JP5630464B2 - Fuel injection control device - Google Patents

Fuel injection control device Download PDF

Info

Publication number
JP5630464B2
JP5630464B2 JP2012143045A JP2012143045A JP5630464B2 JP 5630464 B2 JP5630464 B2 JP 5630464B2 JP 2012143045 A JP2012143045 A JP 2012143045A JP 2012143045 A JP2012143045 A JP 2012143045A JP 5630464 B2 JP5630464 B2 JP 5630464B2
Authority
JP
Japan
Prior art keywords
pressure
fuel
pressure pump
low
pumping amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012143045A
Other languages
Japanese (ja)
Other versions
JP2014005798A (en
Inventor
桂 涼
涼 桂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2012143045A priority Critical patent/JP5630464B2/en
Priority to DE102013106712.3A priority patent/DE102013106712B4/en
Publication of JP2014005798A publication Critical patent/JP2014005798A/en
Application granted granted Critical
Publication of JP5630464B2 publication Critical patent/JP5630464B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3082Control of electrical fuel pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • F02D41/3854Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped with elements in the low pressure part, e.g. low pressure pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/406Electrically controlling a diesel injection pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

本発明は、電動の低圧ポンプから供給される燃料を加圧して圧送する高圧ポンプの圧送量を調量弁により調量する燃料噴射システムに適用される燃料噴射制御装置に関する。   The present invention relates to a fuel injection control device applied to a fuel injection system that uses a metering valve to meter a pumping amount of a high-pressure pump that pressurizes and pumps fuel supplied from an electric low-pressure pump.

従来、電動の低圧ポンプから供給される燃料を加圧して圧送する高圧ポンプの圧送量を調量弁で調量し、高圧ポンプで加圧された燃料を蓄圧室で蓄圧して燃料噴射弁から噴射する燃料噴射システムが知られている(例えば、特許文献1参照。)。圧送量の調量方式としては、高圧ポンプへの吸入量を調量弁で制御して圧送量を調量する吸入調量方式と、圧送行程における加圧開始タイミングを調量弁で制御して圧送量を調量する吐出調量方式のいずれかが採用されている。   Conventionally, a high-pressure pump that pressurizes and feeds fuel supplied from an electric low-pressure pump is metered by a metering valve, and fuel pressurized by a high-pressure pump is accumulated in a pressure accumulating chamber and then fed from a fuel injection valve. A fuel injection system that injects fuel is known (for example, see Patent Document 1). The metering method of the pumping amount includes the suction metering method in which the amount of suction to the high-pressure pump is controlled by the metering valve, and the pressurization start timing in the pumping stroke is controlled by the metering valve. One of the discharge metering methods for metering the pumping amount is adopted.

このような燃料噴射システムでは、高圧系の蓄圧室の燃料圧力を圧力センサで検出し、検出した実圧力と目標圧力との差圧に基づいて調量弁への通電をフィードバック制御して高圧ポンプの圧送量を調量することにより、実圧力を目標圧力に追随させることが行われている。   In such a fuel injection system, the fuel pressure in the accumulator of the high-pressure system is detected by a pressure sensor, and the energization to the metering valve is feedback-controlled based on the differential pressure between the detected actual pressure and the target pressure, and the high-pressure pump The actual pressure is made to follow the target pressure by metering the amount of pumping.

特開2010−255544号公報JP 2010-255544 A

吐出調量方式の場合、高圧ポンプの取り付け角度の誤差、ならびに機差および経時変化による通電制御に対する調量弁の応答性のばらつきのために、目標の加圧開始タイミングとなるように調量弁を通電制御しても加圧開始タイミングがずれることがある。加圧開始タイミングがずれると、目標圧送量に対して高圧ポンプの圧送量がずれる。   In the case of the discharge metering method, the metering valve is set to the target pressurization start timing due to the error in the mounting angle of the high-pressure pump and the variation in the response of the metering valve to the energization control due to machine differences and changes over time. Even if energization control is performed, the pressurization start timing may be shifted. When the pressurization start timing is shifted, the pumping amount of the high-pressure pump is shifted from the target pumping amount.

高圧系の実圧力と目標圧力との差圧に基づいて調量弁への通電をフィードバック制御して高圧ポンプの圧送量を調量する場合、目標圧送量に対して高圧ポンプの圧送量がずれると、目標圧力に実圧力が追随する応答性が低下する。   When the pumping amount of the high-pressure pump is metered by feedback control of energization to the metering valve based on the differential pressure between the actual pressure of the high-pressure system and the target pressure, the pumping amount of the high-pressure pump deviates from the target pumping amount. As a result, the responsiveness of the actual pressure following the target pressure decreases.

本発明は上記課題を解決するためになされたものであり、高圧ポンプの圧送量を目標圧送量に高精度に調量する燃料噴射制御装置およびそれを用いた燃料噴射システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a fuel injection control device that accurately adjusts the pumping amount of a high-pressure pump to a target pumping amount and a fuel injection system using the same. And

高圧ポンプで加圧する加圧開始タイミングを調量弁で制御して高圧ポンプの圧送量を調量する燃料噴射システムでは、高圧ポンプの圧送行程において調量弁が開弁している間は加圧室の燃料を低圧系に戻し、調量弁が閉弁すると加圧室において燃料の加圧が開始されることにより高圧ポンプの圧送量を調量することが行われている。   In a fuel injection system that controls the pressurization start timing of pressurization with a high pressure pump with a metering valve to meter the pumping amount of the high pressure pump, pressurization is performed while the metering valve is open during the pumping stroke of the high pressure pump. When the fuel in the chamber is returned to the low-pressure system and the metering valve is closed, pressurization of the fuel in the pressurizing chamber is started to meter the pumping amount of the high-pressure pump.

この調量方式の場合、調量弁が開弁して低圧系から高圧ポンプに燃料を吸入している吸入行程においては低圧系の燃料圧力は低く、圧送行程において調量弁が開弁して加圧室の燃料を低圧系に戻している間は低圧系の燃料圧力が上昇し、圧送行程において調量弁が閉弁し加圧された燃料を高圧側に圧送している間は低圧系の燃料圧力が低下する。したがって、低圧系の燃料圧力の変化を検出すれば、燃料噴射システムにおいてエンジンに対する高圧ポンプの組み付け角度の誤差、通電制御に対する調量弁の応答性のばらつきに関わらず、高圧ポンプの圧送量を決定する加圧期間を検出できる。   In this metering method, the fuel pressure in the low pressure system is low in the intake stroke where the metering valve is opened and fuel is sucked into the high pressure pump from the low pressure system, and the metering valve is opened in the pressure feed stroke. While the fuel in the pressurizing chamber is returned to the low pressure system, the fuel pressure in the low pressure system rises. During the pumping stroke, the metering valve is closed and the pressurized fuel is pumped to the high pressure side. The fuel pressure decreases. Therefore, if a change in the fuel pressure in the low-pressure system is detected, the pumping amount of the high-pressure pump is determined regardless of errors in the assembly angle of the high-pressure pump with respect to the engine and variations in the responsiveness of the metering valve to the energization control in the fuel injection system. The pressurizing period to be detected can be detected.

そこで、本発明の燃料噴射制御装置によると、電動低圧ポンプと高圧ポンプとの間の低圧系の燃料圧力または燃料圧力に関連する物理量の検出値を電気信号として取得し、検出値に基づいて推定する高圧ポンプの圧送量に基づいて調量弁を制御することにより加圧開始タイミングを調整して高圧ポンプの圧送量を調量する。
これにより、燃料噴射システムにおいてエンジンに対する高圧ポンプの組み付け角度の誤差、通電制御に対する調量弁の応答性のばらつきに関わらず、高圧ポンプの圧送量を決定する加圧期間を検出し、この加圧期間に基づいて推定する高圧ポンプの圧送量に基づいて調量弁を制御して加圧開始タイミングを調整することにより、高圧ポンプの圧送量を目標圧送量に高精度に調量できる。
Therefore, according to the fuel injection control device of the present invention, a low-pressure fuel pressure between the electric low-pressure pump and the high-pressure pump or a detected value of a physical quantity related to the fuel pressure is acquired as an electric signal and estimated based on the detected value. The pressurization start timing is adjusted by controlling the metering valve based on the pumping amount of the high-pressure pump, and the pumping amount of the high-pressure pump is metered.
This detects the pressurization period that determines the pumping amount of the high-pressure pump regardless of the error in the assembly angle of the high-pressure pump with respect to the engine and the variation in the responsiveness of the metering valve to the energization control in the fuel injection system. By controlling the metering valve based on the pumping amount of the high-pressure pump estimated based on the period and adjusting the pressurization start timing, the pumping amount of the high-pressure pump can be accurately metered to the target pumping amount.

尚、本発明に備わる複数の手段の各機能は、構成自体で機能が特定されるハードウェア資源、プログラムにより機能が特定されるハードウェア資源、またはそれらの組合せにより実現される。また、これら複数の手段の各機能は、各々が物理的に互いに独立したハードウェア資源で実現されるものに限定されない。   The functions of the plurality of means provided in the present invention are realized by hardware resources whose functions are specified by the configuration itself, hardware resources whose functions are specified by a program, or a combination thereof. The functions of the plurality of means are not limited to those realized by hardware resources that are physically independent of each other.

本実施形態による燃料噴射システムを示すブロック図。The block diagram which shows the fuel-injection system by this embodiment. 高圧ポンプの構成を示す模式図。The schematic diagram which shows the structure of a high pressure pump. 調量弁電流、低圧ポンプ駆動電流、低圧系燃料圧力、カムリフトの関係を示すタイムチャート。The time chart which shows the relationship between metering valve current, low pressure pump drive current, low pressure fuel pressure, and cam lift. 高圧ポンプの圧送量制御処理1を示すフローチャート。The flowchart which shows the pumping amount control process 1 of a high pressure pump. 高圧ポンプの圧送量制御処理2を示すフローチャート。The flowchart which shows the pumping amount control process 2 of a high pressure pump.

(燃料噴射システム)
図1に示す燃料噴射システム2は、例えば、自動車用の多気筒のディーゼルエンジン(以下、単に「エンジン」ともいう。)に燃料を噴射するためのものである。燃料噴射システム2は、フィードポンプ(Feed Pump:FP)12と、高圧ポンプ20と、コモンレール40と、燃料噴射弁50と、電子制御装置(Electronic Control Unit:ECU)60とから主に構成されている。尚、図1では、複数の気筒のうち一つの気筒に対応する燃料噴射弁50だけを図示し、他の気筒の燃料噴射弁50の図示を省略している。
(Fuel injection system)
A fuel injection system 2 shown in FIG. 1 is for injecting fuel into, for example, a multi-cylinder diesel engine for automobiles (hereinafter also simply referred to as “engine”). The fuel injection system 2 is mainly composed of a feed pump (FP) 12, a high-pressure pump 20, a common rail 40, a fuel injection valve 50, and an electronic control unit (ECU) 60. Yes. In FIG. 1, only the fuel injection valve 50 corresponding to one cylinder among the plurality of cylinders is illustrated, and illustration of the fuel injection valves 50 of other cylinders is omitted.

FP12は、円板状の回転体の外周に複数の羽根を形成したインペラをモータにより回転させる電動ポンプである。FP12は、インペラが回転することにより燃料タンク10内の燃料を吸入し高圧ポンプ20側に供給する。FP12は、バッテリと直接接続されて駆動電流を供給されている。したがって、FP12の回転速度が一定であれば、FP12の駆動電流はほぼ一定になる。   The FP 12 is an electric pump that rotates, by a motor, an impeller having a plurality of blades formed on the outer periphery of a disk-shaped rotating body. The FP 12 sucks the fuel in the fuel tank 10 and supplies it to the high-pressure pump 20 side as the impeller rotates. The FP 12 is directly connected to the battery and supplied with a drive current. Therefore, if the rotation speed of the FP 12 is constant, the drive current of the FP 12 is substantially constant.

図2に示すように、高圧ポンプ20は、カムシャフトのカムの回転に伴いプランジャ22が往復移動することにより、FP12から低圧配管100を通って供給される燃料を加圧室200に吸入して加圧する公知のポンプである。   As shown in FIG. 2, the high-pressure pump 20 sucks fuel supplied from the FP 12 through the low-pressure pipe 100 into the pressurizing chamber 200 by reciprocating the plunger 22 as the camshaft cam rotates. This is a known pump for pressurization.

調量弁24は通電をオフされると開弁し、燃料入口26を開放する。これにより、プランジャ22が上死点から下死点に向けて下降する吸入行程において低圧配管100と加圧室200とが連通し、加圧室200に燃料が吸入される。   When the energization is turned off, the metering valve 24 is opened and the fuel inlet 26 is opened. As a result, the low pressure pipe 100 and the pressurizing chamber 200 communicate with each other in the suction stroke in which the plunger 22 descends from the top dead center toward the bottom dead center, and fuel is sucked into the pressurizing chamber 200.

調量弁24は通電をオンされると閉弁し、燃料入口26を閉じる。プランジャ22が下死点から上死点に向けて上昇する圧送行程において、調量弁24が閉弁して燃料入口26を閉じ低圧配管100と加圧室200との連通を遮断することにより、加圧室200の燃料の加圧が開始される。   When the energization is turned on, the metering valve 24 is closed and the fuel inlet 26 is closed. In the pressure feed stroke in which the plunger 22 rises from the bottom dead center toward the top dead center, the metering valve 24 closes, the fuel inlet 26 is closed, and the communication between the low pressure pipe 100 and the pressurizing chamber 200 is shut off. Pressurization of the fuel in the pressurizing chamber 200 is started.

吐出弁28は、加圧室200の燃料が加圧され所定の開弁圧以上になると開弁し、加圧室200の燃料が高圧配管104に圧送される。したがって、高圧ポンプ20の圧送量は、調量弁24が閉弁するときに加圧室200に残っている燃料量によって決定される。言い換えれば、高圧ポンプ20の圧送量は、圧送行程において調量弁24が閉弁される加圧開始タイミングによって決定される。   The discharge valve 28 is opened when the fuel in the pressurizing chamber 200 is pressurized and exceeds a predetermined valve opening pressure, and the fuel in the pressurizing chamber 200 is pumped to the high-pressure pipe 104. Therefore, the pumping amount of the high-pressure pump 20 is determined by the amount of fuel remaining in the pressurizing chamber 200 when the metering valve 24 is closed. In other words, the pumping amount of the high-pressure pump 20 is determined by the pressurization start timing at which the metering valve 24 is closed in the pumping stroke.

図1に示すレギュレート弁30は、FP12から高圧ポンプ20に燃料を供給する低圧配管100と、高圧ポンプ20の余剰燃料を燃料タンク10にリターンするリターン配管102とを接続する配管に設置されている。レギュレート弁30は、所定の開弁圧で開弁することにより、低圧配管100の過剰燃料をリターン配管102から燃料タンク10にリターンする。これにより、レギュレート弁30と高圧ポンプ20との間の低圧配管100の燃料圧力の変動を抑制する。   The regulating valve 30 shown in FIG. 1 is installed in a pipe connecting a low-pressure pipe 100 that supplies fuel from the FP 12 to the high-pressure pump 20 and a return pipe 102 that returns surplus fuel from the high-pressure pump 20 to the fuel tank 10. Yes. The regulator valve 30 is opened at a predetermined valve opening pressure, whereby excess fuel in the low pressure pipe 100 is returned from the return pipe 102 to the fuel tank 10. Thereby, the fluctuation | variation of the fuel pressure of the low pressure piping 100 between the regulator valve 30 and the high pressure pump 20 is suppressed.

本実施形態のように調量弁24が閉弁することにより加圧開始タイミングを決定して高圧ポンプ20の圧送量を調量する吐出調量式の調量弁24を使用する構成では、高圧ポンプ20の上流側の低圧系の燃料圧力は、吸入行程において加圧室200の容量分の燃料を吸入できる圧力以上であればよいので、吸入調量式の調量弁を使用する構成に比べ、レギュレート弁30の開弁圧は高く、流量は少なく、開閉応答性は遅くてもよい。   In the configuration using the discharge metering type metering valve 24 that determines the pressurization start timing by metering the metering valve 24 as in the present embodiment and metering the pumping amount of the high pressure pump 20, the high pressure The fuel pressure of the low pressure system upstream of the pump 20 only needs to be equal to or higher than the pressure at which the fuel corresponding to the capacity of the pressurizing chamber 200 can be sucked in the suction stroke, and therefore, compared with a configuration using a suction metering type metering valve. The valve opening pressure of the regulating valve 30 may be high, the flow rate may be small, and the opening / closing response may be slow.

圧力センサ32はレギュレート弁30と高圧ポンプ20との間の低圧配管100に設置されている。レギュレート弁30と高圧ポンプ20との間で高圧ポンプ20の上流側直近に圧力センサ32を設置することにより、FP12から供給される燃料による圧力の変動を排除しつつ、高圧ポンプ20の作動に伴う低圧系の燃料圧力の変化を圧力の減衰による影響を極力排除して高精度に検出できる。   The pressure sensor 32 is installed in the low pressure pipe 100 between the regulating valve 30 and the high pressure pump 20. By installing a pressure sensor 32 between the regulating valve 30 and the high-pressure pump 20 in the immediate vicinity of the upstream side of the high-pressure pump 20, the fluctuation of the pressure due to the fuel supplied from the FP 12 is eliminated and the operation of the high-pressure pump 20 is performed. The accompanying change in fuel pressure in the low-pressure system can be detected with high accuracy by eliminating the influence of pressure attenuation as much as possible.

コモンレール40は、高圧ポンプ20から圧送される燃料を蓄圧する蓄圧室を形成する中空の部材である。コモンレール40には、コモンレール内の燃料圧力を検出する高圧用の圧力センサ42が設置されている。   The common rail 40 is a hollow member that forms a pressure accumulating chamber that accumulates fuel pumped from the high-pressure pump 20. The common rail 40 is provided with a high pressure sensor 42 for detecting the fuel pressure in the common rail.

ECU60は、CPU、RAM、ROM、フラッシュメモリ等を中心とするマイクロコンピュータにて主に構成されている。ECU60は、ROMまたはフラッシュメモリに記憶されている制御プログラムをCPUが実行することにより、FP12の駆動電流の電流値、圧力センサ32、42等のエンジン運転状態を表わす各種情報を入力し、燃料噴射システム2の各種制御を実行する。   The ECU 60 is mainly configured by a microcomputer centering on a CPU, RAM, ROM, flash memory and the like. The ECU 60 executes the control program stored in the ROM or the flash memory, and inputs various information representing the engine operating state such as the current value of the driving current of the FP 12 and the pressure sensors 32 and 42, and the fuel injection. Various controls of the system 2 are executed.

例えば、ECU60は、圧力センサ42が検出するコモンレール圧力が目標圧力になるように調量弁24の閉弁タイミングを制御し、高圧ポンプ20の圧送量を調量する。
また、ECU60は、燃料噴射弁50の噴射量、噴射時期、ならびに、メイン噴射の前にパイロット噴射、プレ噴射、パイロット噴射の後にアフター噴射、ポスト噴射等を実施する多段噴射のパターンを制御する。
For example, the ECU 60 controls the valve closing timing of the metering valve 24 so that the common rail pressure detected by the pressure sensor 42 becomes the target pressure, and meteres the pumping amount of the high-pressure pump 20.
Further, the ECU 60 controls the injection amount of the fuel injection valve 50, the injection timing, and the pattern of multi-stage injection that performs pilot injection, pre-injection, after-injection, post-injection after the pilot injection, and the like.

ECU60は、燃料噴射弁50に噴射を指令する噴射指令信号のパルス幅(T)と噴射量(Q)との相関を示す所謂TQマップを、コモンレール圧力の所定の圧力領域毎にROMまたはフラッシュメモリに記憶している。そして、ECU60は、エンジン回転数およびアクセル開度に基づいて燃料噴射弁50の目標噴射量が決定されると、圧力センサ42が検出するコモンレール圧力に応じて該当する圧力領域のTQマップを参照し、目標噴射量を燃料噴射弁50に指令する噴射指令信号のパルス幅をTQマップから取得する。   The ECU 60 stores a so-called TQ map indicating the correlation between the pulse width (T) of the injection command signal that commands the fuel injection valve 50 and the injection amount (Q) in a ROM or flash memory for each predetermined pressure region of the common rail pressure. I remember it. Then, when the target injection amount of the fuel injection valve 50 is determined based on the engine speed and the accelerator opening, the ECU 60 refers to the TQ map of the corresponding pressure region according to the common rail pressure detected by the pressure sensor 42. The pulse width of the injection command signal for commanding the target injection amount to the fuel injection valve 50 is acquired from the TQ map.

(高圧ポンプ20の作動)
次に、高圧ポンプ20の作動、ならびに高圧ポンプ20の作動に伴うFP12の駆動電流、低圧系の燃料圧力の変化について説明する。
(Operation of high-pressure pump 20)
Next, the operation of the high-pressure pump 20 and changes in the driving current of the FP 12 and the low-pressure fuel pressure accompanying the operation of the high-pressure pump 20 will be described.

図3に示すように、ECU60は、高圧ポンプ20のプランジャ22がカムのプロフィールに応じて上死点から下死点に下降する吸入行程においては、調量弁24への通電をオフにする。これにより燃料入口26が開放されるので、低圧配管100の低圧燃料が燃料入口26を通り加圧室200に吸入される。このとき、圧力センサ32が検出する低圧系の燃料圧力は低下する。   As shown in FIG. 3, the ECU 60 turns off the power supply to the metering valve 24 in the intake stroke in which the plunger 22 of the high-pressure pump 20 descends from the top dead center to the bottom dead center according to the cam profile. As a result, the fuel inlet 26 is opened, and the low-pressure fuel in the low-pressure pipe 100 is sucked into the pressurizing chamber 200 through the fuel inlet 26. At this time, the low-pressure fuel pressure detected by the pressure sensor 32 decreases.

低圧系の燃料圧力が低下すると、FP12の回転を妨げる力が低下するのでFP12の回転数が上昇し、FP12のモータに発生する逆起電力が増加する。これにより、FP12を流れる駆動電流が低下する。   When the fuel pressure in the low-pressure system decreases, the force that hinders the rotation of the FP 12 decreases, so the rotation speed of the FP 12 increases and the back electromotive force generated in the motor of the FP 12 increases. As a result, the drive current flowing through the FP 12 decreases.

プランジャ22が下死点から上死点に向けて上昇する圧送行程において、ECU60は途中まで調量弁24への通電をオフにする。すると、加圧室200の燃料は、プランジャ22の上昇により燃料入口26から低圧配管100に戻される。このとき、圧力センサ32が検出する低圧系の燃料圧力は上昇する。   In the pumping stroke in which the plunger 22 rises from the bottom dead center toward the top dead center, the ECU 60 turns off the energization to the metering valve 24 halfway. Then, the fuel in the pressurizing chamber 200 is returned from the fuel inlet 26 to the low pressure pipe 100 by the raising of the plunger 22. At this time, the low-pressure fuel pressure detected by the pressure sensor 32 increases.

低圧系の燃料圧力が上昇すると、FP12の回転を妨げる力が増加するのでFP12の回転数が低下し、FP12のモータに発生する逆起電力が低下する。これにより、駆動電流が上昇する。   When the fuel pressure in the low-pressure system increases, the force that hinders the rotation of the FP 12 increases, so the rotation speed of the FP 12 decreases and the counter electromotive force generated in the motor of the FP 12 decreases. As a result, the drive current increases.

圧送行程の途中で調量弁24への通電がオンにされ調量弁24が閉弁すると燃料入口26が閉じるので、プランジャ22の上昇により加圧室200の燃料が加圧される。調量弁24が閉弁すると低圧配管100に加圧室200の燃料が戻されなくなるので、圧力センサ32が検出する低圧系の燃料圧力は急激に低下する。   When the energization of the metering valve 24 is turned on during the pumping stroke and the metering valve 24 is closed, the fuel inlet 26 is closed, so that the fuel in the pressurizing chamber 200 is pressurized as the plunger 22 moves up. When the metering valve 24 is closed, the fuel in the pressurizing chamber 200 is not returned to the low-pressure pipe 100, so that the low-pressure fuel pressure detected by the pressure sensor 32 rapidly decreases.

低圧系の燃料圧力が低下すると、FP12の回転数が上昇し、FP12のモータに発生する逆起電力が増加する。これにより、駆動電流が低下する。
加圧室200の燃料圧力が吐出弁28の開弁圧以上になると吐出弁28が開弁し、加圧室200の燃料が高圧配管104を通りコモンレール40に圧送される。
When the fuel pressure in the low-pressure system decreases, the rotation speed of the FP 12 increases and the back electromotive force generated in the motor of the FP 12 increases. As a result, the drive current decreases.
When the fuel pressure in the pressurizing chamber 200 becomes equal to or higher than the opening pressure of the discharge valve 28, the discharge valve 28 is opened, and the fuel in the pressurizing chamber 200 is pumped to the common rail 40 through the high-pressure pipe 104.

ECU60は、調量弁24への通電をオンにして所定時間が経過すると、プランジャ22が圧送行程の上死点に達する前に調量弁24への通電をオフにする。この場合、加圧室200の燃料圧力により調量弁24の弁部材は燃料入口26を閉じる閉弁方向に力を受けるので、調量弁24は閉弁状態を保持する。   The ECU 60 turns off the energization of the metering valve 24 before the plunger 22 reaches the top dead center of the pumping stroke when a predetermined time has elapsed after the energization of the metering valve 24 is turned on. In this case, the valve member of the metering valve 24 receives a force in the valve closing direction that closes the fuel inlet 26 due to the fuel pressure in the pressurizing chamber 200, so that the metering valve 24 maintains the closed state.

調量弁24への通電がオフされた状態でプランジャ22が上死点に達すると圧送行程は終了する。そして、プランジャ22が上死点から下降を開始すると、通電がオフにされている調量弁24が開弁し吸入行程が開始されるので、加圧室200に燃料が吸入される。   When the plunger 22 reaches the top dead center in a state where the energization to the metering valve 24 is turned off, the pumping stroke is finished. When the plunger 22 starts to descend from the top dead center, the metering valve 24 that is turned off is opened and the suction stroke is started, so that fuel is sucked into the pressurizing chamber 200.

次に、低圧系の燃料圧力、または低圧系の燃料圧力に関連する物理量の変化を検出して高圧ポンプ20の圧送量を推定する推定方法について説明する。
(圧送量推定)
高圧ポンプ20の圧送量は、圧送行程において調量弁24が閉弁し加圧室200の燃料の加圧が開始されて吐出弁28が開弁してから、プランジャ22が上死点に達して圧送が終了するまでの加圧期間により決定される。
Next, an estimation method for estimating the pumping amount of the high-pressure pump 20 by detecting a change in the low-pressure fuel pressure or a physical quantity related to the low-pressure fuel pressure will be described.
(Pumping amount estimation)
The pumping amount of the high-pressure pump 20 is such that the plunger 22 reaches the top dead center after the metering valve 24 is closed and the pressurization of the fuel in the pressurizing chamber 200 is started and the discharge valve 28 is opened. Thus, it is determined by the pressurizing period until the pumping is completed.

前述したように、圧送行程において、プランジャ22が下死点から上死点に向けて上昇を開始すると低圧系の燃料圧力が上昇し、調量弁24が閉弁して燃料圧送が開始すると低圧系の燃料圧力は急激に低下する。したがって、圧送行程において、低圧系の燃料圧力が上昇を開始してから急激に低下するまでの期間を圧力上昇期間とすると、加圧期間は、圧送行程の期間を表わす圧送行程期間から圧力上昇期間を減算した値である。   As described above, in the pumping stroke, when the plunger 22 starts to rise from the bottom dead center to the top dead center, the low-pressure fuel pressure rises, and when the metering valve 24 is closed and fuel pumping starts, the low pressure is started. The fuel pressure of the system drops rapidly. Accordingly, in the pumping stroke, when the period from when the low-pressure fuel pressure starts to rise to when it suddenly drops is the pressure rising period, the pressurizing period is from the pumping stroke period to the pressure rising period representing the pumping stroke period. Is a value obtained by subtracting.

カムシャフトを駆動するクランク軸の回転角度を表わすクランク角度で判断すると、圧力上昇期間は調量弁24の閉弁タイミングにより変化するが、圧送行程期間はエンジン回転速度に関わらず一定の固定値である。したがって、圧力上昇期間が分かれば加圧期間が決定され、加圧期間から高圧ポンプ20の圧送量を推定できる。圧送行程期間が固定値であるから、圧力上昇期間から高圧ポンプ20の圧送量を推定することもできる。   Judging from the crank angle that represents the rotation angle of the crankshaft that drives the camshaft, the pressure rise period varies depending on the valve closing timing of the metering valve 24, but the pumping stroke period is a fixed value regardless of the engine speed. is there. Therefore, if the pressure increase period is known, the pressurization period is determined, and the pumping amount of the high-pressure pump 20 can be estimated from the pressurization period. Since the pumping stroke period is a fixed value, the pumping amount of the high-pressure pump 20 can be estimated from the pressure rising period.

圧送量は、(1)圧力センサ32の検出圧力、または(2)FP12の駆動電流により次のようにして推定できる。
(1)圧力センサ32の検出圧力
圧力センサ32が低圧系の燃料圧力を検出することにより、低圧系の燃料圧力が上昇を開始してから上昇が終了し急激に低下するまでの圧力上昇期間Tpを直接求めることができる。低圧系の燃料圧力の上昇開始タイミングと上昇終了タイミングとはECU60がサンプリングするときの時間で検出され、圧力上昇期間Tpも時間で求められる。
The pumping amount can be estimated as follows from (1) the detected pressure of the pressure sensor 32 or (2) the driving current of the FP 12.
(1) Pressure detected by the pressure sensor 32 When the pressure sensor 32 detects the low-pressure fuel pressure, the pressure increase period Tp from when the low-pressure fuel pressure starts to rise until the rise ends and rapidly decreases. Can be obtained directly. The rise start timing and the rise end timing of the low-pressure fuel pressure are detected by the time when the ECU 60 performs sampling, and the pressure rise period Tp is also obtained by time.

具体的には、高圧ポンプ20の圧送量Qは、燃料圧力の上昇開始タイミングをTG、上昇終了タイミングをTRとすると次式(1)から求められる。
Q=F(TG−TR) ・・・(1)
(TG−TR)は圧力上昇期間Tpを表わすパラメータである。前述したように、圧力上昇期間が分かれば加圧期間が決定される。関数Fは、(TG−TR)をパラメータとして、カムのプロフィールにより決定される圧送量を求める数式またはマップデータである。
Specifically, the pumping amount Q of the high-pressure pump 20 is obtained from the following equation (1), where TG is the fuel pressure rising start timing and TR is the rising end timing.
Q = F (TG-TR) (1)
(TG-TR) is a parameter representing the pressure increase period Tp. As described above, if the pressure increase period is known, the pressurization period is determined. The function F is a mathematical expression or map data for obtaining a pumping amount determined by the cam profile using (TG-TR) as a parameter.

ただし、時間で表わされた圧力上昇期間Tpのままでは圧送量を求めることができないので、時間で表わされた圧力上昇期間Tpをエンジン回転数に基づいてクランク角度に換算し、角度で表わされた圧力上昇期間Tpから圧送量を求める。   However, since the pumping amount cannot be obtained with the pressure increase period Tp expressed in time, the pressure increase period Tp expressed in time is converted into a crank angle based on the engine speed, and expressed in angle. The pumping amount is obtained from the passed pressure increase period Tp.

ここで、高圧ポンプ20の取付け角度に誤差がある場合、正常に高圧ポンプ20が取り付けられた場合のクランク角度に対して上昇開始タイミングTGと上昇終了タイミングTRとはずれていることがある。また、検出した上昇開始タイミングTGと上昇終了タイミングTRとは、圧力センサ32が検出する燃料圧力の伝播遅れにより実際の上昇開始タイミングTGと上昇終了タイミングTRとからずれていることがある。   Here, if there is an error in the mounting angle of the high-pressure pump 20, the rising start timing TG and the rising end timing TR may be different from the crank angle when the high-pressure pump 20 is normally mounted. Further, the detected rise start timing TG and rise end timing TR may deviate from the actual rise start timing TG and rise end timing TR due to the propagation delay of the fuel pressure detected by the pressure sensor 32.

しかし、式(1)のように上昇開始タイミングTGと上昇終了タイミングTRとの差分(TG−TR)を圧力上昇期間を表わすパラメータとして高圧ポンプ20の圧送量を求めることにより、高圧ポンプ20の取り付け角度の誤差および圧力の伝播遅れを相殺して圧送量を高精度に推定できる。   However, the attachment of the high-pressure pump 20 is obtained by obtaining the pumping amount of the high-pressure pump 20 by using the difference (TG-TR) between the rising start timing TG and the rising end timing TR as a parameter representing the pressure rising period as in the equation (1). The pumping amount can be estimated with high accuracy by offsetting the angle error and the pressure propagation delay.

尚、高圧ポンプ20の取付け角度の誤差、ならびに圧力センサ32が検出する燃料圧力の伝播遅れが無視できる程度であれば、上昇終了タイミングTRから圧送行程の上死点までの期間が加圧期間を表わすので、上昇終了タイミングTRだけから高圧ポンプ20の圧送量を推定してもよい。   If the error in the mounting angle of the high-pressure pump 20 and the propagation delay of the fuel pressure detected by the pressure sensor 32 are negligible, the period from the rising end timing TR to the top dead center of the pumping stroke is the pressurizing period. Therefore, the pumping amount of the high-pressure pump 20 may be estimated only from the rising end timing TR.

(2)駆動電流
FP12の駆動電流は、圧力センサ32が検出する低圧系の燃料圧力に対して時間遅れはあるものの、前述したように低圧系の燃料圧力に応じて変化する。駆動電流が上昇を開始する上昇開始タイミングTGと上昇を終了する上昇終了タイミングTRとの期間である電流上昇期間Tiは、圧力上昇期間Tpと同じ長さである。したがって、駆動電流の上昇開始タイミングと上昇終了タイミングとから電流上昇期間Tiを求めることにより、圧力センサ32で低圧系の燃料圧力を検出する場合と同様に、式(1)から高圧ポンプ20の圧送量Qを求めることができる。
(2) Drive Current The drive current of the FP 12 changes according to the low-pressure fuel pressure as described above, although there is a time delay with respect to the low-pressure fuel pressure detected by the pressure sensor 32. The current increase period Ti, which is a period between the increase start timing TG at which the drive current starts increasing and the increase end timing TR at which the increase ends, is the same length as the pressure increase period Tp. Accordingly, by obtaining the current rise period Ti from the rise start timing and the rise end timing of the drive current, the high pressure pump 20 is pumped from the equation (1) in the same manner as when the pressure sensor 32 detects the low pressure fuel pressure. The quantity Q can be determined.

尚、高圧ポンプ20の作動により生じる低圧系の燃料圧力の変化は、高圧ポンプ20からFP12に伝播する間に配管長のために減衰する。この減衰が大きいと、FP12の駆動電流の変化から電流上昇期間Tiを高精度に求めることが困難になる。そこで、FP12に伝播する燃料圧力の減衰を極力低下させるために、低圧配管100に弾性係数の高い材質を使用することが望ましい。   Note that the change in the low-pressure fuel pressure caused by the operation of the high-pressure pump 20 attenuates due to the piping length while propagating from the high-pressure pump 20 to the FP 12. If this attenuation is large, it becomes difficult to obtain the current rising period Ti with high accuracy from the change in the driving current of the FP 12. Therefore, in order to reduce the attenuation of the fuel pressure propagating to the FP 12 as much as possible, it is desirable to use a material having a high elastic coefficient for the low-pressure pipe 100.

また、圧力センサ32が検出する低圧系の燃料圧力の値は、レギュレート弁30の機差、高圧ポンプ20の回転数、燃料噴射弁50の噴射量、低圧系に設置された燃料フィルタの異物捕集による圧損の程度、燃料性状、燃料温度等により変化する。したがって、圧力センサ32が検出する燃料圧力の値と固定の閾値とを比較しても、燃料圧力の上昇開始タイミングおよび上昇終了タイミングを高精度に求めることはできない。   Further, the value of the low-pressure fuel pressure detected by the pressure sensor 32 is the difference between the regulator valve 30, the rotation speed of the high-pressure pump 20, the injection amount of the fuel injection valve 50, and the foreign matter of the fuel filter installed in the low-pressure system. It varies depending on the degree of pressure loss due to collection, fuel properties, fuel temperature, and the like. Therefore, even if the fuel pressure value detected by the pressure sensor 32 is compared with a fixed threshold value, the fuel pressure rise start timing and rise end timing cannot be obtained with high accuracy.

そこで、低圧系の燃料圧力の微分値、傾き、変化幅等、あるいはこれらの組合せで、上昇開始タイミングおよび上昇終了タイミングを求めることにより、圧力上昇期間Tpを高精度に求めることができる。   Therefore, the pressure rise period Tp can be obtained with high accuracy by obtaining the rise start timing and the rise end timing using a differential value, a slope, a change width, or the like of the low-pressure fuel pressure.

同様に、FP12の駆動電流の上昇開始タイミングおよび上昇終了タイミングを求める場合も、駆動電流の微分値、傾き、変化幅等、あるいはこれらの組合せで、上昇開始タイミングおよび上昇終了タイミングを求めることにより、電流上昇期間Tiを高精度に求めることができる。   Similarly, when obtaining the rise start timing and rise end timing of the drive current of the FP 12, by obtaining the rise start timing and the rise end timing with a differential value, slope, change width, etc. of the drive current, or a combination thereof, The current rising period Ti can be obtained with high accuracy.

FP12の駆動電流の場合、FP12が燃料を圧送するときにインペラの外周に形成された羽根により生じる圧力脈動、ならびにモータの周方向の磁気むらにより生じる回転速度むらにより、図3に示すようにノイズが生じる。したがって、バンドパスフィルタによりこのノイズを除去してから、駆動電流の上昇開始タイミングおよび上昇終了タイミングを求めることが望ましい。   In the case of the driving current of the FP 12, noise is generated as shown in FIG. 3 due to pressure pulsation generated by blades formed on the outer periphery of the impeller when the FP 12 pumps fuel, and rotational speed unevenness caused by magnetic unevenness in the circumferential direction of the motor. Occurs. Therefore, it is desirable to obtain the rise start timing and rise end timing of the drive current after removing this noise by the band pass filter.

次に、ECU60がROM等に記憶されている制御プログラムにより実行する高圧ポンプ20の圧送量制御処理1、2について説明する。図4および図5のフローチャートにおいて「S」はステップを表わしている。   Next, the pumping amount control processes 1 and 2 of the high-pressure pump 20 executed by the ECU 60 according to a control program stored in the ROM or the like will be described. In the flowcharts of FIGS. 4 and 5, “S” represents a step.

(圧送量制御処理1)
図4に示す圧送量制御処理1では、FP12の駆動電流に基づいて高圧ポンプ20の圧送量を推定する。
(Pressure feed amount control process 1)
In the pumping amount control process 1 shown in FIG. 4, the pumping amount of the high-pressure pump 20 is estimated based on the driving current of the FP 12.

ECU60は、FP12の駆動電流を所定の時間間隔でサンプリングしてAD変換し(S400)、FP12の回転数とインペラの羽根の数、ならびにFP12のモータの磁気むらにより決定されるノイズ周波数帯域でAD変換値にバンドパスフィルタをかける(S402)。   The ECU 60 samples the drive current of the FP 12 at a predetermined time interval and performs AD conversion (S400), and performs AD conversion in a noise frequency band determined by the number of rotations of the FP 12 and the number of impeller blades and the magnetic unevenness of the FP 12 motor. A band pass filter is applied to the converted value (S402).

フィルタ通過後の駆動電流の前後の傾きと上昇幅との両方がそれぞれ所定の上昇範囲になったときに駆動電流の上昇開始タイミングTGであると判断し(S404)、フィルタ通過後の駆動電流の前後の傾きと減少幅との両方がそれぞれ所定の減少範囲になったときに駆動電流の上昇終了タイミングTRであると判断する(S406)。   It is determined that the drive current rise start timing TG is reached when both the forward and backward inclination and the rise width of the drive current after passing through the filter are in a predetermined rise range (S404). When both the forward and backward inclination and the decrease range are within the predetermined decrease ranges, it is determined that the drive current increase end timing TR is reached (S406).

S408においてECU60は、上昇開始タイミングTGおよび上昇終了タイミングTRに基づき式(1)から高圧ポンプ20の推定圧送量を求める。
S410においてECU60は、レール圧センサとしての圧力センサ42が正常であるか否かを判定する。圧力センサ42が正常であるか否かは、圧力センサ42の出力信号のレベルで判定する。圧力センサ42の出力信号が所定の出力レベルの範囲で変化すれば圧力センサ42は正常であり、出力レベルが「ハイ」または「ロー」に固定されていれば圧力センサ42は異常であると判定する。
In S408, the ECU 60 calculates the estimated pumping amount of the high-pressure pump 20 from the equation (1) based on the rising start timing TG and the rising end timing TR.
In S410, the ECU 60 determines whether or not the pressure sensor 42 as the rail pressure sensor is normal. Whether the pressure sensor 42 is normal is determined based on the level of the output signal of the pressure sensor 42. If the output signal of the pressure sensor 42 changes within a predetermined output level range, the pressure sensor 42 is normal, and if the output level is fixed to “high” or “low”, it is determined that the pressure sensor 42 is abnormal. To do.

圧力センサ42が正常であれば(S410:Yes)、例えば圧力センサ42が検出するコモンレール圧力がエンジン運転状態から決定した目標圧力に追随するように目標圧送量を決定し、目標圧送量となるように調量弁24を通電制御して加圧開始タイミングを制御する(S412)。   If the pressure sensor 42 is normal (S410: Yes), for example, the target pumping amount is determined so that the common rail pressure detected by the pressure sensor 42 follows the target pressure determined from the engine operating state, and becomes the target pumping amount. The metering valve 24 is energized to control the pressurization start timing (S412).

この場合、高圧ポンプ20の実際の圧送量を考慮せず、目標圧力と実圧力との差圧に基づいて決定された目標圧送量となるように調量弁24を通電制御してもよいし、式(1)から求める推定圧送量が目標圧力と実圧力との差圧に基づいて決定された目標圧送量となるように調量弁24に対する通電をフィードバック制御してもよい。   In this case, the metering valve 24 may be energized and controlled so that the target pumping amount is determined based on the differential pressure between the target pressure and the actual pressure without considering the actual pumping amount of the high-pressure pump 20. The energization to the metering valve 24 may be feedback controlled so that the estimated pumping amount obtained from the equation (1) becomes the target pumping amount determined based on the differential pressure between the target pressure and the actual pressure.

圧力センサ42が異常であれば(S410:No)、式(1)から求める推定圧送量に基づいて、高圧ポンプ20の圧送量がエンジン運転状態から要求される目標圧送量となるように調量弁24を通電制御する(S414)。このときの調量弁24に対する通電制御は、オープン制御でもよいし、フィードバック制御でもよい。   If the pressure sensor 42 is abnormal (S410: No), the metering is performed based on the estimated pumping amount obtained from the equation (1) so that the pumping amount of the high-pressure pump 20 becomes the target pumping amount required from the engine operating state. The valve 24 is energized and controlled (S414). The energization control for the metering valve 24 at this time may be open control or feedback control.

(圧送量制御処理2)
図5に示す圧送量制御処理2では、圧力センサ32が検出する低圧系の燃料圧力に基づいて高圧ポンプ20の圧送量を推定する。
(Pressure feed amount control process 2)
In the pumping amount control process 2 shown in FIG. 5, the pumping amount of the high-pressure pump 20 is estimated based on the low-pressure fuel pressure detected by the pressure sensor 32.

ECU60は、低圧系の燃料圧力を検出する圧力センサ32の出力信号を所定の時間間隔でサンプリングしてAD変換する(S420)。そして、低圧系の燃料圧力の前後の傾きと上昇幅との両方がそれぞれ所定の上昇範囲になったときに低圧系の燃料圧力の上昇開始タイミングTGであると判断し(S422)、低圧系の燃料圧力の前後の傾きと減少幅との両方がそれぞれ所定の減少範囲になったときに低圧系の燃料圧力の上昇終了タイミングTRであると判断する(S424)。S426以降の処理は、図4のS408以降の処理と実質的に同一であるから説明を省略する。   The ECU 60 samples the output signal of the pressure sensor 32 that detects the low-pressure fuel pressure at predetermined time intervals and performs AD conversion (S420). Then, it is determined that it is the start timing TG of the low pressure fuel pressure when both the forward and backward inclination and the increase range of the low pressure fuel pressure are within a predetermined increase range (S422). It is determined that the low-pressure fuel pressure rise end timing TR is reached when both the fuel pressure gradient before and after and the reduction range are within the predetermined reduction ranges (S424). The processing after S426 is substantially the same as the processing after S408 in FIG.

図5の圧送量制御処理2では、圧力センサ32で検出した低圧系の燃料圧力に基づいて高圧ポンプ20の圧送量を推定するので、より高精度に高圧ポンプ20の圧送量を制御できる。   In the pumping amount control process 2 of FIG. 5, the pumping amount of the high-pressure pump 20 is estimated based on the low-pressure fuel pressure detected by the pressure sensor 32, so that the pumping amount of the high-pressure pump 20 can be controlled with higher accuracy.

以上説明した本実施形態によると、低圧系の燃料圧力に関連して変化するFP12の駆動電流または低圧系の燃料圧力自体により高圧ポンプ20の圧送量を推定するので、推定した圧送量に基づいて、高圧ポンプ20の圧送量を目標圧送量に高精度に調量できる。   According to the present embodiment described above, since the pumping amount of the high-pressure pump 20 is estimated based on the driving current of the FP 12 that changes in relation to the fuel pressure of the low-pressure system or the fuel pressure itself of the low-pressure system, based on the estimated pumping amount. The pumping amount of the high-pressure pump 20 can be accurately adjusted to the target pumping amount.

また、コモンレール40の燃料圧力を検出する高圧用の圧力センサがなくても高圧ポンプ20の圧送量を高精度に調量できる。低圧系の燃料圧力を圧力センサで検出する場合にも、高圧用の燃料圧力センサを使用するよりも安価な圧力センサを使用できる。   Further, even if there is no high pressure sensor for detecting the fuel pressure of the common rail 40, the pumping amount of the high pressure pump 20 can be adjusted with high accuracy. Even when the low-pressure fuel pressure is detected by the pressure sensor, a pressure sensor that is less expensive than the high-pressure fuel pressure sensor can be used.

FP12の駆動電流に基づいて高圧ポンプ20の圧送量を推定する場合は、高圧用および低圧用の両方の圧力センサを不要にしてもよい。
[他の実施形態]
上記実施形態では、低圧系の燃料圧力に関連する物理量としてFP12の駆動電流を検出した。これ以外にも、FP12の回転数または低圧配管100の流量等を検出できるのであれば、これらを低圧系の燃料圧力に関連する物理量として検出してもよい。
When estimating the pumping amount of the high-pressure pump 20 based on the driving current of the FP 12, both the high-pressure and low-pressure pressure sensors may be unnecessary.
[Other Embodiments]
In the above embodiment, the driving current of the FP 12 is detected as a physical quantity related to the low-pressure fuel pressure. In addition to this, as long as the rotation speed of the FP 12 or the flow rate of the low-pressure pipe 100 can be detected, these may be detected as physical quantities related to the fuel pressure of the low-pressure system.

上記実施形態では、駆動電流または低圧系の燃料圧力の傾きと上昇幅または下降幅が表わす変化幅との両方に基づいて上昇開始タイミングと上昇終了タイミングとを検出した。これに対し、駆動電流または低圧系の燃料圧力の傾きまたは変化幅だけに基づいて上昇開始タイミングと上昇終了タイミングとを検出してもよい。また、傾きに代えて微分値を用いてもよい。   In the above embodiment, the rise start timing and the rise end timing are detected based on both the drive current or the slope of the low-pressure fuel pressure and the change width represented by the rise or fall width. On the other hand, the rise start timing and the rise end timing may be detected based only on the gradient or change width of the drive current or the low-pressure fuel pressure. Further, a differential value may be used instead of the slope.

上記実施形態では、FP12の駆動電流または低圧系の燃料圧力を所定の時間間隔でサンプリングし、上昇開始タイミングと上昇終了タイミングとを検出した。これに対し、FP12の駆動電流または低圧系の燃料圧力をクランク角度に同期してサンプリングし、上昇開始タイミングと上昇終了タイミングとを検出してもよい。   In the above embodiment, the driving current of the FP 12 or the fuel pressure of the low pressure system is sampled at predetermined time intervals, and the rising start timing and the rising end timing are detected. On the other hand, the driving current of the FP 12 or the low-pressure fuel pressure may be sampled in synchronization with the crank angle to detect the rising start timing and the rising end timing.

本発明は、ディーゼルエンジン用のコモンレールシステムに限らず、デリバリパイプが形成する蓄圧室で燃料を蓄圧する直噴式ガソリンエンジンの燃料噴射システムに適用してもよい。   The present invention is not limited to a common rail system for a diesel engine, and may be applied to a fuel injection system of a direct injection gasoline engine that accumulates fuel in a pressure accumulating chamber formed by a delivery pipe.

上記実施形態では、検出値取得手段、制御手段および圧送量推定手段の機能を、制御プログラムにより機能が特定されるECU60により実現している。これに対し、上記複数の手段の機能の少なくとも一部を、回路構成自体で機能が特定されるハードウェアで実現してもよい。   In the above embodiment, the functions of the detection value acquisition means, the control means, and the pumping amount estimation means are realized by the ECU 60 whose functions are specified by the control program. On the other hand, at least some of the functions of the plurality of means may be realized by hardware whose functions are specified by the circuit configuration itself.

このように、本発明は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能である。   As described above, the present invention is not limited to the above-described embodiment, and can be applied to various embodiments without departing from the gist thereof.

2:燃料噴射システム、12:FP(低圧ポンプ)、20:高圧ポンプ、24:調量弁、32:圧力センサ、40:コモンレール、50:燃料噴射弁、60:ECU(燃料噴射制御装置、検出値取得手段、制御手段、圧送量推定手段) 2: fuel injection system, 12: FP (low pressure pump), 20: high pressure pump, 24: metering valve, 32: pressure sensor, 40: common rail, 50: fuel injection valve, 60: ECU (fuel injection control device, detection) Value acquisition means, control means, pumping amount estimation means)

Claims (5)

電動の低圧ポンプ(12)から供給される燃料を高圧ポンプ(20)で加圧する加圧開始タイミングを調量弁(24)で制御して前記高圧ポンプの圧送量を調量し、前記高圧ポンプで加圧された燃料を蓄圧室(40)で蓄圧して燃料噴射弁(50)から噴射する燃料噴射システム(2)に適用される燃料噴射制御装置(60)であって、
前記低圧ポンプと前記高圧ポンプとの間の低圧系の燃料圧力または前記燃料圧力に関連する物理量のいずれかの検出値を電気的な信号として取得する検出値取得手段(S400
、S420)と、
前記検出値取得手段が取得する前記検出値に基づいて前記高圧ポンプの前記圧送量を推定する圧送量推定手段(S408、S426)と、
前記圧送量推定手段が推定する前記圧送量に基づいて前記調量弁を制御することにより前記加圧開始タイミングを調整して前記高圧ポンプの圧送量を調量する制御手段(S414、S432)と、
を備えることを特徴とする燃料噴射制御装置。
The pressurization start timing for pressurizing the fuel supplied from the electric low-pressure pump (12) by the high-pressure pump (20) is controlled by the metering valve (24) to meter the pumping amount of the high-pressure pump, and the high-pressure pump A fuel injection control device (60) applied to a fuel injection system (2) for accumulating the fuel pressurized in the pressure accumulation chamber (40) and injecting the fuel from the fuel injection valve (50),
Detection value acquisition means (S400) that acquires, as an electrical signal, a detection value of either a low-pressure fuel pressure between the low-pressure pump and the high-pressure pump or a physical quantity related to the fuel pressure.
, S420),
Pumping amount estimating means (S408, S426) for estimating the pumping amount of the high-pressure pump based on the detection value acquired by the detection value acquiring means;
Control means (S414, S432) for adjusting the pressurization start timing by controlling the metering valve based on the pumping amount estimated by the pumping amount estimating means and metering the pumping amount of the high-pressure pump. ,
A fuel injection control device comprising:
前記燃料噴射システムは前記蓄圧室の燃料圧力を検出する蓄圧室センサ(42)を備えており、
前記制御手段(S410、S412、S414、S428、S430、S432)は、前記蓄圧室センサが正常な場合は前記蓄圧室センサが検出する前記蓄圧室の燃料圧力に基づいて前記調量弁を制御し、前記蓄圧室センサが異常になると前記圧送量推定手段が推定する前記圧送量に基づいて前記調量弁を制御する、
ことを特徴とする請求項1に記載の燃料噴射制御装置。
The fuel injection system includes a pressure accumulation chamber sensor (42) for detecting a fuel pressure in the pressure accumulation chamber,
The control means (S410, S412, S414, S428, S430, S432) controls the metering valve based on the fuel pressure of the pressure accumulation chamber detected by the pressure accumulation chamber sensor when the pressure accumulation chamber sensor is normal. , When the pressure accumulation chamber sensor becomes abnormal, the metering valve is controlled based on the pumping amount estimated by the pumping amount estimating means .
The fuel injection control device according to claim 1 .
前記検出値取得手段(S400)は、前記低圧ポンプの駆動電流の検出値を前記物理量の検出値として取得することを特徴とする請求項1または2に記載の燃料噴射制御装置。 The fuel injection control device according to claim 1 or 2 , wherein the detection value acquisition means (S400) acquires a detection value of a driving current of the low-pressure pump as a detection value of the physical quantity. 前記検出値取得手段(S420)は、前記低圧系に設置された圧力センサから前記低圧系の前記燃料圧力の検出値を取得することを特徴とする請求項1または2に記載の燃料噴射制御装置。 The fuel injection control device according to claim 1 or 2 , wherein the detection value acquisition means (S420) acquires a detection value of the fuel pressure of the low pressure system from a pressure sensor installed in the low pressure system. . 電動の低圧ポンプと、
前記低圧ポンプから供給される燃料を加圧する加圧開始タイミングを調量弁で制御して圧送量を調量する高圧ポンプと、
前記高圧ポンプから供給される燃料を蓄圧するコモンレールと、
前記コモンレールで蓄圧された燃料を噴射する燃料噴射弁と、
請求項1から4のいずれか一項に記載された燃料噴射制御装置と、
を備えることを特徴とする燃料噴射システム。
An electric low-pressure pump;
A high-pressure pump that controls the pressurization start timing for pressurizing the fuel supplied from the low-pressure pump with a metering valve to meter the pumping amount;
A common rail for accumulating fuel supplied from the high-pressure pump;
A fuel injection valve for injecting fuel accumulated in the common rail;
A fuel injection control device according to any one of claims 1 to 4 ,
A fuel injection system comprising:
JP2012143045A 2012-06-26 2012-06-26 Fuel injection control device Expired - Fee Related JP5630464B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012143045A JP5630464B2 (en) 2012-06-26 2012-06-26 Fuel injection control device
DE102013106712.3A DE102013106712B4 (en) 2012-06-26 2013-06-26 Fuel injection control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143045A JP5630464B2 (en) 2012-06-26 2012-06-26 Fuel injection control device

Publications (2)

Publication Number Publication Date
JP2014005798A JP2014005798A (en) 2014-01-16
JP5630464B2 true JP5630464B2 (en) 2014-11-26

Family

ID=49754274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143045A Expired - Fee Related JP5630464B2 (en) 2012-06-26 2012-06-26 Fuel injection control device

Country Status (2)

Country Link
JP (1) JP5630464B2 (en)
DE (1) DE102013106712B4 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6387905B2 (en) 2015-06-10 2018-09-12 株式会社デンソー Gasoline fuel supply system
GB2587647A (en) * 2019-10-03 2021-04-07 Delphi Automotive Systems Lux Method of controlling a fuel pump

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19644915A1 (en) * 1996-10-29 1998-04-30 Bosch Gmbh Robert high pressure pump
JP2002055544A (en) 2000-08-11 2002-02-20 Ricoh Co Ltd Image forming device
JP2002089453A (en) * 2000-09-14 2002-03-27 Akebono Brake Res & Dev Center Ltd Hydraulic control device
DE10139054C1 (en) * 2001-08-08 2003-01-30 Bosch Gmbh Robert Operating method for direct fuel injection engine has controlled inlet valve with variable opening duration controlling fuel quantity supplied to common-rail for fuel injection valves
JP2005133573A (en) * 2003-10-28 2005-05-26 Toyota Motor Corp Fuel supply controller for internal combustion engine
JP2005307931A (en) * 2004-04-26 2005-11-04 Hitachi Ltd Fuel supply device for internal combustion engine
JP2006029096A (en) * 2004-07-12 2006-02-02 Yanmar Co Ltd Pressure accumulating fuel injector
US8740579B2 (en) * 2009-02-20 2014-06-03 Hitachi Automotive Systems, Ltd. High-pressure fuel supply pump and discharge valve unit used therein
JP2010196472A (en) * 2009-02-23 2010-09-09 Denso Corp Fuel supply control device for internal combustion engine
JP2010255544A (en) * 2009-04-27 2010-11-11 Denso Corp Fuel injection device
JP2011202553A (en) * 2010-03-25 2011-10-13 Aisan Industry Co Ltd Feedback control device
EP2703625A1 (en) 2011-04-27 2014-03-05 Toyota Jidosha Kabushiki Kaisha Metering device for high-pressure pump
JP5630462B2 (en) 2012-06-19 2014-11-26 株式会社デンソー Fuel injection control device

Also Published As

Publication number Publication date
DE102013106712A1 (en) 2014-01-02
DE102013106712B4 (en) 2018-06-14
JP2014005798A (en) 2014-01-16

Similar Documents

Publication Publication Date Title
JP5630462B2 (en) Fuel injection control device
JP4424395B2 (en) Fuel injection control device for internal combustion engine
JP5126311B2 (en) Fuel temperature detector
US9127612B2 (en) Fuel-injection-characteristics learning apparatus
JP5141723B2 (en) Fuel injection control device for internal combustion engine
JP6281581B2 (en) Control device for internal combustion engine
US9617947B2 (en) Fuel injection control device
JP5939227B2 (en) Pump control device
JP2010043614A (en) Engine control device
JP5370348B2 (en) Fuel injection control device for internal combustion engine
JP4148134B2 (en) Fuel injection device
JP5630464B2 (en) Fuel injection control device
US8849592B2 (en) Fuel-injection condition detector
JP2015203307A (en) Pump control device
JP5045640B2 (en) Fuel injection control device for in-cylinder internal combustion engine
JP2009103059A (en) Control device for cylinder injection internal combustion engine
CN112020602B (en) Adaptive high pressure fuel pump system and method of predicting pumping quality
JP3982516B2 (en) Fuel injection device for internal combustion engine
JP6431826B2 (en) Fuel injection control device for internal combustion engine
JP5556572B2 (en) Fuel pressure sensor diagnostic device
JP4689695B2 (en) Fuel injection system
JP6504041B2 (en) Pump controller
JP2019085892A (en) Fuel injection control device
JP2010270724A (en) Fuel injection device
JP6303992B2 (en) Fuel injection control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140507

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R151 Written notification of patent or utility model registration

Ref document number: 5630464

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees