JP5629463B2 - Internal combustion engine - Google Patents

Internal combustion engine Download PDF

Info

Publication number
JP5629463B2
JP5629463B2 JP2009526502A JP2009526502A JP5629463B2 JP 5629463 B2 JP5629463 B2 JP 5629463B2 JP 2009526502 A JP2009526502 A JP 2009526502A JP 2009526502 A JP2009526502 A JP 2009526502A JP 5629463 B2 JP5629463 B2 JP 5629463B2
Authority
JP
Japan
Prior art keywords
heat insulating
insulating material
internal combustion
combustion engine
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009526502A
Other languages
Japanese (ja)
Other versions
JPWO2009020206A1 (en
Inventor
脇坂 佳史
佳史 脇坂
英雅 小坂
英雅 小坂
三七二 稲吉
三七二 稲吉
堀田 義博
義博 堀田
中北 清己
清己 中北
飯田 晋也
晋也 飯田
佳洋 野村
佳洋 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2009526502A priority Critical patent/JP5629463B2/en
Publication of JPWO2009020206A1 publication Critical patent/JPWO2009020206A1/en
Application granted granted Critical
Publication of JP5629463B2 publication Critical patent/JP5629463B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B77/00Component parts, details or accessories, not otherwise provided for
    • F02B77/02Surface coverings of combustion-gas-swept parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/18Other cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F3/00Pistons 
    • F02F3/10Pistons  having surface coverings
    • F02F3/12Pistons  having surface coverings on piston heads
    • F02F3/14Pistons  having surface coverings on piston heads within combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0603Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head
    • F02B2023/0612Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston at least part of the interior volume or the wall of the combustion space being made of material different from the surrounding piston part, e.g. combustion space formed within a ceramic part fixed to a metal piston head the material having a high temperature and pressure resistance, e.g. ceramic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2251/00Material properties
    • F05C2251/04Thermal properties
    • F05C2251/048Heat transfer

Description

本発明は、内燃機関に関し、特に、内燃機関の燃焼室を形成する母材の少なくとも一部の、燃焼室内に臨む壁面に、断熱膜が形成された内燃機関に関する。   The present invention relates to an internal combustion engine, and more particularly to an internal combustion engine in which a heat insulating film is formed on a wall surface facing at least a part of a base material forming a combustion chamber of the internal combustion engine.

内燃機関の熱効率を向上させるために、内燃機関の燃焼室を形成する母材の少なくとも一部の、燃焼室内に臨む壁面に、断熱膜を形成する技術が提案されている(例えば下記非特許文献1,2)。非特許文献1,2においては、熱伝導率の低いセラミック(ジルコニア)からなる単一材料の断熱膜をピストンの頂面上に形成することで、燃焼室内の燃焼ガスからピストンへの熱伝達を低下させて熱効率の向上を図っている。   In order to improve the thermal efficiency of an internal combustion engine, a technique for forming a heat insulating film on a wall surface facing at least a part of a base material forming a combustion chamber of the internal combustion engine has been proposed (for example, the following non-patent document) 1, 2). In Non-Patent Documents 1 and 2, heat transfer from the combustion gas in the combustion chamber to the piston is achieved by forming a single-material heat insulating film made of ceramic (zirconia) with low thermal conductivity on the top surface of the piston. The thermal efficiency is improved by lowering.

内燃機関のシリンダ内における熱損失Q[W]については、シリンダ内の圧力やガス流に起因する熱伝達係数h[W/(m2・K)]、シリンダ内の表面積A[m2]、シリンダ内のガス温度Tg[K]、及びシリンダ内に面する(シリンダ内の燃焼ガスと接触する)壁面の温度Twall[K]を用いて、以下の(1)式で表すことができる。Regarding the heat loss Q [W] in the cylinder of the internal combustion engine, the heat transfer coefficient h [W / (m 2 · K)] due to the pressure and gas flow in the cylinder, the surface area A [m 2 ] in the cylinder, Using the gas temperature Tg [K] in the cylinder and the temperature Twall [K] of the wall surface facing the cylinder (in contact with the combustion gas in the cylinder), it can be expressed by the following equation (1).

Q=A×h×(Tg−Twall) (1)   Q = A × h × (Tg−Twall) (1)

内燃機関のサイクルにおいては、シリンダ内ガス温度Tgが時々刻々変化するが、壁面温度Twallをシリンダ内ガス温度Tgに追従させるよう時々刻々変化させることで、(1)式における(Tg−Twall)の値を小さくすることができ、熱損失Qを低減することができる。   In the cycle of the internal combustion engine, the in-cylinder gas temperature Tg changes from moment to moment, but by changing the wall surface temperature Twall from moment to moment so as to follow the in-cylinder gas temperature Tg, (Tg−Twall) in the equation (1) The value can be reduced, and the heat loss Q can be reduced.

壁面温度Twallをシリンダ内ガス温度Tgに追従させるよう変化させるためには、燃焼室内に臨む壁面に形成する断熱膜については、熱伝導率及び単位体積あたりの熱容量が低いことが望ましい。ただし、セラミック(例えばジルコニア)からなる単一材料の断熱膜を燃焼室内に臨む壁面に形成しても、熱伝導率及び単位体積あたりの熱容量の低さが不十分である。その結果、壁面温度Twallのシリンダ内ガス温度Tgへの追従性が低下し、熱損失Qの低減効果も不十分となる。   In order to change the wall surface temperature Twall to follow the in-cylinder gas temperature Tg, it is desirable that the heat insulating film formed on the wall surface facing the combustion chamber has a low thermal conductivity and a heat capacity per unit volume. However, even if a single material heat insulating film made of ceramic (for example, zirconia) is formed on the wall surface facing the combustion chamber, the low thermal conductivity and heat capacity per unit volume are insufficient. As a result, the followability of the wall surface temperature Twall to the in-cylinder gas temperature Tg is lowered, and the effect of reducing the heat loss Q is insufficient.

セラミック(例えばジルコニア)よりも低い熱伝導率及び単位体積あたりの熱容量を有する単一材料は存在するが、例えば樹脂や発泡体のように耐熱性及び強度の低い材料が多く、内燃機関のシリンダ内のように高温・高速のガス流や高圧力に耐えうるような耐熱性及び強度を持たない。   There are single materials that have lower thermal conductivity and heat capacity per unit volume than ceramics (for example, zirconia), but there are many materials with low heat resistance and strength, such as resin and foam, for example, in cylinders of internal combustion engines. It does not have heat resistance and strength that can withstand high temperature and high speed gas flow and high pressure.

国際公開第89/03930号パンフレットInternational Publication No. 89/03930 Pamphlet 米国特許第4495907号明細書US Pat. No. 4,495,907 米国特許第5820976号明細書US Pat. No. 5,820,976 Gerhard Woschni他,"Heat Insulation of Combustion Chamber Walls - A Measure to Decrease the Fuel Combustion of I.C. Engines?",SAE Paper 870339,Society of Automotive Engineers,1987Gerhard Woschni et al., "Heat Insulation of Combustion Chamber Walls-A Measure to Decrease the Fuel Combustion of I.C.Engines?", SAE Paper 870339, Society of Automotive Engineers, 1987 Victor W.Wong他,"Assessment of Thin Thermal Barrier Coatings for I.C. Engines",SAE Paper 950980,Society of Automotive Engineers,1995Victor W. Wong et al., “Assessment of Thin Thermal Barrier Coatings for I.C. Engines”, SAE Paper 950980, Society of Automotive Engineers, 1995

本発明に係る内燃機関は、燃焼室壁面温度のシリンダ内ガス温度への追従性を向上させることで、熱効率を向上させることを目的とする。   The internal combustion engine which concerns on this invention aims at improving thermal efficiency by improving the followable | trackability to the gas temperature in a cylinder of combustion chamber wall surface temperature.

本発明に係る内燃機関では、燃焼室を形成する母材の少なくとも一部の、燃焼室内に臨む壁面に、断熱膜が形成されている。前記断熱膜は、第1の断熱材及び第2の断熱材を含み、第2の断熱材は、ジルコニア、シリコン、チタン、ジルコニウム、セラミック、セラミック繊維、またはこれら複数の組み合わせである。第1の断熱材は、母材よりも低い熱伝導率及び母材よりも低い単位体積あたりの熱容量を有し、第2の断熱材は、母材以下の熱伝導率を有し、第1の断熱材を燃焼室内の燃焼ガスから保護するための断熱材であり、第1の断熱材は、第2の断熱材よりも低い熱伝導率及び第2の断熱材よりも低い単位体積あたりの熱容量を有することが好適である。第1の断熱材は、中空のセラミックビーズ、中空のガラスビーズ、微細多孔構造の断熱材、シリカエアロゲル、またはこれら複数の組み合わせであることが好適である。前記断熱膜は、内燃機関のサイクルにおいて燃焼室壁面温度を550℃以上の幅で変動させることが可能である。また、前記断熱膜は、内燃機関のサイクルにおいて燃焼室壁面温度を200℃以上の幅で変動させることが可能である。さらに、前記断熱膜は、内燃機関のサイクルにおいて燃焼室壁面温度を650℃以下の幅で変動させることが可能である In an internal combustion engine according to the present invention, at least a portion of the base material forming the combustion chamber, the wall surface facing the combustion chamber, the heat insulating film is formed. The heat insulating film includes a first heat insulating material and a second heat insulating material, and the second heat insulating material is zirconia, silicon, titanium, zirconium, ceramic, ceramic fiber, or a combination thereof. The first heat insulating material has a thermal conductivity lower than that of the base material and a heat capacity per unit volume lower than that of the base material, the second heat insulating material has a heat conductivity equal to or lower than the base material, and The first heat insulating material is lower in thermal conductivity than the second heat insulating material and lower in unit volume than the second heat insulating material. It is preferable to have a heat capacity. The first heat insulating material is preferably a hollow ceramic bead, a hollow glass bead, a fine porous heat insulating material, a silica airgel, or a combination of these. The heat insulating film can vary the temperature of the combustion chamber wall in a cycle of 550 ° C. or more in the cycle of the internal combustion engine. Further, the heat insulating film can change the combustion chamber wall surface temperature within a range of 200 ° C. or more in the cycle of the internal combustion engine. Further, the heat insulating film can change the temperature of the combustion chamber wall with a width of 650 ° C. or less in the cycle of the internal combustion engine .

本発明によれば、第2の断熱材により第1の断熱材を燃焼室内の燃焼ガスから保護することで、第1の断熱材については、燃焼室内の燃焼ガスに対する耐熱性及び耐圧性の制約を受けることなく、熱伝導率及び単位体積あたりの熱容量が十分低い断熱材料を選択することができ、断熱膜全体での熱伝導率及び単位体積あたりの熱容量も十分に低くすることができる。その結果、燃焼室壁面温度のシリンダ内ガス温度への追従性を向上させることができ、内燃機関の熱効率を向上させることができる。なお、第1の断熱材については、1種類の断熱材により構成することもできるし、複数種類の断熱材により構成することもできる。そして、第2の断熱材についても、1種類の断熱材により構成することもできるし、複数種類の断熱材により構成することもできる。   According to the present invention, the first heat insulating material is protected from the combustion gas in the combustion chamber by the second heat insulating material, so that the heat resistance and pressure resistance of the first heat insulating material against the combustion gas in the combustion chamber are limited. Therefore, a heat insulating material having a sufficiently low thermal conductivity and a heat capacity per unit volume can be selected, and a heat conductivity and a heat capacity per unit volume in the entire heat insulating film can be sufficiently reduced. As a result, the followability of the combustion chamber wall temperature to the cylinder gas temperature can be improved, and the thermal efficiency of the internal combustion engine can be improved. In addition, about a 1st heat insulating material, it can also be comprised by 1 type of heat insulating material, and can also be comprised by multiple types of heat insulating material. And also about a 2nd heat insulating material, it can also be comprised by one type of heat insulating material, and can also be comprised by multiple types of heat insulating material.

本発明の一態様では、第1の断熱材が第2の断熱材の内部に混入されていることが好適である。この態様では、内部に第1の断熱材が混入された第2の断熱材は、繊維状に形成されており、該繊維状に形成された第2の断熱材が、前記壁面上に多数敷き詰められていることが好適である。また、この態様では、第1の断熱材の混入割合が第2の断熱材の内部の位置に応じて異なることが好適である。また、この態様では、第1の断熱材が第2の断熱材の内部に規則的に配列されていることが好適である。また、この態様では、第1の断熱材は、中空構造を有する断熱材であることが好適であり、さらに、第1の断熱材が複数層構造を有することが好適である。   In one embodiment of the present invention, it is preferable that the first heat insulating material is mixed in the second heat insulating material. In this aspect, the second heat insulating material in which the first heat insulating material is mixed is formed in a fiber shape, and a large number of second heat insulating materials formed in the fiber shape are spread on the wall surface. It is preferred that Moreover, in this aspect, it is preferable that the mixing ratio of the first heat insulating material varies depending on the position inside the second heat insulating material. In this embodiment, it is preferable that the first heat insulating material is regularly arranged inside the second heat insulating material. In this embodiment, the first heat insulating material is preferably a heat insulating material having a hollow structure, and further, the first heat insulating material preferably has a multi-layer structure.

本発明の一態様では、第1の断熱材が前記壁面上に形成されており、第2の断熱材が第1の断熱材を覆うように第1の断熱材上に形成されていることが好適である。ここでは、第1の断熱材を前記壁面に直接接合もしくはコーティングすることもできるし、第1の断熱材を前記壁面に接着層等の中間層を介して接合もしくはコーティングすることもできる。また、第2の断熱材を第1の断熱材に直接接合もしくはコーティングすることもできるし、第2の断熱材を第1の断熱材に接着層等の中間層を介して接合もしくはコーティングすることもできる。この態様では、第2の断熱材に、第1の断熱材側へ突出した突出部が設けられていることが好適である。   In one aspect of the present invention, the first heat insulating material is formed on the wall surface, and the second heat insulating material is formed on the first heat insulating material so as to cover the first heat insulating material. Is preferred. Here, the first heat insulating material can be directly bonded or coated on the wall surface, and the first heat insulating material can be bonded or coated on the wall surface via an intermediate layer such as an adhesive layer. In addition, the second heat insulating material can be directly bonded or coated to the first heat insulating material, or the second heat insulating material can be bonded or coated to the first heat insulating material via an intermediate layer such as an adhesive layer. You can also. In this aspect, it is preferable that the second heat insulating material is provided with a protruding portion that protrudes toward the first heat insulating material.

本発明の一態様では、第2の断熱材は、その内部に第1の断熱材を内包する殻状の断熱材であることが好適である。   In one embodiment of the present invention, the second heat insulating material is preferably a shell-shaped heat insulating material containing the first heat insulating material therein.

本発明の一態様では、断熱膜の厚さ方向において第1の断熱材と第2の断熱材とが交互に配置されていることが好適である。   In one embodiment of the present invention, it is preferable that the first heat insulating material and the second heat insulating material are alternately arranged in the thickness direction of the heat insulating film.

本発明の一態様では、第2の断熱材の耐熱温度が、第1の断熱材の耐熱温度よりも高いことが好適である。また、本発明の一態様では、第2の断熱材の強度が、第1の断熱材の強度よりも高いことが好適である。   In one embodiment of the present invention, it is preferable that the heat resistance temperature of the second heat insulating material is higher than the heat resistance temperature of the first heat insulating material. In one embodiment of the present invention, it is preferable that the strength of the second heat insulating material is higher than the strength of the first heat insulating material.

本発明の一態様では、第2の断熱材は、母材よりも低い熱伝導率を有し且つ母材よりも低いまたは母材とほぼ同等の単位体積あたりの熱容量を有することが好適である。   In one embodiment of the present invention, it is preferable that the second heat insulating material has a thermal conductivity lower than that of the base material and a heat capacity per unit volume lower than or substantially equal to that of the base material. .

また、本発明の参考例に係る内燃機関は、内燃機関の燃焼室を形成する母材の少なくとも一部の、燃焼室内に臨む壁面に、断熱膜が形成された内燃機関であって、前記断熱膜は、母材よりも低い熱伝導率を有し且つ母材よりも低いまたは母材とほぼ同等の単位体積あたりの熱容量を有する材料の内部に気泡が多数形成された断熱材を含んで構成されていることを要旨とする。 An internal combustion engine according to a reference example of the present invention is an internal combustion engine in which a heat insulating film is formed on a wall surface facing the combustion chamber of at least a part of a base material forming the combustion chamber of the internal combustion engine. The film includes a heat insulating material in which a large number of bubbles are formed inside a material having a thermal conductivity lower than that of the base material and a heat capacity per unit volume lower than that of the base material or substantially equivalent to that of the base material. It is a summary.

本発明によれば、断熱膜全体での熱伝導率及び単位体積あたりの熱容量を十分に低くすることができるので、燃焼室壁面温度のシリンダ内ガス温度への追従性を向上させることができ、内燃機関の熱効率を向上させることができる。   According to the present invention, the thermal conductivity of the entire heat insulating film and the heat capacity per unit volume can be sufficiently lowered, so that the followability of the combustion chamber wall surface temperature to the gas temperature in the cylinder can be improved, The thermal efficiency of the internal combustion engine can be improved.

本発明の実施形態に係る内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine according to an embodiment of the present invention. 断熱用薄膜20の構成例を示す図である。It is a figure which shows the structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱材21の構成例を示す図である。It is a figure which shows the structural example of the heat insulating material. 断熱材21の他の構成例を示す図である。It is a figure which shows the other structural example of the heat insulating material. 燃焼室壁面温度Twallをクランク角に対して変化させた場合の波形の例を示す図である。It is a figure which shows the example of a waveform at the time of changing the combustion chamber wall surface temperature Twall with respect to a crank angle. 燃焼室壁面温度Twallのスイング幅ΔTを変化させた場合の燃費改善効果を調べた計算結果を示す図である。It is a figure which shows the calculation result which investigated the fuel consumption improvement effect at the time of changing the swing width | variety (DELTA) T of the combustion chamber wall surface temperature Twall. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の厚さt1を変化させながら、1サイクルにおける燃焼室壁面温度Twallの変化を調べた計算結果を示す図である。It is a figure which shows the calculation result which investigated the change of the combustion chamber wall surface temperature Twall in 1 cycle, changing the thickness t1 of the thin film 20 for heat insulation. 断熱用薄膜20の厚さt1に対する燃焼室壁面温度Twallのスイング幅ΔTの特性を示す図である。It is a figure which shows the characteristic of the swing width | variety (DELTA) T of the combustion chamber wall surface temperature Twall with respect to thickness t1 of the thin film 20 for heat insulation. 断熱用薄膜(単一材料)の厚さt0を変化させながら、1サイクルにおける燃焼室壁面温度Twallの変化を調べた計算結果を示す図である。It is a figure which shows the calculation result which investigated the change of the combustion chamber wall surface temperature Twall in 1 cycle, changing thickness t0 of the thin film for heat insulation (single material). 断熱用薄膜(単一材料)の厚さt0に対する燃焼室壁面温度Twallのスイング幅ΔTの特性を示す図である。It is a figure which shows the characteristic of the swing width | variety (DELTA) T of the combustion chamber wall surface temperature Twall with respect to thickness t0 of the thin film for heat insulation (single material). 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱材21の厚さt2を変化させながら、1サイクルにおける燃焼室壁面温度Twallの変化を調べた計算結果を示す図である。It is a figure which shows the calculation result which investigated the change of the combustion chamber wall surface temperature in one cycle, changing the thickness t2 of the heat insulating material. 断熱材21の厚さt2に対する燃焼室壁面温度Twallのスイング幅ΔTの特性を示す図である。It is a figure which shows the characteristic of the swing width | variety (DELTA) T of the combustion chamber wall surface temperature Twall with respect to thickness t2 of the heat insulating material. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation. 断熱用薄膜20の他の構成例を示す図である。It is a figure which shows the other structural example of the thin film 20 for heat insulation.

以下、本発明の好適な実施形態を図面に従って説明する。   Preferred embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の実施形態に係る内燃機関1の概略構成を示す図であり、シリンダ11の軸線方向と直交する方向から見た内部構成の概略を示す。内燃機関(エンジン)1は、シリンダブロック9及びシリンダヘッド10を備え、シリンダブロック9及びシリンダヘッド10によりシリンダ11を形成する。シリンダ11内には、その軸線方向に往復運動するピストン12が収容されている。ピストン12の頂面12a、シリンダブロック9の内壁面9a、及びシリンダヘッド10の下面10aに囲まれた空間は、燃焼室13を形成する。シリンダヘッド10には、燃焼室13に連通する吸気ポート14、及び燃焼室13に連通する排気ポート15が形成されている。さらに、吸気ポート14と燃焼室13との境界を開閉する吸気弁16、及び排気ポート15と燃焼室13との境界を開閉する排気弁17が設けられている。シリンダブロック9には、冷却水ジャケット18が形成されており、冷却水ジャケット18に冷却水が供給されることで、内燃機関1の冷却が行われる。   FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine 1 according to an embodiment of the present invention, and shows an outline of an internal configuration viewed from a direction orthogonal to the axial direction of a cylinder 11. The internal combustion engine (engine) 1 includes a cylinder block 9 and a cylinder head 10, and a cylinder 11 is formed by the cylinder block 9 and the cylinder head 10. A piston 12 that reciprocates in the axial direction is accommodated in the cylinder 11. A space surrounded by the top surface 12 a of the piston 12, the inner wall surface 9 a of the cylinder block 9, and the lower surface 10 a of the cylinder head 10 forms a combustion chamber 13. An intake port 14 that communicates with the combustion chamber 13 and an exhaust port 15 that communicates with the combustion chamber 13 are formed in the cylinder head 10. Further, an intake valve 16 that opens and closes the boundary between the intake port 14 and the combustion chamber 13 and an exhaust valve 17 that opens and closes the boundary between the exhaust port 15 and the combustion chamber 13 are provided. A cooling water jacket 18 is formed in the cylinder block 9, and cooling of the internal combustion engine 1 is performed by supplying cooling water to the cooling water jacket 18.

なお、図1では、説明の便宜上、燃料噴射弁や点火栓等の構成の図示を省略しているが、本実施形態に係る内燃機関1は、ディーゼルエンジン等の圧縮自着火式内燃機関であってもよいし、ガソリンエンジン等の火花点火式内燃機関であってもよい。圧縮自着火式内燃機関の場合は、例えばピストン12が圧縮上死点付近に位置するときに燃料噴射弁から燃焼室13内に燃料を噴射することで、燃焼室13内の燃料が自着火して燃焼する。火花点火式内燃機関の場合は、点火時期にて点火栓の火花放電により燃焼室13内の混合気に点火することで、燃焼室13内の混合気を火炎伝播燃焼させる。燃焼室13内の燃焼ガスは、排気行程にて排気ポート15へ排出される。   In FIG. 1, for convenience of explanation, illustration of configurations of a fuel injection valve, a spark plug, and the like is omitted, but the internal combustion engine 1 according to the present embodiment is a compression self-ignition internal combustion engine such as a diesel engine. It may be a spark ignition type internal combustion engine such as a gasoline engine. In the case of a compression self-ignition internal combustion engine, for example, when the piston 12 is located near the compression top dead center, the fuel in the combustion chamber 13 is self-ignited by injecting fuel into the combustion chamber 13 from the fuel injection valve. And burn. In the case of a spark ignition type internal combustion engine, the air-fuel mixture in the combustion chamber 13 is ignited by flame propagation by igniting the air-fuel mixture in the combustion chamber 13 by spark discharge of the spark plug at the ignition timing. The combustion gas in the combustion chamber 13 is discharged to the exhaust port 15 in the exhaust stroke.

本実施形態では、燃焼室13を形成する母材の少なくとも一部の、燃焼室13内に臨む(面する)壁面上には、燃焼室13内の燃焼ガスから母材への伝熱を抑制するための断熱用薄膜20が形成されている。ここでは、燃焼室13を形成する母材として、シリンダブロック(シリンダライナ)9、シリンダヘッド10、ピストン12、吸気弁16、及び排気弁17を挙げることができる。そして、燃焼室13内に臨む壁面として、シリンダブロック内壁面(シリンダライナ内壁面)9a、シリンダヘッド下面10a、ピストン頂面12a、吸気弁頂面(傘部底面)16a、及び排気弁頂面(傘部底面)17aのいずれか1つ以上を挙げることができる。図1では、シリンダブロック内壁面9a、シリンダヘッド下面10a、ピストン頂面12a、吸気弁頂面16a、及び排気弁頂面17aの各々に断熱用薄膜20を形成した例を示している。ただし、必ずしもシリンダブロック内壁面9a、シリンダヘッド下面10a、ピストン頂面12a、吸気弁頂面16a、及び排気弁頂面17aのすべてに断熱用薄膜20を形成する必要はない。つまり、断熱用薄膜20については、シリンダブロック内壁面9a、シリンダヘッド下面10a、ピストン頂面12a、吸気弁頂面16a、及び排気弁頂面17aのいずれか1つ以上に形成することができる。   In the present embodiment, heat transfer from the combustion gas in the combustion chamber 13 to the base material is suppressed on the wall surface facing (facing) the combustion chamber 13 of at least a part of the base material forming the combustion chamber 13. A heat insulating thin film 20 is formed. Here, examples of the base material forming the combustion chamber 13 include a cylinder block (cylinder liner) 9, a cylinder head 10, a piston 12, an intake valve 16, and an exhaust valve 17. And, as wall surfaces facing the combustion chamber 13, a cylinder block inner wall surface (cylinder liner inner wall surface) 9a, a cylinder head lower surface 10a, a piston top surface 12a, an intake valve top surface (umbrella bottom surface) 16a, and an exhaust valve top surface ( Any one or more of the umbrella bottom surface 17a can be mentioned. FIG. 1 shows an example in which a heat insulating thin film 20 is formed on each of the cylinder block inner wall surface 9a, the cylinder head lower surface 10a, the piston top surface 12a, the intake valve top surface 16a, and the exhaust valve top surface 17a. However, it is not always necessary to form the heat insulating thin film 20 on the cylinder block inner wall surface 9a, the cylinder head lower surface 10a, the piston top surface 12a, the intake valve top surface 16a, and the exhaust valve top surface 17a. That is, the heat insulating thin film 20 can be formed on any one or more of the cylinder block inner wall surface 9a, the cylinder head lower surface 10a, the piston top surface 12a, the intake valve top surface 16a, and the exhaust valve top surface 17a.

さらに、本実施形態では、断熱用薄膜20は、熱伝導率及び単位体積あたりの熱容量の両方がそれぞれ異なる複数種類の断熱材を含んで構成されている。複数種類の断熱材の各々は、母材以下の熱伝導率を有し、且つ母材よりも低いまたは母材とほぼ同等の単位体積あたりの熱容量を有する。以下、断熱用薄膜20の構成例について説明する。   Furthermore, in the present embodiment, the heat insulating thin film 20 is configured to include a plurality of types of heat insulating materials that are different in both thermal conductivity and heat capacity per unit volume. Each of the plurality of types of heat insulating materials has a thermal conductivity equal to or lower than that of the base material, and has a heat capacity per unit volume lower than or substantially equal to that of the base material. Hereinafter, a configuration example of the heat insulating thin film 20 will be described.

「実施例1」
図2は、断熱用薄膜20の構成例を示す断面図である。図2に示す構成例(実施例1)では、燃焼室13を形成する母材30の、燃焼室13内に臨む壁面30a上に形成された断熱用薄膜20は、粒状に形成された多数の断熱材(第1の断熱材)21と、膜状に形成された断熱材(第2の断熱材)22と、を含んで構成されている。ここでの母材30は、シリンダブロック(シリンダライナ)9であってもよいし、シリンダヘッド10であってもよいし、ピストン12であってもよいし、吸気弁16であってもよいし、排気弁17であってもよい。つまり、母材30の壁面30aは、シリンダブロック内壁面(シリンダライナ内壁面)9aであってもよいし、シリンダヘッド下面10aであってもよいし、ピストン頂面12aであってもよいし、吸気弁頂面16aであってもよいし、排気弁頂面17aであってもよい。
"Example 1"
FIG. 2 is a cross-sectional view illustrating a configuration example of the heat insulating thin film 20. In the configuration example (Example 1) shown in FIG. 2, the heat insulating thin film 20 formed on the wall surface 30 a facing the combustion chamber 13 of the base material 30 forming the combustion chamber 13 is formed in a number of granular shapes. A heat insulating material (first heat insulating material) 21 and a heat insulating material (second heat insulating material) 22 formed in a film shape are included. The base material 30 here may be a cylinder block (cylinder liner) 9, a cylinder head 10, a piston 12, or an intake valve 16. The exhaust valve 17 may be used. That is, the wall surface 30a of the base material 30 may be a cylinder block inner wall surface (cylinder liner inner wall surface) 9a, a cylinder head lower surface 10a, or a piston top surface 12a. It may be the intake valve top surface 16a or the exhaust valve top surface 17a.

断熱材22は、母材30以下の(あるいは母材30よりも低い)熱伝導率を有し、且つ母材30よりも低いまたは母材30とほぼ同等の単位体積あたりの熱容量を有する。一方、断熱材21は、母材30よりも低い熱伝導率及び母材30よりも低い単位体積あたりの熱容量を有し、さらに、断熱材22よりも低い熱伝導率及び断熱材22よりも低い単位体積あたりの熱容量を有する。断熱材22は、母材30の壁面30a上にコーティングもしくは接合されており、燃焼室13内の燃焼ガスと接触する。断熱材22は、燃焼室13内の高温及び高圧の燃焼ガスに対する耐熱性及び耐圧性を有しており、断熱材21よりも高い耐熱温度を有し、且つ断熱材21よりも高い強度を有する。一方、多数の断熱材21は、断熱材22の内部に混入されていることで、燃焼室13内の燃焼ガスとは接触しない。ここでの断熱材22は、燃焼室13内の燃焼ガスから母材30への伝熱を抑制する機能の他に、断熱材21を燃焼室13内の高温及び高圧の燃焼ガスから保護する保護材としての機能も有する。さらに、断熱材22は、多数の断熱材21をつなぐ接着材としての機能も有する。一方、断熱材21は、断熱用薄膜20全体での熱伝導率及び単位体積あたりの熱容量を下げる機能を有する。なお、図2では図示を省略しているが、断熱用薄膜20(断熱材22)と母材30との間には、断熱用薄膜20(断熱材22)と母材30との接合やコーティングを強固にするための薄い中間材が形成されていても構わない。断熱用薄膜20と母材30との接合やコーティングを強固にするための手法としては、物質同士の結合を強化することや、断熱用薄膜20と母材30の熱膨張率を同等にして熱衝撃による剥離を防ぐことが考えられる。したがって、中間材としては、断熱用薄膜20と母材30との結合を強化するための中間材や、断熱用薄膜20と母材30との線膨張率差を緩和するような中間材を用いることが好ましい。また、中間材は、断熱材21または断熱材22と同程度の熱伝導率及び単位体積あたりの熱容量を有することが好ましい。また、図2では、断熱用薄膜20(断熱材22)の表面が平滑化された状態で断熱材21が断熱材22の内部に多数混入された例を示しているが、例えば図3Aに示すように、断熱用薄膜20(断熱材22)の表面に若干の凹凸が生じる状態で断熱材21が断熱材22の内部に混入されていても構わない。   The heat insulating material 22 has a thermal conductivity equal to or lower than that of the base material 30 (or lower than that of the base material 30), and has a heat capacity per unit volume lower than that of the base material 30 or substantially equivalent to that of the base material 30. On the other hand, the heat insulating material 21 has a thermal conductivity lower than that of the base material 30 and a heat capacity per unit volume lower than that of the base material 30, and is lower than that of the heat insulating material 22 and lower than that of the heat insulating material 22. It has a heat capacity per unit volume. The heat insulating material 22 is coated or joined on the wall surface 30 a of the base material 30 and comes into contact with the combustion gas in the combustion chamber 13. The heat insulating material 22 has heat resistance and pressure resistance against high temperature and high pressure combustion gas in the combustion chamber 13, has a heat resistant temperature higher than that of the heat insulating material 21, and has higher strength than the heat insulating material 21. . On the other hand, the large number of heat insulating materials 21 are mixed in the heat insulating material 22 so that they do not come into contact with the combustion gas in the combustion chamber 13. The heat insulating material 22 here protects the heat insulating material 21 from the high temperature and high pressure combustion gas in the combustion chamber 13 in addition to the function of suppressing the heat transfer from the combustion gas in the combustion chamber 13 to the base material 30. It also has a function as a material. Furthermore, the heat insulating material 22 also has a function as an adhesive material that connects many heat insulating materials 21. On the other hand, the heat insulating material 21 has a function of lowering the thermal conductivity and the heat capacity per unit volume in the entire heat insulating thin film 20. In addition, although illustration is abbreviate | omitted in FIG. 2, between thin film 20 for heat insulation (heat insulation material 22) and the base material 30, joining and coating of the thin film 20 for heat insulation (heat insulation material 22) and the base material 30 are carried out. A thin intermediate material for strengthening may be formed. As a technique for strengthening the bonding and coating between the heat insulating thin film 20 and the base material 30, it is possible to reinforce the bonding between substances, or to make the thermal expansion coefficient of the heat insulating thin film 20 and the base material 30 equal to each other. It is conceivable to prevent peeling due to impact. Therefore, as the intermediate material, an intermediate material for strengthening the bond between the heat insulating thin film 20 and the base material 30 or an intermediate material that reduces the difference in linear expansion coefficient between the heat insulating thin film 20 and the base material 30 is used. It is preferable. Moreover, it is preferable that an intermediate material has a thermal conductivity comparable as the heat insulating material 21 or the heat insulating material 22, and the heat capacity per unit volume. 2 shows an example in which a large number of heat insulating materials 21 are mixed inside the heat insulating material 22 in a state where the surface of the heat insulating thin film 20 (heat insulating material 22) is smoothed, for example, as shown in FIG. 3A. As described above, the heat insulating material 21 may be mixed in the heat insulating material 22 in a state where some unevenness is generated on the surface of the heat insulating thin film 20 (heat insulating material 22).

断熱材22の具体例としては、例えばジルコニア(ZrO2)、シリコン、チタン、またはジルコニウム等の中実のセラミックや、炭素・酸素・珪素等を含んだ有機珪素化合物、または高強度且つ高耐熱性のセラミック繊維等を挙げることができる。さらに、これらの材料を複数組み合わせて断熱材22に用いることもできる。セラミック(ジルコニア)においては、熱伝導率λは2.5[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは2500×103[J/(m3・K)]程度であり、耐熱温度Tmは2700[℃]程度であり、強度(曲げ強度)σは1470[MPa]程度である。ここでのセラミックについては、ジルコニアの他に、コージェライト(熱伝導率λは4[W/(m・K)]程度、単位体積あたりの熱容量ρCは1900×103[J/(m3・K)]程度)も用いることができ、さらに、アルミナ系や窒化珪素系のセラミックも一部混合して用いることができる。また、ここでのセラミック繊維については、例えばシリコン、チタンまたはジルコニウムを含んで構成することができ、熱伝導率λは2.5[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは1600×103[J/(m3・K)]程度であり、耐熱温度Tmは1300[℃]程度であり、強度(引張強度)σは3300[MPa]程度である。Specific examples of the heat insulating material 22 include, for example, a solid ceramic such as zirconia (ZrO 2 ), silicon, titanium, or zirconium, an organic silicon compound containing carbon, oxygen, silicon, or the like, or high strength and high heat resistance. And ceramic fibers. Further, a plurality of these materials can be used in combination for the heat insulating material 22. In ceramic (zirconia), the thermal conductivity λ is about 2.5 [W / (m · K)], and the heat capacity ρC per unit volume is about 2500 × 10 3 [J / (m 3 · K)]. The heat resistance temperature Tm is about 2700 [° C.], and the strength (bending strength) σ is about 1470 [MPa]. Regarding ceramics here, in addition to zirconia, cordierite (thermal conductivity λ is about 4 [W / (m · K)], and heat capacity ρC per unit volume is 1900 × 10 3 [J / (m 3 · K)] grade) can also be used, and alumina-based or silicon nitride-based ceramics can also be partially mixed and used. In addition, the ceramic fiber here may be configured to include, for example, silicon, titanium, or zirconium, and the thermal conductivity λ is about 2.5 [W / (m · K)], and is per unit volume. The heat capacity ρC is about 1600 × 10 3 [J / (m 3 · K)], the heat resistance temperature Tm is about 1300 [° C.], and the strength (tensile strength) σ is about 3300 [MPa].

一方、断熱材21の具体例としては、例えば中空のセラミックビーズ、中空のガラスビーズ、シリカ(二酸化珪素、SiO2)を主成分とする微細多孔構造の断熱材、またはシリカエアロゲル等を挙げることができる。さらに、これらの材料を複数組み合わせて断熱材21に用いることもできる。中空のセラミックビーズにおいては、熱伝導率λは0.1[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは300×103[J/(m3・K)]程度であり、耐熱温度Tmは1600[℃]程度であり、強度(引張強度)σは70[MPa]程度である。また、ここでの微細多孔構造の断熱材については、主成分のシリカの他に二酸化チタン(TiO2)も一部混合して用いることができ、熱伝導率λは0.04[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは400×103[J/(m3・K)]程度であり、耐熱温度Tmは1025[℃]程度であり、強度は極めて弱い。シリカエアロゲルにおいては、熱伝導率λは0.02[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは190×103[J/(m3・K)]程度であり、耐熱温度Tmは1200[℃]程度であり、強度は極めて弱い。On the other hand, specific examples of the heat insulating material 21 include, for example, hollow ceramic beads, hollow glass beads, a heat insulating material having a fine porous structure mainly composed of silica (silicon dioxide, SiO 2 ), silica airgel, and the like. it can. Further, a combination of a plurality of these materials can be used for the heat insulating material 21. In hollow ceramic beads, the thermal conductivity λ is about 0.1 [W / (m · K)], and the heat capacity ρC per unit volume is about 300 × 10 3 [J / (m 3 · K)]. The heat resistant temperature Tm is about 1600 [° C.], and the strength (tensile strength) σ is about 70 [MPa]. As for the heat insulating material having a microporous structure, titanium dioxide (TiO 2 ) can be mixed and used in addition to the main component silica, and the thermal conductivity λ is 0.04 [W / ( m · K)], the heat capacity ρC per unit volume is about 400 × 10 3 [J / (m 3 · K)], the heat resistant temperature Tm is about 1025 [° C.], and the strength is extremely weak. . In silica airgel, the thermal conductivity λ is about 0.02 [W / (m · K)], and the heat capacity ρC per unit volume is about 190 × 10 3 [J / (m 3 · K)]. The heat-resistant temperature Tm is about 1200 [° C.], and the strength is extremely weak.

断熱材21の構造例を図3B,3Cに示す。図3Bに示す例では、断熱材21は、ジルコニアやガラス等による殻部21bの内部に、減圧された空気または不活性ガスによる中空部21aが形成された中空構造を有する断熱材である。そして、図3Cに示す例では、ガラスによる殻部21bの外側にコート層21cが形成されていることで、断熱材21は、殻部21bとコート層21cによる複数層構造を有する。ここでのコート層21cについては、ジルコニア等、熱伝導率が殻部(ガラス)21bと同程度に小さい材料を用いることが好ましく、その厚さが数μm程度と薄いことが好ましい。殻部(ガラス)21bをコート層(ジルコニア)21cにより覆うことで、断熱材21の耐熱温度を高めることが可能となる。図3Bに示す断熱材21の例において、殻部21bにホウケイ酸ガラスを用いた場合は、熱伝導率λは0.07[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは220×103[J/(m3・K)]程度である。また、図3Cに示す断熱材21の例において、殻部21bにホウケイ酸ガラス、コート層21cにジルコニアを用いた場合は、熱伝導率λは0.35[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは512×103[J/(m3・K)]程度である。The structural example of the heat insulating material 21 is shown to FIG. 3B and 3C. In the example shown in FIG. 3B, the heat insulating material 21 is a heat insulating material having a hollow structure in which a hollow portion 21a made of decompressed air or inert gas is formed inside a shell portion 21b made of zirconia, glass, or the like. And in the example shown to FIG. 3C, the heat insulating material 21 has the multilayer structure by the shell part 21b and the coat layer 21c because the coat layer 21c is formed in the outer side of the shell part 21b by glass. For the coating layer 21c here, it is preferable to use a material having a thermal conductivity as small as that of the shell (glass) 21b, such as zirconia, and the thickness is preferably as thin as several μm. By covering the shell (glass) 21b with the coat layer (zirconia) 21c, the heat-resistant temperature of the heat insulating material 21 can be increased. In the example of the heat insulating material 21 shown in FIG. 3B, when borosilicate glass is used for the shell portion 21b, the thermal conductivity λ is about 0.07 [W / (m · K)], and the heat capacity per unit volume. ρC is about 220 × 10 3 [J / (m 3 · K)]. In the example of the heat insulating material 21 shown in FIG. 3C, when borosilicate glass is used for the shell portion 21b and zirconia is used for the coat layer 21c, the thermal conductivity λ is about 0.35 [W / (m · K)]. The heat capacity ρC per unit volume is about 512 × 10 3 [J / (m 3 · K)].

また、母材30の具体例としては、例えば鉄(鋼)、アルミニウムもしくはアルミニウム合金、またはセラミック等を挙げることができる。鉄においては、熱伝導率λは80.3[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは3500×103[J/(m3・K)]程度である。アルミニウムにおいては、熱伝導率λは193[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは2400×103[J/(m3・K)]程度(ジルコニアとほぼ同等)である。例えば、母材30に鉄(鋼)、断熱材22にセラミック(ジルコニア)、断熱材21に中空のセラミックビーズを用いる場合は、断熱材22の熱伝導率及び単位体積あたりの熱容量は母材30よりも低くなり、断熱材21の熱伝導率及び単位体積あたりの熱容量は断熱材22よりも低くなる。そして、断熱材22の耐熱温度及び強度が断熱材21よりも高くなる。Specific examples of the base material 30 include iron (steel), aluminum or an aluminum alloy, or ceramic. In iron, the thermal conductivity λ is about 80.3 [W / (m · K)], and the heat capacity ρC per unit volume is about 3500 × 10 3 [J / (m 3 · K)]. In aluminum, the thermal conductivity λ is about 193 [W / (m · K)], and the heat capacity ρC per unit volume is about 2400 × 10 3 [J / (m 3 · K)] (almost equivalent to zirconia). ). For example, when iron (steel) is used for the base material 30, ceramic (zirconia) is used for the heat insulating material 22, and hollow ceramic beads are used for the heat insulating material 21, the heat conductivity and the heat capacity per unit volume of the heat insulating material 22 are the base material 30. The heat conductivity of the heat insulating material 21 and the heat capacity per unit volume are lower than those of the heat insulating material 22. And the heat-resistant temperature and intensity | strength of the heat insulating material 22 become higher than the heat insulating material 21. FIG.

前述したように、内燃機関のサイクルにおいては、シリンダ内ガス温度Tgが時々刻々変化するが、燃焼室壁面温度Twallをシリンダ内ガス温度Tgに追従させるよう変化させることで、(1)式における(Tg−Twall)の値を小さくすることができ、シリンダ内における熱損失Qを低減することができる。その結果、内燃機関の熱効率を向上させることができ、燃費を改善することができる。ここで、燃焼室壁面温度Twallの変動幅(スイング幅)ΔTに対する燃費の影響を調べた計算結果を図4,5に示す。図4は、燃焼室壁面温度Twallをクランク角(圧縮上死点が0°)に対して変化させた場合の波形の例を示し、1サイクルにおける燃焼室壁面温度Twallのスイング幅ΔTが500℃、1000℃、1500℃である場合の波形を燃焼室壁面温度Twallがほとんど変化しない場合(ベース条件)と対比させてそれぞれ示す。図4においては、ΔT=1500℃の波形が、シリンダ内ガス温度Tgにほぼ追従して燃焼室壁面温度Twallが変化した場合の波形に相当する。図5は、1サイクルにおける燃焼室壁面温度Twallのスイング幅ΔTを図4に示すように500℃、1000℃、1500℃に変化させた場合の燃費改善効果を調べた計算結果を示す。計算の際には、内燃機関(ディーゼルエンジン)の運転条件を、エンジン回転数2100rpm、図示平均有効圧力Pi=1.6MPaとしている。図5において、丸印(○)は、吸気行程での燃焼室壁面温度(ベース壁温)がベース条件での壁面温度に対してほとんど上昇していない場合の結果を示し、三角印(△)は、吸気行程での燃焼室壁面温度(ベース壁温)がベース条件での壁面温度に対して100℃上昇した場合の結果を示す。図5に示すように、燃焼室壁面温度Twallのスイング幅ΔTを増大させることで、燃費改善効果を向上できることがわかる。ただし、燃焼室壁面温度Twallのスイング幅ΔTが増大しても、ベース壁温が上昇すると燃費改善効果が減少する。そのため、燃費改善効果をより向上させるためには、ベース壁温をほとんど上昇させることなく、燃焼室壁面温度Twallのスイング幅ΔTを増大させることが好ましい。なお、図5の横軸の遮熱率[%]は、ベース条件での熱損失量Qb、及び壁面温度Twallを変化させた場合の熱損失量Qsを用いて、以下の(2)式で表される。   As described above, in the cycle of the internal combustion engine, the in-cylinder gas temperature Tg changes every moment, but by changing the combustion chamber wall surface temperature Twall to follow the in-cylinder gas temperature Tg, The value of (Tg−Twall) can be reduced, and the heat loss Q in the cylinder can be reduced. As a result, the thermal efficiency of the internal combustion engine can be improved and the fuel consumption can be improved. Here, FIGS. 4 and 5 show the calculation results obtained by examining the influence of the fuel consumption on the fluctuation range (swing width) ΔT of the combustion chamber wall surface temperature Twall. FIG. 4 shows an example of a waveform when the combustion chamber wall surface temperature Twall is changed with respect to the crank angle (compression top dead center is 0 °). The swing width ΔT of the combustion chamber wall surface temperature Twall in one cycle is 500 ° C. The waveforms at 1000 ° C. and 1500 ° C. are respectively shown in comparison with the case where the combustion chamber wall surface temperature Twall hardly changes (base condition). In FIG. 4, the waveform of ΔT = 1500 ° C. corresponds to the waveform when the combustion chamber wall surface temperature Twall changes substantially following the cylinder gas temperature Tg. FIG. 5 shows the calculation results of examining the fuel efficiency improvement effect when the swing width ΔT of the combustion chamber wall surface temperature Twall in one cycle is changed to 500 ° C., 1000 ° C., and 1500 ° C. as shown in FIG. In the calculation, the operating conditions of the internal combustion engine (diesel engine) are set to an engine speed of 2100 rpm and an indicated mean effective pressure Pi = 1.6 MPa. In FIG. 5, circles (◯) indicate the results when the combustion chamber wall temperature (base wall temperature) in the intake stroke hardly increases relative to the wall temperature in the base condition, and triangles (Δ) These show the results when the combustion chamber wall surface temperature (base wall temperature) during the intake stroke rises by 100 ° C. relative to the wall surface temperature under the base conditions. As shown in FIG. 5, it can be seen that the fuel efficiency improvement effect can be improved by increasing the swing width ΔT of the combustion chamber wall surface temperature Twall. However, even if the swing width ΔT of the combustion chamber wall surface temperature Twall increases, the fuel efficiency improvement effect decreases as the base wall temperature increases. Therefore, in order to further improve the fuel efficiency improvement effect, it is preferable to increase the swing width ΔT of the combustion chamber wall surface temperature Twall without substantially increasing the base wall temperature. In addition, the heat shielding rate [%] on the horizontal axis in FIG. 5 is expressed by the following equation (2) using the heat loss amount Qb under the base condition and the heat loss amount Qs when the wall surface temperature Twall is changed. expressed.

遮熱率=(Qb−Qs)/Qb×100[%] (2)   Heat shielding rate = (Qb−Qs) / Qb × 100 [%] (2)

ベース壁温をほとんど上昇させることなく、燃焼室壁面温度Twallのスイング幅ΔTを増大させるためには、燃焼室内に臨む壁面に形成する断熱膜については、熱伝導率及び単位体積あたりの熱容量が低いことが望ましい。ただし、前述したように、熱伝導率及び単位体積あたりの熱容量が低い単一材料は、耐熱性及び強度の低い材料が多く、内燃機関のシリンダ内のように高温・高速のガス流や高圧力に耐えうるような耐熱性及び強度を持たない。一方、高温・高速のガス流や高圧力に耐えうるような高い耐熱性及び強度を有する単一材料では、熱伝導率及び単位体積あたりの熱容量の低さが不十分であり、燃焼室壁面温度Twallのスイング幅ΔTが減少する。さらに、断熱膜に熱が伝わり蓄積しやすくなり、ベース壁温が上昇する。ベース壁温が上昇すると、以下の(1)〜(5)の弊害が生じる。
(1)吸気行程中に吸入気体が受熱して膨張することにより、充填効率が低下して出力が低下する。
(2)圧縮行程中に作動ガスが受熱してシリンダ内圧力が上昇することにより、圧縮行程での負の仕事が増大して燃費が低下する。
(3)吸気・圧縮行程中の受熱により平均ガス温度が上昇することで、シリンダ内ガスの比熱比が低下してサイクル効率が低下する。
(4)圧縮端ガス温度上昇によりシリンダ内のガス流れが層流化することで、混合気形成過程での燃料と空気との混合度が低下して煤の生成量が増加する。
(5)圧縮端ガス温度上昇により燃焼温度が上昇することで、窒素酸化物(NOx)の生成量が増加する。
In order to increase the swing width ΔT of the combustion chamber wall surface temperature Twall almost without increasing the base wall temperature, the heat insulating film formed on the wall surface facing the combustion chamber has low thermal conductivity and heat capacity per unit volume. It is desirable. However, as described above, a single material with low thermal conductivity and low heat capacity per unit volume has many materials with low heat resistance and strength, such as high temperature and high speed gas flow and high pressure as in the cylinder of an internal combustion engine. Does not have heat resistance and strength to withstand On the other hand, a single material with high heat resistance and strength that can withstand high-temperature, high-speed gas flow and high pressure has insufficient thermal conductivity and low heat capacity per unit volume. The swing width ΔT of Twall decreases. Furthermore, heat is transmitted to the heat insulating film and is easily accumulated, and the base wall temperature rises. When the base wall temperature rises, the following adverse effects (1) to (5) occur.
(1) The intake gas receives heat and expands during the intake stroke, so that the charging efficiency is reduced and the output is reduced.
(2) When the working gas receives heat during the compression stroke and the pressure in the cylinder rises, negative work in the compression stroke increases and fuel consumption decreases.
(3) When the average gas temperature rises due to heat reception during the intake / compression stroke, the specific heat ratio of the in-cylinder gas is lowered and the cycle efficiency is lowered.
(4) Since the gas flow in the cylinder becomes laminar due to the rise in the compression end gas temperature, the degree of mixing of fuel and air in the air-fuel mixture formation process decreases, and the amount of soot generated increases.
(5) The amount of nitrogen oxide (NOx) produced increases as the combustion temperature rises as the compression end gas temperature rises.

これに対して図2に示す構成例では、熱伝導率及び単位体積あたりの熱容量の低い断熱材21を、耐熱性及び強度の高い断熱材22の内部に混入することで、断熱材21を燃焼室13内の高温及び高圧の燃焼ガスから保護することができる。したがって、断熱材21については、燃焼室13内の高温及び高圧の燃焼ガスに対して耐熱性及び耐圧性を十分に確保するという制約を受けることなく、熱伝導率及び単位体積あたりの熱容量が低いことを重視した断熱材料の選択性の自由度が高まり、熱伝導率及び単位体積あたりの熱容量が十分低い断熱材料を用いることができる。そのため、断熱用薄膜20全体での熱伝導率及び単位体積あたりの熱容量も十分に低くすることができる。これによって、ベース壁温の上昇を抑えながら燃焼室壁面温度Twallのスイング幅ΔTを増大させることができ、燃焼室壁面温度Twallのシリンダ内ガス温度Tgへの追従性を向上させることができる。その結果、内燃機関1の熱損失Qを低減させて熱効率を向上させることができ、燃費を向上させることができる。さらに、断熱材21,22の材料の選択により断熱材21,22の熱伝導率及び単位体積あたりの熱容量を調整することで、燃焼室壁面温度Twallのスイング幅ΔTを調整することができる。さらに、排気温度も上昇させることができるので、エンジン下流に設置した触媒の活性を高めて排気エミッションを低減することができるとともに、ターボチャージャーによる過給エンジンにおいては排気エネルギーのさらなる有効利用を図ることができる。特に、排気エミッション低減・熱効率増加を目的とした高過給エンジンでは、燃焼温度の低下による排気温度の低下が顕著となるため、本実施形態による排気温度上昇の効果はさらに高まる。   On the other hand, in the configuration example shown in FIG. 2, the heat insulating material 21 having a low thermal conductivity and a low heat capacity per unit volume is mixed in the heat insulating material 22 having a high heat resistance and high strength, thereby burning the heat insulating material 21. It is possible to protect against high temperature and high pressure combustion gas in the chamber 13. Therefore, the heat insulating material 21 has a low thermal conductivity and a low heat capacity per unit volume without being restricted to sufficiently ensure heat resistance and pressure resistance against high temperature and high pressure combustion gas in the combustion chamber 13. The degree of freedom of the selectivity of the heat insulating material that places importance on this is increased, and a heat insulating material having a sufficiently low thermal conductivity and heat capacity per unit volume can be used. Therefore, the heat conductivity and the heat capacity per unit volume in the entire heat insulating thin film 20 can be sufficiently reduced. Accordingly, the swing width ΔT of the combustion chamber wall surface temperature Twall can be increased while suppressing an increase in the base wall temperature, and the followability of the combustion chamber wall surface temperature Twall to the in-cylinder gas temperature Tg can be improved. As a result, the heat loss Q of the internal combustion engine 1 can be reduced to improve the thermal efficiency, and the fuel consumption can be improved. Furthermore, the swing width ΔT of the combustion chamber wall surface temperature Twall can be adjusted by adjusting the thermal conductivity of the heat insulating materials 21 and 22 and the heat capacity per unit volume by selecting the material of the heat insulating materials 21 and 22. In addition, since the exhaust temperature can be raised, the exhaust emission can be reduced by increasing the activity of the catalyst installed downstream of the engine, and more effective use of exhaust energy in a turbocharged supercharged engine. Can do. In particular, in a supercharged engine for the purpose of reducing exhaust emission and increasing thermal efficiency, the exhaust temperature decrease due to the decrease in the combustion temperature becomes significant, so the effect of increasing the exhaust temperature according to the present embodiment is further enhanced.

図2に示す構成例では、断熱用薄膜20における断熱材21の占める体積割合、つまり断熱材21の混入割合を、断熱材22の内部の位置に応じて変化させる(分布を持たせる)こともできる。例えば断熱材21の粒径を不揃いにして断熱材22の内部の位置に応じて異ならせることで、断熱材21の混入割合を断熱材22の内部の位置に応じて異ならせることができる。また、単位体積あたりの断熱材21の混入数を断熱材22の内部の位置に応じて異ならせることによっても、断熱材21の混入割合を断熱材22の内部の位置に応じて異ならせることができる。この構成によれば、断熱用薄膜20全体での熱伝導率及び単位体積あたりの熱容量に分布を持たせることができ、燃焼室壁面温度Twallのスイング幅ΔTを燃焼室壁面の位置に応じて異ならせる(分布を持たせる)ことができる。   In the configuration example shown in FIG. 2, the volume ratio occupied by the heat insulating material 21 in the heat insulating thin film 20, that is, the mixing ratio of the heat insulating material 21 may be changed according to the position inside the heat insulating material 22. it can. For example, the mixing ratio of the heat insulating material 21 can be changed according to the position inside the heat insulating material 22 by making the particle sizes of the heat insulating material 21 uneven and changing the heat insulating material 21 according to the position inside the heat insulating material 22. Further, the mixing ratio of the heat insulating material 21 can be made different depending on the position inside the heat insulating material 22 by changing the number of heat insulating materials 21 mixed per unit volume depending on the position inside the heat insulating material 22. it can. According to this configuration, the thermal conductivity of the entire heat insulating thin film 20 and the heat capacity per unit volume can be distributed, and the swing width ΔT of the combustion chamber wall surface temperature Twall varies depending on the position of the combustion chamber wall surface. (With a distribution).

あるいは、例えば図6Aに示すように、多数の断熱材21を断熱材22の内部に規則的に配列することもできる。図6Aに示す例では、断熱用薄膜20の厚さ方向及び面内方向(厚さ方向と垂直方向)に関して、単一粒子径の断熱材21が等間隔に配置されている。断熱材21を断熱材22の内部に規則正しく並べることで、断熱材21と断熱材22が均一に分布し、断熱材21が断熱用薄膜20の厚さ方向及び面内方向に関して局所的に偏って存在するのを防ぐことができる。その結果、均一な熱物性(低熱伝導率・低熱容量)の断熱用薄膜20を実現できる。さらに、局所的に断熱材22が薄く(細く)なる部分を回避できるので、断熱用薄膜20の強度に影響を与える構造上の欠陥が存在する確率を抑制でき、断熱用薄膜20の強度を高めることができる。なお、断熱材21を断熱材22の内部に規則的に配列することについては、例えばBrian T. Holland他,Science,281,538-540(1998)等の公知技術を利用して行うことが可能である。単分散の球状粒子を水等の溶液に分散させたものをゆっくりと濾過することにより、規則的に配列した球状粒子の堆積体を得ることができる。したがって、この手法を利用して、単一粒子径の断熱材21を堆積させた後に堆積体の間に液体状態の断熱材22(バインダ層)を流し込んで焼成することによって、図6Aに示す構造が実現可能である。   Alternatively, for example, as shown in FIG. 6A, a large number of heat insulating materials 21 can be regularly arranged inside the heat insulating materials 22. In the example shown in FIG. 6A, the heat insulating materials 21 having a single particle diameter are arranged at equal intervals in the thickness direction and the in-plane direction (the direction perpendicular to the thickness direction) of the heat insulating thin film 20. By arranging the heat insulating material 21 regularly inside the heat insulating material 22, the heat insulating material 21 and the heat insulating material 22 are uniformly distributed, and the heat insulating material 21 is locally biased with respect to the thickness direction and the in-plane direction of the heat insulating thin film 20. It can be prevented from existing. As a result, the heat insulating thin film 20 having uniform thermophysical properties (low thermal conductivity and low heat capacity) can be realized. Furthermore, since the portion where the heat insulating material 22 is locally thin (thinned) can be avoided, the probability that there is a structural defect that affects the strength of the heat insulating thin film 20 can be suppressed, and the strength of the heat insulating thin film 20 is increased. be able to. It should be noted that the regular arrangement of the heat insulating material 21 inside the heat insulating material 22 can be performed using a known technique such as Brian T. Holland et al., Science, 281, 538-540 (1998). . By slowly filtering the monodispersed spherical particles dispersed in a solution such as water, a deposit of regularly arranged spherical particles can be obtained. Therefore, the structure shown in FIG. 6A is obtained by depositing the heat insulating material 21 having a single particle diameter by using this technique and then pouring the heat insulating material 22 (binder layer) in a liquid state between the deposited bodies and firing. Is feasible.

図2に示す構成例では、断熱材21を断熱材22の内部に混入して断熱用薄膜20を形成するものとしたが、図6Bに示すように、断熱材21に代えて気泡31を断熱材22の内部に多数形成することもできる。図6Bに示す構成例では、断熱用薄膜20は、母材30よりも低い熱伝導率を有し且つ母材30よりも低いまたは母材30とほぼ同等の単位体積あたりの熱容量を有する材料の内部に気泡31が多数形成された断熱材(発泡断熱材)22を含んで構成されている。気泡31(空気)においては、熱伝導率λは0.02[W/(m・K)]程度であり、単位体積あたりの熱容量ρCは2.3×103[J/(m3・K)]程度である。断熱材22を形成する材料は、燃焼室13内の高温及び高圧の燃焼ガスに対する耐熱性及び耐圧性を有している。断熱材22を形成する(内部に気泡31が形成された)材料の具体例としては、図2に示す構成例における断熱材22の具体例と同様である。例えば、母材30に鉄(鋼)、断熱材22を形成する材料にセラミック(ジルコニア)を用いる場合は、断熱材22を形成する材料の熱伝導率及び単位体積あたりの熱容量は、母材30よりも低くなり、且つ気泡31よりも高くなる。In the configuration example shown in FIG. 2, the heat insulating material 21 is mixed into the heat insulating material 22 to form the heat insulating thin film 20. However, as shown in FIG. Many can be formed inside the material 22. In the configuration example shown in FIG. 6B, the heat insulating thin film 20 is made of a material having a thermal conductivity lower than that of the base material 30 and a heat capacity per unit volume lower than that of the base material 30 or substantially equivalent to that of the base material 30. A heat insulating material (foam heat insulating material) 22 having a large number of bubbles 31 formed therein is included. In the bubble 31 (air), the thermal conductivity λ is about 0.02 [W / (m · K)], and the heat capacity ρC per unit volume is 2.3 × 10 3 [J / (m 3 · K). )] Degree. The material forming the heat insulating material 22 has heat resistance and pressure resistance against high-temperature and high-pressure combustion gas in the combustion chamber 13. A specific example of the material forming the heat insulating material 22 (with the bubbles 31 formed therein) is the same as the specific example of the heat insulating material 22 in the configuration example shown in FIG. For example, when iron (steel) is used for the base material 30 and ceramic (zirconia) is used for the material forming the heat insulating material 22, the heat conductivity and the heat capacity per unit volume of the material forming the heat insulating material 22 are the base material 30. And higher than the bubble 31.

図6Bに示す構成例においても、断熱用薄膜20全体での熱伝導率及び単位体積あたりの熱容量を十分に低くすることができるので、ベース壁温の上昇を抑えながら燃焼室壁面温度Twallのスイング幅ΔTを増大させることができ、燃焼室壁面温度Twallのシリンダ内ガス温度Tgへの追従性を向上させることができる。その結果、内燃機関1の熱効率を向上させることができる。なお、図6Bに示す構成例においても、例えば気泡31の径を不揃いにして、断熱用薄膜20における気泡31の占める体積割合(気泡31の形成割合)を断熱材22の内部の位置に応じて変化させることで、燃焼室壁面温度Twallのスイング幅ΔTを燃焼室壁面の位置に応じて異ならせることができる。あるいは、例えば図6Cに示すように、多数の気泡31を断熱用薄膜20(断熱材22)の内部に規則的に配列することもできる。図6Cに示す例では、断熱用薄膜20の厚さ方向及び面内方向(厚さ方向と垂直方向)に関して、単一粒子径の気泡31が等間隔に配置されている。気泡31を断熱材22の内部に規則正しく並べることで、均一な熱物性(低熱伝導率・低熱容量)の断熱用薄膜20を実現できるとともに、断熱用薄膜20の強度を高めることができる。なお、気泡31を断熱材22の内部に規則的に配列することについても、例えばBrian T. Holland他,Science,281,538-540(1998)等の公知技術、つまり単分散の球状粒子を水等の溶液に分散させたものをゆっくりと濾過することで規則的に配列した球状粒子の堆積体を得る手法を利用して行うことが可能である。その際には、球状粒子として、焼成によりガス化する材料(例えば樹脂ビーズ等)を用い、単一粒子径の樹脂ビーズを堆積させた後に堆積体の間に液体状態の断熱材22(バインダ層)を流し込んで焼成する。焼成時に数百度以上に加熱して樹脂ビーズをガス化させて焼き飛ばしてしまえば、樹脂ビーズがあった場所が気泡31となる。したがって、図6Cに示す構造が実現可能である。   In the configuration example shown in FIG. 6B as well, the thermal conductivity and the heat capacity per unit volume in the entire heat insulating thin film 20 can be sufficiently lowered, so that the combustion chamber wall temperature Twalll swing while suppressing the rise in the base wall temperature. The width ΔT can be increased, and the followability of the combustion chamber wall surface temperature Twall to the in-cylinder gas temperature Tg can be improved. As a result, the thermal efficiency of the internal combustion engine 1 can be improved. In the configuration example shown in FIG. 6B as well, for example, the diameters of the bubbles 31 are uneven, and the volume ratio of the bubbles 31 in the heat insulating thin film 20 (the formation ratio of the bubbles 31) depends on the position inside the heat insulating material 22. By changing it, the swing width ΔT of the combustion chamber wall surface temperature Twall can be varied according to the position of the combustion chamber wall surface. Alternatively, for example, as shown in FIG. 6C, a large number of bubbles 31 can be regularly arranged inside the heat insulating thin film 20 (heat insulating material 22). In the example shown in FIG. 6C, the bubbles 31 having a single particle diameter are arranged at equal intervals in the thickness direction and the in-plane direction (the direction perpendicular to the thickness direction) of the heat insulating thin film 20. By arranging the bubbles 31 regularly inside the heat insulating material 22, it is possible to realize the heat insulating thin film 20 with uniform thermal properties (low thermal conductivity and low heat capacity) and to increase the strength of the heat insulating thin film 20. For the regular arrangement of the bubbles 31 in the heat insulating material 22, for example, Brian T. Holland et al., Science, 281, 538-540 (1998), etc., that is, monodisperse spherical particles are made of water or the like. It is possible to use a method of obtaining a deposit of regularly arranged spherical particles by slowly filtering a solution dispersed in a solution. At that time, a material (for example, resin beads) that is gasified by firing is used as the spherical particles, and after depositing resin beads having a single particle diameter, a heat insulating material 22 (binder layer) in a liquid state between the deposited bodies. ) And fired. If the resin beads are gasified and burned off by heating to several hundred degrees or more at the time of firing, the place where the resin beads are located becomes the bubbles 31. Therefore, the structure shown in FIG. 6C can be realized.

次に、本願発明者が行った解析(数値計算)の結果について説明する。内燃機関1が過給直噴ディーゼルエンジンの場合に、図6Bに示す構成例を対象として断熱用薄膜20(断熱材22)の厚さt1を変化させながら、1サイクルにおける燃焼室壁面温度Twallの変化を計算して調べた。その計算結果を図7,8に示す。図7は、クランク角(圧縮上死点が0°)に対する燃焼室壁面温度Twallの波形を示し、断熱用薄膜20の厚さt1が10μm、50μm、100μm、200μm、500μmである場合の波形をそれぞれ示す。図8は、断熱用薄膜20の厚さt1に対する燃焼室壁面温度Twallのスイング幅ΔTの特性を示す。   Next, the result of the analysis (numerical calculation) performed by the present inventor will be described. When the internal combustion engine 1 is a supercharged direct injection diesel engine, the combustion chamber wall surface temperature Twall in one cycle is changed while changing the thickness t1 of the heat insulating thin film 20 (heat insulating material 22) for the configuration example shown in FIG. 6B. Changes were calculated and examined. The calculation results are shown in FIGS. FIG. 7 shows the waveform of the combustion chamber wall surface temperature Twall with respect to the crank angle (compression top dead center is 0 °), and the waveform when the thickness t1 of the heat insulating thin film 20 is 10 μm, 50 μm, 100 μm, 200 μm, and 500 μm. Each is shown. FIG. 8 shows the characteristic of the swing width ΔT of the combustion chamber wall surface temperature Twall with respect to the thickness t1 of the heat insulating thin film 20.

さらに、断熱用薄膜が単一材料からなる構成を比較例として、断熱用薄膜(単一材料)の厚さt0を変化させながら、1サイクルにおける燃焼室壁面温度Twallの変化を計算して調べた。その計算結果を図9,10に示す。図9は、クランク角(圧縮上死点が0°)に対する燃焼室壁面温度Twallの波形を示し、断熱用薄膜の厚さt0が10μm、50μm、100μm、500μmである場合の波形をそれぞれ示す。図10は、断熱用薄膜の厚さt0に対する燃焼室壁面温度Twallのスイング幅ΔTの特性を示す。   Further, as a comparative example in which the heat insulating thin film is made of a single material, the change in the combustion chamber wall temperature Twall in one cycle was calculated and examined while changing the thickness t0 of the heat insulating thin film (single material). . The calculation results are shown in FIGS. FIG. 9 shows a waveform of the combustion chamber wall surface temperature Twall with respect to the crank angle (compression top dead center is 0 °), and shows waveforms when the thickness t0 of the heat insulating thin film is 10 μm, 50 μm, 100 μm, and 500 μm, respectively. FIG. 10 shows characteristics of the swing width ΔT of the combustion chamber wall surface temperature Twall with respect to the thickness t0 of the heat insulating thin film.

なお、燃焼室壁面温度Twallの計算の際には、1気筒の排気量を550cc、圧縮比を16、機関回転速度を2000rpm、燃料噴射量を50mm3/st、図示平均有効圧力を1.6MPa相当とした。そして、図6Bに示す構成例においては、断熱材22を形成する材料の熱伝導率λ及び単位体積あたりの熱容量ρCを、λ=2.5[W/(m・K)]、ρC=2520×103[J/(m3・K)](ジルコニア相当)、断熱用薄膜20(断熱材22)における気泡31(空気)が占める体積の割合を80%とした。また、比較例においては、断熱用薄膜を構成する単一材料(断熱用薄膜全体)の熱伝導率λ及び単位体積あたりの熱容量ρCを、λ=2.5[W/(m・K)]、ρC=2520×103[J/(m3・K)](ジルコニア相当)とした。In calculating the combustion chamber wall surface temperature Twall, the displacement of one cylinder is 550 cc, the compression ratio is 16, the engine speed is 2000 rpm, the fuel injection amount is 50 mm 3 / st, and the indicated mean effective pressure is 1.6 MPa. Appropriate. In the configuration example shown in FIG. 6B, the thermal conductivity λ and the heat capacity ρC per unit volume of the material forming the heat insulating material 22 are λ = 2.5 [W / (m · K)], ρC = 2520. × 10 3 [J / (m 3 · K)] (equivalent to zirconia), the volume ratio occupied by the bubbles 31 (air) in the heat insulating thin film 20 (heat insulating material 22) was 80%. Further, in the comparative example, the thermal conductivity λ and the heat capacity ρC per unit volume of a single material (the entire heat insulating thin film) constituting the heat insulating thin film are λ = 2.5 [W / (m · K)]. ΡC = 2520 × 10 3 [J / (m 3 · K)] (equivalent to zirconia).

比較例においては、図9,10に示すように、燃焼室壁面温度Twallのスイング幅ΔTが最大でも125℃程度(t0=100μmの場合)にとどまり、燃費改善効果は最大でも2%程度(t0=100μmの場合)にとどまっている。断熱用薄膜の厚さt0が100μmよりも薄いと、燃焼室壁面温度Twallのスイング幅ΔTが減少することで、燃費改善効果が減少してほとんど得られなくなる。一方、断熱用薄膜の厚さt0が100μmよりも厚いと、ベース壁温が上昇することで、燃費改善効果が減少してほとんど得られなくなる。   In the comparative example, as shown in FIGS. 9 and 10, the swing width ΔT of the combustion chamber wall surface temperature Twall is only about 125 ° C. (when t0 = 100 μm), and the fuel efficiency improvement effect is about 2% at the maximum (t0). = 100 μm). When the thickness t0 of the heat insulating thin film is smaller than 100 μm, the swing width ΔT of the combustion chamber wall surface temperature Twall is decreased, so that the fuel efficiency improvement effect is reduced and hardly obtained. On the other hand, if the thickness t0 of the heat insulating thin film is thicker than 100 μm, the base wall temperature rises, so that the fuel efficiency improvement effect is reduced and hardly obtained.

これに対して実施例1(図6Bに示す構成例)においては、図9,10に示すように、燃焼室壁面温度Twallのスイング幅ΔTを550℃〜650℃程度に大幅に増大させることができ、燃費改善効果を7〜8%程度に大幅に増大させることができる。図9,10に示す計算結果においては、t1=50μm〜200μmの範囲で、ベース壁温をほとんど上昇させることなく550℃〜650℃程度のスイング幅ΔTが得られ、7〜8%程度の燃費改善効果が得られる。そして、t1=100μmの場合に、スイング幅ΔTが最大となる。このように、実施例1の構成により、燃焼室壁面温度Twallのスイング幅ΔTを大幅に増大させることができ、7〜8%程度の燃費改善効果が得られることが確認された。   On the other hand, in Example 1 (configuration example shown in FIG. 6B), as shown in FIGS. 9 and 10, the swing width ΔT of the combustion chamber wall surface temperature Twall can be significantly increased to about 550 ° C. to 650 ° C. The fuel efficiency improvement effect can be greatly increased to about 7 to 8%. 9 and 10, in the range of t1 = 50 μm to 200 μm, a swing width ΔT of about 550 ° C. to 650 ° C. is obtained with almost no increase in the base wall temperature, and a fuel consumption of about 7 to 8%. Improvement effect is obtained. When t1 = 100 μm, the swing width ΔT is maximized. As described above, it was confirmed that the swing width ΔT of the combustion chamber wall surface temperature Twall can be significantly increased by the configuration of the first embodiment, and a fuel efficiency improvement effect of about 7 to 8% can be obtained.

「実施例2」
図11,12は、断熱用薄膜20の他の構成例を示す図であり、図11は母材30の壁面30aの法線と一致する方向(法線方向)から見た図を示し、図12は断面図を示す。以下の実施例2の説明では、実施例1と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
"Example 2"
11 and 12 are diagrams showing another configuration example of the heat insulating thin film 20, and FIG. 11 is a diagram viewed from a direction (normal direction) that matches the normal line of the wall surface 30a of the base material 30. 12 shows a cross-sectional view. In the following description of the second embodiment, the same or corresponding components as those in the first embodiment are denoted by the same reference numerals, and redundant description is omitted.

図11,12に示す構成例(実施例2)では、内部に粒状の断熱材21が多数混入された断熱材22は、繊維状に形成されている。そして、繊維状に形成された断熱材22が、母材30の壁面30a上に多数敷き詰められている。図12は、繊維状に形成された断熱材22が層状に多数重ねられた例を示している。そして、図11は、繊維状に形成された多数の断熱材22を織る(編む)ことで断熱用薄膜20を形成した例を示している。断熱材21,22及び母材30の具体例は実施例1と同様である。なお、図11,12では図示を省略しているが、断熱材22と母材30との接合を強固にするための薄い中間材が断熱材22と母材30との間に形成されていてもよいし、繊維状の断熱材22同士の接合を強固にするための薄い中間材が各断熱材22間に形成されていてもよい。ここでの中間材は、断熱材21または断熱材22と同程度の熱伝導率及び単位体積あたりの熱容量を有することが好ましい。   In the configuration example shown in FIGS. 11 and 12 (Example 2), the heat insulating material 22 in which a large number of granular heat insulating materials 21 are mixed is formed in a fiber shape. A large number of heat insulating materials 22 formed in a fiber shape are spread on the wall surface 30 a of the base material 30. FIG. 12 shows an example in which a large number of heat insulating materials 22 formed in a fiber shape are stacked in layers. And FIG. 11 has shown the example which formed the thin film 20 for heat insulation by weaving (knitting) many heat insulating materials 22 formed in the fiber form. Specific examples of the heat insulating materials 21 and 22 and the base material 30 are the same as those in the first embodiment. Although not shown in FIGS. 11 and 12, a thin intermediate material for strengthening the bonding between the heat insulating material 22 and the base material 30 is formed between the heat insulating material 22 and the base material 30. Alternatively, a thin intermediate material for strengthening the bonding between the fibrous heat insulating materials 22 may be formed between the heat insulating materials 22. The intermediate material here preferably has a thermal conductivity comparable to that of the heat insulating material 21 or the heat insulating material 22 and a heat capacity per unit volume.

実施例2においても、ベース壁温の上昇を抑えながら燃焼室壁面温度Twallのスイング幅ΔTを増大させることができ、燃焼室壁面温度Twallのシリンダ内ガス温度Tgへの追従性を向上させることができる。その結果、内燃機関1の熱効率を向上させることができる。なお、実施例2でも実施例1と同様に、断熱材21に代えて気泡31を繊維状の断熱材22の内部に多数形成することもできる。さらに、実施例2でも実施例1と同様に、例えば断熱材21(あるいは気泡31)の径を不揃いにして、断熱用薄膜20における断熱材21(あるいは気泡31)の占める体積割合を断熱材22の内部の位置に応じて変化させることで、燃焼室壁面温度Twallのスイング幅ΔTを燃焼室壁面の位置に応じて異ならせることができる。   Also in the second embodiment, the swing width ΔT of the combustion chamber wall surface temperature Twall can be increased while suppressing an increase in the base wall temperature, and the followability of the combustion chamber wall surface temperature Twall to the in-cylinder gas temperature Tg can be improved. it can. As a result, the thermal efficiency of the internal combustion engine 1 can be improved. In the second embodiment, as in the first embodiment, a large number of bubbles 31 can be formed inside the fibrous heat insulating material 22 instead of the heat insulating material 21. Further, in the second embodiment, similarly to the first embodiment, for example, the diameters of the heat insulating materials 21 (or the bubbles 31) are uneven, and the volume ratio of the heat insulating materials 21 (or the bubbles 31) in the heat insulating thin film 20 is set to the heat insulating materials 22. The swing width ΔT of the combustion chamber wall surface temperature Twall can be varied according to the position of the combustion chamber wall surface.

「実施例3」
図13は、断熱用薄膜20の他の構成例を示す断面図である。以下の実施例3の説明では、実施例1,2と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
"Example 3"
FIG. 13 is a cross-sectional view showing another configuration example of the heat insulating thin film 20. In the following description of the third embodiment, the same reference numerals are given to the same or corresponding configurations as those of the first and second embodiments, and duplicate descriptions are omitted.

図13に示す構成例(実施例3)では、膜状の断熱材21が、母材30の壁面30a上にコーティングもしくは接合されて形成されている。そして、膜状の断熱材22が、断熱材21の表面を覆うように断熱材21上にコーティングもしくは接合されて形成されており、燃焼室13内の燃焼ガスと接触する。このように、断熱用薄膜20は、膜状の断熱材21,22を含む層構造を有し、断熱材22が断熱材21よりも上層となる。断熱材21,22及び母材30の具体例は実施例1と同様である。なお、図13では図示を省略しているが、断熱材21と母材30との接合やコーティングを強固にするための薄い中間材が断熱材21と母材30との間に形成されていてもよいし、断熱材21と断熱材22との接合やコーティングを強固にするための薄い中間材が断熱材21と断熱材22との間に形成されていてもよい。ここでの中間材は、断熱材21または断熱材22と同程度の熱伝導率及び単位体積あたりの熱容量を有することが好ましい。   In the configuration example (Example 3) shown in FIG. 13, the film-like heat insulating material 21 is formed on the wall surface 30 a of the base material 30 by coating or bonding. A film-like heat insulating material 22 is formed on the heat insulating material 21 so as to cover the surface of the heat insulating material 21 and is in contact with the combustion gas in the combustion chamber 13. As described above, the heat insulating thin film 20 has a layer structure including the film-like heat insulating materials 21 and 22, and the heat insulating material 22 is an upper layer than the heat insulating material 21. Specific examples of the heat insulating materials 21 and 22 and the base material 30 are the same as those in the first embodiment. Although not shown in FIG. 13, a thin intermediate material for strengthening the bonding and coating between the heat insulating material 21 and the base material 30 is formed between the heat insulating material 21 and the base material 30. Alternatively, a thin intermediate material for strengthening the bonding and coating between the heat insulating material 21 and the heat insulating material 22 may be formed between the heat insulating material 21 and the heat insulating material 22. The intermediate material here preferably has the same thermal conductivity as the heat insulating material 21 or the heat insulating material 22 and a heat capacity per unit volume.

実施例3では、熱伝導率及び単位体積あたりの熱容量の低い断熱材21を、耐熱性及び強度の高い断熱材22により覆うことで、断熱材21を燃焼室13内の高温及び高圧の燃焼ガスから保護することができる。そのため、断熱材21については、燃焼室13内の高温及び高圧の燃焼ガスに対して耐熱性及び耐圧性を十分に確保するという制約を受けることなく、熱伝導率及び単位体積あたりの熱容量が十分低い断熱材料を選択することができ、断熱用薄膜20全体での熱伝導率及び単位体積あたりの熱容量も十分に低くすることができる。したがって、ベース壁温の上昇を抑えながら燃焼室壁面温度Twallのスイング幅ΔTを増大させることができ、燃焼室壁面温度Twallのシリンダ内ガス温度Tgへの追従性を向上させることができる。その結果、内燃機関1の熱効率を向上させることができる。   In Example 3, the heat insulating material 21 having a low thermal conductivity and a low heat capacity per unit volume is covered with a heat insulating material 22 having a high heat resistance and a high strength, whereby the heat insulating material 21 is heated at a high temperature and a high pressure in the combustion chamber 13. Can be protected from. Therefore, the heat insulating material 21 has a sufficient thermal conductivity and heat capacity per unit volume without being restricted by ensuring sufficient heat resistance and pressure resistance against the high-temperature and high-pressure combustion gas in the combustion chamber 13. A low heat insulating material can be selected, and the heat conductivity and heat capacity per unit volume of the entire heat insulating thin film 20 can be sufficiently reduced. Therefore, it is possible to increase the swing width ΔT of the combustion chamber wall surface temperature Twall while suppressing an increase in the base wall temperature, and to improve the followability of the combustion chamber wall surface temperature Twall to the in-cylinder gas temperature Tg. As a result, the thermal efficiency of the internal combustion engine 1 can be improved.

ここで、本願発明者が行った解析(数値計算)の結果について説明する。内燃機関1が過給直噴ディーゼルエンジンの場合に、図13に示す構成例を対象として断熱材21の厚さt2を変化させながら、1サイクルにおける燃焼室壁面温度Twallの変化を計算して調べた。その計算結果を図14,15に示す。図14は、クランク角(圧縮上死点が0°)に対する燃焼室壁面温度Twallの波形を示し、断熱材21の厚さt2が10μm、50μm、100μm、190μmである場合の波形をそれぞれ示す。なお、断熱材22の厚さは一定(10μm)としている。図15は、断熱材21の厚さt2に対する燃焼室壁面温度Twallのスイング幅ΔTの特性を示す。   Here, the result of the analysis (numerical calculation) performed by the present inventor will be described. When the internal combustion engine 1 is a supercharged direct injection diesel engine, the change in the combustion chamber wall surface temperature Twall in one cycle is calculated and examined while changing the thickness t2 of the heat insulating material 21 for the configuration example shown in FIG. It was. The calculation results are shown in FIGS. FIG. 14 shows the waveform of the combustion chamber wall surface temperature Twall with respect to the crank angle (compression top dead center is 0 °), and shows the waveforms when the thickness t2 of the heat insulating material 21 is 10 μm, 50 μm, 100 μm, and 190 μm, respectively. Note that the thickness of the heat insulating material 22 is constant (10 μm). FIG. 15 shows characteristics of the swing width ΔT of the combustion chamber wall surface temperature Twall with respect to the thickness t2 of the heat insulating material 21.

なお、燃焼室壁面温度Twallの計算の際には、1気筒の排気量を550cc、圧縮比を16、機関回転速度を2000rpm、燃料噴射量を50mm3/st、図示平均有効圧力を1.6MPa相当とした。そして、断熱材22の厚さを10μmの一定値とし、断熱材22の熱伝導率λ及び単位体積あたりの熱容量ρCを、λ=2.5[W/(m・K)]、ρC=2520×103[J/(m3・K)](ジルコニア相当)とし、断熱材21の熱伝導率λ及び単位体積あたりの熱容量ρCを、λ=0.04[W/(m・K)]、ρC=400×103[J/(m3・K)](微細多孔構造の断熱材相当)とした。In calculating the combustion chamber wall surface temperature Twall, the displacement of one cylinder is 550 cc, the compression ratio is 16, the engine speed is 2000 rpm, the fuel injection amount is 50 mm 3 / st, and the indicated mean effective pressure is 1.6 MPa. Appropriate. The thickness of the heat insulating material 22 is set to a constant value of 10 μm, and the heat conductivity λ and the heat capacity ρC per unit volume of the heat insulating material 22 are λ = 2.5 [W / (m · K)], ρC = 2520. × 10 3 [J / (m 3 · K)] (equivalent to zirconia), and the thermal conductivity λ and heat capacity ρC per unit volume of the heat insulating material 21 are λ = 0.04 [W / (m · K)] , ΡC = 400 × 10 3 [J / (m 3 · K)] (equivalent to a heat insulating material having a microporous structure).

図13に示す構成例では、図14,15に示すように、燃焼室壁面温度Twallのスイング幅ΔTを420℃程度に大幅に増大させることができ、燃費改善効果を5%程度に大幅に増大させることができる。図14,15に示す計算結果においては、t2=10μm〜50μmの範囲で420℃程度のスイング幅ΔTが得られ、さらに、t1=10μmの場合に、ベース壁温をほとんど上昇させることなく420℃程度のスイング幅ΔTが得られ、5%程度の燃費改善効果が得られる。なお、断熱材21の厚さt2が50μm以上になると、ベース壁温が上昇することで、燃費改善効果は5%よりも減少する。   In the configuration example shown in FIG. 13, as shown in FIGS. 14 and 15, the swing width ΔT of the combustion chamber wall surface temperature Twall can be greatly increased to about 420 ° C., and the fuel efficiency improvement effect is greatly increased to about 5%. Can be made. In the calculation results shown in FIGS. 14 and 15, a swing width ΔT of about 420 ° C. is obtained in the range of t2 = 10 μm to 50 μm. Furthermore, when t1 = 10 μm, the base wall temperature is hardly increased at 420 ° C. A swing width ΔT of about 5% is obtained, and a fuel efficiency improvement effect of about 5% is obtained. In addition, when the thickness t2 of the heat insulating material 21 is 50 μm or more, the fuel efficiency improvement effect is reduced from 5% due to the increase in the base wall temperature.

「実施例4」
図16,17は、断熱用薄膜20の他の構成例を示す断面図である。以下の実施例4の説明では、実施例1〜3と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
Example 4
16 and 17 are cross-sectional views showing other configuration examples of the heat insulating thin film 20. In the following description of the fourth embodiment, configurations similar to or corresponding to those of the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted.

図16,17に示す構成例(実施例4)では、図13に示す構成例(実施例3)と比較して、断熱材22には、断熱材21側(母材30側)へ突出した突出部22aが設けられていることで、断熱用薄膜20は、断熱材22の突出部22aが断熱材21の内部に入り込んだ構造を有する。図17は突出部22aが格子状に形成された例を示しているが、必ずしも突出部22aを格子状に形成する必要はない。   In the configuration example (Example 4) shown in FIGS. 16 and 17, the heat insulating material 22 protrudes to the heat insulating material 21 side (base material 30 side) compared to the configuration example (Example 3) shown in FIG. 13. By providing the protrusion 22 a, the heat insulating thin film 20 has a structure in which the protrusion 22 a of the heat insulating material 22 enters the heat insulating material 21. Although FIG. 17 shows an example in which the protruding portions 22a are formed in a lattice shape, the protruding portions 22a are not necessarily formed in a lattice shape.

実施例4においても、ベース壁温の上昇を抑えながら燃焼室壁面温度Twallのスイング幅ΔTを増大させることができ、燃焼室壁面温度Twallのシリンダ内ガス温度Tgへの追従性を向上させることができる。その結果、内燃機関1の熱効率を向上させることができる。さらに、実施例4では、断熱材22に設けた突出部22aにより断熱材21と断熱材22との接合面積を増大させることができるので、断熱材21と断熱材22との接合強度を増大させることができる。   Also in the fourth embodiment, the swing width ΔT of the combustion chamber wall surface temperature Twall can be increased while suppressing an increase in the base wall temperature, and the followability of the combustion chamber wall surface temperature Twall to the in-cylinder gas temperature Tg can be improved. it can. As a result, the thermal efficiency of the internal combustion engine 1 can be improved. Furthermore, in Example 4, since the joining area of the heat insulating material 21 and the heat insulating material 22 can be increased by the protrusion 22 a provided on the heat insulating material 22, the bonding strength between the heat insulating material 21 and the heat insulating material 22 is increased. be able to.

「実施例5」
図18,19は、断熱用薄膜20の他の構成例を示す図であり、図18は母材30の壁面30aの法線と一致する方向(法線方向)から見た図を示し、図19は断面図を示す。以下の実施例5の説明では、実施例1〜4と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
"Example 5"
18 and 19 are diagrams showing another configuration example of the heat insulating thin film 20, and FIG. 18 is a diagram viewed from a direction (normal direction) that matches the normal line of the wall surface 30a of the base material 30. 19 shows a cross-sectional view. In the following description of the fifth embodiment, the same or corresponding components as those of the first to fourth embodiments are denoted by the same reference numerals, and redundant description is omitted.

図18,19に示す構成例(実施例5)では、殻状の断熱材22は、その内部に断熱材21を内包している。そして、断熱材21を内包した断熱材22が、母材30の壁面30a上に多数敷き詰められている。断熱材21,22及び母材30の具体例は実施例1と同様である。なお、図18,19では図示を省略しているが、断熱材22と母材30との接合やコーティングを強固にするための薄い中間材が断熱材22と母材30との間に形成されていてもよい。ここでの中間材は、断熱材21または断熱材22と同程度の熱伝導率及び単位体積あたりの熱容量を有することが好ましい。また、図18は、法線方向から見た断熱材22の外形形状が略四角形状である例を示しているが、断熱材22の外形形状は四角形状以外であってもよい。   In the configuration example (Example 5) shown in FIGS. 18 and 19, the shell-like heat insulating material 22 includes the heat insulating material 21 inside. A large number of heat insulating materials 22 including the heat insulating material 21 are spread on the wall surface 30 a of the base material 30. Specific examples of the heat insulating materials 21 and 22 and the base material 30 are the same as those in the first embodiment. Although not shown in FIGS. 18 and 19, a thin intermediate material is formed between the heat insulating material 22 and the base material 30 to strengthen the bonding and coating between the heat insulating material 22 and the base material 30. It may be. The intermediate material here preferably has a thermal conductivity comparable to that of the heat insulating material 21 or the heat insulating material 22 and a heat capacity per unit volume. FIG. 18 illustrates an example in which the outer shape of the heat insulating material 22 viewed from the normal direction is a substantially square shape, but the outer shape of the heat insulating material 22 may be other than a rectangular shape.

実施例5では、耐熱性及び強度の高い断熱材22が、熱伝導率及び単位体積あたりの熱容量の低い断熱材21を内包することで、断熱材21を燃焼室13内の高温及び高圧の燃焼ガスから保護することができる。そのため、断熱材21については、燃焼室13内の高温及び高圧の燃焼ガスに対して耐熱性及び耐圧性を十分に確保するという制約を受けることなく、熱伝導率及び単位体積あたりの熱容量が十分低い断熱材料を選択することができ、断熱用薄膜20全体での熱伝導率及び単位体積あたりの熱容量も十分に低くすることができる。したがって、ベース壁温の上昇を抑えながら燃焼室壁面温度Twallのスイング幅ΔTを増大させることができ、燃焼室壁面温度Twallのシリンダ内ガス温度Tgへの追従性を向上させることができる。その結果、内燃機関1の熱効率を向上させることができる。   In Example 5, the heat insulating material 22 having high heat resistance and high strength encloses the heat insulating material 21 having low thermal conductivity and heat capacity per unit volume, so that the heat insulating material 21 is burned at high temperature and high pressure in the combustion chamber 13. Can be protected from gas. Therefore, the heat insulating material 21 has a sufficient thermal conductivity and heat capacity per unit volume without being restricted by ensuring sufficient heat resistance and pressure resistance against the high-temperature and high-pressure combustion gas in the combustion chamber 13. A low heat insulating material can be selected, and the heat conductivity and heat capacity per unit volume of the entire heat insulating thin film 20 can be sufficiently reduced. Therefore, it is possible to increase the swing width ΔT of the combustion chamber wall surface temperature Twall while suppressing an increase in the base wall temperature, and to improve the followability of the combustion chamber wall surface temperature Twall to the in-cylinder gas temperature Tg. As a result, the thermal efficiency of the internal combustion engine 1 can be improved.

「実施例6」
図20は、断熱用薄膜20の他の構成例を示す断面図である。以下の実施例6の説明では、実施例1〜5と同様の構成または対応する構成には同一の符号を付し、重複する説明を省略する。
"Example 6"
FIG. 20 is a cross-sectional view illustrating another configuration example of the heat insulating thin film 20. In the following description of the sixth embodiment, the same or corresponding components as those in the first to fifth embodiments are denoted by the same reference numerals, and redundant description is omitted.

図20に示す構成例(実施例6)では、断熱材21による層と断熱材22による層とが交互に複数回積層されていることで、断熱用薄膜20の厚さ方向において断熱材21と断熱材22とが交互に配置されている。断熱用薄膜20の厚さは例えば約100μm程度であり、断熱材22の厚さは10μm以下(例えば数μm程度)と薄いことが好ましい。断熱材21,22及び母材30の具体例は実施例1と同様であり、断熱材21の構造例としては、例えば図3Bに示す構造や図3Cに示す構造を用いることができる。   In the configuration example (Example 6) shown in FIG. 20, the layers made of the heat insulating material 21 and the layers made of the heat insulating material 22 are alternately laminated a plurality of times, so that the heat insulating material 21 in the thickness direction of the heat insulating thin film 20 The heat insulating materials 22 are alternately arranged. The thickness of the heat insulating thin film 20 is, for example, about 100 μm, and the thickness of the heat insulating material 22 is preferably as thin as 10 μm or less (for example, about several μm). Specific examples of the heat insulating materials 21 and 22 and the base material 30 are the same as those of the first embodiment. As a structural example of the heat insulating material 21, for example, the structure shown in FIG. 3B or the structure shown in FIG. 3C can be used.

実施例6では、断熱用薄膜20の面内方向(厚さ方向と垂直方向)に関して断熱材21が均一に分布し、断熱材21が断熱用薄膜20の面内方向に関して局所的に偏って存在するのを防ぐことができる。その結果、厚さ方向の熱伝導率がほぼ均一な断熱用薄膜20を実現でき、局所的に熱が逃げやすい箇所や逃げにくい箇所の存在を抑制できる。したがって、均一な熱物性の断熱用薄膜20を実現できる。   In Example 6, the heat insulating material 21 is uniformly distributed with respect to the in-plane direction (the direction perpendicular to the thickness direction) of the heat insulating thin film 20, and the heat insulating material 21 is locally biased with respect to the in-plane direction of the heat insulating thin film 20. Can be prevented. As a result, it is possible to realize the heat insulating thin film 20 having a substantially uniform thermal conductivity in the thickness direction, and it is possible to suppress the presence of a location where heat easily escapes or a location where heat is difficult to escape. Therefore, the heat insulating thin film 20 having uniform thermophysical properties can be realized.

なお、燃焼室13内に臨む壁面に形成する断熱用薄膜20については、実施例1〜6による構成例の複数を組み合わせた構造とすることもでき、断熱用薄膜20の形成箇所に応じて断熱用薄膜20の構造を変えることもできる。そして、断熱用薄膜20の膜厚については、必ずしも一定の厚さにする必要はなく、断熱用薄膜20の形成箇所に応じて変化させることもできる。さらに、本実施形態の断熱用薄膜20を他の断熱構造と組み合わせて用いることもできる。   In addition, about the heat insulation thin film 20 formed in the wall surface which faces in the combustion chamber 13, it can also be set as the structure which combined two or more of the structural examples by Examples 1-6, and heat insulation is carried out according to the formation location of the heat insulation thin film 20. The structure of the thin film 20 can be changed. And about the film thickness of the thin film 20 for heat insulation, it is not necessary to make it constant thickness, and can also be changed according to the formation location of the thin film 20 for heat insulation. Furthermore, the heat insulating thin film 20 of this embodiment can be used in combination with other heat insulating structures.

以上、本発明を実施するための形態について説明したが、本発明はこうした実施形態に何等限定されるものではなく、本発明の要旨を逸脱しない範囲内において、種々なる形態で実施し得ることは勿論である。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to such embodiment at all, and it can implement with a various form in the range which does not deviate from the summary of this invention. Of course.

Claims (15)

燃焼室を形成する母材の少なくとも一部の、燃焼室内に臨む壁面に、断熱膜が形成された内燃機関であって、
前記断熱膜は、第1の断熱材及び第2の断熱材を含み、
第1の断熱材は、母材よりも低い熱伝導率及び母材よりも低い単位体積あたりの熱容量を有し、
第2の断熱材は、母材以下の熱伝導率を有し、
第1の断熱材は、第2の断熱材よりも低い熱伝導率及び第2の断熱材よりも低い単位体積あたりの熱容量を有し、
第1の断熱材は、中空のセラミックビーズ、中空のガラスビーズ、微細多孔構造の断熱材、シリカエアロゲル、またはこれら複数の組み合わせであり、
第2の断熱材は、ジルコニア、シリコン、チタン、ジルコニウム、セラミック、セラミック繊維、またはこれら複数の組み合わせであり、
前記断熱膜は、内燃機関のサイクルにおいて、燃焼室壁面温度を550℃以上且つ650℃以下の幅で変動させることが可能である、
内燃機関。
An internal combustion engine in which a heat insulating film is formed on a wall surface facing the combustion chamber of at least a part of the base material forming the combustion chamber,
The heat insulating film includes a first heat insulating material and a second heat insulating material,
The first heat insulating material has a lower thermal conductivity than the base material and a heat capacity per unit volume lower than the base material,
The second heat insulating material has a thermal conductivity equal to or lower than the base material,
The first heat insulating material has a lower thermal conductivity than the second heat insulating material and a heat capacity per unit volume lower than that of the second heat insulating material,
The first heat insulating material is a hollow ceramic bead, a hollow glass bead, a heat insulating material having a microporous structure, a silica airgel, or a combination thereof.
The second insulation is zirconia, silicon, titanium, zirconium, ceramic, Ri ceramic fiber or the plurality of Kumiawasedea,
In the cycle of the internal combustion engine, the heat insulating film can change the combustion chamber wall surface temperature within a range of 550 ° C. or more and 650 ° C. or less.
Internal combustion engine.
第1の断熱材が第2の断熱材の内部に規則的に配列されている、請求項1記載の内燃機関。 The internal combustion engine according to claim 1, wherein the first heat insulating material is regularly arranged inside the second heat insulating material . 請求項1または2に記載の内燃機関であって、
第1の断熱材が第2の断熱材の内部に混入されている、内燃機関。
The internal combustion engine according to claim 1 or 2,
An internal combustion engine in which the first heat insulating material is mixed in the second heat insulating material.
請求項3に記載の内燃機関であって、
内部に第1の断熱材が混入された第2の断熱材は、繊維状に形成されており、
該繊維状に形成された第2の断熱材が、前記壁面上に多数敷き詰められている、内燃機関。
An internal combustion engine according to claim 3,
The second heat insulating material in which the first heat insulating material is mixed is formed in a fiber shape,
An internal combustion engine in which a large number of second heat insulating materials formed in a fibrous shape are spread on the wall surface .
請求項1に記載の内燃機関であって、
第1の断熱材が第2の断熱材の内部に混入されており、
第1の断熱材の混入割合が第2の断熱材の内部の位置に応じて異なる、内燃機関。
The internal combustion engine according to claim 1,
The first heat insulating material is mixed inside the second heat insulating material,
An internal combustion engine in which a mixing ratio of the first heat insulating material varies depending on a position inside the second heat insulating material .
請求項1に記載の内燃機関であって、
第1の断熱材が第2の断熱材の内部に混入されており、
第1の断熱材が第2の断熱材の内部に規則的に配列されている、内燃機関。
The internal combustion engine according to claim 1 ,
The first heat insulating material is mixed inside the second heat insulating material,
An internal combustion engine in which the first heat insulating material is regularly arranged inside the second heat insulating material .
請求項3に記載の内燃機関であって、
第1の断熱材は、中空構造を有する断熱材である、内燃機関。
An internal combustion engine according to claim 3 ,
The first heat insulating material is an internal combustion engine that is a heat insulating material having a hollow structure .
請求項に記載の内燃機関であって、
第1の断熱材が複数層構造を有する、内燃機関。
The internal combustion engine according to claim 7 ,
An internal combustion engine in which the first heat insulating material has a multi-layer structure .
請求項1または2に記載の内燃機関であって、
第1の断熱材が前記壁面上に形成されており、
第2の断熱材が第1の断熱材を覆うように第1の断熱材上に形成されている、内燃機関。
The internal combustion engine according to claim 1 or 2 ,
A first heat insulating material is formed on the wall surface;
An internal combustion engine, wherein the second heat insulating material is formed on the first heat insulating material so as to cover the first heat insulating material .
請求項9に記載の内燃機関であって、
第2の断熱材に、第1の断熱材側へ突出した突出部が設けられている、内燃機関。
An internal combustion engine according to claim 9,
An internal combustion engine, wherein the second heat insulating material is provided with a protruding portion that protrudes toward the first heat insulating material .
請求項1または2に記載の内燃機関であって、
第2の断熱材は、その内部に第1の断熱材を内包する殻状の断熱材である、内燃機関。
The internal combustion engine according to claim 1 or 2 ,
The second heat insulating material is an internal combustion engine that is a shell-shaped heat insulating material containing the first heat insulating material therein .
請求項1または2に記載の内燃機関であって、
断熱膜の厚さ方向において第1の断熱材と第2の断熱材とが交互に配置されている、内燃機関。
The internal combustion engine according to claim 1 or 2 ,
The internal combustion engine in which the first heat insulating material and the second heat insulating material are alternately arranged in the thickness direction of the heat insulating film .
請求項1または2に記載の内燃機関であって、
第2の断熱材の耐熱温度が、第1の断熱材の耐熱温度よりも高い、内燃機関。
The internal combustion engine according to claim 1 or 2 ,
An internal combustion engine in which a heat resistant temperature of the second heat insulating material is higher than a heat resistant temperature of the first heat insulating material .
請求項1または2に記載の内燃機関であって、
第2の断熱材の強度が、第1の断熱材の強度よりも高い、内燃機関。
The internal combustion engine according to claim 1 or 2 ,
An internal combustion engine in which the strength of the second heat insulating material is higher than the strength of the first heat insulating material .
請求項1または2に記載の内燃機関であって、
第2の断熱材は、母材よりも低い熱伝導率を有し且つ母材よりも低いまたは母材とほぼ同等の単位体積あたりの熱容量を有する、内燃機関。
The internal combustion engine according to claim 1 or 2 ,
The internal combustion engine , wherein the second heat insulating material has a thermal conductivity lower than that of the base material and a heat capacity per unit volume lower than or substantially equal to the base material .
JP2009526502A 2007-08-09 2008-08-08 Internal combustion engine Expired - Fee Related JP5629463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009526502A JP5629463B2 (en) 2007-08-09 2008-08-08 Internal combustion engine

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007208037 2007-08-09
JP2007208037 2007-08-09
PCT/JP2008/064304 WO2009020206A1 (en) 2007-08-09 2008-08-08 Internal combustion engine
JP2009526502A JP5629463B2 (en) 2007-08-09 2008-08-08 Internal combustion engine

Publications (2)

Publication Number Publication Date
JPWO2009020206A1 JPWO2009020206A1 (en) 2010-11-04
JP5629463B2 true JP5629463B2 (en) 2014-11-19

Family

ID=40341433

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009526502A Expired - Fee Related JP5629463B2 (en) 2007-08-09 2008-08-08 Internal combustion engine

Country Status (3)

Country Link
EP (1) EP2175116B1 (en)
JP (1) JP5629463B2 (en)
WO (1) WO2009020206A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200124248A (en) 2018-03-02 2020-11-02 니탄 밸브 가부시키가이샤 Valve for internal combustion engine
US11300046B2 (en) 2018-07-09 2022-04-12 Toyota Jidosha Kabushiki Kaisha Compression-ignition internal combustion engine

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5082987B2 (en) * 2008-03-31 2012-11-28 株式会社豊田中央研究所 Internal combustion engine
JP5696351B2 (en) 2009-04-15 2015-04-08 トヨタ自動車株式会社 Engine combustion chamber structure
WO2011091162A1 (en) * 2010-01-20 2011-07-28 Firestar Engineering, Llc Insulated combustion chamber
JP2011225407A (en) * 2010-04-22 2011-11-10 Toyota Motor Corp Porous heat insulating member and internal combustion engine with the same
JP5315308B2 (en) 2010-08-25 2013-10-16 トヨタ自動車株式会社 Internal combustion engine and manufacturing method thereof
JP2012072746A (en) * 2010-09-30 2012-04-12 Mazda Motor Corp Heat-insulating structure
JP5136629B2 (en) 2010-12-02 2013-02-06 トヨタ自動車株式会社 Thermal barrier film and method for forming the same
JP2012172619A (en) * 2011-02-23 2012-09-10 Aisin Seiki Co Ltd Engine and piston
JPWO2013125704A1 (en) * 2012-02-22 2015-07-30 日本碍子株式会社 Engine combustion chamber structure and flow path inner wall structure
JP2013204443A (en) * 2012-03-27 2013-10-07 Toyota Motor Corp Internal combustion engine and method of manufacturing the same
JP5783114B2 (en) 2012-03-30 2015-09-24 株式会社豊田中央研究所 Spark ignition internal combustion engine
DE102012009029A1 (en) * 2012-05-05 2013-11-07 Mahle International Gmbh Piston for combustion engine, has sheet that is formed from threads and/or fibers and is partially provided in region of piston head comprising piston head portion and circulating fire bar
US10647618B2 (en) 2014-09-19 2020-05-12 Hrl Laboratories, Llc Thermal and environmental barrier coating for ceramic substrates
US9719176B2 (en) 2013-09-20 2017-08-01 Hrl Laboratories, Llc Thermal barrier materials and coatings with low heat capacity and low thermal conductivity
JP6321934B2 (en) * 2013-09-30 2018-05-09 マツダ株式会社 Method for manufacturing a heat insulating layer on a member surface facing an engine combustion chamber
WO2015076176A1 (en) * 2013-11-19 2015-05-28 日本碍子株式会社 Heat-insulation film, and heat-insulation-film structure
JP2015140703A (en) * 2014-01-28 2015-08-03 マツダ株式会社 Heat insulation layer structure and manufacturing method for same
KR101558381B1 (en) * 2014-04-18 2015-10-07 현대자동차 주식회사 Cylinder head for engine
US9738788B1 (en) 2014-05-26 2017-08-22 Hrl Laboratories, Llc Nanoparticle-coated multilayer shell microstructures
JP6172080B2 (en) * 2014-07-25 2017-08-02 マツダ株式会社 Method and apparatus for forming heat insulation layer
CN104131879B (en) * 2014-08-01 2016-05-04 周华祥 A kind of combustion chamber heat transfer surface structures
JP6217569B2 (en) * 2014-09-11 2017-10-25 マツダ株式会社 Thermal insulation layer
JP6481322B2 (en) * 2014-10-06 2019-03-13 いすゞ自動車株式会社 Combustion chamber structure of direct injection engine
KR101619391B1 (en) * 2014-11-14 2016-05-10 현대자동차 주식회사 Cylinder head for engine
DE102014224830B4 (en) * 2014-12-04 2022-10-20 Volkswagen Aktiengesellschaft internal combustion engine and motor vehicle
DE102014018694A1 (en) * 2014-12-18 2016-06-23 Mahle International Gmbh Piston for an internal combustion engine and method for its production
US9926830B2 (en) * 2015-01-22 2018-03-27 GM Global Technology Operations LLC High efficiency two-stroke engine
KR101684527B1 (en) 2015-05-07 2016-12-08 현대자동차 주식회사 Cylinder block for engine
US10502130B2 (en) 2016-02-17 2019-12-10 GM Global Technology Operations LLC Composite thermal barrier coating
JP2017187012A (en) * 2016-04-08 2017-10-12 トヨタ自動車株式会社 Internal combustion engine
JP6638618B2 (en) * 2016-10-19 2020-01-29 トヨタ自動車株式会社 Engine manufacturing method
US10393059B2 (en) 2017-03-29 2019-08-27 Ford Global Technologies, Llc Cylinder liner for an internal combustion engine and method of forming
US10941727B2 (en) * 2017-04-04 2021-03-09 Nissan Motor Co., Ltd. Piston
US20190107045A1 (en) * 2017-10-11 2019-04-11 GM Global Technology Operations LLC Multi-layer thermal barrier
DE102017221733A1 (en) * 2017-12-01 2019-06-06 Volkswagen Aktiengesellschaft Layer stack for arrangement in a combustion chamber of an internal combustion engine, in particular a piston, and a method for its production
US10718291B2 (en) 2017-12-14 2020-07-21 Ford Global Technologies, Llc Cylinder liner for an internal combustion engine and method of forming
US10851711B2 (en) 2017-12-22 2020-12-01 GM Global Technology Operations LLC Thermal barrier coating with temperature-following layer
JP6902226B2 (en) * 2018-01-18 2021-07-14 マツダ株式会社 Compression ignition engine
JP7119916B2 (en) 2018-11-05 2022-08-17 トヨタ自動車株式会社 Thermal barrier coating for internal combustion engine and method for forming thermal barrier coating
DE102020122168A1 (en) * 2020-08-25 2022-03-03 Federal-Mogul Burscheid Gmbh CYLINDER LINER OR CYLINDER FOR AN INTERNAL COMBUSTION ENGINE
JP7252689B1 (en) 2021-09-03 2023-04-05 株式会社キュー・アールシステム Aqueous composition and its cured product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058824U (en) * 1983-09-30 1985-04-24 いすゞ自動車株式会社 Insulation structure of engine combustion chamber wall
JPS60182340A (en) * 1984-02-29 1985-09-17 Isuzu Motors Ltd Internal-combustion engine covering combustion chamber wall surface with porous heat insulating meterial
JPH07259642A (en) * 1994-02-24 1995-10-09 Caterpillar Inc Heat-insulating port liner assembly
WO2000014396A1 (en) * 1998-09-04 2000-03-16 Tadashi Yoshida Adiabatic internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1200166A (en) * 1980-08-22 1986-02-04 Jay D. Rynbrandt Internal combustion engine having manifold and combustion surfaces coated with a foam
US4495907A (en) 1983-01-18 1985-01-29 Cummins Engine Company, Inc. Combustion chamber components for internal combustion engines
JPS60184950A (en) * 1984-03-02 1985-09-20 Isuzu Motors Ltd Internal-combustion engine having wall face of combustion chamber applied with heat insulating material
US4852542A (en) 1987-10-23 1989-08-01 Adiabatics, Inc. Thin thermal barrier coating for engines
US5820976A (en) 1988-12-05 1998-10-13 Adiabatics, Inc. Thin insulative ceramic coating and process
DE19542944C2 (en) * 1995-11-17 1998-01-22 Daimler Benz Ag Internal combustion engine and method for applying a thermal barrier coating
US5683825A (en) * 1996-01-02 1997-11-04 General Electric Company Thermal barrier coating resistant to erosion and impact by particulate matter
RU2168039C2 (en) * 1996-07-05 2001-05-27 Общество с ограниченной ответственностью "Научно-исследовательский институт природных газов и газовых технологий - ВНИИГАЗ" Reduced heat removal internal combustion engine and method of its manufacture

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6058824U (en) * 1983-09-30 1985-04-24 いすゞ自動車株式会社 Insulation structure of engine combustion chamber wall
JPS60182340A (en) * 1984-02-29 1985-09-17 Isuzu Motors Ltd Internal-combustion engine covering combustion chamber wall surface with porous heat insulating meterial
JPH07259642A (en) * 1994-02-24 1995-10-09 Caterpillar Inc Heat-insulating port liner assembly
WO2000014396A1 (en) * 1998-09-04 2000-03-16 Tadashi Yoshida Adiabatic internal combustion engine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200124248A (en) 2018-03-02 2020-11-02 니탄 밸브 가부시키가이샤 Valve for internal combustion engine
US11300046B2 (en) 2018-07-09 2022-04-12 Toyota Jidosha Kabushiki Kaisha Compression-ignition internal combustion engine

Also Published As

Publication number Publication date
WO2009020206A1 (en) 2009-02-12
JPWO2009020206A1 (en) 2010-11-04
EP2175116B1 (en) 2019-03-27
EP2175116A1 (en) 2010-04-14
EP2175116A4 (en) 2012-02-08

Similar Documents

Publication Publication Date Title
JP5629463B2 (en) Internal combustion engine
JP5082987B2 (en) Internal combustion engine
JP5457640B2 (en) Internal combustion engine
US9683480B2 (en) Spark ignition type internal combustion engine
JP2010185290A (en) Heat insulating film and method of forming the same
JP5315880B2 (en) Method for forming thin film and method for manufacturing internal combustion engine
WO2013081150A1 (en) Engine combustion chamber structure, and inner wall structure of flow path
JP2010185291A (en) Heat insulating film and method of forming the same
JP6015049B2 (en) Internal combustion engine control method and internal combustion engine
JP5549510B2 (en) Lean burn engine
JP6010944B2 (en) Compression self-ignition engine
ITRM960783A1 (en) INTERNAL COMBUSTION ENGINE AND PROCEDURE FOR APPLYING AN INSULATING COATING ON TWO TECHNICALLY LOADED PARTS
JPH08501602A (en) Composite ceramic coating material
CN105358803B (en) Hot holding element includes the internal combustion engine and its improved method of hot holding element
JP5834650B2 (en) Spark ignition direct injection engine
JP5899727B2 (en) Direct injection gasoline engine
JPH01500766A (en) How to operate a catalytic ignition cycle engine and its equipment
WO2018198786A1 (en) Internal-combustion engine piston, and method for controlling cooling of internal-combustion engine piston
JP6065389B2 (en) Thermal insulation structure and manufacturing method thereof
US20190390591A1 (en) Piston for internal combustion engine and method of manufacturing same
JP2015081527A (en) Heat insulation layer provided on member surface facing engine combustion chamber
JPS5815742A (en) Engine part having flamed surface
JP5978677B2 (en) Compression self-ignition engine
JP2013068148A (en) Spark ignition type direct injection engine
JP5978678B2 (en) Compression self-ignition engine

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140108

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141006

R150 Certificate of patent or registration of utility model

Ref document number: 5629463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees