JP5625718B2 - Rolling method - Google Patents

Rolling method Download PDF

Info

Publication number
JP5625718B2
JP5625718B2 JP2010228492A JP2010228492A JP5625718B2 JP 5625718 B2 JP5625718 B2 JP 5625718B2 JP 2010228492 A JP2010228492 A JP 2010228492A JP 2010228492 A JP2010228492 A JP 2010228492A JP 5625718 B2 JP5625718 B2 JP 5625718B2
Authority
JP
Japan
Prior art keywords
rolling
workpiece
distance
dies
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010228492A
Other languages
Japanese (ja)
Other versions
JP2012081491A (en
Inventor
村井 康弘
康弘 村井
慎哉 滝本
慎哉 滝本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp filed Critical Nachi Fujikoshi Corp
Priority to JP2010228492A priority Critical patent/JP5625718B2/en
Publication of JP2012081491A publication Critical patent/JP2012081491A/en
Application granted granted Critical
Publication of JP5625718B2 publication Critical patent/JP5625718B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、歯車やスプライン等の転造加工の転造加工精度向上に関し、特にインボリュートスプラインのオーバーピン径などの径寸法ばらつきの改善に関する。   The present invention relates to improvement of rolling processing accuracy of rolling processing of gears, splines, and the like, and particularly relates to improvement of variation in diameter such as an overpin diameter of an involute spline.

従来、軸心に回転可能に支持されたワークを軸心対称に配置された一対のダイスで挟持し押圧しながらワーク外周にねじ、歯車、スプライン、セレーション等を塑性加工する転造加工方法が知られている。かかる転造加工においては、ダイス間の距離を正確に制御することにより、ワークの仕上げ寸法精度を確保している。例えば、特許文献1のものは、1対の平ダイス底面間距離をNC指令により補正動作できるNC補正機構の例が開示されており、転造精度に影響する平ダイス間の距離の補正をNC装置への補正値入力で行うことができ、平ダイス交換時の段取り替えが容易となる。また、ワークの転造幅が異なるワークに対しては、背分力変化を補正装置のサーボモータのエンコーダにより検出して平ダイス高さが一定になるよう補正できるとしている。   Conventionally, there is known a rolling method for plastically processing screws, gears, splines, serrations, etc. on the outer periphery of a workpiece while holding and pressing a workpiece rotatably supported on the shaft center with a pair of dies arranged symmetrically about the shaft center. It has been. In such rolling processing, the finish dimensional accuracy of the workpiece is ensured by accurately controlling the distance between the dies. For example, Patent Document 1 discloses an example of an NC correction mechanism that can correct a distance between a pair of flat dies in accordance with an NC command. This can be performed by inputting a correction value to the apparatus, and the setup change when the flat die is exchanged is facilitated. For workpieces with different rolling widths of workpieces, the change in back force can be detected by the servo motor encoder of the correction device so that the flat die height can be corrected to be constant.

しかしながら、特許文献1の転造盤は、背分力変化を補正装置のサーボモータのエンコーダにより検出する方式のため、背分力の変化の検出感度が悪い。そこで、検出精度を向上させるために、ねじ転造用回転ダイスの特許文献2のものでは、転造時の反力が顕著に反映されて歪みを生じる両ダイス間をつなぐテンションバーの歪みを歪みゲージで測定し、この測定値に基づき転造時の加重(背分力)を求め、さらに、この加重が適正加重になるように回転ダイス間の距離を制御して適正加重でねじ転造を行うようにしている。   However, since the rolling machine of Patent Document 1 detects the change in the back component force by the encoder of the servo motor of the correction device, the detection sensitivity of the change in the back component force is poor. Therefore, in order to improve the detection accuracy, in the patent document 2 of the rotary die for thread rolling, the distortion of the tension bar that connects between the two dies that cause distortion is significantly reflected by the reaction force during rolling. Measure with a gauge, calculate the weight (back component force) at the time of rolling based on this measured value, and further control the distance between the rotating dies so that this weight becomes the appropriate weight, and perform thread rolling with the appropriate weight. Like to do.

一方、一回の転造加工では、必ずしも形状や精度を確保できない場合がある。そこで、複数の転造盤を用いてワークを順次加工したり、一台の転造盤に複数の一対の転造平ダイスを軸方向に配置し、荒加工、中仕上げ加工、仕上げ加工の順に軸方向にワークの加工部位を移動させながら転造加工する(特許文献3)。しかし、設備が大きくなったり、複雑になる。そこで、特許文献4においては、ワークの両側に配置する一対の平ダイスの形状を中央の仕上げ歯群と、その両側の互いに左右対称な一対の食い付き兼逃げ歯群とで構成し、かかる平ダイスを1往復又は、数回往復動させ、各ダイスが各往復動死点に至った時点でその都度段階的に両ダイス間の間隔(距離)を狭めて両ダイスの移動ごとにワークの加工量を増加させて、転造加工を行っている。   On the other hand, the shape and accuracy may not always be ensured by a single rolling process. Therefore, workpieces are processed sequentially using multiple rolling machines, or multiple pairs of rolling flat dies are arranged in the axial direction on a single rolling machine, in the order of roughing, intermediate finishing, and finishing. Rolling processing is performed while moving the processing part of the workpiece in the axial direction (Patent Document 3). However, the equipment becomes large and complicated. Therefore, in Patent Document 4, the shape of the pair of flat dies arranged on both sides of the work is composed of a center finish tooth group and a pair of biting and flank tooth groups symmetrical on both sides of the pair, and the flat The die is reciprocated once or several times, and when each die reaches each reciprocating dead center, the distance (distance) between the two dies is gradually reduced each time, and the workpiece is processed for each movement of both dies. Rolling is performed by increasing the amount.

さらに、特許文献5においては、一定形状の歯形状の凹凸部の最高高さとなる仕上げ部と、高さが徐々に低くなる調整部と、高さが急勾配で低くなる逃げ部を対称に設けて、ワークが逃げ部に位置した時に徐々に平ダイス間の間隔(距離)を縮めながらワークを往復転造するようにしている。また、特許文献6の従来例の第6図乃至第8図では、セレーションを2回転造するのではなく、ねじ転造とセレーション転造を連続して行い、一度の転造でねじとセレーションの転造加工を行っている。   Furthermore, in patent document 5, the finishing part used as the maximum height of the uneven part of a fixed-tooth shape, the adjustment part which becomes low gradually, and the relief part which becomes steep and low are provided symmetrically. Thus, when the workpiece is positioned at the escape portion, the workpiece is reciprocally rolled while gradually reducing the distance (distance) between the flat dies. Further, in FIGS. 6 to 8 of the conventional example of Patent Document 6, the serration is not rotated twice, but the thread rolling and the serration rolling are continuously performed. We are rolling.

特許第2553891号公報Japanese Patent No. 2555381 特開2003−285135号公報JP 2003-285135 A 特公昭63−6296号公報Japanese Patent Publication No. 63-6296 特開昭58−157541号公報JP 58-157541 A 特開平10−118733号公報Japanese Patent Laid-Open No. 10-118733 特開平4−187337号公報JP-A-4-187337

歯車の精度は、一般に歯車の対称位置の歯溝に所定ピンを当接させ、ピン間の距離を測定するいわゆるオーバーピン径で測定し評価する。前述したいずれの場合にもこの精度を上げるために、往復転造したり、複合転造を行っている。また、転造ダイス間の距離を高精度に制御している。一方、転造加工されるワーク素材は、転造加工精度を上げるため、その材質は比較的均一な素材が用いられている。   The accuracy of a gear is generally measured and evaluated by a so-called overpin diameter in which a predetermined pin is brought into contact with a tooth groove at a symmetrical position of the gear and a distance between the pins is measured. In any of the cases described above, reciprocating rolling or complex rolling is performed to increase this accuracy. In addition, the distance between the rolling dies is controlled with high accuracy. On the other hand, the workpiece material to be rolled is made of a relatively uniform material in order to improve the rolling accuracy.

しかし、転造精度のさらなる向上が望まれる。また、ワーク材質もコスト等の理由から調達範囲が拡大され、ばらつきの大きい素材を使用しても良好な転造精度を要求されてきた。   However, further improvement in rolling accuracy is desired. In addition, the work material has been procured in a wide range for reasons such as cost, and good rolling accuracy has been required even if a material with large variations is used.

本発明の課題は、かかる問題点に鑑みて、より高い転造精度を得ることであり、また、ワーク材質の変化や、ワーク材質のばらつきに対しても、良好な転造精度を得ることである。   In view of such problems, an object of the present invention is to obtain a higher rolling accuracy, and also to obtain a good rolling accuracy with respect to changes in workpiece materials and variations in workpiece materials. is there.

本願発明者等は、かかるワーク材質と転造精度について、鋭意研究した結果、仕上げ転造にあたって単に転造ダイス間の距離を一定に制御するのみでは、安定した寸法を得られない。従来の平ダイス転造盤においては、平ダイスの底面間の距離は、通常オーバーピン径の調整機構により手作業で調整した後固定とされるため、被転造物の材料の硬さがばらつく場合に、転造荷重が増減するため、転造盤の弾性変形などにより転造加工中の平ダイスの底面間の距離も硬さに応じて増減し、加工されたインボリュートスプラインのオーバーピン径にばらつきが生じるということを知得した。即ち、転造精度のばらつきの原因が素材の硬さや粘りによる転造後のスプリングバックによるものであることを知得した。さらに、このスプリングバック量は転造時の背分力と密接な関係があることを知得した。   As a result of intensive studies on the workpiece material and rolling accuracy, the inventors of the present application cannot obtain stable dimensions simply by controlling the distance between the rolling dies at a constant level during finish rolling. In conventional flat die rolling machines, the distance between the bottom surfaces of flat dies is usually fixed after manual adjustment by the adjustment mechanism of the overpin diameter, so the hardness of the material of the rolled material varies In addition, because the rolling load increases and decreases, the distance between the bottom surfaces of the flat dies during rolling due to elastic deformation of the rolling machine also increases or decreases depending on the hardness, and the overpin diameter of the processed involute spline varies. Knew that would occur. That is, it has been found that the cause of the variation in rolling accuracy is due to the spring back after rolling due to the hardness and stickiness of the material. Furthermore, it was learned that the amount of springback is closely related to the back force during rolling.

この知得により本発明においては、軸心に回転可能に支持されたワークと、前記軸心対称に配置された一対のダイスと、前記ワークの転造加工時における背分力を検出する歪センサと、を備えた転造盤を用いて、前記一対のダイス間の距離が一定になるように制御し、かつ前記ワークを挟持しながら互いに逆方向に移動させ前記ワーク外周面を転造加工する転造加工方法であって、前記ワーク諸元に対して前記一対のダイス間距離を予め設定した前転造加工指令距離と、前記ワーク諸元に対して前記前転造加工指令距離で複数の異なるワークを転造加工し測定した背分力の関数として前記一対のダイス間の距離を定めた後転造加工指令距離と、を予め設定し、前記一対のダイス間の距離を前記前転造加工指令距離に設定して前記ワークを前転造加工し、かつ、前記前転造加工中の背分力を測定し、前記測定した背分力から前記関数により前記後転造加工指令距離を求め、前記一対のダイス間の距離を前記求めた後転造加工指令距離に設定して前記ワークを後転造加工するようにした転造加工方法。前記測定した背分力から前記関数により前記後転造加工指令距離を求め、前記一対のダイス間の距離を前記求めた後転造加工指令距離に設定して前記ワークを後転造加工する転造加工方法であって、前記前転造加工は、ねじ転造用平ダイスを用いることで前記ワークにねじ転造を行う加工であり、前記後転造加工は、インボリュートスプライン用平ダイスを用いることで前記ワークにインボリュートスプライン転造を行う加工とすることで前記前転造加工で加工される前記ワークの軸方向部位と、前記後転造加工で加工される前記ワークの軸方向部位とを異なるものとし、かつ前記前転造加工時には前記歪センサを用いて前記ワークの背分力を測定しながら加工を行い、前記後転造加工時には前記背分力に応じて前記ワークのインボリュートスプラインのオーバーピン径寸法を補正する加工を行う転造加工方法を提供することにより前述した課題を解決した。 According to this knowledge, in the present invention, a workpiece rotatably supported by an axial center, a pair of dies arranged symmetrically with respect to the axial center, and a strain sensor for detecting a back component force during rolling of the workpiece. When using the rolling machine with a distance between the pair of dies are controlled to be constant, and while sandwiching the workpiece is moved in the opposite directions to rolling the workpiece outer circumferential surface A rolling process method, wherein a plurality of roll forming command distances in which the distance between the pair of dies is set in advance with respect to the workpiece specifications, and a plurality of the above rolling process command distances with respect to the workpiece specifications. A rolling process command distance that determines the distance between the pair of dies as a function of the back component force measured by rolling different workpieces is set in advance, and the distance between the pair of dies is set to the front rolling. Set the machining command distance and move the workpiece forward. Machining, measuring the back component force during the previous rolling process, obtaining the post-rolling processing command distance from the measured back component force by the function, and obtaining the distance between the pair of dies. A rolling process method in which the work is post-rolled by setting a post-rolling process command distance. Rolling said seeking the rear rolling process instruction distance by the function from the measured back component force, the distance between the pair of dies is set to rolling instruction distance after determining the post-rolling said workpiece It is a manufacturing method, Comprising: The said front rolling process is a process which performs thread rolling to the said workpiece | work by using the flat die for screw rolling, The said post rolling process uses the flat die for involute splines In this way, an axial part of the workpiece processed by the pre-rolling process and an axial part of the workpiece processed by the post-rolling process are performed by performing involute spline rolling on the workpiece. In addition, the workpiece is processed while measuring the back component force of the workpiece using the strain sensor during the front rolling process, and the involute of the workpiece according to the back component force during the rear rolling process. And solve the problems described above by providing a rolling method for performing processing for correcting the spline over-pin diameter.

即ち、ワークの硬さや粘りが大きいと、背分力が大きくなり転造盤の変形も大きくなる。そのためワーク及び転造盤のダイス間距離等のスプリングバック量が大きくなる。一方、ワークの硬さや粘りが小さいと、背分力は小さく転造盤の変形も小さくなり、ワーク及び転造盤のダイス間距離等のスプリングバック量が小さくなる。このような関係に基づいて、後工程(例えば仕上げ転造)の転造を行う前に、前工程で背分力を測定し、平均より背分力が小さいときは、スプリングバック量は少ないのでダイス間距離を平均(標準)の場合より大きくする。また、平均より背分力が大きいときは、スプリングバック量が大きくなるので、ダイス間距離を平均の場合より小さくして仕上がり寸法を抑える。   That is, if the hardness or stickiness of the workpiece is large, the back force increases and the deformation of the rolling machine also increases. Therefore, the amount of spring back such as the distance between the dies of the workpiece and the rolling machine becomes large. On the other hand, if the hardness or stickiness of the workpiece is small, the back force is small and the deformation of the rolling machine is also small, and the amount of springback such as the distance between the die of the workpiece and the rolling machine is small. Based on this relationship, the back component force is measured in the previous step before rolling in the subsequent process (for example, finish rolling). If the back component force is smaller than the average, the springback amount is small. Make the distance between dies larger than the average (standard). Further, when the back force is greater than the average, the amount of spring back increases, so the distance between the dies is made smaller than the average to suppress the finished size.

かかる、関係を予めそれぞれのワークについて一定のダイス間距離で転造加工し、そのときの背分力を測定して、前転造加工の背分力に対して、適切な精度を得られるような後転造加工のダイス間距離を求めておく。このデータを転造盤の制御装置に記憶させ、実際の転造加工においては、加工すべきワークを前転造加工し、前転造加工中に背分力を測定し、後転造加工のダイス間距離を制御して、スプリングバック量の影響を少なくする。   Such a relationship is previously rolled for each workpiece at a constant distance between dies, and the back component force at that time is measured so that an appropriate accuracy can be obtained with respect to the back component force of the previous rolling process. Find the distance between the dies in the subsequent rolling process. This data is stored in the control device of the rolling machine, and in the actual rolling process, the workpiece to be processed is pre-rolled, the back component force is measured during the pre-rolling process, and the post-rolling process is performed. Control the distance between the dies to reduce the effect of the springback amount.

なお、制御の容易さ、精度を確実にするためには、前転造は後転造での転造精度に直接影響のないような転造加工にすることが好ましい。また、転造加工の背分力の変化を、転造盤本体上に設けた歪センサで検出するようにし、ワークの硬さが変化する場合などの微小な背分力の変化を感度よく検出するのが好ましい。   In order to ensure ease of control and accuracy, it is preferable that the pre-rolling is a rolling process that does not directly affect the rolling accuracy in the post-rolling. In addition, a change in the back force of the rolling process is detected by the strain sensor provided on the rolling machine body, and a minute change in the back force such as when the hardness of the work changes is detected with high sensitivity. It is preferable to do this.

また、ねじ転造とインボリュートスプライン転造を同一ワークに転造する複合転造において、ねじ転造用平ダイスを前転造の平ダイスとして、転造荷重を検出するようにし、インボリュートスプライン用平ダイスを前記後転造の平ダイスとして、オーバーピン径を自動調整するようにした。すなわち、前記前転造加工で加工される前記ワークの軸方向部位と、前記後転造加工で加工される前記ワークの軸方向部位とが異なる転造加工方法とした。 Also, in combined rolling , in which thread rolling and involute spline rolling are rolled into the same workpiece, the rolling load is detected by using a flat die for thread rolling as a flat die for pre-rolling, and a flat for involute spline. The overpin diameter was automatically adjusted by using the die as a flat die for post-rolling . That is, a rolling method is used in which the axial part of the workpiece processed by the front rolling process is different from the axial part of the workpiece processed by the post-rolling process .

さらに、請求項2に記載の発明においては、前記後転造加工はインボリュートスプライン用平ダイスを用いることで前記ワークにインボリュートスプライン転造を行う加工であって、前記ワークの軸心に対して歯筋が平行又はやまば又ははすばの歯形状の転造加工である転造加工方法を提供する。また、請求項3に記載の発明においては、前記前転造加工指令距離よりも前記後転造加工指令距離が小さくされている転造加工方法とした。Furthermore, in the invention described in claim 2, the post-rolling process is a process of performing involute spline rolling on the workpiece by using a flat die for involute splines, and the tooth rolling is performed with respect to the axis of the workpiece. There is provided a rolling process method in which the stripes are parallel, or are rolled into a tooth shape of a helical or helical shape. According to a third aspect of the present invention, the rolling process method is such that the post-rolling process command distance is smaller than the pre-rolling process command distance.

すなわち、前転造加工としてのねじ転造は転造荷重が比較的小さく被加工物の硬さによる径寸法の変化が少ないためワーク1個毎の寸法補正は必要ではない。また、転造荷重(背分力)の変動が小さいためワーク硬さ変化による荷重の変化が感度よく検出できるので、スプライン等の転造に先立ち転造を行うと良い。ねじ転造で検出された背分力をもとに、後転造加工としてのスプライン用平ダイス間距離を補正する。スプライン転造加工では、転造荷重が比較的大きいためワークの硬度等により変化しやすいインボリュートスプラインのオーバーピン径をワーク1個毎に自動補正することができる。   That is, in the thread rolling as the pre-rolling process, the rolling load is relatively small and the change in the diameter dimension due to the hardness of the workpiece is small, so that dimensional correction for each workpiece is not necessary. In addition, since the change in rolling load (back component force) is small, a change in load due to a change in workpiece hardness can be detected with high sensitivity. Therefore, rolling is preferably performed prior to rolling of a spline or the like. Based on the back component force detected by thread rolling, the distance between flat dies for splines as post-rolling is corrected. In spline rolling, since the rolling load is relatively large, the overpin diameter of the involute spline that easily changes depending on the hardness of the workpiece can be automatically corrected for each workpiece.

また、かかる転造方法は平ダイスの他、丸(回転)ダイス等にも応用できる。そこで、請求項に記載の発明においては、前記一対のダイスは、前記軸心を中心に対称に回転可能にされた回転ダイスであって、前記一対のダイス間の距離は、前記一対の回転ダイスの回転軸間距離である転造加工方法とした。 Further, this rolling method can be applied to round (rotating) dies as well as flat dies. Therefore, in the invention described in claim 4 , the pair of dies are rotary dies that can be rotated symmetrically about the axis, and the distance between the pair of dies is the pair of rotations. A rolling method that is the distance between the rotation axes of the dies was used.

これにより、本発明おいては、転造加工において、前転造加工工程を設け、前転造加工での背分力を測定し、前転造の背分力に応じて予め設定されたダイス間距離で後転造加工のダイス間距離を都度制御(例えば、背分力が大きい場合はダイス間距離を小さく、小さい場合はダイス間距離を大きくする)するようにしたので、ワークの硬さ等のばらつきがあっても、スプリングバック等の影響を少なくし、精度の高い転造加工方法とすることができる。さらに、インボリュートスプライン転造において、ワークの硬度により変化しやすいインボリュートスプラインのオーバーピン径寸法を、ワーク1個毎に自動補正することが可能となり、ロット内のワーク硬度ばらつきの大きいワークの場合でも、安定したオーバーピン径寸法が得られる。   Accordingly, in the present invention, in the rolling process, a pre-rolling process is provided, the back component force in the pre-rolling process is measured, and a die set in advance according to the back component force of the pre-rolling process is measured. The distance between the dies for post-rolling is controlled each time (for example, when the back force is large, the distance between the dies is reduced, and when it is small, the distance between the dies is increased). Even if there is a variation in the above, it is possible to reduce the influence of spring back and the like, and to achieve a highly accurate rolling method. Furthermore, in involute spline rolling, it becomes possible to automatically correct the overpin diameter of the involute spline, which is likely to change depending on the hardness of the workpiece, for each workpiece. A stable overpin diameter can be obtained.

また、前転造加工をねじ転造としワーク硬さ変化による荷重の変化が感度よく検出できるので、後転造加工の補正がより正確にでき、後転造加工精度が向上する。また、インボリュートスプライン等では比較的転造荷重が大きいためワークの硬度によりオーバーピン径が変化しやすいが、ねじ転造での荷重の大きさに応じてワーク1個毎に自動補正できるのでオーバーピン径寸法を安定化することができる。 In addition, since the pre-rolling process is thread rolling, the load change due to the workpiece hardness change can be detected with high sensitivity, so that the post-rolling process can be corrected more accurately and the post-rolling process accuracy is improved. Involute splines, etc., have a relatively large rolling load, so the overpin diameter tends to change depending on the hardness of the workpiece. However, the overpinning can be automatically corrected for each workpiece according to the load in thread rolling. The diameter can be stabilized.

また、請求項に記載の発明においては、歯車転造を2回以上の工程で行い、前転造加工指令距離よりも後転造加工指令距離が小さくしたので、従来の1回転造を2回転造とし、あるいは往復又は複数回転造の制御に背分力を測定して、その結果により後転造加工のダイス間距離を変更するだけで、精度の高い転造加工が可能となった。さらに、請求項に記載の発明においては、一対のダイスを回転ダイスとし、一対の回転ダイスの回転軸間距離としたので、従来機であっても容易に精度の高い転造加工を実現できるものとなった。 Further, in the invention according to claim 3 , since the gear rolling is performed in two or more steps and the post-rolling machining command distance is made smaller than the pre-rolling machining command distance, the conventional one-rotating rolling is changed to 2 It is possible to perform highly accurate rolling by simply measuring the back component force in the control of revolving or reciprocating or multi-rotating and changing the distance between the dies for post-rolling based on the result. Furthermore, in the invention described in claim 4 , since the pair of dies are rotating dies, and the distance between the rotating shafts of the pair of rotating dies is used, even a conventional machine can easily realize highly accurate rolling. It became a thing.

本発明の第一の実施の形態を示す、ねじとスプラインの複数の平ダイスを用いた転造盤の正面図である。It is a front view of a rolling machine using a plurality of flat dies of screws and splines showing a first embodiment of the present invention. 図1の平ダイスのダイス間距離を調整するテーブルの一方の側の模式図である。It is a schematic diagram of one side of the table which adjusts the distance between dies of the flat die of FIG. 図2のA矢視図である。FIG. 3 is a view as seen from an arrow A in FIG. 2. 図2のA矢視からみたワークの形状である。It is the shape of the workpiece | work seen from A arrow of FIG. 平ダイスの正面図である。It is a front view of a flat die. 本発明の第一の実施の形態を示す、(a)はねじ転造加工の背分力とねじの三針径との関係、(b)は加工された三針径とスプラインのオーバーピン径寸法との関係を表す特性図である。1A and 1B show a first embodiment of the present invention, in which FIG. 1A is a relationship between a back component force of a thread rolling process and a three needle diameter of a screw, and FIG. 2B is a processed three needle diameter and a spline overpin diameter. It is a characteristic view showing the relationship with a dimension. 本発明の第一の実施の形態である転造加工工程を示す正面図である。(a)はねじ転造加工開始、(b)はスプライン転造加工開始、(c)複合転造完了位置を示す。It is a front view which shows the rolling process process which is 1st embodiment of this invention. (A) shows the start of thread rolling, (b) shows the start of spline rolling, and (c) shows the combined rolling completion position. 本発明の第二の実施の形態を示す、一組の平ダイスを用いた転造盤の正面図である。It is a front view of the rolling machine using a set of flat dies which shows a second embodiment of the present invention. 図8の平ダイスのダイス間距離を調整するテーブルの一方の側の模式図である。It is a schematic diagram of one side of the table which adjusts the distance between dies of the flat die of FIG. 本発明の第二の実施の形態を示す、前転造加工の背分力と後転造加工のオーバーピン径寸法との関係を表す特性図である。It is a characteristic view showing the relationship between the back component force of the pre-rolling process and the overpin diameter of the post-rolling process, showing the second embodiment of the present invention. 本発明の第二の実施の形態である転造加工工程を示す正面図である。(a)は前転造加工開始、(b)は前転造加工完了、(c)は戻り工程、(d)は後転造加工完了位置を示す。It is a front view which shows the rolling process process which is 2nd embodiment of this invention. (A) shows the pre-rolling process start, (b) shows the completion of the pre-rolling process, (c) shows the return step, and (d) shows the post-rolling process completion position.

本発明の第一の実施の形態について図を用いて説明する。図1は本発明の第一の実施の形態を示すねじとスプラインの複数の平ダイスを用いた平ダイス式転造盤の正面図であり、ねじ転造加工中の状態を示している。図2は図1の平ダイスのダイス間距離を調整するテーブルの一方の側の模式図、図3は図2のA矢視図、図4は図2のA矢視からみたワークの形状、図5は平ダイスの正面図である。図4に示すように、ヘッドストック52と、対向して設けられた芯押し53との間に、ワーク(被加工物)4が保持され、軸心cに回転可能に支持されている。ワークの例はCVJであり、符号51はジョイントローラが入るカップ部である。図1に示すように、転造盤本体16には、軸心cに対して点対称に一対の複合平ダイス21乃至24が配置されている。     A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a front view of a flat die type rolling machine using a plurality of flat dies of screws and splines according to the first embodiment of the present invention, and shows a state during screw rolling. 2 is a schematic diagram of one side of a table for adjusting the distance between the dies of the flat die of FIG. 1, FIG. 3 is a view taken along the arrow A in FIG. 2, and FIG. 4 is a shape of the work as viewed from the arrow A in FIG. FIG. 5 is a front view of a flat die. As shown in FIG. 4, a work (workpiece) 4 is held between a head stock 52 and a core pusher 53 provided so as to be opposed to the headstock 52, and is rotatably supported on an axis c. An example of the workpiece is CVJ, and reference numeral 51 denotes a cup portion into which the joint roller is inserted. As shown in FIG. 1, a pair of compound flat dies 21 to 24 are arranged in the rolling disk main body 16 with point symmetry with respect to the axis c.

複合平ダイスはねじ加工用ダイス21(23)及びスプライン加工用ダイス22(24)を一組として、左側のねじ加工用ダイス21及びスプライン加工用ダイス22は下方に、右側のねじ加工用ダイス23及びスプライン加工用ダイス24は上方に、軸心cに対して点対称の関係を保ち、ワーク4を挟持しながら逆方向に移動する。これにより、ねじ転造加工、インボリュートスプライン転造加工の順にワーク外周の転造加工が行われる。   The compound flat die is a set of a screw machining die 21 (23) and a spline machining die 22 (24), and the left screw machining die 21 and the spline machining die 22 are placed downward and the right screw machining die 23. The spline processing die 24 is moved upward in the opposite direction while holding the workpiece 4 while maintaining a point-symmetrical relationship with respect to the axis c. As a result, the outer periphery of the workpiece is rolled in the order of thread rolling and involute spline rolling.

図5に示すように、平ダイス22は食付き歯部1、仕上げ歯部2、逃げ歯部3から構成されており、被加工物は食付き歯部から、仕上げ歯部、逃げ歯部を経て転造加工される。図1に示すように、ダイス21乃至24はそれぞれ移動テーブル19,20に固定され、移動テーブル19,20はコラム17,18のスライド上を図示しない駆動装置により互いに反対方向かつ平行に移動可能にされている。このとき転造加工により発生する力は、ワークを径方向に押しつぶす力の反力、すなわち平ダイスを底面に垂直に押す背分力27が最も大きい。   As shown in FIG. 5, the flat die 22 is composed of a biting tooth portion 1, a finishing tooth portion 2, and a relief tooth portion 3, and a workpiece is formed from the biting tooth portion, and the finishing tooth portion and the relief tooth portion are arranged. After that, it is rolled. As shown in FIG. 1, the dies 21 to 24 are fixed to moving tables 19 and 20, respectively, and the moving tables 19 and 20 can be moved on the slides of the columns 17 and 18 in opposite directions and parallel to each other by a driving device (not shown). Has been. At this time, the force generated by the rolling process is the largest reaction force of the force that crushes the workpiece in the radial direction, that is, the back component force 27 that pushes the flat die perpendicular to the bottom surface.

図2、3に示すように、平ダイス21、22は、1組のくさび状部材7、8を介してテーブル19に固定され、一方のくさび部材8はサーボモータ10によりボールネジ9を回転させることにより、上下方向11に移動できるようにされている。すなわち、サーボモータに所定の回転指令を与えることにより、くさび部材8を所定量上下に移動し、くさび面を介して平ダイス21、22を水平方向13及び12に正確に移動させる。これにより、ダイス間の距離を制御できる。これにより、ねじの三針径寸法やスプラインのオーバーピン径(以下「OPD」と略す)寸法のねらい値等を変化させることができる。   As shown in FIGS. 2 and 3, the flat dies 21 and 22 are fixed to the table 19 via a pair of wedge-shaped members 7 and 8, and the one wedge member 8 rotates the ball screw 9 by a servo motor 10. Thus, it can be moved in the vertical direction 11. That is, by giving a predetermined rotation command to the servo motor, the wedge member 8 is moved up and down by a predetermined amount, and the flat dies 21 and 22 are accurately moved in the horizontal directions 13 and 12 through the wedge surface. Thereby, the distance between dice | dies can be controlled. This makes it possible to change the target value of the three-needle diameter of the screw and the overpin diameter (hereinafter referred to as “OPD”) of the spline.

図1に示すように、転造盤16のコラム17,18は本体前面パネル26及び図示しない後面パネルにより強固に固定されている。前後面パネルはコラム17,18の剛性を増し、転造時の背分力に対向して位置を保持・確保する。前面パネル26には歪センサ25が取付けられており、加工中の背分力により、左右28方向に引っ張られて生じる歪を検出できるようにされている。この歪センサの出力は、背分力に比例する。この背分力は一対の平ダイス底面方向の力を検出することとほぼ同等となる。   As shown in FIG. 1, the columns 17 and 18 of the rolling board 16 are firmly fixed by a main body front panel 26 and a rear panel (not shown). The front and rear panels increase the rigidity of the columns 17 and 18, and hold and secure positions opposite to the back component force during rolling. A strain sensor 25 is attached to the front panel 26 so that the strain generated by pulling in the left-right 28 direction by the back component force during processing can be detected. The output of this strain sensor is proportional to the back component force. This back component force is substantially equivalent to detecting a force in the direction of the bottom of the pair of flat dies.

本第一の実施の形態ではかかる転造盤を用いて図4に示すようなCVJのアウターレースのワークのインボリュートスプライン14とねじ15を転造加工する。図6は、本発明の第一の実施の形態を示す、(a)はねじ転造加工の背分力とねじの三針径との関係、(b)は加工された三針径とスプラインのオーバーピン径寸法との関係を表す特性図である。図6(a)に示すように、歪センサ出力aのときの三針寸法をねらい寸法(規定寸法)に設定すると背分力の増加(ΔV)に対して、三針径寸法もほぼ比例して増加(Δd1)し、ワークのねじ三針径寸法と背分力とがほぼ直線関係にあることがわかる。これは、ワークのねじ三針径は、転造加工時のワークと平ダイス、転造盤の弾性変形の戻り量(スプリングバック量)の大小により決まり、スプリングバック量は転造加工時の背分力に比例すると考えられる。   In the first embodiment, such a rolling machine is used to roll the involute spline 14 and the screw 15 of the work of the outer race of the CVJ as shown in FIG. 6A and 6B show the first embodiment of the present invention, where FIG. 6A shows the relationship between the back component force of screw rolling and the three needle diameters of the screw, and FIG. 6B shows the processed three needle diameters and splines. It is a characteristic view showing the relationship with the overpin diameter size. As shown in FIG. 6 (a), when the three-needle dimension at the strain sensor output a is set to the target dimension (specified dimension), the three-needle diameter dimension is almost proportional to the increase in back force (ΔV). It can be seen that the three-screw diameter dimension of the workpiece and the back component force are in a substantially linear relationship. The three-needle diameter of the workpiece is determined by the size of the workpiece and flat dies at the time of rolling, and the amount of elastic deformation return (spring back) of the rolling machine. It is considered proportional to the component force.

さらに、ねじ転造加工時と、スプライン転造加工時の、ダイス間距離を所定寸法で一定とした場合、ねじ三針径とスプラインOPDの関係は、図6(b)に示すように、ほぼ直線の比例関係となる。このときダイス間距離が一定であっても各寸法が変化するのは、ワーク間の硬さの微小な差によるものであり、硬いワークでは、スプリングバック量が大となるので、ねじ三針径とスプラインOPDともに大となり、柔らかいワークではその逆となる。   Further, when the distance between the dies at the time of the thread rolling process and the spline rolling process is made constant at a predetermined dimension, the relationship between the thread three needle diameter and the spline OPD is almost as shown in FIG. 6 (b). It is a linear proportional relationship. At this time, even if the distance between the dies is constant, each dimension changes due to a small difference in hardness between the workpieces. Since the spring back amount is large for a hard workpiece, the screw three needle diameter And spline OPD both increase, and vice versa for soft workpieces.

以上のことから、ねじ転造加工時の歪センサ出力値を測定し、規定値との差がわかれば、ねじ三針径寸法のねらい寸法からの差異とともに、スプラインのOPD寸法のねらい寸法からの差異がわかることになる。すなわち、ねじ転造加工時の、歪センサ出力により、スプライン転造時に補正すべきOPD寸法の値を求めることができる。   From the above, measure the strain sensor output value at the time of thread rolling, and if the difference from the specified value is known, the difference from the target size of the screw three-needle diameter size from the target size of the OPD dimension of the spline You will see the difference. That is, the OPD dimension value to be corrected at the time of spline rolling can be obtained from the strain sensor output at the time of thread rolling.

かかる考察を元に、図6から得られたねじ転造時の歪センサ出力、三針径寸法、スプラインOPD寸法の関係を用いて、ロット内でのワーク硬度ばらつきなどにより、転造加工中の背分力が変化する場合に、加工ワークのOPD寸法を一定に保ち、安定化させる方法について述べる。   Based on these considerations, the relationship between the strain sensor output, the three needle diameter dimensions, and the spline OPD dimensions obtained from FIG. Describes how to stabilize and stabilize the OPD dimension of the workpiece when the back force changes.

図7は、本発明の第一の実施の形態である転造加工工程を示す正面図で(a)はねじ転造加工開始、(b)はスプライン転造加工開始、(c)複合転造完了位置を示す。図7(a)に示すように左側のねじダイス21及びスプラインダイス22は図でみて下方、右側ねじダイス23及びスプラインダイス24は図でみて上方に移動し、ねじ部15を所定のダイス間距離で前転造加工し、図7(b)で示すように、ねじ転造終了位置で一旦停止する。このときの背分力、好ましくはねじ仕上げ歯部転造加工時の背分力を歪センサで取得する。   FIGS. 7A and 7B are front views showing a rolling process according to the first embodiment of the present invention. FIG. 7A shows a screw rolling process start, FIG. 7B shows a spline rolling process start, and FIG. Indicates the completion position. As shown in FIG. 7A, the left screw die 21 and the spline die 22 are moved downward as viewed in the figure, the right screw die 23 and the spline die 24 are moved upward as viewed in the figure, and the screw portion 15 is moved to a predetermined distance between the dice. In FIG. 7 (b), the product is pre-rolled and temporarily stopped at the screw rolling end position. The back component force at this time, preferably the back component force at the time of thread finish tooth rolling, is acquired by a strain sensor.

次に、歪センサ出力値とねらい値との差、図6(a)のΔVからΔd1を求め、補正すべきスプラインのOPD寸法を図6(b)のΔd1に対応するΔd2を算出する。次に、左右各ダイスを、スプライン加工のための所定の追込み量に加え、補正すべきOPD寸法Δd2の1/2の量をさらに追い込む。   Next, Δd1 is obtained from the difference between the strain sensor output value and the target value, ΔV in FIG. 6A, and the OPD dimension of the spline to be corrected is calculated as Δd2 corresponding to Δd1 in FIG. 6B. Next, each of the right and left dies is added to a predetermined additional amount for spline processing, and an amount that is ½ of the OPD dimension Δd2 to be corrected is further driven.

さらに、ダイスを再度前進させ後転造加工を行い図7(c)に示す位置で転造加工を完了する。これにより、加工されたワークのスプラインOPD寸法は、ロット内のワーク硬さがばらついていても、ワーク毎のバラつきが少なく、安定した加工寸法となる。   Further, the die is moved forward again to perform the rolling process, and the rolling process is completed at the position shown in FIG. As a result, the spline OPD dimension of the machined work is stable and has a stable machining dimension even when the work hardness in the lot varies.

次に、本発明の第二の実施の形態について図を用いて説明する。図8は本発明の第二の実施の形態を示す、一組の平ダイスを用いた平ダイス式転造盤の正面図であり、転造加工中の状態を示している。図9は図8の平ダイスのダイス間距離を調整するテーブルの一方の側の模式図である。前述した第一の実施の形態と同様な部分は同符号を付し説明の一部を省略する。平ダイス5は前述した図5に示すものと同様であり、食付き歯部1、仕上げ歯部2、逃げ歯部3から構成されており、ワークは食付き歯部から、仕上げ歯部、逃げ歯部を経て転造加工される。   Next, a second embodiment of the present invention will be described with reference to the drawings. FIG. 8 is a front view of a flat die type rolling machine using a pair of flat dies, showing a second embodiment of the present invention, and shows a state during the rolling process. FIG. 9 is a schematic view on one side of a table for adjusting the distance between the flat dies of FIG. Parts similar to those of the first embodiment described above are denoted by the same reference numerals, and a part of the description is omitted. The flat die 5 is the same as that shown in FIG. 5 described above, and is composed of a biting tooth portion 1, a finishing tooth portion 2, and a relief tooth portion 3. A workpiece is formed from the biting tooth portion, the finishing tooth portion, and the relief tooth portion. Rolled through the teeth.

図8に示すように、ワーク4は図示しない両センタ装置により保持されており、左側平ダイス5は図でみて下方に、右側ダイス6は上方に、センタcに対して点対称の関係を保ちながら移動することにより転造加工が行われる。平ダイス5,6は移動テーブル19、20に固定されており、移動テーブル19、20はコラム17、18のスライド上を図示しない駆動装置により互いに反対方向かつ平行に移動する。このとき転造加工により発生する力は、ワークを径方向に押しつぶす力の反力、すなわち平ダイスを底面に垂直に押す背分力30が最も大きい。   As shown in FIG. 8, the workpiece 4 is held by a center device (not shown), the left flat die 5 is kept downward in the figure, the right die 6 is kept upward, and the point c is kept symmetrical with respect to the center c. The rolling process is performed by moving while moving. The flat dies 5 and 6 are fixed to the moving tables 19 and 20, and the moving tables 19 and 20 move on the slides of the columns 17 and 18 in opposite directions and in parallel with each other by a driving device (not shown). At this time, the force generated by the rolling process is the largest reaction force of the force that crushes the workpiece in the radial direction, that is, the back component force 30 that pushes the flat die perpendicular to the bottom surface.

図9に示すように、平ダイス5、6は、1組のくさび状部材7、8を介してテーブル19に固定され、一方のくさび部材8はサーボモータ10によりボールネジ9を回転させることにより、上下方向11に移動できるようにされている。すなわち、例えばNC指令によりサーボモータに所定の回転指令を与えることにより、くさび部材8を所定量上下に移動し、くさび面を介して平ダイス5及び6を図示でみて水平方向12に正確に移動させる。これにより、ダイス間の距離を制御できる。これにより、スプラインのOPD寸法のねらい値等を変化させることができる。   As shown in FIG. 9, the flat dies 5 and 6 are fixed to the table 19 via a pair of wedge-shaped members 7 and 8, and one wedge member 8 is rotated by rotating a ball screw 9 by a servo motor 10. It can be moved in the vertical direction 11. That is, for example, by giving a predetermined rotation command to the servo motor by an NC command, the wedge member 8 is moved up and down by a predetermined amount, and the flat dies 5 and 6 are accurately moved in the horizontal direction 12 through the wedge surface as shown in the figure. Let Thereby, the distance between dice | dies can be controlled. Thereby, the target value of the OPD dimension of the spline can be changed.

図8に示すように、転造盤11の前面パネル26には歪センサ25が取付けられており、加工中の背分力により、左右30、31方向に引っ張られて生じる歪を検出できるようにされている。この歪センサの出力は、背分力に比例する。   As shown in FIG. 8, a strain sensor 25 is attached to the front panel 26 of the rolling machine 11 so that the strain generated by pulling in the left and right 30, 31 directions can be detected by the back component force during processing. Has been. The output of this strain sensor is proportional to the back component force.

図10は、前転造加工の背分力(歪みセンサ出力)と後転造加工のオーバーピン径寸法との関係を表す特性図である。ワークを連続加工した際の、歪センサ出力とオーバーピン径寸法の関係を示す。図10に示すように、歪センサ出力aのときのOPD寸法をねらい寸法(規定寸法)に設定すると背分力の増加(ΔV)に対して、OPD寸法もほぼ比例して増加(Δd)し、ワークのOPD寸法と背分力とがほぼ直線関係にあることがわかる。これは、ワークのOPDは、転造加工時のワークと平ダイス、転造盤の弾性変形の戻り量(スプリングバック量)の大小により決まるが、スプリングバック量は転造加工時の背分力に比例すると考えられる。   FIG. 10 is a characteristic diagram showing the relationship between the back component force (distortion sensor output) of the pre-rolling process and the overpin diameter size of the post-rolling process. The relationship between the strain sensor output and the overpin diameter when the workpiece is continuously processed is shown. As shown in FIG. 10, when the OPD dimension at the strain sensor output a is set to a target dimension (specified dimension), the OPD dimension increases (Δd) almost in proportion to the increase in back force (ΔV). It can be seen that the OPD dimension of the workpiece and the back component force are in a substantially linear relationship. This is because the OPD of the workpiece is determined by the size of the workpiece and flat dies during the rolling process, and the amount of return of elastic deformation of the rolling machine (spring back amount), but the spring back amount is the back component force during the rolling process. It is thought that it is proportional to

以上のことから、前転造加工時の歪センサ出力を測定し、規定値との差がわかれば、OPD寸法のねらい値からの差異がわかることになる。すなわち、後転造時の補正すべきOPD寸法の値を求めることができる。   From the above, if the strain sensor output during the pre-rolling process is measured and the difference from the specified value is known, the difference from the target value of the OPD dimension can be understood. That is, the OPD dimension value to be corrected at the time of post-rolling can be obtained.

かかる考察を元に、図10で求められた、歪センサ出力とOPD寸法の関係を用いて、ロット内でのワーク硬度ばらつきなどにより、転造加工中の背分力が変化する場合に、加工ワークのOPD寸法を一定に保ち、安定化させる方法について述べる。   Based on this consideration, using the relationship between strain sensor output and OPD dimensions obtained in FIG. 10, when the back force during rolling changes due to workpiece hardness variation within the lot, etc. Describes how to stabilize and stabilize the OPD dimensions of the workpiece.

図11は本発明の第二の実施の形態である転造加工工程を示す正面図で(a)は前転造加工開始、(b)は前転造加工完了、(c)は戻り工程、(d)は後転造加工完了位置を示す。図11(a)に示すように、左側ダイス5は図でみて下方、右側ダイス6は上方に移動し、図11(b)で示す仕上げ歯部2の終わり近くで一旦停止する。このとき仕上げ歯部で発生する背分力を歪センサ25で取得する。ここで、歪センサ出力値と規定値との差(ΔV)から、補正すべきOPD寸法(Δd)を図10の関係から算出する。   FIG. 11 is a front view showing a rolling process step according to the second embodiment of the present invention, in which (a) starts the pre-rolling process, (b) completes the pre-rolling process, (c) returns the process, (D) shows a post-rolling processing completion position. As shown in FIG. 11A, the left die 5 moves downward and the right die 6 moves upward as viewed in the figure, and temporarily stops near the end of the finish tooth portion 2 shown in FIG. 11B. At this time, the back force generated in the finished tooth portion is acquired by the strain sensor 25. Here, the OPD dimension (Δd) to be corrected is calculated from the relationship of FIG. 10 from the difference (ΔV) between the strain sensor output value and the specified value.

次に、仕上げ歯部手前の図4(c)の位置まで左右ダイス5、6を後退させ停止する。この位置ではワークとダイスが若干逃げた状態になっているが、ここで、左右各ダイスを所定の追込み量に加え、補正すべきOPD寸法(Δd)の1/2の量をさらに追い込む。さらに、ダイスを再度前進させ、図11(d)の状態で転造加工を完了する。このとき、加工されたワークのOPD寸法は、ロット内のワーク硬さがばらついていても、ばらつきが少なく、安定した加工寸法となる。   Next, the left and right dies 5 and 6 are retracted to the position shown in FIG. At this position, the workpiece and the die are slightly evacuated. Here, the right and left dies are added to a predetermined additional amount, and an amount ½ of the OPD dimension (Δd) to be corrected is further driven. Further, the die is advanced again, and the rolling process is completed in the state shown in FIG. At this time, the OPD dimension of the processed workpiece has a small variation even when the hardness of the workpiece in the lot varies, and is a stable processing dimension.

第二の実施の形態においては、一方向用の平ダイスを二回動作させて、背分力を測定するための前転造加工を行った後、ダイスを戻し、ダイス間距離を縮めて仕上げ転造加工を後転造加工として行い精度の向上を図った。同様に、前述した特許文献4又は特許文献5のようにダイス間距離を順次接近させながら往復転造する場合にも適用できる。この場合、後転造加工を最終仕上げ寸法とし、前転造加工を直前の加工にして、背分力を測定し、この背分力に応じて最終仕上げ寸法の補正をすればよい。さらに、特許文献3のように、複数の転造ダイスを並べて順次転造加工する場合も、後転造加工を最終仕上げダイスで行い、前転造加工を隣接する直前のダイスで加工にして、背分力を測定し、この背分力に応じて最終仕上げ寸法の補正をすればよい。このように従来の往復転造加工、複数回転造加工にも適宜適用できる。   In the second embodiment, after moving the flat die for one direction twice and performing the pre-rolling process for measuring the back force, the die is returned and the distance between the die is shortened to finish. The rolling process was post-rolled to improve accuracy. Similarly, the present invention can also be applied to the case of reciprocating rolling while the distance between the dies is sequentially approached as in Patent Document 4 or Patent Document 5 described above. In this case, the post-rolling process is set as the final finish dimension, the pre-rolling process is set as the immediately preceding process, the back component force is measured, and the final finish dimension is corrected according to the back component force. Furthermore, as in Patent Document 3, when rolling a plurality of rolling dies one after another, the subsequent rolling process is performed with the final finishing die, and the pre-rolling process is performed with the immediately preceding die, The back component force is measured, and the final finish dimension may be corrected according to the back component force. As described above, the present invention can be appropriately applied to the conventional reciprocating rolling process and the multi-rotating process.

平ダイス及び平ダイス式転造盤について述べてきたが、前述した特許文献2のような回転(丸)ダイス及び回転ダイス式転造盤の場合も同様な加工が可能であることはいうまでもない。この場合は、最終仕上げ寸法時の回転ダイス軸間距離よりも大きな軸間距離で、前転造を行い同時に背分力を測定する。この背分力に応じて最終仕上げ時の回転ダイス軸間距離を補正し、後転造加工を行い仕上げ転造を行えばよい。その他については従来と同様であるので詳細な説明を割愛する。   Although the flat die and the flat die type rolling machine have been described, it goes without saying that the same processing is possible in the case of the rotating (round) die and the rotating die type rolling machine as in Patent Document 2 described above. Absent. In this case, pre-rolling is performed at an inter-axis distance larger than the distance between the rotary die axes at the final finishing dimension, and the back component force is measured at the same time. The distance between the rotary die axes at the time of final finishing may be corrected according to this back component force, and post-rolling may be performed to perform finish rolling. Since others are the same as in the prior art, a detailed description is omitted.

以上述べたように、複数回転造を行い、前転造加工での背分力に応じて、後転造加工で仕上げ転造寸法の補正をするようにしたので、ワーク硬度アップによりインボリュートスプライン等のオーバーピン径寸法が大となるのを抑制し、寸法変化を抑え、精度の高い歯を形成することができる。なお、一対の平ダイス間の距離は、NCプログラム等で、平ダイスのピッチ線間距離、あるいはオーバーピン間距離、あるいは一対の平ダイスが取り付けられる移動テーブル面間距離等適宜選択設定すればよい。   As described above, multiple rotation forming is performed, and finish rolling dimensions are corrected in post-rolling processing according to the back component force in the front rolling processing, so involute splines etc. by increasing workpiece hardness It is possible to suppress an increase in the overpin diameter size, suppress a dimensional change, and form a highly accurate tooth. The distance between the pair of flat dies may be appropriately selected and set by the NC program or the like, such as the distance between the pitch lines of the flat dies, the distance between overpins, or the distance between the moving table surfaces to which the pair of flat dies are attached. .

4 ワーク
5、6、22、24 (平)ダイス
21、23 (ねじ加工用)ダイス
11、16 転造盤
c 軸心
ΔV 背分力(歪センサ出力)
4 Workpieces 5, 6, 22, 24 (Flat) Dies 21, 23 (For screw machining) Dies 11, 16 Rolling machine c Shaft center ΔV Back component force (Strain sensor output)

Claims (4)

軸心に回転可能に支持されたワークと、前記軸心対称に配置された一対のダイスと、前記ワークの転造加工時における背分力を検出する歪センサと、を備えた転造盤を用いて、前記一対のダイス間の距離が一定になるように制御し、かつ前記ワークを挟持しながら互いに逆方向に移動させ前記ワーク外周面を転造加工する転造加工方法であって、前記ワーク諸元に対して前記一対のダイス間距離を予め設定した前転造加工指令距離と、前記ワーク諸元に対して前記前転造加工指令距離で複数の異なるワークを転造加工し測定した背分力の関数として前記一対のダイス間の距離を定めた後転造加工指令距離と、を予め設定し、前記一対のダイス間の距離を前記前転造加工指令距離に設定して前記ワークを前転造加工し、かつ、前記前転造加工中の背分力を測定し、前記測定した背分力から前記関数により前記後転造加工指令距離を求め、前記一対のダイス間の距離を前記求めた後転造加工指令距離に設定して前記ワークを後転造加工する転造加工方法であって、前記前転造加工は、ねじ転造用平ダイスを用いることで前記ワークにねじ転造を行う加工であり、前記後転造加工は、インボリュートスプライン用平ダイスを用いることで前記ワークにインボリュートスプライン転造を行う加工とすることで前記前転造加工で加工される前記ワークの軸方向部位と、前記後転造加工で加工される前記ワークの軸方向部位とを異なるものとし、かつ前記前転造加工時には前記歪センサを用いて前記ワークの背分力を測定しながら加工を行い、前記後転造加工時には前記背分力に応じて前記ワークのインボリュートスプラインのオーバーピン径寸法を補正する加工を行うことを特徴とする転造加工方法。 A workpiece which is rotatably supported on the axis, a pair of dies disposed on the axis of symmetry, a strain sensor for detecting the back component force during rolling of the workpiece, a rolling machine equipped with Using a rolling method for controlling the distance between the pair of dies to be constant, and rolling the workpiece outer peripheral surface by moving the workpieces in opposite directions while sandwiching the workpiece, Measured by rolling a plurality of different workpieces at a pre-rolling processing command distance in which the distance between the pair of dies was set in advance for the workpiece specifications and the preceding rolling processing command distance with respect to the workpiece specifications. A post-rolling processing command distance in which a distance between the pair of dies is determined in advance as a function of a back component force, and a distance between the pair of dies is set as the front rolling processing command distance to set the workpiece Before rolling and during the previous rolling process The back component force is measured, the post-rolling processing command distance is obtained from the measured back component force by the function, and the distance between the pair of dies is set to the calculated post-rolling processing command distance. Is a rolling method for post-rolling , wherein the pre-rolling process is a process of performing thread rolling on the workpiece by using a flat die for thread rolling, and the post-rolling process is By using a flat die for an involute spline, the workpiece is processed in the pre-rolling process by performing involute spline rolling on the work, and the workpiece is processed in the post-rolling process. The workpiece is different from the axial direction of the workpiece and is processed while measuring the back component force of the workpiece using the strain sensor during the forward rolling process, and according to the back component force during the subsequent rolling process. The word Rolling method characterized in that for machining to correct the over-pin diameter involute splines. 前記後転造加工は、インボリュートスプライン用平ダイスを用いることで前記ワークにインボリュートスプライン転造を行う加工であって、前記ワークの軸心に対して歯筋が平行又はやまば又ははすばの歯形状の転造加工である請求項1記載の転造加工方法。 The post-rolling process is a process of performing involute spline rolling on the workpiece by using a flat die for involute spline, and the tooth traces are parallel to the axis of the workpiece, or are indented or helical. The rolling method according to claim 1, which is a tooth-shaped rolling process. 前記前転造加工指令距離よりも前記後転造加工指令距離が小さくされていることを特徴とする請求項1記載の転造加工方法。 The rolling process method according to claim 1, wherein the post-rolling process command distance is smaller than the pre-rolling process command distance . 前記一対のダイスは、前記軸心を中心に対称に回転可能にされた回転ダイスであって、前記一対のダイス間の距離は、前記一対の回転ダイスの回転軸間距離であることを特徴とする請求項1に記載の転造加工方法。 The pair of dies are rotary dies that can be rotated symmetrically about the axis, and the distance between the pair of dies is a distance between the rotation axes of the pair of dies. The rolling method according to claim 1 .
JP2010228492A 2010-10-08 2010-10-08 Rolling method Active JP5625718B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010228492A JP5625718B2 (en) 2010-10-08 2010-10-08 Rolling method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010228492A JP5625718B2 (en) 2010-10-08 2010-10-08 Rolling method

Publications (2)

Publication Number Publication Date
JP2012081491A JP2012081491A (en) 2012-04-26
JP5625718B2 true JP5625718B2 (en) 2014-11-19

Family

ID=46240921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010228492A Active JP5625718B2 (en) 2010-10-08 2010-10-08 Rolling method

Country Status (1)

Country Link
JP (1) JP5625718B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103121073A (en) * 2013-01-24 2013-05-29 安徽力成机械装备有限公司 Numerical control vertical type gear rolling machine
KR101779052B1 (en) * 2015-11-12 2017-09-18 이인철 Plate type rolling apparatus
CN115921729A (en) * 2022-12-05 2023-04-07 邯郸市美坚利五金制造有限公司 Thread rolling machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561235A (en) * 1979-06-14 1981-01-08 Nachi Fujikoshi Corp Multistage rolling device of precision rolling machine
EP0259508B1 (en) * 1986-09-09 1991-07-24 Wilhelm Hegenscheidt Gesellschaft mbH Method and device for rolling work pieces of ductile material
JP2902101B2 (en) * 1990-11-20 1999-06-07 株式会社不二越 Simultaneous rolling method and rolling tool of screw and gear similar shape
JP3746855B2 (en) * 1996-10-15 2006-02-15 株式会社不二越 Rolling machine having rolling flat dies and rolling processing method
JP2003154497A (en) * 2001-11-21 2003-05-27 Nidec Tosok Corp Press apparatus
JP2003285135A (en) * 2002-03-26 2003-10-07 Minebea Co Ltd Screw form-rolling device

Also Published As

Publication number Publication date
JP2012081491A (en) 2012-04-26

Similar Documents

Publication Publication Date Title
KR100488249B1 (en) Method of rolling worm gear and the worm gear
US6877351B2 (en) Linear guide rail and method for working same
WO2010055766A1 (en) Method of measuring gear
WO2011030866A1 (en) Machine tool and machining method
JP7115547B2 (en) Threaded shaft and manufacturing method thereof, electric position adjusting device for steering wheel and manufacturing method thereof
JP5625718B2 (en) Rolling method
CN103987473B (en) Use the rolling method of the gear of circular die
WO2018099403A1 (en) Method and apparatus for stock rolling feeding, diameter reduction, alignment and derusting and product thereof
US5251154A (en) Method for measuring accuracy of thread groove and system for the same
JPH08318340A (en) Thread rolling machine to prevent bending of axis of work
KR100688821B1 (en) Method of manufacturing part with internal gear and rolling machine
CN108628254A (en) Power causes error lower rolling tooth to process tooth surface parameters acquisition methods
WO2022080331A1 (en) Screw shaft and method for producing same, and electric position-adjusting device for steering wheel
JP2019058929A (en) Form-rolling device
US11130166B2 (en) Cylindrical tool matching system
JP2902101B2 (en) Simultaneous rolling method and rolling tool of screw and gear similar shape
JP2006342971A (en) Worm gear
JP3565703B2 (en) Round die rolling device
JP7395868B2 (en) Gear processing equipment and gear processing method
JP5353142B2 (en) Automatic phase adjustment rolling machine
JP3972060B2 (en) Rolling machine
JPH07227637A (en) Form rolling apparatus
JP2901874B2 (en) Variable width and leg length edging roll and method for adjusting the roll zero point
JP2011152560A (en) Flat die for form rolling
JP5888502B2 (en) Method for rolling helical gears

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130726

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140603

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140915

R150 Certificate of patent or registration of utility model

Ref document number: 5625718

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350