けられた複数のスリット群と非スリット群とで構成された屈折率緩衝部を有しており、この屈折率緩衝部は、その幅方向に亘って上記外縁と平行でかつ幅寸法が互いに同一の単位領域により区画されており、上記屈折率緩衝部における単位領域の屈折率が、透明基板と略同一の屈折率を有する最外側の単位領域から透明導電膜と略同一の屈折率を有する最内側の単位領域に向かって連続的に変化していることを特徴としており、透明導電膜の外縁近傍領域に設けられた上記屈折率緩衝部の作用により透明導電膜の外縁部が目立ち難くなる効果を有している。
The transparent conductive film structure according to the present invention composed of a transparent substrate and a transparent conductive film having a circuit pattern shape provided on the transparent substrate,
In the vicinity of the outer edge of the transparent conductive film, there is a refractive index buffering portion that is formed by a plurality of slit groups and non-slit groups penetrating the transparent conductive film and parallel to the outer edge. The rate buffer portion is partitioned by unit regions that are parallel to the outer edge and have the same width dimension across the width direction, and the refractive index of the unit region in the refractive index buffer portion is substantially the same as that of the transparent substrate. It is characterized by continuously changing from the outermost unit region having a refractive index toward the innermost unit region having substantially the same refractive index as that of the transparent conductive film. The effect | action of the provided said refractive index buffer part has the effect that the outer edge part of a transparent conductive film becomes inconspicuous.

また、本発明に係る透明導電膜構造体の製造方法は、
スリット群と非スリット群とで構成される屈折率緩衝部を化学エッチング法により形成することを特徴としており、上記屈折率緩衝部を形成するときのエッチング処理と、透明導電膜の回路パターンを形成成するときのエッチング処理とを同時に行なうことが可能なため、作業工数を増やす必要がない効果を有している。
Moreover, the manufacturing method of the transparent conductive film structure according to the present invention includes:
Refractive index buffer part composed of slit group and non-slit group is formed by chemical etching method, etching process when forming the above refractive index buffer part, and circuit pattern of transparent conductive film is formed Since the etching process at the time of forming can be performed simultaneously, there is an effect that it is not necessary to increase the number of work steps.

更に、本発明に係る透明導電膜構造体においては、屈折率緩衝部の作用により透明導電膜の外縁部が目立ち難いため、液晶表示装置や有機エレクトロルミネッセンス表示装置等の表面に組み込まれるタッチパネル用構造体として適用した場合、透明導電膜の存在に起因して表示装置の視野が妨害されてしまう弊害を解消できる効果を有している。   Furthermore, in the transparent conductive film structure according to the present invention, the outer edge portion of the transparent conductive film is not noticeable due to the action of the refractive index buffering portion, so that the structure for a touch panel incorporated on the surface of a liquid crystal display device, an organic electroluminescence display device, etc. When applied as a body, it has the effect of eliminating the adverse effect of disturbing the visual field of the display device due to the presence of the transparent conductive film.

静電容量型タッチパネル用構造体の作用を示す概略説明図。Schematic explanatory drawing which shows the effect | action of the structure for electrostatic capacitance type touch panels. タッチパネル用構造体の概略拡大斜視図。The outline expansion perspective view of the structure for touch panels. 図2に示すタッチパネル用構造体の概略断面図。The schematic sectional drawing of the structure for touchscreens shown in FIG. 実施の形態に係る透明導電膜構造体の屈折率緩衝部における構成を示す幅方向の縦断面図。The longitudinal cross-sectional view of the width direction which shows the structure in the refractive index buffer part of the transparent conductive film structure which concerns on embodiment. 他の実施の形態に係る透明導電膜構造体の屈折率緩衝部における構成を示す幅方向の縦断面図。The longitudinal cross-sectional view of the width direction which shows the structure in the refractive index buffer part of the transparent conductive film structure which concerns on other embodiment. 屈折率緩衝部が形成された透明導電膜構造体の部分拡大平面図。The partial enlarged plan view of the transparent conductive film structure in which the refractive index buffer part was formed.

以下、本発明の実施の形態について詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail.

ITO(Indium tin oxide)等で構成された透明導電膜は、文字通り透明であることから目に見えない膜であるが、実際に透明基板上に成膜してパターン等を形成した場合、透明導電膜と基板との屈折率の差により反射率が異なるため形成された回路パターン等が視認されてしまう。   A transparent conductive film composed of ITO (Indium tin oxide) is literally invisible because it is transparent. However, when a pattern is actually formed on a transparent substrate, the transparent conductive film Since the reflectivity differs depending on the difference in refractive index between the film and the substrate, the formed circuit pattern or the like is visually recognized.

このため、透明電極や透明配線部等の回路パターン形状を有する透明導電膜と透明基板とで構成される透明導電膜構造体について、この構造体を、液晶表示装置や有機エレクトロルミネッセンス表示装置等の表面に組み込まれるタッチパネル用構造体として適用した場合、表示装置に表示された画面と、透明導電膜構造体における透明導電膜の回路パターン(すなわち、透明電極や透明配線部等の回路パターン)が重なって視覚されてしまうことから、視認性に問題があった。   For this reason, for a transparent conductive film structure composed of a transparent conductive film having a circuit pattern shape such as a transparent electrode and a transparent wiring portion and a transparent substrate, this structure can be used as a liquid crystal display device or an organic electroluminescence display device. When applied as a structure for a touch panel incorporated on the surface, the screen displayed on the display device and the circuit pattern of the transparent conductive film in the transparent conductive film structure (that is, the circuit pattern of the transparent electrode, transparent wiring portion, etc.) overlap. There was a problem in visibility.

そこで、上記問題を解決する本発明に係る透明導電膜構造体においては、透明導電膜の外縁近傍領域に、透明導電膜を貫通しかつ外縁と平行に設けられた複数のスリット群と非スリット群とで構成される屈折率緩衝部が設けられている。尚、上記屈折率緩衝部のスリット群と非スリット群は、透明基板上に設けられた透明導電膜の外縁近傍を化学エッチング法等によりエッチング加工して形成されている。   Therefore, in the transparent conductive film structure according to the present invention that solves the above problems, a plurality of slit groups and non-slit groups provided in the vicinity of the outer edge of the transparent conductive film so as to penetrate the transparent conductive film and be parallel to the outer edge. And a refractive index buffering section. The slit group and the non-slit group of the refractive index buffer are formed by etching the vicinity of the outer edge of the transparent conductive film provided on the transparent substrate by a chemical etching method or the like.

そして、上記屈折率緩衝部は、その幅方向に亘って上記外縁と平行でかつ幅寸法が互いに同一の単位領域により区画されており、上記屈折率緩衝部における単位領域の屈折率が、透明基板と略同一の屈折率を有する最外側の単位領域から透明導電膜と略同一の屈折率を有する最内側の単位領域に向かって連続的に変化していることを特徴とする。   The refractive index buffer unit is partitioned by unit regions that are parallel to the outer edge and have the same width dimension across the width direction, and the refractive index of the unit region in the refractive index buffer unit is a transparent substrate. And the outermost unit region having substantially the same refractive index as the transparent conductive film and continuously changing from the outermost unit region having the substantially same refractive index to the innermost unit region.

ここで、上記透明導電膜の外縁と垂直な方向を屈折率緩衝部並びに単位領域の幅方向としており、かつ、各単位領域の屈折率は以下に定める「空間屈折率」とする。   Here, the direction perpendicular to the outer edge of the transparent conductive film is defined as the refractive index buffer portion and the width direction of the unit region, and the refractive index of each unit region is defined as the “space refractive index” defined below.

「空間屈折率」=
(透明導電膜の屈折率)×(単位領域内の非スリット部総面積/単位領域総面積)
+(透明基板の屈折率)×(単位領域内のスリット部総面積/単位領域総面積)
"Spatial refractive index" =
(Refractive index of transparent conductive film) x (total non-slit area in unit area / total area of unit area)
+ (Refractive index of transparent substrate) x (total area of slits in unit area / total area of unit area)

ところで、人間の目で知覚可能な幅寸法は約0.1mmと言われている。このため、幅寸法がそれぞれ0.1mm以下に設定された単位領域で屈折率緩衝部をその幅方向に亘って区画した場合、各単位領域の屈折率は、上記「スリット部」と「非スリット部」の屈折率(すなわち、透明基板と透明導電膜の屈折率)の算術平均として表すことができる。すなわち、屈折率緩衝部の屈折率は、「非スリット部」の透明導電膜と「スリット部」の透明基板との中間の屈折率(すなわち、上記定義された「空間屈折率」)をとる。   By the way, the width dimension perceivable by human eyes is said to be about 0.1 mm. For this reason, when the refractive index buffer portion is partitioned across the width direction in the unit region where the width dimension is set to 0.1 mm or less, the refractive index of each unit region is the above-mentioned “slit portion” and “non-slit”. Part "can be expressed as an arithmetic average of the refractive index of the" part "(that is, the refractive index of the transparent substrate and the transparent conductive film). That is, the refractive index of the refractive index buffer portion takes an intermediate refractive index between the transparent conductive film of the “non-slit portion” and the transparent substrate of the “slit portion” (that is, the “spatial refractive index” defined above).

そして、屈折率緩衝部における幅方向のより内側に位置する単位領域において透明導電膜である「非スリット部」の割合を多くし、反対に、屈折率緩衝部における幅方向のより外側に位置する単位領域において透明基板である「スリット部」の割合を増やすことで、透明導電膜から透明基板に向かって「空間屈折率」を徐々に変化させることができる。   Then, the ratio of the “non-slit portion” that is a transparent conductive film is increased in the unit region located on the inner side in the width direction in the refractive index buffering portion, and conversely, it is located on the outer side in the width direction in the refractive index buffering portion. By increasing the ratio of the “slit part” that is a transparent substrate in the unit region, the “spatial refractive index” can be gradually changed from the transparent conductive film toward the transparent substrate.

ここで、上記「空間屈折率」が、透明導電膜における屈折率の値から透明基板における屈折率の値に向かって滑らか(連続的)に変化する調整方法を説明する。   Here, an adjustment method in which the “spatial refractive index” changes smoothly (continuously) from the refractive index value of the transparent conductive film toward the refractive index value of the transparent substrate will be described.

まず、透明基板上に高屈折率の透明導電膜が形成された場合、上記高屈折率部(屈折率=nH)から低屈折率部(屈折率=nL)まで屈折率が線形に減少する範囲(すなわち、屈折率緩衝部)をL0とする。 First, when a transparent conductive film having a high refractive index is formed on a transparent substrate, the refractive index linearly decreases from the high refractive index portion (refractive index = n H ) to the low refractive index portion (refractive index = n L ). A range to be performed (that is, a refractive index buffer) is L 0 .

そして、この範囲(屈折率緩衝部)がN等分に区画されると、各区間(単位領域)の幅寸法はL0/Nとなり、区間(単位領域)kにおける「空間屈折率」をnkとすると、
k=nH−(nH―nL)・k/N (但し、k=0,1,2,……,N)
となる。
When this range (refractive index buffer) is divided into N equal parts, the width dimension of each section (unit region) is L 0 / N, and the “space refractive index” in the section (unit region) k is n. k
n k = n H − (n H −n L ) · k / N (where k = 0, 1, 2,..., N)
It becomes.

そして、区間(単位領域)kにおける高屈折率部(屈折率=nH)の幅寸法(非スリット部の幅寸法)bk、低屈折率部(屈折率=nL)の幅寸法(スリット部の幅寸法)akとすると、
k=[(N−k)/N]×(L0/N)
k=(k/N)×(L0/N)
k+bk=L0/N:定数
となり、この関係を満たした透明導電膜構造体の「屈折率緩衝部」を図4に示す。
Then, in the section (unit region) k, the width dimension of the high refractive index portion (refractive index = n H ) (width dimension of the non-slit portion) b k , the width dimension of the low refractive index portion (refractive index = n L ) (slit Part width dimension) a k
a k = [(N−k) / N] × (L 0 / N)
b k = (k / N) × (L 0 / N)
a k + b k = L 0 / N: a constant, and the “refractive index buffer portion” of the transparent conductive film structure satisfying this relationship is shown in FIG.

また、「空間屈折率」を連続的に変化させるための調整方法(すなわち、屈折率分布の形成方法)については、図4に示す方法以外にもいろいろあり、例えば、図5に示すように、幅wの低屈折率部(スリット部)を1区間に複数個分布させる方法が挙げられる。   In addition, there are various adjustment methods for continuously changing the “spatial refractive index” (that is, a method of forming a refractive index distribution) other than the method shown in FIG. 4, for example, as shown in FIG. One example is a method of distributing a plurality of low refractive index portions (slit portions) having a width w in one section.

また、スリット部と非スリット部とで構成される単位領域の断面形状(すなわち、単位領域における非スリット部の幅方向の縦断面形状)については特に制限はないが、加工のし易さを考慮した場合、略矩形状であることが望ましい。また、上記単位領域の幅寸法については、目で知覚できないように0.1mm以下であることが好ましい。   In addition, there is no particular limitation on the cross-sectional shape of the unit region composed of the slit portion and the non-slit portion (that is, the vertical cross-sectional shape of the non-slit portion in the unit region in the width direction), but considering the ease of processing In this case, it is desirable that the shape is substantially rectangular. The width of the unit region is preferably 0.1 mm or less so that it cannot be perceived by the eyes.

次に、上記屈折率緩衝部を単位領域で区切ってみたとき、その「空間屈折率」の変化は滑らか(連続的)に変化することが重要である。このため、隣接する単位領域における「空間屈折率」の差は小さい方が好ましく、通常0.3以下であり、0.1以下であるとより好ましい。更に、屈折率緩衝部における幅方向の最内側における単位領域の屈折率(透明導電膜の屈折率と略同一)から最外側における単位領域の屈折率(透明基板の屈折率と略同一)まで直線的に変化すると、「空間屈折率」の変化が最も平均化されるためより一層好ましい。   Next, when the refractive index buffer is divided into unit regions, it is important that the change in the “space refractive index” changes smoothly (continuously). For this reason, it is preferable that the difference in “spatial refractive index” between adjacent unit regions is smaller, usually 0.3 or less, and more preferably 0.1 or less. Furthermore, a straight line extends from the refractive index of the unit region at the innermost side in the width direction (substantially the same as the refractive index of the transparent conductive film) to the refractive index of the unit region at the outermost side (substantially the same as the refractive index of the transparent substrate). Change is more preferable because the change in the “spatial refractive index” is most averaged.

また、透明導電膜の外縁近傍領域に形成される上記屈折率緩衝部の幅寸法に関しては、0.1mmを越え3mm以下であることが好ましい。幅寸法が0.1mm以下であると、透明導電膜と透明基板との屈折率差が大きい場合に屈折率緩衝部として十分に機能し得ないことがあるからである。また、幅寸法が3mmを越えると、形成される回路パターンの幅に影響を及ぼす場合があるからである。   Further, the width dimension of the refractive index buffer portion formed in the region near the outer edge of the transparent conductive film is preferably more than 0.1 mm and not more than 3 mm. This is because if the width dimension is 0.1 mm or less, the refractive index buffer part may not function sufficiently when the refractive index difference between the transparent conductive film and the transparent substrate is large. Further, if the width dimension exceeds 3 mm, the width of the formed circuit pattern may be affected.

ここで、透明電極を構成する透明導電膜の外縁近傍領域に上記屈折率緩衝部が形成された透明導電膜構造体の一例を図6(A)に示す。尚、この透明導電膜構造体においては、相対向する透明電極の隙間部分(透明電極の外側近傍部位)に上記屈折率緩衝部が形成された構造になっているが、各透明電極の大きさや抵抗値に余裕がある場合には、上記隙間部分に代えて透明電極内側の外縁近傍領域に上記屈折率緩衝部を形成してもよい。更に、図6(B)に示すように上記屈折率緩衝部の各単位領域が接続部を介して互いに電気的に繋がっている構造を採用してもよい。このような構造を採ることで電気量を稼ぐ効果を得ることが可能となる。   Here, FIG. 6A shows an example of a transparent conductive film structure in which the refractive index buffering portion is formed in a region near the outer edge of the transparent conductive film constituting the transparent electrode. The transparent conductive film structure has a structure in which the refractive index buffering portion is formed in a gap portion (a portion near the outside of the transparent electrode) between the transparent electrodes facing each other. When there is a margin in the resistance value, the refractive index buffer portion may be formed in a region near the outer edge inside the transparent electrode instead of the gap portion. Further, as shown in FIG. 6B, a structure in which the unit regions of the refractive index buffering part are electrically connected to each other through a connecting part may be adopted. By adopting such a structure, it is possible to obtain the effect of earning electricity.

次に、透明導電膜を構成する材料ついては特に限定されないが、高い透明性と導電性を有するITO(Indium tin oxide)であることが好ましい。また、上記スリット群と非スリット群とで構成される屈折率緩衝部を形成する方法も原則として任意であるが、化学エッチング法により形成することが好ましい。通常、透明導電膜に回路パターン(すなわち、透明電極や透明配線部等の回路パターン)を形成する場合、透明基板上に透明導電膜を一様に形成した後、化学エッチングにより回路を形成することが多い。このため、化学エッチングを用いれば、上記回路パターンを形成すると同時に屈折率緩衝部も形成できることから、処理工程が増えない分、好ましい。そして、化学エッチングに適用されるエッチング剤は、エッチングされる透明導電膜の材質に合わせて適宜選択される。   Next, the material constituting the transparent conductive film is not particularly limited, but ITO (Indium tin oxide) having high transparency and conductivity is preferable. Moreover, although the method of forming the refractive index buffer part comprised by the said slit group and a non-slit group is also arbitrary in principle, it is preferable to form by the chemical etching method. Usually, when a circuit pattern (that is, a circuit pattern such as a transparent electrode or a transparent wiring portion) is formed on a transparent conductive film, the circuit is formed by chemical etching after the transparent conductive film is uniformly formed on the transparent substrate. There are many. For this reason, it is preferable to use chemical etching because the refractive index buffer portion can be formed at the same time as the circuit pattern is formed. And the etching agent applied to chemical etching is suitably selected according to the material of the transparent conductive film to be etched.

このようにして得られた屈折率緩衝部を有する透明導電膜構造体は、上記屈折率緩衝部の作用により透明導電膜の外縁部が目立ち難いことから、液晶表示装置や有機エレクトロルミネッセンス表示装置等の表面に組み込まれるタッチパネル用構造体として適用された場合、透明導電膜の存在に起因して表示装置の視野が妨害される弊害を解消できるため、例えば、静電容量型タッチパネルに好適に用いられる利点を有している。   The transparent conductive film structure having the refractive index buffer portion thus obtained has a liquid crystal display device, an organic electroluminescence display device, and the like because the outer edge portion of the transparent conductive film is less noticeable due to the action of the refractive index buffer portion. When applied as a structure for a touch panel incorporated on the surface of a liquid crystal display, it is possible to eliminate the adverse effect of obstructing the visual field of the display device due to the presence of the transparent conductive film. Has advantages.

以下、本発明の実施例について具体的に説明する。   Examples of the present invention will be specifically described below.

[実施例1]
透明導電膜材料としてITOを使用し、ガラス基板上にスパッタリング法にてITO膜の厚さが約1μmとなるように一様に成膜した。尚、ITO膜の屈折率は2.0、透明基板を構成するガラスの屈折率は1.4であった。
[Example 1]
ITO was used as a transparent conductive film material, and was uniformly formed on a glass substrate by sputtering so that the thickness of the ITO film was about 1 μm. The ITO film had a refractive index of 2.0, and the glass constituting the transparent substrate had a refractive index of 1.4.

次に、一様に成膜された上記ITO膜上に以下に示すパターン加工を可能とするマスクを形成し、このマスクを介し化学エッチング処理して回路パターン形状の「透明導電膜」と、この「透明導電膜」の外縁近傍領域に複数のスリット群と非スリット群とで構成されかつ幅寸法が互いに同一の「単位領域」により区画された「屈折率緩衝部」を形成した。   Next, a mask capable of pattern processing shown below is formed on the uniformly formed ITO film, and a chemical etching process is performed through the mask to form a “transparent conductive film” having a circuit pattern shape. A “refractive index buffering portion” composed of a plurality of slit groups and non-slit groups and partitioned by “unit regions” having the same width dimension was formed in a region near the outer edge of the “transparent conductive film”.

尚、上記「屈折率緩衝部」の幅寸法を1mm(=1000μm)に設定し、かつ、この「屈折率緩衝部」を幅方向に亘り10等分に区画して各「単位領域」の幅寸法を0.1mm(=100μm)に設定すると共に、各「単位領域」は図4に示したように一対の「非スリット部」と「スリット部」とで構成している。   The width of each “unit region” is set by setting the width dimension of the “refractive index buffer” to 1 mm (= 1000 μm) and dividing the “refractive index buffer” into 10 equal parts in the width direction. The dimension is set to 0.1 mm (= 100 μm), and each “unit region” is composed of a pair of “non-slit part” and “slit part” as shown in FIG.

また、上記「屈折率緩衝部」における幅方向最内側の「単位領域」について幅寸法90μmの「非スリット部」と幅寸法10μmの「スリット部」とで構成し、これに隣接する「単位領域」について幅寸法80μmの「非スリット部」と幅寸法20μmの「スリット部」とで構成し、以下、幅方向最外側へ向かうに従って「非スリット部」の幅寸法を10μmずつ狭く(「スリット部」の幅寸法は10μmずつ広く)して「屈折率緩衝部」を形成した。   Further, the “unit region” at the innermost side in the width direction in the “refractive index buffer portion” is composed of a “non-slit portion” having a width dimension of 90 μm and a “slit portion” having a width dimension of 10 μm, and adjacent to the “unit region” ”Is composed of a“ non-slit part ”having a width dimension of 80 μm and a“ slit part ”having a width dimension of 20 μm. ”Is widened by 10 μm at a time) to form a“ refractive index buffer ”.

また、化学エッチング処理のエッチング液としては、0.1重量%のKHSO4に対し10重量%のHNO3と0.5重量%のH22および水を添加したものを使用した。 Further, as the etching solution for the chemical etching treatment, a solution obtained by adding 10% by weight of HNO 3 , 0.5% by weight of H 2 O 2 and water to 0.1% by weight of KHSO 4 was used.

そして、ガラス基板とITOの透明導電膜とで構成される実施例1に係る透明導電膜構造体を目視で観察したところ、上記「屈折率緩衝部」の作用により透明導電膜の端部を視認することはできなかった。   And when the transparent conductive film structure which concerns on Example 1 comprised with a glass substrate and the transparent conductive film of ITO was observed visually, the edge part of a transparent conductive film was visually recognized by the effect | action of the said "refractive index buffer part". I couldn't.

[実施例2]
上記「屈折率緩衝部」の幅寸法を0.2mm(=200μm)に設定し、「屈折率緩衝部」を幅方向に亘り10等分に区画して各「単位領域」の幅寸法を0.02mm(=20μm)に設定している点を除き実施例1と略同様にして、ガラス基板とITOの透明導電膜とで構成される実施例2に係る透明導電膜構造体を製造した。
[Example 2]
The width dimension of the “refractive index buffer part” is set to 0.2 mm (= 200 μm), the “refractive index buffer part” is divided into 10 equal parts in the width direction, and the width dimension of each “unit region” is 0. A transparent conductive film structure according to Example 2 composed of a glass substrate and an ITO transparent conductive film was produced in substantially the same manner as in Example 1 except that the thickness was set to 0.02 mm (= 20 μm).

尚、この透明導電膜構造体においても、図4に示す一対の「非スリット部」と「スリット部」とで各「単位領域」が構成されている。   Also in this transparent conductive film structure, each “unit region” is composed of a pair of “non-slit portions” and “slit portions” shown in FIG.

また、「屈折率緩衝部」における幅方向最内側の「単位領域」について幅寸法18μmの「非スリット部」と幅寸法2μmの「スリット部」とで構成し、これに隣接する「単位領域」について幅寸法16μmの「非スリット部」と幅寸法4μmの「スリット部」とで構成し、以下、幅方向最外側へ向かうに従って「非スリット部」の幅寸法を2μmずつ狭く(「スリット部」の幅寸法は2μmずつ広く)して「屈折率緩衝部」を形成した。   Further, the “unit region” at the innermost side in the width direction in the “refractive index buffer portion” is composed of a “non-slit portion” having a width dimension of 18 μm and a “slit portion” having a width dimension of 2 μm, and is adjacent to the “unit region”. The “non-slit part” having a width dimension of 16 μm and the “slit part” having a width dimension of 4 μm, and the width dimension of the “non-slit part” is narrowed by 2 μm toward the outermost side in the width direction (“slit part”). The “refractive index buffering portion” was formed by increasing the width dimension of each by 2 μm.

そして、ガラス基板とITOの透明導電膜とで構成される実施例2に係る透明導電膜構造体を目視で観察したところ、実施例1と同様、「屈折率緩衝部」の作用により透明導電膜の端部を視認することはできなかった。   And when the transparent conductive film structure which concerns on Example 2 comprised by a glass substrate and the transparent conductive film of ITO was observed visually, like Example 1, a transparent conductive film was carried out by the effect | action of a "refractive index buffer part." It was not possible to visually recognize the end of.

[実施例3]
上記「屈折率緩衝部」の幅寸法を2mm(=2000μm)に設定し、かつ、「屈折率緩衝部」を幅方向に亘り20等分に区画して各「単位領域」の幅寸法を0.1mm(=100μm)に設定すると共に、「屈折率緩衝部」における幅方向最内側の「単位領域」については幅寸法5μmである1個の「スリット部」と残り1個の「スリット部」とで構成し、これに隣接する「単位領域」については幅寸法5μmである2個の「スリット部」と残り2個の「スリット部」とで構成し、以下、幅方向最外側へ向かうに従い幅寸法5μmの「スリット部」を順次1個ずつ増やす図5に示した構造を採用している点を除き実施例1と略同様にして、ガラス基板とITOの透明導電膜とで構成される実施例3に係る透明導電膜構造体を製造した。
[Example 3]
The width dimension of the “refractive index buffer part” is set to 2 mm (= 2000 μm), and the “refractive index buffer part” is divided into 20 equal parts in the width direction, so that the width dimension of each “unit region” is 0. .1 mm (= 100 μm), and for the “unit region” in the inner side in the width direction of the “refractive index buffer portion”, one “slit portion” having a width dimension of 5 μm and one remaining “slit portion” The “unit region” adjacent to this is composed of two “slit portions” having a width dimension of 5 μm and the remaining two “slit portions”. It is composed of a glass substrate and an ITO transparent conductive film in substantially the same manner as in Example 1 except that the structure shown in FIG. 5 in which “slit portions” having a width of 5 μm are sequentially increased one by one is adopted. A transparent conductive film structure according to Example 3 was manufactured.

そして、ガラス基板とITOの透明導電膜とで構成される実施例3に係る透明導電膜構造体を目視で観察したところ、実施例1と同様、「屈折率緩衝部」の作用により透明導電膜の端部を視認することはできなかった。   And when the transparent conductive film structure which concerns on Example 3 comprised with a glass substrate and the transparent conductive film of ITO was observed visually, like Example 1, it is a transparent conductive film by the effect | action of a "refractive index buffer part." It was not possible to visually recognize the end of.

[実施例4]
上記「屈折率緩衝部」の幅寸法を3mm(=3000μm)に設定し、幅寸法が0.1mm(=100μm)の「単位領域」により「屈折率緩衝部」を区画すると共に、「屈折率緩衝部」における幅方向最内側の「単位領域」については幅寸法が6μmである1個の「スリット部」と幅寸法が94μmである1個の「非スリット部」とで構成し、これに隣接する「単位領域」については上記幅寸法(6μm)の1.1倍(6μm×1.1)である1個の「スリット部」と残り寸法(100μm−6μm×1.1)である1個の「非スリット部」とで構成し、以下、幅方向最外側へ向かうに従って「スリット部」の幅寸法を順次1.1倍に増加させた図4に示す構造を採用している点を除き実施例1と略同様にして、ガラス基板とITOの透明導電膜とで構成される実施例4に係る透明導電膜構造体を製造した。
[Example 4]
The width of the “refractive index buffer” is set to 3 mm (= 3000 μm), and the “refractive index buffer” is defined by the “unit region” having a width of 0.1 mm (= 100 μm). The “unit region” on the innermost side in the width direction of the buffer portion is composed of one “slit portion” having a width dimension of 6 μm and one “non-slit portion” having a width dimension of 94 μm. Regarding the adjacent “unit region”, one “slit portion” that is 1.1 times (6 μm × 1.1) the width dimension (6 μm) and the remaining dimension (100 μm-6 μm × 1.1) are 1 It is composed of a plurality of “non-slit portions”, and hereinafter, the structure shown in FIG. 4 in which the width dimension of the “slit portion” is sequentially increased by 1.1 times toward the outermost side in the width direction is adopted. Except in the same manner as in Example 1, a glass substrate and a transparent conductive film made of ITO It was prepared transparent conductive film structure according to the configured Example 4 in.

そして、ガラス基板とITOの透明導電膜とで構成される実施例4に係る透明導電膜構造体を目視で観察したところ、実施例1と同様、「屈折率緩衝部」の作用により透明導電膜の端部を視認することはできなかった。   And when the transparent conductive film structure which concerns on Example 4 comprised with a glass substrate and the transparent conductive film of ITO was observed visually, like Example 1, it is a transparent conductive film by the effect | action of a "refractive index buffer part." It was not possible to visually recognize the end of.

[比較例1]
上記「屈折率緩衝部」における幅方向最外側の「単位領域」について幅寸法90μmの「非スリット部」と幅寸法10μmの「スリット部」とで構成し、これに隣接する「単位領域」について幅寸法80μmの「非スリット部」と幅寸法20μmの「スリット部」とで構成し、以下、幅方向最内側へ向かうに従って「非スリット部」の幅寸法を10μmずつ狭く(「スリット部」の幅寸法は10μmずつ広く)して「屈折率緩衝部」を形成している点(すなわち、実施例1の「屈折率緩衝部」とは逆パターン)を除き実施例1と略同様にして、ガラス基板とITOの透明導電膜とで構成される比較例1に係る透明導電膜構造体を製造した。
[Comparative Example 1]
The “unit region” on the outermost side in the width direction in the “refractive index buffering portion” is composed of a “non-slit portion” having a width dimension of 90 μm and a “slit portion” having a width dimension of 10 μm. It is composed of a “non-slit portion” having a width dimension of 80 μm and a “slit portion” having a width dimension of 20 μm. Except for the point that the “refractive index buffer part” is formed by increasing the width dimension by 10 μm (that is, a pattern opposite to the “refractive index buffer part” in Example 1), the same as in Example 1, The transparent conductive film structure which concerns on the comparative example 1 comprised with a glass substrate and the transparent conductive film of ITO was manufactured.

そして、ガラス基板とITOの透明導電膜とで構成される比較例1に係る透明導電膜構造体を目視で観察したところ、比較例1の「屈折率緩衝部」は、実施例1の「屈折率緩衝部」とは異なる逆パターンに設定されて実施例1の「屈折率緩衝部」と同様に作用しないため、透明導電膜の端部が視認されるものであった。   And when the transparent conductive film structure which concerns on the comparative example 1 comprised with a glass substrate and the transparent conductive film of ITO was observed visually, the "refractive index buffer part" of the comparative example 1 was "refracted" of Example 1. Since the reverse pattern different from that of the “rate buffer portion” is set and does not act in the same manner as the “refractive index buffer portion” in Example 1, the end portion of the transparent conductive film is visually recognized.

本発明に係る透明導電膜構造体によれば、屈折率緩衝部の作用により透明導電膜の外縁部が目立ち難いことから、液晶表示装置や有機エレクトロルミネッセンス表示装置等の表面に組み込まれるタッチパネル用構造体として適用された場合、透明導電膜の存在に起因して表示装置の視野が妨害される弊害を解消できる。従って、例えば、静電容量型タッチパネルに適用される産業上の利用可能性を有している。   According to the transparent conductive film structure according to the present invention, the outer edge portion of the transparent conductive film is not conspicuous due to the action of the refractive index buffering portion. Therefore, the structure for a touch panel incorporated on the surface of a liquid crystal display device, an organic electroluminescence display device or the like. When applied as a body, the adverse effect of obstructing the visual field of the display device due to the presence of the transparent conductive film can be solved. Therefore, for example, it has industrial applicability applied to a capacitive touch panel.

Claims (8)

透明基板と、この透明基板上に設けられた回路パターン形状を有する透明導電膜とで構成される透明導電膜構造体において、
上記透明導電膜の外縁近傍領域に、透明導電膜を貫通すると共に上記外縁と平行に設けられた複数のスリット群と非スリット群とで構成された屈折率緩衝部を有しており、この屈折率緩衝部は、その幅方向に亘って上記外縁と平行でかつ幅寸法が互いに同一の単位領域により区画されており、上記屈折率緩衝部における単位領域の屈折率が、透明基板と略同一の屈折率を有する最外側の単位領域から透明導電膜と略同一の屈折率を有する最内側の単位領域に向かって連続的に変化していることを特徴とする透明導電膜構造体。
但し、上記透明導電膜の外縁と垂直な方向を屈折率緩衝部並びに単位領域の幅方向とし、かつ、各単位領域の屈折率は以下に定める「空間屈折率」とする。
「空間屈折率」=
(透明導電膜の屈折率)×(単位領域内の非スリット部総面積/単位領域総面積)
+(透明基板の屈折率)×(単位領域内のスリット部総面積/単位領域総面積)
In a transparent conductive film structure composed of a transparent substrate and a transparent conductive film having a circuit pattern shape provided on the transparent substrate,
In the vicinity of the outer edge of the transparent conductive film, there is a refractive index buffering portion that is formed by a plurality of slit groups and non-slit groups penetrating the transparent conductive film and parallel to the outer edge. The rate buffer portion is partitioned by unit regions that are parallel to the outer edge and have the same width dimension across the width direction, and the refractive index of the unit region in the refractive index buffer portion is substantially the same as that of the transparent substrate. A transparent conductive film structure characterized by continuously changing from an outermost unit region having a refractive index toward an innermost unit region having substantially the same refractive index as that of the transparent conductive film.
However, the direction perpendicular to the outer edge of the transparent conductive film is defined as the refractive index buffer portion and the width direction of the unit region, and the refractive index of each unit region is defined as the “space refractive index” defined below.
"Spatial refractive index" =
(Refractive index of transparent conductive film) x (total non-slit area in unit area / total area of unit area)
+ (Refractive index of transparent substrate) x (total area of slits in unit area / total area of unit area)
各単位領域の上記幅寸法が、0.1mm以下に設定されていることを特徴とする請求項1に記載の透明導電膜構造体。   The transparent conductive film structure according to claim 1, wherein the width dimension of each unit region is set to 0.1 mm or less. 上記屈折率緩衝部の幅方向外側から内側へ向かうに従い、各単位領域内における非スリット部総面積の割合が連続的に大きくなるように設定されていることを特徴とする請求項1〜2のいずれかに記載の透明導電膜構造体。   The ratio of the total area of the non-slit part in each unit region is set so as to increase continuously from the outer side in the width direction of the refractive index buffer part to the inner side. The transparent conductive film structure according to any one of the above. 上記屈折率緩衝部の幅寸法が、0.1mmを越え3mm以下に設定されていることを特徴とする請求項1〜3のいずれかに記載の透明導電膜構造体。   The transparent conductive film structure according to any one of claims 1 to 3, wherein a width dimension of the refractive index buffer portion is set to be more than 0.1 mm and 3 mm or less. 上記単位領域における非スリット部の幅方向の縦断面構造が、略矩形状を有していることを特徴とする請求項1〜4のいずれかに記載の透明導電膜構造体。   The transparent conductive film structure according to any one of claims 1 to 4, wherein a longitudinal sectional structure in a width direction of the non-slit portion in the unit region has a substantially rectangular shape. 上記透明導電膜がITOであることを特徴とする請求項1〜5のいずれかに記載の透明導電膜構造体。   The transparent conductive film structure according to claim 1, wherein the transparent conductive film is ITO. 請求項1に記載の透明導電膜構造体の製造方法において、
化学エッチング法によりスリット群と非スリット群とで構成される屈折率緩衝部を形成することを特徴とする透明導電膜構造体の製造方法。
In the manufacturing method of the transparent conductive film structure according to claim 1,
A method for producing a transparent conductive film structure, comprising forming a refractive index buffer portion composed of a slit group and a non-slit group by a chemical etching method.
請求項1〜6のいずれかに記載の透明導電膜構造体が適用されていることを特徴とする静電容量型タッチパネル。   A capacitive touch panel, to which the transparent conductive film structure according to claim 1 is applied.
JP2011160854A 2011-07-22 2011-07-22 Transparent conductive film structure, manufacturing method thereof, and touch panel Expired - Fee Related JP5630616B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011160854A JP5630616B2 (en) 2011-07-22 2011-07-22 Transparent conductive film structure, manufacturing method thereof, and touch panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011160854A JP5630616B2 (en) 2011-07-22 2011-07-22 Transparent conductive film structure, manufacturing method thereof, and touch panel

Publications (2)

Publication Number Publication Date
JP2013025616A JP2013025616A (en) 2013-02-04
JP5630616B2 true JP5630616B2 (en) 2014-11-26

Family

ID=47783886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011160854A Expired - Fee Related JP5630616B2 (en) 2011-07-22 2011-07-22 Transparent conductive film structure, manufacturing method thereof, and touch panel

Country Status (1)

Country Link
JP (1) JP5630616B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06202126A (en) * 1993-01-07 1994-07-22 Stanley Electric Co Ltd Transparent electrode substrate and its production
JP4667471B2 (en) * 2007-01-18 2011-04-13 日東電工株式会社 Transparent conductive film, method for producing the same, and touch panel provided with the same
JP4720857B2 (en) * 2008-06-18 2011-07-13 ソニー株式会社 Capacitance type input device and display device with input function
JP2010158786A (en) * 2009-01-06 2010-07-22 Alps Electric Co Ltd Laminated body
CN103080876A (en) * 2010-07-05 2013-05-01 Dic株式会社 Substrate with a transparent conductive layer, manufacturing method for said substrate, transparent conductive film laminate for use in a touch panel, and touch panel

Also Published As

Publication number Publication date
JP2013025616A (en) 2013-02-04

Similar Documents

Publication Publication Date Title
KR101886287B1 (en) Touch panel
US9086766B2 (en) Touch panel and touch display panel
US10324558B2 (en) 3D module, 3D display device and method for driving 3D module
US20140333555A1 (en) Touch sensor and electronic device having the same
WO2010150668A1 (en) Capacitance type input device and production method thereof
US20140332256A1 (en) Micro-wire electrode structure having non-linear gaps
JP2011175412A (en) Electrostatic capacitance type touch panel switch
US9250492B2 (en) In-cell touch panel structure of narrow border
TWI506503B (en) Touch panel and liquid crystal display device using the same
JP2011086149A (en) Capacitive touch sensor
US9298330B2 (en) Capacitive touch panel having complementarily matching adjacent electrode units and display device including the capacitive touch panel
US20150248186A1 (en) Touch panel
JP2013012016A (en) Transparent electrode element, information input device, and electronic equipment
KR20120138288A (en) Capacitive type touch panel
TW201635118A (en) Touch sensor
US20150062449A1 (en) Touch panel
KR20140057047A (en) Touch screen panel and portable electronic apparatus having the same
TWI409684B (en) Electrode pattern structure of a capacitive touch panel and method of manufacturing the same
KR20230100709A (en) Touch display apparatus and method of manufacturing the same
JP3181933U (en) Touch electrode device
KR20150014241A (en) Touch window
EP3796137A1 (en) Touch panel, touch display panel, and touch display device
KR20150022215A (en) Touch panel and mtthod of manufacturing of the same
JP5630616B2 (en) Transparent conductive film structure, manufacturing method thereof, and touch panel
JP5849782B2 (en) Transparent conductive film structure, manufacturing method thereof, and touch panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140923

R150 Certificate of patent or registration of utility model

Ref document number: 5630616

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees