JP5623848B2 - Manufacturing method of optical film - Google Patents

Manufacturing method of optical film Download PDF

Info

Publication number
JP5623848B2
JP5623848B2 JP2010213401A JP2010213401A JP5623848B2 JP 5623848 B2 JP5623848 B2 JP 5623848B2 JP 2010213401 A JP2010213401 A JP 2010213401A JP 2010213401 A JP2010213401 A JP 2010213401A JP 5623848 B2 JP5623848 B2 JP 5623848B2
Authority
JP
Japan
Prior art keywords
film
thickness
stretched
resin
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010213401A
Other languages
Japanese (ja)
Other versions
JP2011088440A (en
Inventor
満之 武田
満之 武田
俊文 松宮
俊文 松宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2010213401A priority Critical patent/JP5623848B2/en
Publication of JP2011088440A publication Critical patent/JP2011088440A/en
Application granted granted Critical
Publication of JP5623848B2 publication Critical patent/JP5623848B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)

Description

本発明は、偏光子保護フィルム等の光学フィルムの製造方法に関するものである。特に本発明は、アクリル樹脂を主成分とする光学フィルムの製造方法に関するものである。   The present invention relates to a method for producing an optical film such as a polarizer protective film. Especially this invention relates to the manufacturing method of the optical film which has an acrylic resin as a main component.

液晶表示装置等の表示装置に広く使用されている偏光子保護フィルム等の光学フィルムの代表的な製造方法として、溶液流延製膜法を利用するものや、溶融押出法を利用するものが知られている。   As a typical method for producing an optical film such as a polarizer protective film widely used in a display device such as a liquid crystal display device, one using a solution casting film forming method or one using a melt extrusion method is known. It has been.

溶液流延製膜法は、樹脂を溶媒に溶かしてその溶液を支持体上に広がり状に流し、溶媒を蒸発させてフィルムを得る方法である。偏光子保護フィルムを得るには、溶液流延製膜法で得られたフィルムを更に延伸処理することとなる。溶液流延製膜法は、膜厚の均一性に優れるという利点があるものの、溶媒を乾燥させるための設備が必須であり、製造設備が大規模なものにならざるを得ないという問題点がある。   The solution casting film forming method is a method in which a film is obtained by dissolving a resin in a solvent, flowing the solution on a support in a spreading manner, and evaporating the solvent. In order to obtain a polarizer protective film, the film obtained by the solution casting film forming method is further stretched. Although the solution casting film forming method has the advantage of being excellent in film thickness uniformity, equipment for drying the solvent is essential, and there is a problem that the manufacturing equipment must be large-scale. is there.

一方、溶融押出法は、押出機に取り付けられたTダイからフィルム状の樹脂を押し出す工程を有するものである(例えば、特許文献1〜4)。溶融押出法では押出機から押し出された厚さの厚い樹脂フィルムを延伸し、薄膜化してフィルムを得る。例えば、アクリル樹脂などでは、押出機から押し出された樹脂フィルムを二対のロールで挟み、進行方向前方のロールの周速を後方のロールよりも速めてシートを長手方向に延伸する。すなわち縦方向延伸を行う。偏光子保護フィルムを得るには、縦方向延伸されたフィルムをさらに横方向に延伸することとなる。すなわち、縦方向延伸されたフィルムの両端部をクリップで挟み、両端のクリップの間隔を広げることによって前記したフィルムを先の延伸方向に対して垂直方向に延伸する。   On the other hand, the melt extrusion method has a step of extruding a film-like resin from a T die attached to an extruder (for example, Patent Documents 1 to 4). In the melt extrusion method, a thick resin film extruded from an extruder is stretched and thinned to obtain a film. For example, in the case of an acrylic resin or the like, the resin film extruded from the extruder is sandwiched between two pairs of rolls, and the sheet is stretched in the longitudinal direction with the peripheral speed of the front roll in the traveling direction faster than that of the rear roll. That is, longitudinal stretching is performed. In order to obtain a polarizer protective film, the film stretched in the longitudinal direction is further stretched in the lateral direction. That is, the film described above is stretched in the direction perpendicular to the previous stretching direction by sandwiching both ends of the film stretched in the longitudinal direction with clips and widening the gap between the clips at both ends.

溶融押出法では溶媒を乾燥させる必要が無いので、設備の構成が比較的簡単であるが、膜の厚さにバラツキが生じやすいという問題点がある。そこで特許文献1に開示された方法では、溶融状態の樹脂を主ロールとタッチロールの間に押し出す際、樹脂の厚さが幅方向の中央で最大となり、挟圧領域に相当する端部で最小となる様に厚さ調整を行う。すなわち溶融状態の樹脂を主ロールとタッチロールの間で挟圧する際、前記ロールが撓んで幅方向中央部分の押圧力が端部に比べて小さくなることに注目し、溶融状態の樹脂を主ロールとタッチロールの間に押し出す際、樹脂の厚さが幅方向の中央で最大となる様にして樹脂に掛かる挟圧力を均一化している。   In the melt extrusion method, it is not necessary to dry the solvent, so the construction of the equipment is relatively simple, but there is a problem that the thickness of the film tends to vary. Therefore, in the method disclosed in Patent Document 1, when the molten resin is extruded between the main roll and the touch roll, the thickness of the resin is maximized at the center in the width direction and is minimized at the end corresponding to the pinching region. Adjust the thickness so that That is, when the molten resin is sandwiched between the main roll and the touch roll, it is noted that the roll is bent and the pressing force in the central portion in the width direction is smaller than that of the end portion. When the sheet is pushed out between the touch roll and the touch roll, the sandwiching pressure applied to the resin is made uniform so that the thickness of the resin becomes maximum at the center in the width direction.

特許文献2,3,4に開示された方法でも、延伸前のフィルムの断面形状が、幅方向の中央で最大となる様に調整している。すなわちフィルムを横方向に延伸する際、フィルムは幅方向の中心部から引き延ばされ、延伸領域が次第に端部側に広がって行く。そのため、平坦なフィルムを横方向に延伸すると、中央部分が薄くなる傾向となることに注目し、延伸前のフィルムの断面形状が、幅方向の中央で最大となる様に調整している。   Even the methods disclosed in Patent Documents 2, 3, and 4 are adjusted so that the cross-sectional shape of the film before stretching is maximized at the center in the width direction. That is, when the film is stretched in the transverse direction, the film is stretched from the center in the width direction, and the stretched region gradually spreads toward the end side. Therefore, when a flat film is stretched in the transverse direction, the central portion tends to be thinned, and the cross-sectional shape of the film before stretching is adjusted to be maximum at the center in the width direction.

図4は、従来技術のフィルム製造装置の構成とともに、特許文献2,3,4に開示された位相差フィルムの製造方法を模式的に表した図である。図4に示すフィルム製造装置101は、押出工程を担う押出部102、縦延伸工程を担う縦延伸部103、及び、横延伸工程を担う横延伸部105を有する。押出部102のTダイから押し出された樹脂フィルムFは、縦延伸部103にて縦方向(長手方向)に延伸され、その後、横延伸部105にて横方向(幅方向)に延伸される。   FIG. 4 is a diagram schematically showing a method for producing a retardation film disclosed in Patent Documents 2, 3, and 4, together with a configuration of a conventional film production apparatus. A film manufacturing apparatus 101 shown in FIG. 4 includes an extruding unit 102 responsible for an extruding process, a longitudinal stretching part 103 responsible for a longitudinal stretching process, and a transverse stretching part 105 responsible for a transverse stretching process. The resin film F extruded from the T die of the extrusion unit 102 is stretched in the longitudinal direction (longitudinal direction) by the longitudinal stretching unit 103, and then stretched in the lateral direction (width direction) by the lateral stretching unit 105.

図4(c−1)〜(c−4)は各工程におけるフィルムFの断面形状を模式的に示しており、図4(c−1)はTダイからの押し出し直後の樹脂フィルムの断面形状、図4(c−2)は縦延伸直後の樹脂の断面形状、図4(c−3)は横延伸中における樹脂の断面形状、図4(c−4)は横延伸後における樹脂の断面形状である。特許文献2,3,4に開示された方法では、図4(c−1)の様に断面形状が幅方向の中央で厚さが最大となった樹脂フィルムFを縦方向に延伸し、図4(c−2)の様に幅方向の中央で厚さが最大となった縦延伸フィルムとする。その後、この縦延伸フィルムを横方向に延伸し、図4(c−3)の様に中央部から延伸を開始させてその延伸領域を端部側にまで広げ、図4(c−4)の様に均一な厚さの位相差フィルム等の光学フィルムFを得る。
なお従来技術では、主として、セルロースエステル(特許文献1)や環状オレフィン系樹脂であるノルボルネン系樹脂(特許文献2,3,4)主成分とする樹脂からなる光学フィルムを製造の対象としている。
4 (c-1) to (c-4) schematically show the cross-sectional shape of the film F in each step, and FIG. 4 (c-1) shows the cross-sectional shape of the resin film immediately after extrusion from the T-die. 4 (c-2) is the cross-sectional shape of the resin immediately after longitudinal stretching, FIG. 4 (c-3) is the cross-sectional shape of the resin during lateral stretching, and FIG. 4 (c-4) is the cross-sectional shape of the resin after lateral stretching. Shape. In the methods disclosed in Patent Documents 2, 3, and 4, as shown in FIG. 4 (c-1), the resin film F whose cross-sectional shape has the maximum thickness at the center in the width direction is stretched in the vertical direction. A longitudinally stretched film having a maximum thickness at the center in the width direction as in 4 (c-2). Thereafter, the longitudinally stretched film is stretched in the transverse direction, and stretching is started from the central portion as shown in FIG. 4 (c-3), and the stretched region is expanded to the end side, as shown in FIG. 4 (c-4). Thus, an optical film F such as a retardation film having a uniform thickness is obtained.
In the prior art, an optical film made of a resin mainly composed of cellulose ester (Patent Document 1) or a norbornene resin (Patent Documents 2, 3, and 4), which is a cyclic olefin resin, is mainly manufactured.

特開2008−296537号公報JP 2008-296537 A 特開2008−39807号公報JP 2008-39807 A 特開2008−39808号公報JP 2008-39808 A 特開2007−187977号公報JP 2007-187777 A

ところで、偏光子保護フィルム等の光学フィルムの素材となる樹脂は、透明性が高いものであることが望ましい。そこで、透明性が高いアクリル樹脂が光学フィルムの素材として適している。しかしながら、アクリル樹脂は、セルロースエステルや環状オレフィン系樹脂に比べて脆く、横方向への延伸に際しては特別の注意を要する。すなわち、横延伸を行う場合にはフィルムを加熱し、フィルムの両端を把持して横方向に引き延ばすが、フィルムの温度が高い場合には、把持部分が脆性破壊されてしまい歩留りが悪い。そのため、アクリル樹脂を横方向に延伸する場合には、比較的低温状態で延伸せざるを得ないが、比較的低温状態で延伸させる場合に、特許文献2,3,4に開示された技術を採用し、図4(c−2)の様に幅方向の中央で厚さが最大の縦方向延伸フィルムを横方向に延伸すると、横延伸後のフィルムの厚さにバラツキが生じやすい。
また特許文献2,3,4に開示された技術を採用し、図4(c−2)の様に幅方向の中央で厚さが最大の縦方向延伸フィルムを横方向に延伸したとしても、厚みバラツキの小さいフィルムを得ることは困難である。
そのため、アクリル樹脂を素材として偏光子保護フィルム等の光学フィルムを製造する場合には、横延伸前のフィルムの断面形状は、できる限りフラットであることが望ましい。
By the way, it is desirable that the resin used as the material of the optical film such as the polarizer protective film has high transparency. Therefore, an acrylic resin having high transparency is suitable as a material for the optical film. However, acrylic resins are more fragile than cellulose esters and cyclic olefin-based resins, and special attention is required for stretching in the transverse direction. That is, when performing lateral stretching, the film is heated, and both ends of the film are gripped and stretched in the lateral direction. However, when the temperature of the film is high, the gripped portion is brittlely broken and the yield is poor. Therefore, when the acrylic resin is stretched in the transverse direction, it must be stretched at a relatively low temperature. However, when it is stretched at a relatively low temperature, the techniques disclosed in Patent Documents 2, 3, and 4 are used. When the longitudinally stretched film having the maximum thickness at the center in the width direction is stretched in the transverse direction as shown in FIG. 4 (c-2), the thickness of the film after transverse stretching tends to vary.
Moreover, even if the techniques disclosed in Patent Documents 2, 3, and 4 are adopted and the longitudinally stretched film having the maximum thickness at the center in the width direction is stretched in the lateral direction as shown in FIG. It is difficult to obtain a film having a small thickness variation.
Therefore, when manufacturing optical films, such as a polarizer protective film, using an acrylic resin as a raw material, it is desirable that the cross-sectional shape of the film before lateral stretching is as flat as possible.

一方、本発明者らの知見によれば、アクリル樹脂を素材として溶融押出法で縦延伸フィルムを成形すると、縦延伸後のフィルムは、図5(c−2),図6に示す様に両端部だけが厚くなる傾向となる。
すなわち、図5(c−1)に示す様な断面形状がフラットな樹脂を縦方向に延伸すると、図5(c−2),図6の様に幅方向の両端部だけが他の部位に比べて厚い縦延伸フィルムができてしまう。このような形状の縦延伸フィルムを横延伸すると、図5(c−3)の様になり、最終的に、図5(c−4)の様な中央部分の厚みが小さいフィルムとなってしまう。
On the other hand, according to the knowledge of the present inventors, when a longitudinally stretched film is formed by melt extrusion using an acrylic resin as a raw material, the film after longitudinal stretching has both ends as shown in FIG. 5 (c-2) and FIG. Only the part tends to be thick.
That is, when a resin having a flat cross-sectional shape as shown in FIG. 5 (c-1) is stretched in the longitudinal direction, only both end portions in the width direction are in other parts as shown in FIGS. 5 (c-2) and 6. In comparison, a thick longitudinally stretched film is formed. When a longitudinally stretched film having such a shape is stretched horizontally, it becomes as shown in FIG. 5 (c-3), and finally a film having a small thickness at the center as shown in FIG. 5 (c-4) is obtained. .

一方で、図7(a)に示す様な断面形状が半円状のアクリル樹脂を、同様にして縦方向に延伸すると、予想に反して半円状の一部が残ってしまい、幅方向の中央部分の厚さが均一とならない。この縦延伸フィルムを続いて横延伸すると、図7(b)に示す様な中央部分の厚みが大きいフィルムとなってしまう。   On the other hand, when an acrylic resin having a semicircular cross-sectional shape as shown in FIG. 7A is stretched in the longitudinal direction in the same manner, a part of the semicircular shape remains, contrary to expectation, in the width direction. The thickness of the central part is not uniform. If this longitudinally stretched film is subsequently stretched laterally, a film having a large thickness at the center as shown in FIG.

そこで本発明は、従来技術の上記した問題点に注目し、アクリル樹脂を素材とする光学フィルムであって、厚さの均一性が高く且つ歩留りの高い光学フィルムの製造方法を提供することを課題とする。   Accordingly, the present invention focuses on the above-described problems of the prior art, and provides an optical film made of acrylic resin, which has a high thickness uniformity and a high yield. And

上記した課題を解決するための請求項1に記載の発明は、アクリル樹脂を主成分とする樹脂をフィルム状に連続的に押し出す押出工程と、前記押出工程で押し出されたフィルムを長手方向に延伸する縦延伸工程と、前記縦延伸工程を経たフィルムを横方向に延伸する横延伸工程とを包含する光学フィルムの製造方法において、
縦延伸工程に供されるフィルムは、中心部に比べて両端部の厚さが小さく、中央部分にその厚さが均一な均厚部を有し、両端部にその厚さが次第に減少する漸減部を有するものであり、
縦延伸工程に供されるフィルムにおける均厚部の幅は、フィルムの全幅の50%以上に渡り、両端部にある漸減部の幅の合計は前記フィルムの全幅の20%以上であり、漸減部の最も厚さの小さい部位の厚さは均厚部の厚さの95%以下であり、
縦延伸工程に供されるフィルムの均厚部における最大の厚さと最小の厚さの差が5μm以下であり、
縦延伸工程によってフィルムの厚さを平準化し、その後に横延伸工程を行うものであり、
前記光学フィルムにおける厚みの最大値と最小値の差は、±1.5μm以内であることを特徴とする光学フィルムの製造方法である。
Invention of Claim 1 for solving an above-described subject is an extrusion process which extrudes the resin which has an acrylic resin as a main component continuously in a film form, and extends | stretched the film extruded by the said extrusion process to a longitudinal direction In a method for producing an optical film comprising a longitudinal stretching step, and a transverse stretching step of stretching the film that has undergone the longitudinal stretching step in the transverse direction,
The film subjected to the longitudinal stretching process has a thickness at both ends smaller than the center, a uniform thickness at the center, and a gradual decrease in thickness at both ends. Part,
The width of the uniform thickness portion in the film subjected to the longitudinal stretching step is 50% or more of the total width of the film, and the total width of the gradually decreasing portions at both ends is 20% or more of the total width of the film. The thickness of the portion with the smallest thickness is 95% or less of the thickness of the uniform thickness portion,
The difference between the maximum thickness and the minimum thickness in the uniform part of the film subjected to the longitudinal stretching step is 5 μm or less,
The film thickness is leveled by the longitudinal stretching process, and then the transverse stretching process is performed .
The difference between the maximum value and the minimum value of the thickness in the optical film is within ± 1.5 μm .

本発明は光学フィルムの製造方法に係るものであり、アクリル樹脂を主成分とする樹脂をフィルム状に連続的に押し出す押出工程、前記押出工程で押し出されたフィルムを長手方向に延伸する縦延伸工程、及び、前記縦延伸工程を経たフィルムを横方向に延伸する横延伸工程の3工程を包含するものである。そして、本発明の光学フィルムの製造方法では、縦延伸工程に供されるフィルムの形状に特徴がある。すなわち、中心部に比べて両端部の厚さが小さく、中央部分にその厚さが均一な均厚部を有し、両端部にその厚さが次第に減少する漸減部を有するフィルムが縦延伸工程に供され、縦延伸工程によってフィルムの厚さが平準化される。本発明の光学フィルムの製造方法では、縦延伸工程に供されるフィルムが上記形状を有するので、縦延伸工程によってフィルムの厚さが平準化されてフラットとなり、フィルムの両端部だけが厚くなることはない。そのため、その後に横延伸工程を行っても、フィルムの中央部分の厚みが薄いフィルムとなることがなく、厚さの均一性が高度に保たれる。本発明の光学フィルムの製造方法によれば、厚さのバラツキが極めて小さいアクリル樹脂製の光学フィルムを製造することができる。本発明は、偏光子保護フィルム等の製造に有用である。   The present invention relates to a method for producing an optical film, an extrusion process for continuously extruding a resin mainly composed of an acrylic resin into a film, and a longitudinal stretching process for stretching the film extruded in the extrusion process in the longitudinal direction. And three steps of a transverse stretching step of stretching the film that has undergone the longitudinal stretching step in the transverse direction. And in the manufacturing method of the optical film of this invention, it has the characteristics in the shape of the film provided to a longitudinal stretch process. That is, a film having a thickness-decreasing portion at both ends smaller than the central portion, a uniform thickness portion having a uniform thickness at the central portion, and a gradually decreasing portion at which the thickness gradually decreases at both ends is a longitudinal stretching step. And the film thickness is leveled by the longitudinal stretching step. In the method for producing an optical film of the present invention, since the film subjected to the longitudinal stretching step has the above shape, the thickness of the film is leveled and flattened by the longitudinal stretching step, and only both end portions of the film are thickened. There is no. Therefore, even if it performs a horizontal extending process after that, the thickness of the center part of a film does not become a thin film, but the uniformity of thickness is maintained highly. According to the method for producing an optical film of the present invention, it is possible to produce an optical film made of an acrylic resin with extremely small thickness variation. The present invention is useful for producing a polarizer protective film and the like.

縦延伸工程に供されるフィルムの均厚部における最大の厚さと最小の厚さの差は、当該最大の厚さの5%以内である構成が好ましい(請求項2)。It is preferable that the difference between the maximum thickness and the minimum thickness in the uniform thickness portion of the film subjected to the longitudinal stretching step is within 5% of the maximum thickness (Claim 2).

光学フィルムが偏光子保護フィルムである構成が好ましい(請求項)。 A configuration in which the optical film is a polarizer protective film is preferred (claim 3 ).

本発明によれば、厚さのバラツキが極めて小さいアクリル樹脂製の光学フィルムを製造することができる。   According to the present invention, it is possible to manufacture an optical film made of an acrylic resin with extremely small thickness variation.

本発明の光学フィルムの製造方法を説明する図であり、(a)はフィルム製造装置の概略を示す平面図、(b)は(a)の側面図、(c−1)〜(c−4)はいずれも各段階におけるフィルムの断面形状を示す断面図である。It is a figure explaining the manufacturing method of the optical film of this invention, (a) is a top view which shows the outline of a film manufacturing apparatus, (b) is a side view of (a), (c-1)-(c-4) ) Are cross-sectional views showing the cross-sectional shape of the film at each stage. 図1(a),(b)のフィルム製造装置の縦延伸部の詳細を示す側面図である。It is a side view which shows the detail of the longitudinal stretch part of the film manufacturing apparatus of Fig.1 (a), (b). 図1(c−1)の拡大図である。It is an enlarged view of FIG.1 (c-1). 従来技術の光学フィルムの製造方法を説明する図であり、(a)はフィルム製造装置の概略を示す平面図、(b)は(a)の側面図、(c−1)〜(c−4)はいずれも各段階におけるフィルムの断面形状を示す断面図である。It is a figure explaining the manufacturing method of the optical film of a prior art, (a) is a top view which shows the outline of a film manufacturing apparatus, (b) is a side view of (a), (c-1)-(c-4) ) Are cross-sectional views showing the cross-sectional shape of the film at each stage. 従来技術のアクリル樹脂製光学フィルムの製造方法を説明する図であり、(a)はフィルム製造装置の概略を示す平面図、(b)は(a)の側面図、(c−1)〜(c−4)はいずれも各段階におけるフィルムの断面形状を示す断面図である。It is a figure explaining the manufacturing method of the optical film made from an acrylic resin of a prior art, (a) is a top view which shows the outline of a film manufacturing apparatus, (b) is a side view of (a), (c-1)-( c-4) is a cross-sectional view showing the cross-sectional shape of the film at each stage. 図5(c−2)の拡大図である。It is an enlarged view of FIG.5 (c-2). 断面形状が半円状のアクリル樹脂製フィルムを延伸した場合の挙動を示す断面図であり、(a)は縦延伸前の断面形状、(b)は最終品の断面形状を示す。It is sectional drawing which shows the behavior at the time of extending | stretching the acrylic resin film whose cross-sectional shape is semicircle, (a) is cross-sectional shape before longitudinal stretch, (b) shows the cross-sectional shape of a final product.

以下、本発明の実施形態について詳述する。   Hereinafter, embodiments of the present invention will be described in detail.

図1(a),(b)に示すフィルム製造装置1は、押出工程を担う押出部2と、縦延伸工程を担う縦延伸部3と、横延伸工程を担う横延伸部5を有する。フィルム製造装置1の構成は、図4,5に示す従来技術のフィルム製造装置101のものと基本的に同じである。なお、図1(a),(b)では縦延伸部3の構成を簡略化して示しており、詳細な構成は図2に示している。   A film manufacturing apparatus 1 shown in FIGS. 1A and 1B includes an extruding unit 2 that performs an extruding process, a longitudinal stretching unit 3 that performs a longitudinal stretching process, and a lateral stretching unit 5 that performs a lateral stretching process. The configuration of the film manufacturing apparatus 1 is basically the same as that of the conventional film manufacturing apparatus 101 shown in FIGS. In addition, in FIG. 1 (a), (b), the structure of the longitudinal stretch part 3 is simplified and shown, and the detailed structure is shown in FIG.

押出部2はTダイ7を備えており、溶融状態のアクリル樹脂をシート状に押出可能である。   The extruding unit 2 includes a T-die 7 and can extrude a molten acrylic resin into a sheet shape.

図2に示すように、縦延伸部3は、複数のロール8a〜8k,10a,10bを有している。ロール8aはタッチロール、ロール8b,8c,8dは冷却ロール、ロール8e,8fはガイドロール、ロール8g,8hは予熱ロール、ロール8i,8jは延伸ロール、ロール8kは冷却ロールである。ロール11a,11bはニップロールであり、それぞれ延伸ロール8i,8jの上部に設けられている。
押出部2から押し出された樹脂は、タッチロール8aと冷却ロール8bの間、さらに、冷却ロール8b〜8dの間を通ることにより、フィルム状に成形される。次いで、成形されたフィルム状樹脂(フィルムF)は、ガイドロール8e,8fを経由した後、予熱ロール8g,8hを通ることで縦延伸前の予熱に供される。予熱されたフィルムFは、延伸ロール8i,8jとニップロール11a,11bの間を通ることにより、縦方向(搬送方向、長手方向)に延伸される(縦延伸工程)。すなわち、延伸ロール8jの回転速度を延伸ロール8iの回転速度よりも大きくすることにより、フィルムFが縦方向に延伸される。縦延伸されたフィルムFは、冷却ロール8kにて冷却された後、横延伸工程に供される。
なお本実施形態では、タッチロール8aを有さない構成も採用可能である。
As shown in FIG. 2, the longitudinally extending portion 3 includes a plurality of rolls 8a to 8k, 10a, and 10b. The roll 8a is a touch roll, the rolls 8b, 8c and 8d are cooling rolls, the rolls 8e and 8f are guide rolls, the rolls 8g and 8h are preheating rolls, the rolls 8i and 8j are stretching rolls, and the roll 8k is a cooling roll. Roll 11 a, 11 b are nip rolls, each drawing roll 8i, is provided above the 8j.
The resin extruded from the extrusion unit 2 is formed into a film shape by passing between the touch roll 8a and the cooling roll 8b, and further between the cooling rolls 8b to 8d. Next, the molded film-like resin (film F) passes through the guide rolls 8e and 8f and then passes through the preheating rolls 8g and 8h to be preheated before longitudinal stretching. Preheated film F, draw roll 8i, by passing between 8j and nip rolls 11 a, 11 b, the vertical direction (conveying direction, the longitudinal direction) is stretched (longitudinal stretching step). That is, the film F is stretched in the longitudinal direction by making the rotational speed of the stretching roll 8j larger than the rotational speed of the stretching roll 8i. The longitudinally stretched film F is cooled by a cooling roll 8k and then subjected to a transverse stretching step.
In addition, in this embodiment, the structure which does not have the touch roll 8a is also employable.

横延伸部5は、一対のガイド10を備えている。ガイド10はフィルムFの搬送方向に対して外側(幅方向)に広がっており、フィルムFの幅方向における両端を把持する把持部材(図示せず)がガイド10に沿って移動することにより、縦延伸部3から供給されたフィルムF(縦延伸フィルム)が横方向に延伸される(横延伸工程)。   The laterally extending portion 5 includes a pair of guides 10. The guide 10 spreads outward (width direction) with respect to the transport direction of the film F, and a gripping member (not shown) that grips both ends in the width direction of the film F moves along the guide 10, thereby The film F (longitudinal stretched film) supplied from the stretching section 3 is stretched in the transverse direction (lateral stretching step).

なお、上記した縦延伸と横延伸の方法の具体例としては、例えば、特開2002−212312号公報に記載された方法を挙げることができる。   In addition, as a specific example of the above-described longitudinal stretching and lateral stretching methods, for example, the method described in JP-A-2002-221312 can be exemplified.

本実施形態では、押出部2が備えるTダイ7の断面形状が、図1(c−1),図3で示される形状と略同じである。そのため、押出部2から、図1(c−1),図3で示される様な断面形状を有する樹脂シートが押し出され、縦延伸部3に供される。   In the present embodiment, the cross-sectional shape of the T die 7 provided in the extrusion unit 2 is substantially the same as the shape shown in FIGS. Therefore, a resin sheet having a cross-sectional shape as shown in FIG. 1 (c-1) and FIG. 3 is extruded from the extrusion portion 2 and provided to the longitudinal stretching portion 3.

縦延伸部3に供されるフィルムFの断面形状の詳細は、図1(c−1)と図3に示されるものであり、中心部21に比べて両端部22a,22bの厚さが小さい。そして、中央部分にその厚さが均一な均厚部23を有し、両端部22a,22bにその厚さが次第に減少する漸減部25a,25bを有している。
好ましい実施形態では、均厚部23の幅W2がフィルムFの全幅W1の50%以上に渡り、漸減部25a,25bの幅W3a,W3bの合計はフィルムFの全幅W1の20%以上であり、漸減部25a,25bの最も厚さの小さい部位の厚さT2は均厚部23の厚さT1の95%以下である。W1=W2+W3a+W3bであることが最も好ましい。
なお、両端部22a,22b、均厚部23、及び漸減部25a,25bのサイズ、並びに、フィルムFの表面と漸減部25a,25bを構成する平面とが成す角度θ(傾斜角θ,0°<θ<90°,図3参照)等については、Tダイ7のリップの調整ボルトを用いて自由に設定することができる。
Details of the cross-sectional shape of the film F provided to the longitudinally stretched portion 3 are shown in FIG. 1 (c-1) and FIG. 3, and the thickness of both end portions 22 a and 22 b is smaller than that of the central portion 21. . The center portion has a uniform thickness portion 23 having a uniform thickness, and both end portions 22a and 22b have gradually decreasing portions 25a and 25b whose thickness gradually decreases.
In a preferred embodiment, the width W2 of the uniform thickness portion 23 is 50% or more of the total width W1 of the film F, and the sum of the widths W3a and W3b of the gradually decreasing portions 25a and 25b is 20% or more of the total width W1 of the film F. The thickness T2 of the portion with the smallest thickness of the gradually decreasing portions 25a and 25b is 95% or less of the thickness T1 of the uniform thickness portion 23. Most preferably, W1 = W2 + W3a + W3b.
In addition, the angle θ (inclination angle θ, 0 °) formed by the sizes of the both end portions 22a and 22b, the uniform thickness portion 23, and the gradually decreasing portions 25a and 25b, and the surface of the film F and the planes forming the gradually decreasing portions 25a and 25b. <Θ <90 °, see FIG. 3) and the like can be freely set using an adjustment bolt for the lip of the T die 7.

図3に示すフィルムFにおいて、W1は1000mm程度、W2は600mm程度、T1は130μm程度、T2は120μm程度であるが、本発明はこれに限定されるものではない。   In the film F shown in FIG. 3, W1 is about 1000 mm, W2 is about 600 mm, T1 is about 130 μm, and T2 is about 120 μm, but the present invention is not limited to this.

均厚部23の厚さT1のバラツキについて、好ましい実施形態では、中央部であってフィルムFの全幅W1の50%以上に渡る領域における最大の厚さと最小の厚さの差が5μm以下であり、T1とT2の差(10μm程度)よりも小さい。
別の好ましい実施形態では、前記した最大の厚さと最小の厚さの差が、最大の厚さの5%以内である。
Regarding the variation in the thickness T1 of the uniform thickness portion 23, in a preferred embodiment, the difference between the maximum thickness and the minimum thickness in the center portion and the region over 50% of the total width W1 of the film F is 5 μm or less. , Smaller than the difference between T1 and T2 (about 10 μm).
In another preferred embodiment, the difference between the maximum thickness and the minimum thickness is within 5% of the maximum thickness.

なお、理解を容易にするために、図3では一部のサイズが誇張して描かれている。   In order to facilitate understanding, some sizes are exaggerated in FIG.

次に、押出工程、縦延伸工程、及び横延伸工程におけるフィルムFの断面形状の変化について、従来技術(図5)と対比しながら順次説明する。   Next, the change in the cross-sectional shape of the film F in the extrusion process, the longitudinal stretching process, and the lateral stretching process will be described sequentially in comparison with the prior art (FIG. 5).

まず、押出部2から押し出されたフィルムFは、図1(c−1),図3に示す様に、中心部21に比べて両端部22a,22bの厚さが小さく、中央部分にその厚さが均一な均厚部23を有し、両端部22a,22bにその厚さが次第に減少する漸減部25a,25bを有している。
ここで、アクリル樹脂製のフィルムの場合、縦延伸後のフィルムにおいては両端部だけが厚くなる傾向がある。そのため、縦延伸前のフィルムが従来技術のようなフラットな形状(図5(c−1))であると、縦延伸後のフィルムは図5(c−2),図6に示す様な両端部だけが厚いものとなってしまう。
しかし、本実施形態では、縦延伸前のフィルムが図1(c−1),図3に示す様な形状を有しているので、縦延伸後において均厚部23が中央部分に生じる「凹み」を補償する形となり、両端部22a,22bの厚さと中央部分の厚さとが一致して、厚さが平準化される。結果として、縦延伸後のフィルムFは、図1(c−2)に示す様なフラットな形状となる。
First, as shown in FIG. 1 (c-1) and FIG. 3, the film F extruded from the extrusion part 2 has both end portions 22a and 22b smaller in thickness than the center portion 21 and has a thickness in the center portion. Has uniform thickness-equalizing portions 23, and both end portions 22a and 22b have gradually decreasing portions 25a and 25b whose thickness gradually decreases.
Here, in the case of a film made of an acrylic resin, only the both end portions tend to be thick in the film after longitudinal stretching. Therefore, if the film before longitudinal stretching has a flat shape as in the prior art (FIG. 5 (c-1)), the film after longitudinal stretching has both ends as shown in FIG. 5 (c-2) and FIG. Only the part becomes thick.
However, in this embodiment, since the film before longitudinal stretching has a shape as shown in FIG. 1 (c-1) and FIG. 3, the “thickness portion 23 is formed in the central portion after longitudinal stretching. The thicknesses of both end portions 22a and 22b coincide with the thickness of the central portion, and the thickness is leveled. As a result, the film F after longitudinal stretching has a flat shape as shown in FIG.

縦延伸工程を終了したフィルムF(縦延伸フィルム)は、横延伸部5へ送られて横延伸工程に供される。このとき、横延伸工程に供されるフィルムF(縦延伸フィルム)は図1(c−2)のような断面形状を有するフラットなものであるので、図1(c−3)に示す様に横延伸中においてもフラットな形状は保持され、横延伸工程終了時においても図1(c−4)に示す様なフラットな形状が保持される。結果として、厚さの均一性が高度に保たれ、厚さのバラツキが極めて小さい光学フィルムFを得ることができる。
本実施形態によれば、図5(c−4)に示す様な中央部分の厚みが小さいフィルムとなることはない。また、図6(b)に示す様な中央部分の厚みが大きいフィルムとなることもない。
The film F (longitudinal stretched film) that has finished the longitudinal stretching process is sent to the lateral stretching section 5 and used in the lateral stretching process. At this time, since the film F (longitudinal stretched film) subjected to the transverse stretching step is a flat one having a cross-sectional shape as shown in FIG. 1 (c-2), as shown in FIG. 1 (c-3). A flat shape is maintained even during transverse stretching, and a flat shape as shown in FIG. 1 (c-4) is retained even at the end of the transverse stretching step. As a result, it is possible to obtain an optical film F in which the uniformity of the thickness is maintained at a high level and the thickness variation is extremely small.
According to this embodiment, a film having a small thickness at the central portion as shown in FIG. In addition, a film having a large thickness at the center as shown in FIG.

本発明で使用するアクリル樹脂としては、光学フィルムの素材として一般的に用いられているものであれば、全て採用可能である。例えば、ポリメチルメタクリレートやメチルメタクリレート−スチレン共重合体にメチルアミンを反応させたグルタルイミド樹脂を採用することができる。より具体的には、下記一般式(1)及び(2)、又は(1)−(3)で表される繰り返し単位を含有するグルタルイミド樹脂を採用することができる。当該グルタルイミド樹脂の詳細は、例えば、国際公開第2005/54311号パンフレットや国際公開第2005/108438号パンフレットなどに記載されている。   Any acrylic resin used in the present invention can be used as long as it is generally used as a material for optical films. For example, a glutarimide resin obtained by reacting methylamine with a polymethyl methacrylate or a methyl methacrylate-styrene copolymer can be employed. More specifically, a glutarimide resin containing a repeating unit represented by the following general formulas (1) and (2) or (1)-(3) can be employed. The details of the glutarimide resin are described in, for example, International Publication No. 2005/54311 pamphlet and International Publication No. 2005/108438 pamphlet.

Figure 0005623848
(ここで、R1およびR2は、それぞれ独立に、水素原子または炭素数1〜8のアルキル基を示し、R3は、水素原子、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数6〜10のアリール基を示す。)
Figure 0005623848
(Here, R 1 and R 2 each independently represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 3 represents a hydrogen atom, an alkyl group having 1 to 18 carbon atoms, or 3 to 12 carbon atoms. Cycloalkyl group or an aryl group having 6 to 10 carbon atoms.)

Figure 0005623848
(ここで、R4およびR5は、それぞれ独立に、水素原子また炭素数1〜8のアルキルを示し、R6は、炭素数1〜18のアルキル基、炭素数3〜12のシクロアルキル基、または炭素数6〜10のアリール基を示す。)
Figure 0005623848
(Wherein R 4 and R 5 each independently represent a hydrogen atom or alkyl having 1 to 8 carbon atoms, R 6 represents an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 12 carbon atoms. Or an aryl group having 6 to 10 carbon atoms.)

Figure 0005623848
(ここで、R7は、水素原子または炭素数1〜8のアルキル基を示し、R8は、炭素数6〜10のアリール基を示す。)
Figure 0005623848
(Here, R 7 represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms, and R 8 represents an aryl group having 6 to 10 carbon atoms.)

アクリル樹脂の他の例としては、ラクトン構造を有するものや、グルタル酸無水物単位を有するものが挙げられる。   Other examples of the acrylic resin include those having a lactone structure and those having a glutaric anhydride unit.

上記した実施形態では、図1(a),(b)及び図2に示す構成からなるフィルム製造装置1を用いて光学フィルムを製造する例を示したが、本発明で用いるフィルム製造装置がこれに限定されないことは当然である。例えば、縦延伸部における冷却ロールの数等については、目的に応じて自由に設定することができる。   In the above-described embodiment, an example in which an optical film is manufactured using the film manufacturing apparatus 1 having the configuration shown in FIGS. 1A, 1B, and 2 is shown. However, the film manufacturing apparatus used in the present invention is this. Of course, it is not limited to. For example, the number of cooling rolls in the longitudinal stretching portion can be freely set according to the purpose.

以下に、実施例をもって本発明をさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

まず、各実験結果として示される物性及び評価値の測定方法について説明する。   First, a method for measuring physical properties and evaluation values shown as results of each experiment will be described.

(1)イミド化率
1H−NMR BRUKER AvanceIII(400MHz)を用いて、樹脂の1H−NMR測定を行った。3.5から3.8ppm付近のメタクリル酸メチルのO−CH3プロトン由来のピークの面積Aと、3.0から3.3ppm付近のグルタルイミドのN−CH3プロトン由来のピークの面積Bを求め、次式によりイミド化率Im(%)を算出した。
Im={B/(A+B)}×100
なお、ここで、「イミド化率」とは全カルボニル基中のイミドカルボニル基の占める割合をいう。
(1) Imidation ratio 1H-NMR 1H-NMR measurement of resin was performed using BRUKER Avance III (400 MHz). The area A of the peak derived from the O-CH3 proton of methyl methacrylate near 3.5 to 3.8 ppm and the area B of the peak derived from the N-CH3 proton of glutarimide near 3.0 to 3.3 ppm were determined, The imidation ratio Im (%) was calculated by the following formula.
Im = {B / (A + B)} × 100
Here, the “imidization rate” refers to the ratio of the imide carbonyl group in the total carbonyl group.

(2)酸価
樹脂0.3gを塩化メチレン37.5mLに溶解し、さらにメタノール37.5mLを加えた。次に0.1mmol%の水酸化ナトリウム水溶液5mLとフェノールフタレインのエタノール溶液数滴を加えた。次に0.1mmol%の塩酸を用いて逆滴定を行い、中和に要する塩酸の量から酸価を求めた。
(2) Acid value 0.3 g of resin was dissolved in 37.5 mL of methylene chloride, and 37.5 mL of methanol was further added. Next, 5 mL of 0.1 mmol% sodium hydroxide aqueous solution and several drops of ethanol solution of phenolphthalein were added. Next, back titration was performed using 0.1 mmol% hydrochloric acid, and the acid value was determined from the amount of hydrochloric acid required for neutralization.

(3)ガラス転移温度
樹脂10mgを用いて、示差走査熱量計(DSC,(株)島津製作所製DSC−50型)を用いて、窒素雰囲気下、昇温速度20℃/minで測定し、中点法により決定した。
(3) Glass transition temperature Using a differential scanning calorimeter (DSC, model DSC-50 manufactured by Shimadzu Corporation) using 10 mg of resin, the glass transition temperature was measured at a heating rate of 20 ° C./min in a nitrogen atmosphere. Determined by point method.

(4)厚みと厚みバラツキ
アンリツ株式会社製の触針式連続フィルム厚み計(フィルムシックネステスタKG601B、及び電子マイクロメータK3001A)を使用して測定した。詳しくは、原反の場合、30mm(フィルムの流れ方向)×1,000mm(フィルムの幅方向全幅)のサンプルを切り出し、幅方向1,000mmの厚みを1mm間隔で連続的に測定し、平均値を厚みとした。また、一軸延伸フィルム(縦延伸後フィルム)の場合、フィルム幅方向に、幅30mm、長さ900mmの厚みを連続的に測定した。更に、逐次二軸延伸フィルムの場合、30mm(フィルムの流れ方向)×1,400mm(フィルムの幅方向全幅)のサンプルを切り出し、幅方向の両端からそれぞれ75mmを除いた厚みを幅方向に1mm間隔で測定し、平均値を厚みとした。厚みバラツキは、厚みの最大値と最小値の差とした。ただし、実施例1,2の原反フィルムのバラツキについては、W2に相当する部分の厚みの最大値と最小値の差とした。
(4) Thickness and thickness variation Measurement was performed using a stylus type continuous film thickness meter (film thickness tester KG601B and electronic micrometer K3001A) manufactured by Anritsu Corporation. Specifically, in the case of an original fabric, a sample of 30 mm (flow direction of the film) × 1,000 mm (full width in the width direction of the film) was cut out, and the thickness in the width direction of 1,000 mm was continuously measured at 1 mm intervals, and the average value Was the thickness. In the case of a uniaxially stretched film (film after longitudinal stretching), a thickness of 30 mm in width and 900 mm in length was continuously measured in the film width direction. Furthermore, in the case of a sequential biaxially stretched film, a sample of 30 mm (film flow direction) × 1,400 mm (film width direction full width) is cut out, and the thickness excluding 75 mm from both ends in the width direction is 1 mm apart in the width direction. The average value was taken as the thickness. The thickness variation was defined as the difference between the maximum value and the minimum value of the thickness. However, regarding the variation of the raw film in Examples 1 and 2, the difference between the maximum value and the minimum value of the thickness corresponding to W2 was taken.

〔実施例1〕
1.樹脂の調製
押出反応機を2台直列に並べたタンデム型反応押出機を用いて、以下の手順で樹脂を調製した。タンデム型反応押出機に関しては、第1押出機(1)、第2押出機(2)共に直径75mm、L/D(押出機の長さLと直径Dの比)が74の同方向噛合型二軸押出機を使用し、定重量フィーダー(クボタ(株)製)を用いて、第1押出機原料供給口に原料樹脂を供給した。また、第1押出機、第2押出機に於ける各ベントの減圧度は−0.095MPaとした。また、直径38mm、長さ2mの配管で第1押出機と第2押出機を接続した。第2押出機から吐出された樹脂(ストランド)は、冷却コンベアで冷却した後、ペレタイザーでカッティングしペレットとした。
[Example 1]
1. Preparation of Resin A resin was prepared by the following procedure using a tandem reaction extruder in which two extrusion reactors were arranged in series. As for the tandem type reactive extruder, the first extruder (1) and the second extruder (2) are both in the same direction meshing type with a diameter of 75 mm and L / D (ratio of the length L to the diameter D of the extruder) of 74. Using a twin-screw extruder, the raw material resin was supplied to the raw material supply port of the first extruder using a constant weight feeder (manufactured by Kubota Corporation). The degree of vacuum of each vent in the first extruder and the second extruder was set to -0.095 MPa. Moreover, the 1st extruder and the 2nd extruder were connected by piping of diameter 38mm and length 2m. The resin (strand) discharged from the second extruder was cooled by a cooling conveyor and then cut by a pelletizer to form pellets.

第1押出機に関して、原料の樹脂としてポリメタクリル酸メチル樹脂(Mw:10.5万)を使用し、イミド化剤として、モノメチルアミンを用いてイミド樹脂中間体1を製造した。第2押出機に関して、ベントで残存しているイミド化反応試剤及び副生成物を脱揮したのち、エステル化剤として炭酸ジメチルとトリエチルアミンの混合溶液を添加しイミド樹脂中間体2を製造した。更に、ベントでエステル化剤を除去した後、ストランドダイから押し出し水槽で冷却した後、ペレタイザーでペレット化することで、樹脂組成物を得た。この樹脂組成物のイミド化率は3.7%、酸価は0.29mmol/g、及びガラス転移温度は130℃であった。   Regarding the first extruder, a polymethyl methacrylate resin (Mw: 105,000) was used as a raw material resin, and monomethylamine was used as an imidizing agent to produce an imide resin intermediate 1. Regarding the second extruder, the imidization reaction reagent and by-products remaining in the vent were devolatilized, and then a mixed solution of dimethyl carbonate and triethylamine was added as an esterifying agent to produce an imide resin intermediate 2. Furthermore, after removing the esterifying agent with a vent, the resin composition was obtained by extruding from a strand die, cooling in a water tank, and pelletizing with a pelletizer. The imidation ratio of this resin composition was 3.7%, the acid value was 0.29 mmol / g, and the glass transition temperature was 130 ° C.

2.光学フィルムの製造
基本的に、図1,2に示す方法で光学フィルムを製造した。すなわち、得られた樹脂組成物を100℃で5時間乾燥後、50mm単軸押出機と1,100mm幅のTダイを用いてシート状に押し出し(押出工程)、金属製の冷却ロールで該シートを冷却して幅1,000mmの原反を得た。このフィルムの断面形状は図1(c−1),図3に示す様な形状であり、図3における各サイズは、W1=1000mm、W2=600mm、W3a=W3b=200mm、T1=130μm、T2=120μm、平均厚みは128μm、厚みバラツキは±1.0μmであった。
次いで、上記原反を、ロール縦延伸機を使用して縦延伸工程に供し、縦一軸延伸フィルムを得た。詳しくは、原反を、縦延伸機の予熱ロールで100℃に予熱した後、130℃の延伸ロールで2.0倍に延伸して、幅900mmの縦一軸延伸フィルムを得た。このフィルムの平均厚みは80μm、厚みバラツキは±1.0μmであった。
更に、上記縦一軸延伸フィルムを、横延伸機を使用して横延伸工程に供し、逐次二軸延伸フィルム(光学フィルム)を得た。詳しくは、縦一軸延伸フィルムを、横延伸機の予熱ゾーンで130℃に予熱した後、130℃の延伸ゾーンで2.0倍に延伸して、幅1,700mmの逐次二軸延伸フィルムを得た。このフィルムの断面形状は図1(c−4)に示す様なフラットな形状であり、平均厚みは40μm、厚みバラツキは±1.0μmであった。
2. Production of Optical Film Basically, an optical film was produced by the method shown in FIGS. That is, after drying the obtained resin composition at 100 ° C. for 5 hours, it was extruded into a sheet using a 50 mm single screw extruder and a 1,100 mm wide T-die (extrusion process), and the sheet was discharged with a metal cooling roll. Was cooled to obtain an original fabric having a width of 1,000 mm. The cross-sectional shape of this film is as shown in FIG. 1 (c-1) and FIG. 3, and the sizes in FIG. 3 are W1 = 1000 mm, W2 = 600 mm, W3a = W3b = 200 mm, T1 = 130 μm, T2 = 120 μm, average thickness was 128 μm, and thickness variation was ± 1.0 μm.
Next, the raw material was subjected to a longitudinal stretching process using a roll longitudinal stretching machine to obtain a longitudinal uniaxially stretched film. Specifically, the raw fabric was preheated to 100 ° C. with a preheating roll of a longitudinal stretching machine, and then stretched 2.0 times with a stretching roll of 130 ° C. to obtain a longitudinally uniaxially stretched film having a width of 900 mm. The average thickness of this film was 80 μm, and the thickness variation was ± 1.0 μm.
Furthermore, the longitudinally uniaxially stretched film was subjected to a transverse stretching process using a transverse stretching machine to obtain a sequential biaxially stretched film (optical film). Specifically, a longitudinally uniaxially stretched film is preheated to 130 ° C. in a preheating zone of a transverse stretching machine, and then stretched 2.0 times in a stretching zone of 130 ° C. to obtain a sequential biaxially stretched film having a width of 1,700 mm. It was. The cross-sectional shape of this film was a flat shape as shown in FIG. 1 (c-4), the average thickness was 40 μm, and the thickness variation was ± 1.0 μm.

〔実施例2〕
原反の断面形状(図1(c−1),図3)について「W2=700mm、W3a=W3b=150mm」とする以外は実施例1と同様にして、逐次二軸延伸フィルムを得た。このフィルムの断面形状は図1(c−4)に示す様なフラットな形状であり、平均厚みは40μm、厚みバラツキは±1.5μmであった。
[Example 2]
A biaxially stretched film was obtained in the same manner as in Example 1 except that the cross-sectional shape of the original fabric (FIGS. 1 (c-1) and 3) was changed to “W2 = 700 mm, W3a = W3b = 150 mm”. The cross-sectional shape of this film was a flat shape as shown in FIG. 1 (c-4), the average thickness was 40 μm, and the thickness variation was ± 1.5 μm.

〔比較例1〕
図5(c−1)に示す様な断面形状を有するフィルムを、実施例と同様の縦延伸工程と横延伸工程に供し、逐次二軸延伸フィルムを得た。このフィルムの断面形状は図5(c−4)に示す様な形状であり、平均厚みは40μm、厚みバラツキは±4.0μmであった。すなわち、本比較例で得られた逐次二軸延伸フィルムは、実施例のようなフラットな形状とはならず、厚みバラツキの大きいものであった。
[Comparative Example 1]
A film having a cross-sectional shape as shown in FIG. 5 (c-1) was subjected to a longitudinal stretching step and a lateral stretching step similar to those in Examples, to obtain a sequentially biaxially stretched film. The cross-sectional shape of this film was as shown in FIG. 5 (c-4), the average thickness was 40 μm, and the thickness variation was ± 4.0 μm. That is, the sequential biaxially stretched film obtained in this comparative example did not have a flat shape as in the examples, but had a large thickness variation.

〔比較例2〕
図7(a)に示す様な断面形状を有するフィルムを、実施例と同様の縦延伸工程と横延伸工程に供し、逐次二軸延伸フィルムを得た。このフィルムの断面形状は図7(b)に示す様な形状であり、平均厚みは40μm、厚みバラツキは±3.0μmであった。すなわち、本比較例で得られた逐次二軸延伸フィルムは、実施例のようなフラットな形状とはならず、厚みバラツキの大きいものであった。
[Comparative Example 2]
A film having a cross-sectional shape as shown in FIG. 7 (a) was subjected to the same longitudinal stretching step and lateral stretching step as those in Examples, to obtain sequentially biaxially stretched films. The cross-sectional shape of this film was as shown in FIG. 7B, the average thickness was 40 μm, and the thickness variation was ± 3.0 μm. That is, the sequential biaxially stretched film obtained in this comparative example did not have a flat shape as in the examples, but had a large thickness variation.

実施例1,2及び比較例1,2の結果を表1にまとめた。

Figure 0005623848
The results of Examples 1 and 2 and Comparative Examples 1 and 2 are summarized in Table 1.
Figure 0005623848

以上のように、本実施例によって、厚さの均一性が高度に保たれかつ厚さのバラツキも極めて小さいアクリル樹脂製の光学フィルムを製造することができた。   As described above, according to this example, it was possible to manufacture an optical film made of an acrylic resin that has high uniformity of thickness and extremely small variation in thickness.

F フィルム(光学フィルム)
21 中心部
22a,22b 両端部
23 均厚部
25a,25b 漸減部
F film (optical film)
21 Center part 22a, 22b Both end part 23 Thickness part 25a, 25b Decrease part

Claims (3)

アクリル樹脂を主成分とする樹脂をフィルム状に連続的に押し出す押出工程と、前記押出工程で押し出されたフィルムを長手方向に延伸する縦延伸工程と、前記縦延伸工程を経たフィルムを横方向に延伸する横延伸工程とを包含する光学フィルムの製造方法において、
縦延伸工程に供されるフィルムは、中心部に比べて両端部の厚さが小さく、中央部分にその厚さが均一な均厚部を有し、両端部にその厚さが次第に減少する漸減部を有するものであり、
縦延伸工程に供されるフィルムにおける均厚部の幅は、フィルムの全幅の50%以上に渡り、両端部にある漸減部の幅の合計は前記フィルムの全幅の20%以上であり、漸減部の最も厚さの小さい部位の厚さは均厚部の厚さの95%以下であり、
縦延伸工程に供されるフィルムの均厚部における最大の厚さと最小の厚さの差が5μm以下であり、
縦延伸工程によってフィルムの厚さを平準化し、その後に横延伸工程を行うものであり、
前記光学フィルムにおける厚みの最大値と最小値の差は、±1.5μm以内であることを特徴とする光学フィルムの製造方法。
An extrusion process for continuously extruding a resin mainly composed of an acrylic resin into a film, a longitudinal stretching process for stretching the film extruded in the extrusion process in the longitudinal direction, and a film subjected to the longitudinal stretching process in the lateral direction In a method for producing an optical film comprising a transverse stretching step of stretching,
The film subjected to the longitudinal stretching process has a thickness at both ends smaller than the center, a uniform thickness at the center, and a gradual decrease in thickness at both ends. Part,
The width of the uniform thickness portion in the film subjected to the longitudinal stretching step is 50% or more of the total width of the film, and the total width of the gradually decreasing portions at both ends is 20% or more of the total width of the film. The thickness of the portion with the smallest thickness is 95% or less of the thickness of the uniform thickness portion,
The difference between the maximum thickness and the minimum thickness in the uniform part of the film subjected to the longitudinal stretching step is 5 μm or less,
The film thickness is leveled by the longitudinal stretching process, and then the transverse stretching process is performed .
The difference between the maximum value and the minimum value of the thickness in the optical film is within ± 1.5 μm .
縦延伸工程に供されるフィルムの均厚部における最大の厚さと最小の厚さの差は、当該最大の厚さの5%以内であることを特徴とする請求項1に記載の光学フィルムの製造方法。2. The optical film according to claim 1, wherein the difference between the maximum thickness and the minimum thickness in the uniform thickness portion of the film subjected to the longitudinal stretching step is within 5% of the maximum thickness. Production method. 光学フィルムが偏光子保護フィルムであることを特徴とする請求項1又は2に記載の光学フィルムの製造方法。 The method for producing an optical film according to claim 1 or 2, characterized in that the optical film is a polarizer protective film.
JP2010213401A 2009-09-28 2010-09-24 Manufacturing method of optical film Active JP5623848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010213401A JP5623848B2 (en) 2009-09-28 2010-09-24 Manufacturing method of optical film

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009222785 2009-09-28
JP2009222785 2009-09-28
JP2010213401A JP5623848B2 (en) 2009-09-28 2010-09-24 Manufacturing method of optical film

Publications (2)

Publication Number Publication Date
JP2011088440A JP2011088440A (en) 2011-05-06
JP5623848B2 true JP5623848B2 (en) 2014-11-12

Family

ID=44107134

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010213401A Active JP5623848B2 (en) 2009-09-28 2010-09-24 Manufacturing method of optical film

Country Status (1)

Country Link
JP (1) JP5623848B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006116904A (en) * 2004-10-25 2006-05-11 Konica Minolta Opto Inc Manufacturing method of optical film
JP2008039808A (en) * 2006-08-01 2008-02-21 Sekisui Chem Co Ltd Method of manufacturing optical retardation film, optical retardation film, compound polarizing plate and polarizing plate
JP5196519B2 (en) * 2007-03-02 2013-05-15 旭化成イーマテリアルズ株式会社 Optical film with excellent mechanical and thermal properties

Also Published As

Publication number Publication date
JP2011088440A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
CN101802662B (en) Process for producing retardation film
US6733719B2 (en) Polypropylene biaxially oriented film
CN111405972B (en) Polyvinyl alcohol film and method for producing same
CN103052489A (en) Method of manufacturing phase difference film and phase difference film roll
US8986590B2 (en) Polymer article and method for producing polymer article
JP2009093169A (en) Method for producing retardation film made of thermoplastic resin
MX2007013166A (en) In-reactor produced polypropylene blends.
CN110845747B (en) PVA film with good flexibility and manufacturing method thereof
JP7427897B2 (en) Film roll and its manufacturing method
KR101425419B1 (en) Process for producing raw film for retardation film made of polypropylene resin
JP5623848B2 (en) Manufacturing method of optical film
TW201030080A (en) Optical film, method for producing optical film, polarizing plate and liquid crystal display device
JP2011245624A (en) Method for manufacturing optical film
JP2006131898A (en) Thermoplastic resin film
JP2019155703A (en) Method for producing polyolefin multilayer sheet or film
JP3917060B2 (en) Production method of polyvinyl alcohol film
CN109181185B (en) PVA (polyvinyl alcohol) series melt special for optical film and preparation method of film of PVA series melt
JP5496731B2 (en) Retardation film
TWI822053B (en) Method for manufacturing film roll and convex portion adjustment system for manufacturing film roll
JP5644241B2 (en) Method for producing retardation film
JP2011052208A (en) Biaxial stretching polyvinyl alcohol film and method for producing the same
JP4120380B2 (en) Method for producing transparent film
EP4063408B1 (en) Method for producing ethylene-acrylic acid copolymer
KR101257377B1 (en) Polyvinyl alcohol-based polymeric film and method for preparing same using ir heater
KR0140298B1 (en) Process for preparing biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140828

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140925

R150 Certificate of patent or registration of utility model

Ref document number: 5623848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250