JP5630303B2 - Non-contact power transmission cutoff device - Google Patents

Non-contact power transmission cutoff device Download PDF

Info

Publication number
JP5630303B2
JP5630303B2 JP2011025022A JP2011025022A JP5630303B2 JP 5630303 B2 JP5630303 B2 JP 5630303B2 JP 2011025022 A JP2011025022 A JP 2011025022A JP 2011025022 A JP2011025022 A JP 2011025022A JP 5630303 B2 JP5630303 B2 JP 5630303B2
Authority
JP
Japan
Prior art keywords
output shaft
input shaft
power
coil
predetermined value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011025022A
Other languages
Japanese (ja)
Other versions
JP2012165596A (en
Inventor
怜馬 西村
怜馬 西村
小川 誠
誠 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2011025022A priority Critical patent/JP5630303B2/en
Publication of JP2012165596A publication Critical patent/JP2012165596A/en
Application granted granted Critical
Publication of JP5630303B2 publication Critical patent/JP5630303B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、衝撃や摩耗がなく、しかも、伝達損失がない非接触動力伝達遮断装置に関する。   The present invention relates to a non-contact power transmission cutoff device that is free from impact and wear and has no transmission loss.

車両やその他の機械において、エンジン(内燃機関)やモータ等の回転力を発生する原動機からその回転力で回転される負荷まで動力を伝達する経路には、動力伝達を入り切りできる動力伝達遮断装置が介在する。特に、エンジンを原動機とする車両では動力伝達遮断装置は必要不可欠であり、重要である。   In vehicles and other machines, a power transmission cutoff device capable of turning power transmission on and off is provided in a path for transmitting power from a prime mover that generates rotational force such as an engine (internal combustion engine) or a motor to a load rotated by the rotational force. Intervene. In particular, in a vehicle using an engine as a prime mover, a power transmission cutoff device is indispensable and important.

動力伝達遮断装置には、入力軸に取り付けられたクラッチ板と出力軸に取り付けられたクラッチ板とが機械的に押し付けられることにより回転の動力が伝達される機械式クラッチ、入力側の回転体の回転に連れ回る作動流体の流動が出力側の回転体を回転させる流体継ぎ手などが知られている。   The power transmission shut-off device includes a mechanical clutch that transmits rotational power by mechanically pressing a clutch plate attached to an input shaft and a clutch plate attached to an output shaft, and a rotating body on the input side. 2. Description of the Related Art There is known a fluid joint in which a flow of a working fluid that is rotated rotates a rotating body on an output side.

特開2005−143185号公報JP 2005-143185 A 特開平11−278076号公報Japanese Patent Laid-Open No. 11-278076

機械式クラッチは、クラッチ板同士が繋がる際に回転の急激な伝達による衝撃が発生しやすく、この衝撃を緩和するための制御が複雑である。また、機械式クラッチは、クラッチ板同士に滑りがあるためクラッチ板に摩耗が発生し、メンテナンスが煩雑となる。   In the mechanical clutch, when the clutch plates are connected to each other, an impact due to a rapid rotation is easily generated, and the control for reducing the impact is complicated. In addition, since the mechanical clutch has slippage between the clutch plates, the clutch plates are worn and maintenance becomes complicated.

一方、流体継ぎ手は、回転が伝わり始めるときの衝撃が少なく、部材の摩耗も少ないが、作動流体での内部摩擦により、伝達損失が発生する。伝達損失が発生することは、省エネルギの観点から好ましくない。   On the other hand, the fluid joint has little impact when rotation starts to be transmitted and wear of the member is small, but transmission loss occurs due to internal friction in the working fluid. Generation of transmission loss is not preferable from the viewpoint of energy saving.

そこで、本発明の目的は、上記課題を解決し、衝撃や摩耗がなく、しかも、伝達損失がない非接触動力伝達遮断装置を提供することにある。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide a non-contact power transmission cutoff device that solves the above-described problems, has no impact and wear, and has no transmission loss.

上記目的を達成するために本発明の非接触動力伝達遮断装置は、入力軸に取り付けられた入力軸コイルと、前記入力軸と同軸に配置された出力軸に取り付けられた出力軸コイルと、前記入力軸コイル及び前記出力軸コイルのいずれか一方に電流を印加する給電回路と、前記入力軸コイル及び前記出力軸コイルの残りの一方から誘導電力を取り出す取出回路と、前記入力軸コイルに磁力線を導くよう前記入力軸に取り付けられて前記出力軸の外周を覆う外側ヨークと、前記出力軸コイルに磁力線を導くよう前記出力軸に取り付けられて前記外側ヨークに対して内周から臨む内側ヨークとを備え、前記内側ヨークの少なくとも一部が前記出力軸の回転速度の上昇に応じて前記外側ヨークとのギャップが狭まるよう可動に構成されたものである。   In order to achieve the above object, a non-contact power transmission cutoff device according to the present invention includes an input shaft coil attached to an input shaft, an output shaft coil attached to an output shaft arranged coaxially with the input shaft, A power feeding circuit that applies current to one of the input shaft coil and the output shaft coil, a take-out circuit that extracts induced power from the other one of the input shaft coil and the output shaft coil, and a magnetic field line to the input shaft coil An outer yoke that is attached to the input shaft so as to guide and covers the outer periphery of the output shaft, and an inner yoke that is attached to the output shaft so as to guide the magnetic force lines to the output shaft coil and faces the outer yoke from the inner periphery. And at least a part of the inner yoke is configured to be movable so that a gap with the outer yoke is narrowed as the rotational speed of the output shaft increases.

前記入力軸と前記出力軸とをロックアップするロック部材を備えてもよい。   You may provide the lock member which locks up the said input shaft and the said output shaft.

前記入力軸と前記出力軸間の動力伝達を遮断するときは、前記ロック部材をロックアップ解除にし、前記給電回路からの電流印加を停止し、前記出力軸を加速させるために前記入力軸と前記出力軸間で動力を伝達させるときには、前記入力軸と前記出力軸との回転速度差が所定値以上であれば、前記ロック部材をロックアップ解除にし、前記給電回路からの電流印加を行うと共に前記取出回路への電力取出を行い、前記入力軸と前記出力軸との回転速度差が所定値未満であれば、前記ロック部材をロックアップにし、前記給電回路からの電流印加を停止する制御回路を備えてもよい。   When interrupting power transmission between the input shaft and the output shaft, the lock member is unlocked, current application from the power supply circuit is stopped, and the input shaft and the output shaft are accelerated to accelerate the output shaft. When transmitting power between the output shafts, if the rotational speed difference between the input shaft and the output shaft is greater than or equal to a predetermined value, the lock member is unlocked, current is applied from the power feeding circuit, and A control circuit that performs power extraction to an extraction circuit and locks the lock member and stops current application from the power supply circuit if a difference in rotational speed between the input shaft and the output shaft is less than a predetermined value; You may prepare.

前記制御回路は、前記出力軸を減速させるために前記入力軸と前記出力軸間で動力を伝達させるときには、前記出力軸の回転速度が第一所定値以上であれば、前記ロック部材をロックアップにし、前記給電回路からの電流印加を停止し、前記出力軸の回転速度が第一所定値未満で第二所定値(第二所定値<第一所定値)以上であれば、前記ロック部材をロックアップ解除にし、前記給電回路からの電流印加を行うと共に前記取出回路への電力取出を行い、前記出力軸の回転速度が第二所定値未満であれば、前記ロック部材をロックアップにし、前記給電回路からの電流印加を停止してもよい。   When transmitting power between the input shaft and the output shaft to decelerate the output shaft, the control circuit locks up the lock member if the rotational speed of the output shaft is equal to or higher than a first predetermined value. If the current application from the power supply circuit is stopped and the rotational speed of the output shaft is less than a first predetermined value and greater than or equal to a second predetermined value (second predetermined value <first predetermined value), the lock member is The lockup is released, the current is applied from the power supply circuit and the power is extracted to the extraction circuit.If the rotation speed of the output shaft is less than a second predetermined value, the lock member is locked up, Current application from the power feeding circuit may be stopped.

本発明は次の如き優れた効果を発揮する。   The present invention exhibits the following excellent effects.

(1)衝撃や摩耗がない。   (1) No impact or wear.

(2)伝達損失がない。   (2) There is no transmission loss.

本発明の一実施形態を示す非接触動力伝達遮断装置の構成図である。It is a lineblock diagram of the non-contact power transmission cutoff device showing one embodiment of the present invention. 図1の非接触動力伝達遮断装置の給電時に軸方向から見た電磁石と内側ヨークのイメージ図である。It is an image figure of the electromagnet and inner yoke seen from the axial direction at the time of electric power feeding of the non-contact power transmission cutoff device of FIG. 図1の非接触動力伝達遮断装置の給電回路と取出回路のモデル回路図である。It is a model circuit diagram of the electric power feeding circuit and extraction circuit of the non-contact power transmission cutoff device of FIG. 図1の非接触動力伝達遮断装置の車両停止エンジンアイドリング時の制御状態を示す図である。It is a figure which shows the control state at the time of the vehicle stop engine idling of the non-contact power transmission cutoff apparatus of FIG. 図1の非接触動力伝達遮断装置の発進加速時の制御状態を示す図である。It is a figure which shows the control state at the time of start acceleration of the non-contact power transmission cutoff device of FIG. 図1の非接触動力伝達遮断装置の加速中の制御状態を示す図である。It is a figure which shows the control state during acceleration of the non-contact power transmission interruption | blocking apparatus of FIG. 図1の非接触動力伝達遮断装置の定速走行時の制御状態を示す図である。It is a figure which shows the control state at the time of constant speed driving | running | working of the non-contact power transmission interruption | blocking apparatus of FIG. 図1の非接触動力伝達遮断装置の減速時の制御状態を示す図である。It is a figure which shows the control state at the time of the deceleration of the non-contact power transmission interruption | blocking apparatus of FIG. 出力軸の振動の波形図である。It is a wave form diagram of the vibration of an output shaft.

以下、本発明の一実施形態を添付図面に基づいて詳述する。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the accompanying drawings.

図1に示した非接触動力伝達遮断装置1は、エンジン(図示せず)を原動機とする車両に適用される。すなわち、エンジンの出力軸が非接触動力伝達遮断装置1の入力軸2に相当し、非接触動力伝達遮断装置1の出力軸3が変速機(図示せず)の入力軸に相当する。   The non-contact power transmission cutoff device 1 shown in FIG. 1 is applied to a vehicle having an engine (not shown) as a prime mover. That is, the output shaft of the engine corresponds to the input shaft 2 of the non-contact power transmission cutoff device 1, and the output shaft 3 of the non-contact power transmission cutoff device 1 corresponds to the input shaft of the transmission (not shown).

非接触動力伝達遮断装置1は、入力軸2に取り付けられた入力軸コイル4と、入力軸2と同軸に配置された出力軸3に取り付けられた出力軸コイル5と、入力軸コイル4に電流を印加する給電回路6と、出力軸コイル5から誘導電力を取り出す取出回路7と、入力軸コイル4に磁力線を導くよう入力軸2に取り付けられて出力軸3の外周を覆う外側ヨーク8と、出力軸コイル5に磁力線を導くよう出力軸3に取り付けられて外側ヨーク8に対して内周から臨む内側ヨーク9とを備える。   The non-contact power transmission cutoff device 1 includes an input shaft coil 4 attached to the input shaft 2, an output shaft coil 5 attached to the output shaft 3 disposed coaxially with the input shaft 2, and current to the input shaft coil 4. A feeding circuit 6 for applying a power, a take-out circuit 7 for extracting induced power from the output shaft coil 5, an outer yoke 8 attached to the input shaft 2 so as to guide magnetic lines of force to the input shaft coil 4 and covering the outer periphery of the output shaft 3. An inner yoke 9 attached to the output shaft 3 so as to guide the magnetic field lines to the output shaft coil 5 and facing the outer yoke 8 from the inner periphery is provided.

内側ヨーク9は、一部が出力軸3の回転速度の上昇に応じて外側ヨーク8とのギャップが狭まるよう可動に構成される。   A part of the inner yoke 9 is configured to be movable so that the gap with the outer yoke 8 is narrowed as the rotational speed of the output shaft 3 increases.

非接触動力伝達遮断装置1は、入力軸2と出力軸3をロックアップするロック部材10を備える。   The non-contact power transmission cutoff device 1 includes a lock member 10 that locks up the input shaft 2 and the output shaft 3.

非接触動力伝達遮断装置1は、入力軸2と出力軸3間の動力伝達を遮断するときは、ロック部材10をロックアップ解除にし、給電回路6から入力軸コイル4への電流印加を停止し、出力軸3を加速させるために入力軸2と出力軸3間で動力を伝達させるときには、入力軸2と出力軸3との回転速度差が所定値以上であれば、ロック部材10をロックアップ解除にし、給電回路6から入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行い、入力軸2と出力軸3との回転速度差が所定値未満であれば、ロック部材10をロックアップにし、給電回路6からの電流印加を停止する制御回路11を備える。   When the non-contact power transmission cutoff device 1 interrupts the power transmission between the input shaft 2 and the output shaft 3, the lock member 10 is unlocked, and the current application from the power feeding circuit 6 to the input shaft coil 4 is stopped. When power is transmitted between the input shaft 2 and the output shaft 3 in order to accelerate the output shaft 3, the lock member 10 is locked up if the rotational speed difference between the input shaft 2 and the output shaft 3 is greater than or equal to a predetermined value. The current is applied from the power supply circuit 6 to the input shaft coil 4 and the power is extracted from the output shaft coil 5 to the extraction circuit 7 so that the rotational speed difference between the input shaft 2 and the output shaft 3 is less than a predetermined value. If there is a control circuit 11 that locks up the lock member 10 and stops the application of current from the power supply circuit 6.

制御回路11は、出力軸3を減速させるために入力軸2と出力軸3間で動力を伝達させるときには、出力軸3の回転速度が第一所定値以上であれば、ロック部材10をロックアップにし、給電回路6から入力軸コイル4への電流印加を停止し、出力軸3の回転速度が第一所定値未満で第二所定値(第二所定値<第一所定値)以上であれば、ロック部材10をロックアップ解除にし、給電回路から入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行い、出力軸3の回転速度が第二所定値未満であれば、ロック部材10をロックアップにし、給電回路6から入力軸コイル4への電流印加を停止するようになっている。ここで、出力軸3の回転速度が第一所定値以上とは車両が高速で走行していることを意味し、出力軸3の回転速度が第一所定値未満で第二所定値以上とは車両が中速で走行していることを意味し、出力軸3の回転速度が第二所定値未満とは車両が低速で走行していることを意味する。   When transmitting the power between the input shaft 2 and the output shaft 3 to decelerate the output shaft 3, the control circuit 11 locks up the lock member 10 if the rotational speed of the output shaft 3 is equal to or higher than the first predetermined value. The current application from the power supply circuit 6 to the input shaft coil 4 is stopped, and if the rotational speed of the output shaft 3 is less than the first predetermined value and greater than or equal to the second predetermined value (second predetermined value <first predetermined value). The lock member 10 is unlocked, current is applied from the power supply circuit to the input shaft coil 4, power is extracted from the output shaft coil 5 to the extraction circuit 7, and the rotation speed of the output shaft 3 is a second predetermined value. If it is less, the lock member 10 is locked up, and the current application from the power feeding circuit 6 to the input shaft coil 4 is stopped. Here, the rotational speed of the output shaft 3 being equal to or higher than the first predetermined value means that the vehicle is traveling at a high speed, and the rotational speed of the output shaft 3 being less than the first predetermined value and being equal to or higher than the second predetermined value. This means that the vehicle is traveling at a medium speed, and that the rotational speed of the output shaft 3 is less than the second predetermined value means that the vehicle is traveling at a low speed.

本実施形態では、入力軸2の端部に出力軸3の端部の外周を覆う外側ヨーク8が設けられ、外側ヨーク8の内周には径方向内方に突き出た複数の突起12が形成される。入力軸コイル4は、これらの突起12に電線が巻かれたものである。一方、出力軸3の端部に内側ヨーク9が設けられる。内側ヨーク9には、外側ヨーク8の突起12に対向して径方向外方に突き出た複数の可動片13が形成される。図中、可動片13は、最も内周に位置し外側ヨーク8の突起12とのギャップが最も広い状態が示され、外側ヨーク8の突起12とのギャップが最も狭まったときは可動片13が破線の位置に来る。出力軸コイル5は、これらの可動片13に電線が巻かれたものである。   In the present embodiment, an outer yoke 8 that covers the outer periphery of the end of the output shaft 3 is provided at the end of the input shaft 2, and a plurality of protrusions 12 projecting radially inward are formed on the inner periphery of the outer yoke 8. Is done. The input shaft coil 4 is obtained by winding an electric wire around these protrusions 12. On the other hand, an inner yoke 9 is provided at the end of the output shaft 3. The inner yoke 9 is formed with a plurality of movable pieces 13 that protrude radially outwardly facing the protrusions 12 of the outer yoke 8. In the drawing, the movable piece 13 is located on the innermost circumference and the gap with the projection 12 of the outer yoke 8 is shown to be the widest. When the gap with the projection 12 of the outer yoke 8 is the narrowest, the movable piece 13 is Come to the position of the broken line. The output shaft coil 5 is obtained by winding an electric wire around these movable pieces 13.

入力軸コイル4は、入力軸2に設けられたスリップリング14を介して給電回路6に接続される。出力軸コイル5は、出力軸3に設けられたスリップリング15を介して取出回路7に接続される。   The input shaft coil 4 is connected to the power feeding circuit 6 via a slip ring 14 provided on the input shaft 2. The output shaft coil 5 is connected to the extraction circuit 7 via a slip ring 15 provided on the output shaft 3.

給電回路6は、バッテリ(図示せず)からの直流電流を入力軸コイル4に印加するようになっている。入力軸コイル4は、給電回路6から直流電流が印加されると直流電磁石を形成するものである。   The power feeding circuit 6 applies a direct current from a battery (not shown) to the input shaft coil 4. The input shaft coil 4 forms a DC electromagnet when a DC current is applied from the power feeding circuit 6.

図2に示されるように、本実施形態では、外側ヨーク8の突起12は、周方向に一定のピッチで12個設けられる。各突起12の電線(図示せず)は、給電回路6から直流電流が印加されたとき各突起12の先端に現れる直流電磁石の極性が周方向に交互に逆極性となるよう配線される。このようにして各突起12に電線が巻かれることで入力軸コイル4が形成される。   As shown in FIG. 2, in this embodiment, twelve protrusions 12 of the outer yoke 8 are provided at a constant pitch in the circumferential direction. The electric wires (not shown) of the projections 12 are wired so that the polarity of the DC electromagnet appearing at the tip of each projection 12 when the DC current is applied from the power supply circuit 6 is alternately reversed in the circumferential direction. In this way, the input shaft coil 4 is formed by winding the electric wire around each protrusion 12.

内側ヨーク9の可動片13は、周方向に一定のピッチで12個設けられる。各可動片13の電線(図示せず)は、各可動片13の電線ごとの誘導電力が重畳して取り出されるよう配線される。このようにして各可動片13に電線が巻かれることで出力軸コイル5が形成される。   Twelve movable pieces 13 of the inner yoke 9 are provided at a constant pitch in the circumferential direction. An electric wire (not shown) of each movable piece 13 is wired so that the induced power for each electric wire of each movable piece 13 is superimposed and taken out. Thus, the output shaft coil 5 is formed by winding an electric wire around each movable piece 13.

この構成により、入力軸2と出力軸3の回転速度が異なるときに、入力軸コイル4が直流電磁石を形成していると、出力軸コイル5に誘導電力が発生することになる。出力軸コイル5から取り出される誘導電力は交流である。   With this configuration, if the input shaft coil 4 forms a DC electromagnet when the rotational speeds of the input shaft 2 and the output shaft 3 are different, inductive power is generated in the output shaft coil 5. Inductive power extracted from the output shaft coil 5 is alternating current.

可動片13と内側ヨーク9は、弾性変形部材16を介して連結される。弾性変形部材16は、可動片13が外力によって内側ヨーク9の径方向外方に移動したとき付勢され、外力が解放されると可動片13を径方向内方に引き戻す働きをする。外力とは、具体的には、出力軸3の回転により可動片13に働く遠心力である。すなわち、出力軸3の回転速度が低いときには、可動片13に働く遠心力が小さく、弾性変形部材16の変形が小さいので、可動片13は径方向内方に位置する。出力軸3の回転速度が高くなると、可動片13に働く遠心力が大きくなって弾性変形部材16の変形が大きくなり、可動片13は径方向外方に移動する。なお、可動片13が径方向以外の方向に移動することを規制し径方向に案内する部材、可動片13が径方向外方に所定距離以上移動することを規制する部材などが設けられてもよい。   The movable piece 13 and the inner yoke 9 are connected via an elastic deformation member 16. The elastic deformation member 16 is biased when the movable piece 13 is moved radially outward of the inner yoke 9 by an external force, and functions to pull the movable piece 13 back radially inward when the external force is released. Specifically, the external force is a centrifugal force that acts on the movable piece 13 by the rotation of the output shaft 3. That is, when the rotation speed of the output shaft 3 is low, the centrifugal force acting on the movable piece 13 is small and the deformation of the elastic deformation member 16 is small, so the movable piece 13 is positioned radially inward. When the rotation speed of the output shaft 3 is increased, the centrifugal force acting on the movable piece 13 is increased, the deformation of the elastic deformation member 16 is increased, and the movable piece 13 is moved radially outward. A member that restricts the movable piece 13 from moving in a direction other than the radial direction and guides the movable piece 13 in the radial direction, a member that restricts the movable piece 13 from moving outward in the radial direction by a predetermined distance, or the like may be provided. Good.

図1の取出回路7には、誘導電力を直流に整流する整流回路(図示せず)と、直流として取り出された電力をバッテリに充電する充電回路(図示せず)が含まれる。   The take-out circuit 7 in FIG. 1 includes a rectifier circuit (not shown) that rectifies the inductive power into direct current, and a charging circuit (not shown) that charges the battery with the electric power taken out as direct current.

図3に、給電回路6と取出回路7のモデルを示す。   FIG. 3 shows models of the feeding circuit 6 and the extraction circuit 7.

給電回路6は、バッテリから入力軸コイル4に直流電流を流す回路である。図示しないが、給電を停止するためのスイッチ素子が挿入される。取出回路7は、出力軸コイル5含む発電機Gから取り出し先に電力が取り出されるように構成された回路である。取り出し先としては、整流したものを充電するバッテリ、あるいは電力を消費する何かの負荷などがある。   The power feeding circuit 6 is a circuit that allows a direct current to flow from the battery to the input shaft coil 4. Although not shown, a switch element for stopping power feeding is inserted. The extraction circuit 7 is a circuit configured to extract electric power from the generator G including the output shaft coil 5 to the extraction destination. As a take-out destination, there is a battery that charges the rectified one, or some load that consumes electric power.

図1のロック部材10は、従来からある機械式クラッチと同様に、入力軸2に取り付けられたクラッチ板(図示せず)と出力軸3に取り付けられたクラッチ板(図示せず)が機械的に押し付けられることによりロックアップし、回転の動力が伝達されるよう構成される。   The lock member 10 shown in FIG. 1 is mechanically composed of a clutch plate (not shown) attached to the input shaft 2 and a clutch plate (not shown) attached to the output shaft 3 in the same manner as a conventional mechanical clutch. It is configured to be locked up by being pressed against and to transmit rotational power.

制御回路11は、電子制御装置(Electronical Control Unit;以下、ECUという)が実行するソフトウェア及びECU内部のメモリに記憶された数値、マップ、テーブルで実現される。入力軸2及び出力軸3との回転速度は、従来公知の回転速度センサで検出され、ECUに通知されている。エンジンの状態や車両の運転状況は、従来公知の通り、常時ECUによって把握されている。   The control circuit 11 is realized by software executed by an electronic control unit (hereinafter referred to as ECU) and numerical values, a map, and a table stored in a memory inside the ECU. The rotational speeds of the input shaft 2 and the output shaft 3 are detected by a conventionally known rotational speed sensor and notified to the ECU. The state of the engine and the driving situation of the vehicle are always grasped by the ECU, as is conventionally known.

以下、制御回路11による制御とギャップの変化を制御状態ごとに説明する。   Hereinafter, the control by the control circuit 11 and the change of the gap will be described for each control state.

図4に示されるように、車両停止(エンジンアイドリング)時は、制御回路11は、入力軸2と出力軸3間の動力伝達を遮断するべく、ロック部材10をロックアップ解除にし、給電回路6から入力軸コイル4への電流印加を停止させる。入力軸コイル4が直流電磁石とならないため、入力軸2が回転しても出力軸コイル5には磁力線の変化が生じず、誘導電力は発生しない。これにより、入力軸2はアイドリング回転速度で回転するが、出力軸3は停止したままとなる。   As shown in FIG. 4, when the vehicle is stopped (engine idling), the control circuit 11 releases the lock member 10 to unlock the power transmission between the input shaft 2 and the output shaft 3, and feeds the power supply circuit 6. Current application to the input shaft coil 4 is stopped. Since the input shaft coil 4 does not become a DC electromagnet, even if the input shaft 2 rotates, the output shaft coil 5 does not change the lines of magnetic force, and no inductive power is generated. As a result, the input shaft 2 rotates at the idling rotational speed, but the output shaft 3 remains stopped.

出力軸3が回転していないため、可動片13は径方向内方に位置し、ギャップは広い。   Since the output shaft 3 is not rotating, the movable piece 13 is located radially inward and the gap is wide.

図5に示されるように、車両の発進加速時は、入力軸2はアイドリング回転速度からそれより高い回転速度へと制御される。車両が発進する当初は出力軸3は停止している。制御回路11は、入力軸2と出力軸3との回転速度差が所定値以上であるので、ロック部材10をロックアップ解除にしたまま、給電回路6から入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行う。入力軸コイル4への電流印加により入力軸2の外側ヨーク8の各突起12の先端に磁極を有する直流電磁石が形成される。この直流電磁石が入力軸2と共に回転するので、回転磁界が生じる。この回転磁界により出力軸コイル5に誘導電力が発生する。この誘導電力が取出回路7に取り出されると、入力軸2と出力軸3との間に伝達トルクが発生し、出力軸3が回転磁界に対して連れ回るようになる。   As shown in FIG. 5, when the vehicle starts to accelerate, the input shaft 2 is controlled from an idling rotational speed to a higher rotational speed. When the vehicle starts, the output shaft 3 is stopped. Since the rotational speed difference between the input shaft 2 and the output shaft 3 is equal to or greater than a predetermined value, the control circuit 11 applies a current from the power feeding circuit 6 to the input shaft coil 4 with the lock member 10 being unlocked. At the same time, power is extracted from the output shaft coil 5 to the extraction circuit 7. By applying a current to the input shaft coil 4, a DC electromagnet having a magnetic pole is formed at the tip of each projection 12 of the outer yoke 8 of the input shaft 2. Since this DC electromagnet rotates together with the input shaft 2, a rotating magnetic field is generated. This rotating magnetic field generates induced power in the output shaft coil 5. When this induced power is taken out by the take-out circuit 7, a transmission torque is generated between the input shaft 2 and the output shaft 3, and the output shaft 3 is rotated with respect to the rotating magnetic field.

このような動力の伝達と電力の取り出しの原理は、大型車両に採用されている補助ブレーキのひとつである電磁式リターダと似ている。電磁式リターダでは、制動対象となるシャフトに繋がるリターダドラムで渦電流が発生することで制動が生じ、その渦電流によりリターダドラムに熱が生じる。すなわち、制動エネルギが熱として放出される。本発明では、誘導電力が内部抵抗で消費されずに、取出回路7により取り出される。   The principle of such power transmission and power extraction is similar to that of an electromagnetic retarder that is one of auxiliary brakes used in large vehicles. In the electromagnetic retarder, braking is generated by generating an eddy current in the retarder drum connected to the shaft to be braked, and heat is generated in the retarder drum by the eddy current. That is, braking energy is released as heat. In the present invention, the induction power is extracted by the extraction circuit 7 without being consumed by the internal resistance.

この間、出力軸3の回転速度は、十分に高くないので、可動片13はあまり径方向外方に移動しておらず、ギャップは広い。   During this time, since the rotation speed of the output shaft 3 is not sufficiently high, the movable piece 13 has not moved much in the radial direction and the gap is wide.

入力軸2と出力軸3との回転速度差が十分に大きいときには、ある程度の大きい電力が取出回路7により取り出される。出力軸3の回転速度が高まって入力軸2と出力軸3との回転速度差が減少するに連れて、取り出される電力の大きさも減少する。また、入力軸2と出力軸3との回転速度差が大きいときは、入力軸2と出力軸3との結合力が大きいが、入力軸2と出力軸3との回転速度差が減少してくると、入力軸2と出力軸3との結合力が弱まる。   When the difference in rotational speed between the input shaft 2 and the output shaft 3 is sufficiently large, a certain amount of electric power is extracted by the extraction circuit 7. As the rotational speed of the output shaft 3 increases and the rotational speed difference between the input shaft 2 and the output shaft 3 decreases, the magnitude of the extracted electric power also decreases. Further, when the rotational speed difference between the input shaft 2 and the output shaft 3 is large, the coupling force between the input shaft 2 and the output shaft 3 is large, but the rotational speed difference between the input shaft 2 and the output shaft 3 decreases. If it comes, the coupling force of the input shaft 2 and the output shaft 3 will become weak.

しかし、その反面で出力軸3の回転速度が高まるため、可動片13が径方向外方に移動する。すなわち、図6に示されるように、発進加速から定速運転に移行する加速中に、出力軸3の回転速度の上昇に応じてギャップが狭くなる。ギャップが狭くなることで入力軸2と出力軸3との結合力が強まる。よって、入力軸2と出力軸3との回転速度差が減少しても、ある程度の高い伝達トルクが保持され、電力の大きさもある程度に保持される。   However, on the other hand, since the rotational speed of the output shaft 3 increases, the movable piece 13 moves outward in the radial direction. That is, as shown in FIG. 6, during the acceleration from the start acceleration to the constant speed operation, the gap becomes narrow according to the increase in the rotation speed of the output shaft 3. By reducing the gap, the coupling force between the input shaft 2 and the output shaft 3 is increased. Therefore, even if the rotational speed difference between the input shaft 2 and the output shaft 3 is reduced, a certain level of high transmission torque is maintained, and the magnitude of electric power is also maintained to some extent.

入力軸2と出力軸3との回転速度差がさらに減少してくると、ギャップが狭くなっていても、入力軸2と出力軸3との結合力が弱まる。そこで、入力軸2と出力軸3との回転速度差が所定値未満になると制御の切替を行う。判定に用いる所定値は、入力軸2と出力軸3との結合力や取り出される電力を考慮して実験等により設定するのが好ましい。   If the rotational speed difference between the input shaft 2 and the output shaft 3 further decreases, the coupling force between the input shaft 2 and the output shaft 3 is weakened even if the gap is narrowed. Therefore, when the difference in rotational speed between the input shaft 2 and the output shaft 3 becomes less than a predetermined value, the control is switched. The predetermined value used for the determination is preferably set by an experiment or the like in consideration of the coupling force between the input shaft 2 and the output shaft 3 and the extracted power.

図7に示されるように、定速運転時は、入力軸2と出力軸3との回転速度差が小さい。制御回路11は、入力軸2と出力軸3との回転速度差が所定値未満であれば、ロック部材10をロックアップにし、給電回路6からの電流印加を停止する。ロック部材10では機械的なロックアップを行うが、入力軸2と出力軸3との回転速度差が小さいときにロックアップを行うので、衝撃や摩耗は生じない。   As shown in FIG. 7, the difference in rotational speed between the input shaft 2 and the output shaft 3 is small during constant speed operation. If the rotational speed difference between the input shaft 2 and the output shaft 3 is less than a predetermined value, the control circuit 11 locks up the lock member 10 and stops the current application from the power feeding circuit 6. The lock member 10 performs mechanical lockup. However, since the lockup is performed when the difference in rotational speed between the input shaft 2 and the output shaft 3 is small, no impact or wear occurs.

車両の減速運転時には、車両の速度(出力軸3の回転速度)に応じて3段階で異なる制御が行われる。   When the vehicle is decelerated, different control is performed in three stages according to the speed of the vehicle (the rotational speed of the output shaft 3).

車両が高速のとき、すなわち出力軸3の回転速度が第一所定値以上のとき、可動片13が径方向外方に移動しているので、ギャップが狭い。このとき仮にロック部材10をロックアップ解除にすると、出力軸3の振動の振幅が大きくなるので好ましくない。これを避けるために、制御回路11は、ロック部材10をロックアップに維持し、給電回路6からの電流印加を停止のままとする。車両の減速運転時には、入力軸2はアイドリング回転速度に制御されるので、エンジンブレーキの作用によって出力軸3が減速される。   When the vehicle is at high speed, that is, when the rotational speed of the output shaft 3 is equal to or higher than the first predetermined value, the movable piece 13 moves outward in the radial direction, so the gap is narrow. If the lock member 10 is unlocked at this time, the amplitude of the vibration of the output shaft 3 increases, which is not preferable. In order to avoid this, the control circuit 11 keeps the lock member 10 locked up and keeps the current application from the power supply circuit 6 stopped. When the vehicle is decelerating, the input shaft 2 is controlled to the idling rotational speed, so the output shaft 3 is decelerated by the action of the engine brake.

車両が中速になると、すなわち出力軸3の回転速度が第一所定値未満で第二所定値以上になると、可動片13が径方向内方に移動し、ギャップが広くなる。後に詳しく述べる出力軸3のクリアランスが確保されるので、制御回路11は、ロック部材10をロックアップ解除にし、給電回路6から入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行う。   When the vehicle is at a medium speed, that is, when the rotational speed of the output shaft 3 is less than the first predetermined value and greater than or equal to the second predetermined value, the movable piece 13 moves radially inward and the gap becomes wider. Since the clearance of the output shaft 3 to be described in detail later is secured, the control circuit 11 releases the lock-up member 10 to apply a current from the power supply circuit 6 to the input shaft coil 4 and to take out from the output shaft coil 5. Take out power to 7.

図8に示されるように、入力軸2はアイドリング回転速度に制御される。一方、出力軸3の回転速度は中速である。入力軸コイル4への電流印加により発進加速時と同様、各突起12の先端に磁極を有する直流電磁石が形成される。発進加速時とは異なり、入力軸2の回転速度がアイドリング回転速度であるのに対し、出力軸3の回転速度がそれより高速であるので、入力軸2と出力軸3との間には出力軸3を制動させる伝達トルクが発生する。このようにして、負荷がエンジンにより制動されるエンジンブレーキの状態となり、出力軸3が減速される。減速運転時においても、発進加速時と同様、入力軸2と出力軸3との回転速度差が十分に大きいときには、ある程度の大きい電力が取出回路7により取り出される。   As shown in FIG. 8, the input shaft 2 is controlled to the idling rotational speed. On the other hand, the rotation speed of the output shaft 3 is medium. A DC electromagnet having a magnetic pole at the tip of each projection 12 is formed by applying current to the input shaft coil 4 as in the case of starting acceleration. Unlike the start acceleration, the rotational speed of the input shaft 2 is the idling rotational speed, whereas the rotational speed of the output shaft 3 is higher than that. Therefore, there is no output between the input shaft 2 and the output shaft 3. A transmission torque for braking the shaft 3 is generated. In this way, the engine brake state where the load is braked by the engine is entered, and the output shaft 3 is decelerated. Even during the deceleration operation, when the difference in rotational speed between the input shaft 2 and the output shaft 3 is sufficiently large as in the start acceleration, a certain amount of electric power is extracted by the extraction circuit 7.

車両が低速になると、すなわち出力軸3の回転速度が第二所定値未満になると、入力軸2と出力軸3との回転速度差が小さく、しかも、ギャップが広くなる。このため動力の伝達と電力の取り出しが難しくなる。そこで、制御回路11は、ロック部材10をロックアップにし、給電回路6からの電流印加を停止する。   When the vehicle becomes low speed, that is, when the rotational speed of the output shaft 3 becomes less than the second predetermined value, the rotational speed difference between the input shaft 2 and the output shaft 3 is small, and the gap is widened. This makes it difficult to transmit power and extract power. Therefore, the control circuit 11 locks up the lock member 10 and stops the application of current from the power feeding circuit 6.

車両停止時、発進加速時、定速走行時、減速時(3段階)について、給電、電力取出、ロックアップの各制御状態を表1にまとめる。   Table 1 summarizes the control states of power supply, power extraction, and lock-up when the vehicle is stopped, when starting and accelerating, when traveling at a constant speed, and when decelerating (three stages).

一方、ギャップの変化は次のようになる。   On the other hand, the change of the gap is as follows.

入力軸2の回転速度が高く、出力軸3の回転速度が低いとき、入力軸2と出力軸3の回転速度差が大きいので、発電電力の周波数が高く電力の大きさも大きい。このとき、入力軸2から出力軸3に高い伝達トルクで動力伝達が行われるが、これに伴い、出力軸3の振動の振幅が大きい。すなわち、図9に一点鎖線で示されるように、出力軸3は高い周波数、かつ、大きな振幅で振動する。このように、出力軸3の振動の振幅が大きいため、入力軸2に対する出力軸3のクリアランスを確保するには広いギャップが必要となる。したがって、仮に、ギャップが固定であると、回転速度差が大きいときの出力軸3の振幅から限界が規定される(固定ギャップの限界)。   When the rotational speed of the input shaft 2 is high and the rotational speed of the output shaft 3 is low, the rotational speed difference between the input shaft 2 and the output shaft 3 is large, so the frequency of the generated power is high and the power is large. At this time, power is transmitted from the input shaft 2 to the output shaft 3 with a high transmission torque, and accordingly, the amplitude of vibration of the output shaft 3 is large. That is, as indicated by a one-dot chain line in FIG. 9, the output shaft 3 vibrates with a high frequency and a large amplitude. Thus, since the amplitude of the vibration of the output shaft 3 is large, a wide gap is required to ensure the clearance of the output shaft 3 with respect to the input shaft 2. Therefore, if the gap is fixed, a limit is defined from the amplitude of the output shaft 3 when the rotational speed difference is large (fixed gap limit).

ギャップが固定のままで、出力軸3の回転速度が高くなると、入力軸2と出力軸3との回転速度差が小さくなり、発電電力の周波数が低くなると同時に電力の大きさが小さくなると共に、入力軸2から出力軸3への伝達トルクも低下する。このとき、図9に破線で示されるように、出力軸3は低い周波数、かつ、非常に小さな振幅で振動する。   If the rotational speed of the output shaft 3 increases while the gap remains fixed, the rotational speed difference between the input shaft 2 and the output shaft 3 decreases, and the frequency of the generated power decreases and simultaneously the power decreases. The transmission torque from the input shaft 2 to the output shaft 3 also decreases. At this time, as indicated by a broken line in FIG. 9, the output shaft 3 vibrates with a low frequency and a very small amplitude.

これに対し、出力軸3の回転速度が高くなるにつれてギャップが狭くなるようにすると、出力軸3の回転速度が高くなって入力軸2と出力軸3との回転速度差が小さくなるほどギャップが狭くなり、回転速度差が小さいため発電電力の周波数は低くなるが、ギャップが狭いので電力の大きさはある程度の大きさに確保され、伝達トルクもある程度の大きさに確保される。ただし、ギャップが固定の場合より、伝達トルクが増加した分、出力軸3の振動の振幅が増大するので、図9に実線で示されるように、出力軸3は低い周波数、かつ、やや大きな振幅で振動する。このとき入力軸2に対する出力軸3のクリアランスを確保するには、実線で示したやや大きな振幅を考慮すればよい。これには、固定の場合より狭いギャップで十分であり、出力軸3の振幅からギャップを狭くする限界が規定される(可変ギャップの限界)。よって、可動片13の可動幅が決まる。   On the other hand, if the gap is narrowed as the rotational speed of the output shaft 3 is increased, the rotational speed of the output shaft 3 is increased, and the difference in rotational speed between the input shaft 2 and the output shaft 3 is decreased. Therefore, the frequency of the generated power is low because the difference in rotational speed is small, but since the gap is narrow, the magnitude of the electric power is secured to a certain level, and the transmission torque is also secured to a certain level. However, since the amplitude of the vibration of the output shaft 3 increases as the transmission torque increases as compared with the case where the gap is fixed, the output shaft 3 has a low frequency and a slightly larger amplitude as shown by the solid line in FIG. Vibrate. At this time, in order to secure the clearance of the output shaft 3 with respect to the input shaft 2, a slightly large amplitude shown by a solid line may be considered. For this purpose, a narrow gap is sufficient as compared with the fixed case, and a limit for narrowing the gap is defined from the amplitude of the output shaft 3 (limit of the variable gap). Therefore, the movable width of the movable piece 13 is determined.

以上説明したように、本発明の非接触動力伝達遮断装置1によれば、入力軸2に取り付けられた入力軸コイル4と、入力軸2と同軸に配置された出力軸3に取り付けられた出力軸コイル5と、入力軸コイル4に電流を印加する給電回路6と、出力軸コイル5から誘導電力を取り出す取出回路7とを備えたので、入力軸2と出力軸3とに回転速度差がありさえすれば、入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行うことで、入力軸2と出力軸3間で動力を伝達させることができる。このように、非接触動力伝達遮断装置1は、電磁誘導により入力軸2と出力軸3との間の伝達トルクを得ながら、一部の電力を回収することができる。このとき、非接触動力伝達遮断装置1は、入力軸2と出力軸3とが非接触であるため、衝撃や摩耗がなく、しかも、作動流体が介在しないので伝達損失がない。   As described above, according to the non-contact power transmission cutoff device 1 of the present invention, the input shaft coil 4 attached to the input shaft 2 and the output attached to the output shaft 3 arranged coaxially with the input shaft 2. Since the shaft coil 5, the power feeding circuit 6 that applies current to the input shaft coil 4, and the extraction circuit 7 that extracts the induced power from the output shaft coil 5 are provided, there is a difference in rotational speed between the input shaft 2 and the output shaft 3. If there is, power can be transmitted between the input shaft 2 and the output shaft 3 by applying current to the input shaft coil 4 and extracting power from the output shaft coil 5 to the extraction circuit 7. As described above, the non-contact power transmission cutoff device 1 can recover a part of electric power while obtaining a transmission torque between the input shaft 2 and the output shaft 3 by electromagnetic induction. At this time, since the input shaft 2 and the output shaft 3 are not in contact with each other, the non-contact power transmission cutoff device 1 has no impact or wear, and there is no transmission loss because no working fluid is interposed.

本発明の非接触動力伝達遮断装置1によれば、給電回路6から入力軸コイル4への電流印加を停止しておきさえすれば入力軸2と出力軸3間の動力伝達を遮断することができるので、従来の機械式クラッチのようにクラッチ板をクラッチ断の状態にホールドするためのアクチュエータが不要であり、構成が簡素となる。   According to the non-contact power transmission cutoff device 1 of the present invention, the power transmission between the input shaft 2 and the output shaft 3 can be cut off as long as the current application from the power feeding circuit 6 to the input shaft coil 4 is stopped. Therefore, an actuator for holding the clutch plate in the clutch disengaged state as in the conventional mechanical clutch is unnecessary, and the configuration is simplified.

本発明の非接触動力伝達遮断装置1によれば、入力軸コイル4に磁力線を導くよう入力軸2に取り付けられて出力軸3の外周を覆う外側ヨーク8と、出力軸コイル5に磁力線を導くよう出力軸3に取り付けられて外側ヨーク8に対して内周から臨む内側ヨーク9とを備え、内側ヨーク9は、一部が出力軸3の回転速度の上昇に応じて外側ヨーク8とのギャップが狭まるよう可動に構成される。したがって、車両の発進加速から定速運転に至る過程で、入力軸2と出力軸3の回転速度が近づいたとき、出力軸3の回転速度が高まったことによりギャップが狭くなるので、伝達トルクと電力が維持できる。これにより、出力軸3の振動のクリアランスを確保しつつ、非接触での動力伝達と発電を継続することができる。また、ロック部材10によりロックアップを行う際に、ギャップが固定の場合に比べて入力軸2と出力軸3の回転速度差が極力小さくできるので、衝撃や摩擦を極力小さくすることができる。   According to the non-contact power transmission cutoff device 1 of the present invention, the outer yoke 8 that is attached to the input shaft 2 and covers the outer periphery of the output shaft 3 so as to guide the magnetic lines of force to the input shaft coil 4, and the magnetic lines of force are guided to the output shaft coil 5. And an inner yoke 9 that is attached to the output shaft 3 and faces the outer yoke 8 from the inner periphery, and the inner yoke 9 is partially spaced from the outer yoke 8 in accordance with an increase in the rotational speed of the output shaft 3. It is configured to be movable so as to narrow. Therefore, when the rotational speed of the input shaft 2 and the output shaft 3 approaches in the process from the start acceleration of the vehicle to the constant speed operation, the gap becomes narrow due to the increase of the rotational speed of the output shaft 3, Power can be maintained. As a result, power transmission and power generation in a non-contact manner can be continued while securing a clearance for vibration of the output shaft 3. Further, when the lock-up is performed by the lock member 10, the difference in rotational speed between the input shaft 2 and the output shaft 3 can be minimized as compared with the case where the gap is fixed, so that impact and friction can be minimized.

本発明の非接触動力伝達遮断装置1によれば、入力軸2と出力軸3をロックアップするロック部材10を備えたので、入力軸2と出力軸3との回転速度差が小さく、入力軸2と出力軸3との結合力が弱いときには、入力軸2と出力軸3とをロックアップして動力伝達を継続することができる。このとき、ロック部材10による結合は、従来の機械式クラッチと同様、機械的結合であるが、入力軸2と出力軸3との回転速度差が小さいときにロックアップするので、衝撃や摩擦がない。また、ロック部材10は、衝撃を緩和するための複雑な構成や制御が必要なく、従来の機械式クラッチより簡素な構成及び制御とすることができる。   According to the non-contact power transmission cutoff device 1 of the present invention, since the lock member 10 for locking up the input shaft 2 and the output shaft 3 is provided, the rotational speed difference between the input shaft 2 and the output shaft 3 is small, and the input shaft When the coupling force between 2 and the output shaft 3 is weak, the input shaft 2 and the output shaft 3 can be locked up and power transmission can be continued. At this time, the coupling by the lock member 10 is a mechanical coupling like the conventional mechanical clutch, but locks up when the rotational speed difference between the input shaft 2 and the output shaft 3 is small. Absent. Further, the lock member 10 does not require a complicated configuration or control for reducing the impact, and can be configured and controlled more simply than a conventional mechanical clutch.

本発明の非接触動力伝達遮断装置1によれば、制御回路11は、出力軸3を加速させる際に、入力軸2と出力軸3との回転速度差が所定値以上であれば、ロック部材10をロックアップ解除にし、給電回路6から入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行い、入力軸2と出力軸3との回転速度差が所定値未満であれば、ロック部材10をロックアップにし、給電回路6からの電流印加を停止するようになっているので、電磁誘導による動力伝達とロックアップによる動力伝達とを、それぞれの利点が活用されるよう切り替えて入力軸2と出力軸3間の動力伝達を図ることができる。   According to the non-contact power transmission cutoff device 1 of the present invention, when the control circuit 11 accelerates the output shaft 3, if the rotational speed difference between the input shaft 2 and the output shaft 3 is greater than or equal to a predetermined value, the lock member 10 is unlocked, current is applied from the power supply circuit 6 to the input shaft coil 4 and power is extracted from the output shaft coil 5 to the extraction circuit 7, and the rotational speed difference between the input shaft 2 and the output shaft 3 is reduced. If it is less than the predetermined value, the lock member 10 is locked up, and the current application from the power supply circuit 6 is stopped. Therefore, the power transmission by the electromagnetic induction and the power transmission by the lock-up have respective advantages. The power transmission between the input shaft 2 and the output shaft 3 can be achieved by switching so as to be utilized.

本発明の非接触動力伝達遮断装置1によれば、制御回路11は、出力軸3を減速させる際に、出力軸3の回転速度に応じて異なる動力伝達制御を行うので、出力軸3の回転速度が第一所定値から第二所定値に至る間は電力取出を行うことができる。   According to the non-contact power transmission cutoff device 1 of the present invention, the control circuit 11 performs different power transmission control according to the rotational speed of the output shaft 3 when the output shaft 3 is decelerated. Power can be taken out while the speed reaches from the first predetermined value to the second predetermined value.

本実施形態では、減速運転時にエンジンがアイドリング回転速度に制御されたが、減速運転時にエンジンが停止されてもよい。このようにしても、給電回路6から入力軸コイル4への電流印加を行うと共に出力軸コイル5から取出回路7への電力取出を行うことで、制動が行われる。   In this embodiment, the engine is controlled to the idling rotation speed during the deceleration operation, but the engine may be stopped during the deceleration operation. Even in this case, braking is performed by applying current from the power feeding circuit 6 to the input shaft coil 4 and extracting power from the output shaft coil 5 to the extraction circuit 7.

本実施形態では、非接触動力伝達遮断装置1は、エンジンを原動機とする車両に適用されたが、モータを原動機とする車両にも適用できる。また、非接触動力伝達遮断装置1は、車両に限らず、あらゆる機械の原動機から負荷まで動力を伝達する経路に設置することができる。   In the present embodiment, the non-contact power transmission cutoff device 1 is applied to a vehicle using an engine as a prime mover, but can also be applied to a vehicle using a motor as a prime mover. The non-contact power transmission cutoff device 1 is not limited to a vehicle, and can be installed in a path for transmitting power from a prime mover of any machine to a load.

本実施形態では、入力軸コイル4において、巻線が巻かれる突起12が12箇所に配置されて電磁石のN極とS極が6個ずつ交互に並ぶように構成されたが、入力軸コイル4の個数はいくつでもよい。   In this embodiment, the input shaft coil 4 is configured such that the projections 12 around which the windings are wound are arranged at 12 locations and the N poles and the S poles of the electromagnet are alternately arranged six by six. Any number of can be used.

本実施形態では、出力軸コイル5において、巻線が巻かれる可動片13が入力軸コイル4の突起12と同じく12箇所に配置されたが、出力軸コイル5の可動片13の個数はいくつでもよく、入力軸コイル4の突起12と同じ個数でなくともよい。   In the present embodiment, in the output shaft coil 5, the movable pieces 13 around which the windings are wound are arranged at twelve locations like the protrusions 12 of the input shaft coil 4. The number of protrusions 12 of the input shaft coil 4 is not necessarily the same.

本実施形態では、給電回路6から入力軸コイル4へ電流が印加され、出力軸コイル5から取出回路7へ電力が取り出されるよう構成されたが、給電回路6から出力軸コイル5へ電流が印加され、入力軸コイル4から取出回路7へ電力が取り出されるよう構成されても本発明の効果が得られる。   In the present embodiment, current is applied from the power supply circuit 6 to the input shaft coil 4 and power is extracted from the output shaft coil 5 to the extraction circuit 7. However, current is applied from the power supply circuit 6 to the output shaft coil 5. Even if the power is extracted from the input shaft coil 4 to the extraction circuit 7, the effect of the present invention can be obtained.

1 非接触動力伝達遮断装置
2 入力軸
3 出力軸
4 入力軸コイル
5 出力軸コイル
6 給電回路
7 取出回路
8 外側ヨーク
9 内側ヨーク
10 ロック部材
11 制御回路
12 突起
13 可動片
DESCRIPTION OF SYMBOLS 1 Non-contact power transmission cutoff device 2 Input shaft 3 Output shaft 4 Input shaft coil 5 Output shaft coil 6 Feed circuit 7 Extraction circuit 8 Outer yoke 9 Inner yoke 10 Lock member 11 Control circuit 12 Protrusion 13 Movable piece

Claims (4)

入力軸に取り付けられた入力軸コイルと、
前記入力軸と同軸に配置された出力軸に取り付けられた出力軸コイルと、
前記入力軸コイル及び前記出力軸コイルのいずれか一方に電流を印加する給電回路と、 前記入力軸コイル及び前記出力軸コイルの残りの一方から誘導電力を取り出す取出回路と、
前記入力軸コイルに磁力線を導くよう前記入力軸に取り付けられて前記出力軸の外周を覆う外側ヨークと、
前記出力軸コイルに磁力線を導くよう前記出力軸に取り付けられて前記外側ヨークに対して内周から臨む内側ヨークとを備え、
前記内側ヨークの少なくとも一部が前記出力軸の回転速度の上昇に応じて前記外側ヨークとのギャップが狭まるよう可動に構成されたことを特徴とする非接触動力伝達遮断装置。
An input shaft coil attached to the input shaft;
An output shaft coil attached to an output shaft disposed coaxially with the input shaft;
A power feeding circuit for applying a current to one of the input shaft coil and the output shaft coil, a take-out circuit for extracting induced power from the other one of the input shaft coil and the output shaft coil,
An outer yoke attached to the input shaft to guide the magnetic field lines to the input shaft coil and covering an outer periphery of the output shaft;
An inner yoke attached to the output shaft so as to guide magnetic lines of force to the output shaft coil and facing the outer yoke from the inner periphery;
The non-contact power transmission cutoff device, wherein at least a part of the inner yoke is configured to be movable so that a gap with the outer yoke is narrowed as the rotational speed of the output shaft increases.
前記入力軸と前記出力軸とをロックアップするロック部材を備えたことを特徴とする請求項1記載の非接触動力伝達遮断装置。   The non-contact power transmission cutoff device according to claim 1, further comprising a lock member that locks up the input shaft and the output shaft. 前記入力軸と前記出力軸間の動力伝達を遮断するときは、前記ロック部材をロックアップ解除にし、前記給電回路からの電流印加を停止し、
前記出力軸を加速させるために前記入力軸と前記出力軸間で動力を伝達させるときには、
前記入力軸と前記出力軸との回転速度差が所定値以上であれば、前記ロック部材をロックアップ解除にし、前記給電回路からの電流印加を行うと共に前記取出回路への電力取出を行い、
前記入力軸と前記出力軸との回転速度差が所定値未満であれば、前記ロック部材をロックアップにし、前記給電回路からの電流印加を停止する制御回路を備えたことを特徴とする請求項2記載の非接触動力伝達遮断装置。
When interrupting power transmission between the input shaft and the output shaft, the lock member is unlocked, and the current application from the power supply circuit is stopped,
When transmitting power between the input shaft and the output shaft to accelerate the output shaft,
If the rotational speed difference between the input shaft and the output shaft is greater than or equal to a predetermined value, the lock member is unlocked, the current is applied from the power supply circuit and the power is extracted to the extraction circuit,
The control circuit according to claim 1, further comprising a control circuit configured to lock up the lock member and stop current application from the power feeding circuit when a difference in rotational speed between the input shaft and the output shaft is less than a predetermined value. The non-contact power transmission cutoff device according to 2.
前記制御回路は、前記出力軸を減速させるために前記入力軸と前記出力軸間で動力を伝達させるときには、
前記出力軸の回転速度が第一所定値以上であれば、前記ロック部材をロックアップにし、前記給電回路からの電流印加を停止し、
前記出力軸の回転速度が第一所定値未満で第二所定値(第二所定値<第一所定値)以上であれば、前記ロック部材をロックアップ解除にし、前記給電回路からの電流印加を行うと共に前記取出回路への電力取出を行い、
前記出力軸の回転速度が第二所定値未満であれば、前記ロック部材をロックアップにし、前記給電回路からの電流印加を停止することを特徴とする請求項3記載の非接触動力伝達遮断装置。
When the control circuit transmits power between the input shaft and the output shaft to decelerate the output shaft,
If the rotation speed of the output shaft is equal to or higher than a first predetermined value, the lock member is locked up, and current application from the power feeding circuit is stopped,
If the rotation speed of the output shaft is less than a first predetermined value and greater than or equal to a second predetermined value (second predetermined value <first predetermined value), the lock member is unlocked, and current application from the power feeding circuit is performed. And taking out power to the take-out circuit,
4. The non-contact power transmission cutoff device according to claim 3, wherein when the rotational speed of the output shaft is less than a second predetermined value, the lock member is locked up and current application from the power feeding circuit is stopped. .
JP2011025022A 2011-02-08 2011-02-08 Non-contact power transmission cutoff device Expired - Fee Related JP5630303B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025022A JP5630303B2 (en) 2011-02-08 2011-02-08 Non-contact power transmission cutoff device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025022A JP5630303B2 (en) 2011-02-08 2011-02-08 Non-contact power transmission cutoff device

Publications (2)

Publication Number Publication Date
JP2012165596A JP2012165596A (en) 2012-08-30
JP5630303B2 true JP5630303B2 (en) 2014-11-26

Family

ID=46844396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025022A Expired - Fee Related JP5630303B2 (en) 2011-02-08 2011-02-08 Non-contact power transmission cutoff device

Country Status (1)

Country Link
JP (1) JP5630303B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106712448A (en) * 2015-11-16 2017-05-24 熵零股份有限公司 Energy adjusting method and system applying the energy adjusting method
CN105406687A (en) * 2015-11-26 2016-03-16 安徽沃弗电力科技有限公司 Permanent magnet adjustable-speed motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5313050A (en) * 1976-07-21 1978-02-06 Kitazawa Toshi Variable speed gear
JPS56156420A (en) * 1980-05-02 1981-12-03 Fukuo Shibata Transmission device for motive power of prime mover
JPS5780179U (en) * 1980-10-31 1982-05-18
JP2001017041A (en) * 1999-07-02 2001-01-23 Akebono Brake Ind Co Ltd Braking mechanism for reel supported with bearings at both ends

Also Published As

Publication number Publication date
JP2012165596A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5109904B2 (en) Rotating electric machine
KR101680971B1 (en) Intermesh engagement device
EP1971013A1 (en) Electric motor
US10100893B2 (en) Clutch assembly for coupling an internal combustion engine to a drive train of a motor vehicle and method for dampening torsional vibrations in a drive train of a motor vehicle
JP6847108B2 (en) Clutch system and how to operate the clutch system
US20140028031A1 (en) Power transmission device
JP2001136606A (en) Motive power transfer equipment for vehicle
CN103683645A (en) Eddy current brake for heavy-duty mining dump truck
JP5730839B2 (en) Power transmission device
JP5630303B2 (en) Non-contact power transmission cutoff device
JP2017083016A (en) Clutch system and method of operating clutch system
JP4924077B2 (en) Power transmission device
JP5662213B2 (en) Power transmission device
JP5845584B2 (en) Non-contact power transmission cutoff device
JP2011131760A (en) Power transmission device
JP2010206952A (en) Motor and controller thereof
CN108541294B (en) Brake device for transmission gear
CN105048766B (en) A kind of transmission for electric automobile
JP7144966B2 (en) Rotating electric machine
JP6186943B2 (en) Vehicle drive device
CN106218420A (en) Driven by power used for electric vehicle and flywheel energy storage mixing arrangement and energy storage method thereof
JP2007244060A (en) Vehicle comprising motor
JP2010114959A (en) Power transmitter
JP2014084066A (en) Power transmission device
JP2015178311A (en) Controller for hybrid vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140922

R150 Certificate of patent or registration of utility model

Ref document number: 5630303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees