JP5621436B2 - Mold, manufacturing method thereof, element and optical element - Google Patents

Mold, manufacturing method thereof, element and optical element Download PDF

Info

Publication number
JP5621436B2
JP5621436B2 JP2010204088A JP2010204088A JP5621436B2 JP 5621436 B2 JP5621436 B2 JP 5621436B2 JP 2010204088 A JP2010204088 A JP 2010204088A JP 2010204088 A JP2010204088 A JP 2010204088A JP 5621436 B2 JP5621436 B2 JP 5621436B2
Authority
JP
Japan
Prior art keywords
mold
aluminum
metal
manufacturing
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010204088A
Other languages
Japanese (ja)
Other versions
JP2012056274A (en
Inventor
佐々木 直人
直人 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Imaging Co Ltd
Original Assignee
Ricoh Imaging Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Imaging Co Ltd filed Critical Ricoh Imaging Co Ltd
Priority to JP2010204088A priority Critical patent/JP5621436B2/en
Publication of JP2012056274A publication Critical patent/JP2012056274A/en
Application granted granted Critical
Publication of JP5621436B2 publication Critical patent/JP5621436B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/37Mould cavity walls, i.e. the inner surface forming the mould cavity, e.g. linings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)

Description

本発明は、微細凹凸構造を有する素子及び光学素子の成形に好適な金型及びその製造方法、並びにその金型により得られる素子及び光学素子に関する。   The present invention relates to an element having a fine concavo-convex structure, a mold suitable for molding an optical element, a manufacturing method thereof, and an element and an optical element obtained by the mold.

光透過系の光学素子において、光の透過率の低減、ゴーストやフレアの発生等を防止するために、光学素子の表面に反射防止処理を施すのが一般的である。反射防止処理として、光学素子の表面に入射光の波長より小さい周期で微細な凹凸を形成することにより、反射防止効果が得られる反射防止構造が挙げられる。反射防止構造は、反射防止膜に比べて優れた反射防止特性を持つことから、近年注目されている。   In a light-transmitting optical element, it is common to perform an antireflection treatment on the surface of the optical element in order to reduce the light transmittance and prevent the occurrence of ghosts and flares. Examples of the antireflection treatment include an antireflection structure that provides an antireflection effect by forming fine irregularities on the surface of the optical element with a period smaller than the wavelength of incident light. Antireflection structures have attracted attention in recent years because they have antireflection properties superior to antireflection films.

反射防止構造の形成方法としては、反射防止構造の逆パターンを有する陽極酸化ポーラスアルミナを転写型(成形型)として用いる方法が挙げられる。陽極酸化ポーラスアルミナは一般的には高純度アルミニウム(純アルミニウム)からなる金型基材に、酸性電解液中で陽極酸化することにより、その表面に数10 nm〜数100 nmの周期で細孔が二次元的に配列した構造を有する酸化アルミニウム(アルミナ)の多孔質構造体の層が形成される。この多孔質構造体を樹脂、ガラス等からなる光学素子に転写することにより、反射防止構造が得られる。   Examples of the method for forming the antireflection structure include a method in which anodized porous alumina having a reverse pattern of the antireflection structure is used as a transfer die (molding die). Anodized porous alumina is generally pores with a period of several tens to several hundreds of nanometers on a surface of a mold base made of high-purity aluminum (pure aluminum) in an acidic electrolyte. A layer of a porous structure of aluminum oxide (alumina) having a two-dimensionally arranged structure is formed. By transferring this porous structure to an optical element made of resin, glass or the like, an antireflection structure can be obtained.

高純度アルミニウムは 、不純物が少ないため、陽極酸化処理時に欠陥が生じ難いので、陽極酸化ポーラスアルミナの形成に適している。例えば、特開2005-156695号公報(特許文献1)及び特開2007-086283号公報(特許文献2)には、高純度アルミニウム基板を陽極酸化処理して微細凹凸を形成する方法が開示されている。しかし、高純度アルミニウムは、低硬度であり変形しやすいため、光学素子の射出成形、ガラスモールド等の金型に用いるには強度が十分でない。   High-purity aluminum is suitable for the formation of anodized porous alumina because it has few impurities and hardly causes defects during anodization. For example, Japanese Laid-Open Patent Publication No. 2005-156695 (Patent Document 1) and Japanese Laid-Open Patent Publication No. 2007-086283 (Patent Document 2) disclose a method for forming fine irregularities by anodizing a high-purity aluminum substrate. Yes. However, since high-purity aluminum has low hardness and is easily deformed, its strength is not sufficient for use in injection molding of optical elements and molds such as glass molds.

また特開2006-053220号公報(特許文献3)ではガラス基板上に、特開2003-043203号公報(特許文献4)ではSi基板上に高純度アルミニウム膜を形成し、陽極酸化処理を行っている。しかし、ガラス基板及びSi基板は脆性が高く、圧力、衝撃、急激な温度変化等に耐えうる強度を持たないため、射出成形による光学素子成形用金型に用いるには適さない。 In JP 2006-053220 A (Patent Document 3), a high-purity aluminum film is formed on a glass substrate, and in JP 2003-043203 A (Patent Document 4), an anodizing treatment is performed. Yes. However, since glass substrates and Si substrates are highly brittle and do not have the strength to withstand pressure, impact, rapid temperature changes, etc., they are not suitable for use in optical element molding dies by injection molding.

特開2005-156695号公報JP 2005-156695 A 特開2007-086283号公報JP 2007-086283 A 特開2006-053220号公報JP 2006-053220 A 特開2003-043203号公報JP 2003-043203 A

従って本発明の目的は、成形面に複数の細孔を有するポーラスアルミナが形成されているとともに、十分な硬度及び機械的強度を有する成形用金型及びその製造方法を提供することである。   Accordingly, an object of the present invention is to provide a molding die having porous alumina having a plurality of pores on the molding surface and sufficient hardness and mechanical strength, and a method for producing the same.

本発明の別の目的は、上記成形用金型により得られる素子及び光学素子を提供することである。   Another object of the present invention is to provide an element and an optical element obtained by the molding die.

上記課題に鑑み鋭意研究の結果、本発明者は、所定の比率でバルブ金属又はその合金を含有する金型基材の成形面に、上記比率より高い比率でアルミニウムを含むアルミニウム膜を形成し、 陽極酸化処理を行うことにより、陽極酸化処理時に金型材料の溶解が発生せず、成形面に複数の細孔を有するポーラスアルミナが形成されているとともに、十分な硬度及び機械的強度を有する成形用金型が得られることを発見し、本発明に想到した。   As a result of earnest research in view of the above problems, the present inventors formed an aluminum film containing aluminum at a higher ratio than the above ratio on the molding surface of the mold base containing the valve metal or its alloy at a predetermined ratio, By performing the anodizing treatment, the mold material does not dissolve during the anodizing treatment, and the molding surface is formed with porous alumina having a plurality of pores and sufficient hardness and mechanical strength. It was discovered that a mold for use was obtained, and the present invention was conceived.

即ち、本発明の光学素子及びその製造方法は以下の特徴を有している。
(1) 50%以上99%未満の比率でバルブ金属又は前記バルブ金属の合金を含有する金型基材の成形面に、含有率99%以上の高純度アルミニウムからなるアルミニウム膜を形成し、前記アルミニウム膜に陽極酸化により複数の細孔を有するポーラスアルミナを形成することを特徴とする金型の製造方法。
(2) 上記(1) に記載の金型の製造方法において、前記高純度アルミニウムの純度は99.9%以上であることを特徴とする金型の製造方法。
(3) 上記(1)又は(2) に記載の金型の製造方法において、前記バルブ金属はアルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス又はアンチモンであることを特徴とする金型の製造方法。
(4) 上記(3) に記載の金型の製造方法において、前記バルブ金属はアルミニウムであることを特徴とする金型の製造方法。
(5) 上記(1)又は(2) に記載の金型の製造方法において、前記金型基材は超々ジュラルミンであることを特徴とする金型の製造方法。
(6) 上記(1)〜(5) のいずれかに記載の方法により製造された金型。
(7) 上記(6) に記載の金型において、射出成形用であることを特徴とする金型。
(8) 上記(7) に記載の金型において、前記複数の細孔は前記金型により成形された素子に使用する光の波長以下の二次元周期で形成されており、もって前記素子に反射防止構造を付与できることを特徴とする金型。
(9) 上記(6)〜(8) のいずれかに記載の金型により成形された素子。
(10) 上記(6)〜(8) のいずれかに記載の金型により成形された光学素子。
That is, the optical element and the manufacturing method thereof according to the present invention have the following characteristics.
(1) Forming an aluminum film made of high-purity aluminum having a content ratio of 99% or more on the molding surface of a mold base material containing a valve metal or an alloy of the valve metal at a ratio of 50% or more and less than 99% , A method for producing a mold, characterized in that porous alumina having a plurality of pores is formed on an aluminum film by anodic oxidation.
( 2 ) The method for producing a mold according to ( 1 ), wherein the purity of the high-purity aluminum is 99.9% or more.
( 3 ) The method for producing a mold according to (1) or (2 ) above, wherein the valve metal is aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth or antimony. Mold manufacturing method.
( 4 ) The mold manufacturing method as described in ( 3 ) above, wherein the valve metal is aluminum.
( 5 ) The method for producing a mold according to the above (1) or (2) , wherein the mold base is ultraduralumin.
( 6 ) A mold manufactured by the method according to any one of (1) to ( 5 ) above.
( 7 ) The mold according to ( 6 ), wherein the mold is for injection molding.
( 8 ) In the mold according to ( 7 ), the plurality of pores are formed with a two-dimensional period equal to or less than a wavelength of light used for an element molded by the mold, and are reflected by the element. A mold characterized in that a prevention structure can be provided.
( 9 ) An element formed by the mold according to any one of ( 6 ) to ( 8 ).
( 10 ) An optical element molded by the mold according to any one of ( 6 ) to ( 8 ).

バルブ金属は陽極酸化処理により酸化層が形成されるが、一方、バルブ金属以外の金属では酸化皮膜は形成されず金属の溶解が起こる事が知られている。本発明によれば、所定の比率でバルブ金属又はその合金を含有する金型基材の成形面に、上記比率より高い比率でアルミニウムを含むアルミニウム膜を形成し、陽極酸化処理を行っているので、陽極酸化処理時に成形面のアルミニウム膜と同時に金型表面にも酸化層が形成されるため、金型材料の溶解が発生せず、また、形成された酸化層によって成形面のアルミニウム膜と同程度の電気抵抗を有するため、金型に過剰に電流が流れることを防ぐことができ、成形面のアルミニウム膜を安定して陽極酸化処理することができるため、成形面に複数の細孔を有する所望のポーラスアルミナが形成されているとともに、十分な硬度及び機械的強度を有する成形用金型が得られる。   It is known that the valve metal is formed with an oxide layer by anodizing treatment, whereas the metal other than the valve metal is not formed with an oxide film and the metal is dissolved. According to the present invention, an aluminum film containing aluminum at a higher ratio than the above ratio is formed on the molding surface of a mold base material containing a valve metal or an alloy thereof at a predetermined ratio, and anodization is performed. In addition, since an oxide layer is formed on the mold surface simultaneously with the aluminum film on the molding surface during the anodizing treatment, the mold material does not dissolve, and the formed oxide layer is the same as the aluminum film on the molding surface. Since it has a certain electrical resistance, it can prevent excessive current from flowing through the mold, and the aluminum film on the molding surface can be stably anodized, so that the molding surface has a plurality of pores. A molding die having a desired porous alumina and sufficient hardness and mechanical strength can be obtained.

本発明の一実施例による光学素子を示す断面図である。It is sectional drawing which shows the optical element by one Example of this invention. 金型の製造方法を示す図である。It is a figure which shows the manufacturing method of a metal mold | die. 陽極酸化処理装置を示す図である。It is a figure which shows an anodizing apparatus. 本発明の一実施例による光学素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the optical element by one Example of this invention. 本発明の別の実施例による光学素子の製造方法を示す図である。It is a figure which shows the manufacturing method of the optical element by another Example of this invention.

[1] 金型
本発明の金型1は、図1に示すように、金型基材10の成形面にアルミニウム膜20が形成されており、アルミニウム膜20には陽極酸化により形成された複数の細孔を有するポーラスアルミナ21が形成されている。ポーラスアルミナ21の複数の細孔は、深さ方向に径がほぼ均一な円柱構造を有する。
[1] Mold As shown in FIG. 1, the mold 1 of the present invention has an aluminum film 20 formed on the molding surface of a mold base 10, and a plurality of aluminum films 20 formed by anodization. The porous alumina 21 having the pores is formed. The plurality of pores of the porous alumina 21 have a cylindrical structure having a substantially uniform diameter in the depth direction.

アルミニウム膜20は高純度のアルミニウムからなるのが好ましい。アルミニウム膜20の材料として高純度アルミニウムを用いることにより、欠陥がなく、高精度な微細凹凸形状を形成することができる。高純度アルミニウムの純度は99%以上であ、より高精度な微細凹凸形状が要求されるレンズ面用の金型には99.9%以上であるのが好ましい 。 The aluminum film 20 is preferably made of high purity aluminum. By using high-purity aluminum as the material of the aluminum film 20, it is possible to form a highly accurate fine concavo-convex shape without defects. The purity of the high purity aluminum Ri der least 99%, preferably at least 99.9% and more accurate mold for lens surface fine irregularities is required.

金型基材10はアルミニウム膜20のアルミニウム含有率より低い比率でバルブ金属又はその合金を含む合金(以下、バルブ金属系合金と呼ぶ。)からなる。金型基材10は金型として使用可能な機械的強度及び加工性を有するとともに、アルミニウム膜20と同様、陽極酸化処理により表面に酸化層が形成されるため溶解反応を生じず、また金型への過剰な電流の供給を防ぐため、アルミニウム膜の安定した陽極酸化処理が可能となる。バルブ金属の具体例はアルミニウム(Al)、タンタル(Ta)、ニオブ(Nb)、チタン(Ti)、ハフニウム(Hf)、ジルコニウム(Zr)、亜鉛(Zn)、タングステン(W)、ビスマス(Bi)及びアンチモン(Sb)が挙げられる。   The mold base 10 is made of a valve metal or an alloy containing an alloy thereof (hereinafter referred to as a valve metal alloy) at a ratio lower than the aluminum content of the aluminum film 20. The mold base 10 has mechanical strength and workability that can be used as a mold, and, like the aluminum film 20, an oxide layer is formed on the surface by anodization, so that no dissolution reaction occurs. In order to prevent an excessive current from being supplied to the aluminum film, a stable anodic oxidation treatment of the aluminum film becomes possible. Specific examples of valve metals are aluminum (Al), tantalum (Ta), niobium (Nb), titanium (Ti), hafnium (Hf), zirconium (Zr), zinc (Zn), tungsten (W), bismuth (Bi). And antimony (Sb).

金型基材10がアルミニウム(Al)系合金からなる場合、添加される金属としてSi,Fe,Cu,Mn,Mg,Cr,Zn,Zr,Ti,V,Ni,Ga等が挙げられ、金型基材10がタンタル(Ta)系合金からなる場合、添加される金属としてNb,Fe,Ti,W,Si,Ni等が挙げられ、金型基材10がニオブ(Nb)系合金からなる場合、添加される金属としてZr,Al,Sn,Ge,Ga等が挙げられ、金型基材10がチタン(Ti)系合金からなる場合、添加される金属としてAl,V,Si,Fe,Mo,Sn,Zr,Nb,Cr,Mn等が挙げられ、金型基材10がハフニウム(Hf)系合金からなる場合、添加される金属としてSn,Fe,Zr,Cr,Nb等が挙げられ、金型基材10がジルコニウム(Zr)系合金からなる場合、添加される金属としてFe,Cu,Al,Mg,Sn,Cr,Ni等が挙げられ、金型基材10が亜鉛(Zn)系合金からなる場合、添加される金属としてAl,Cu,Mg,Fe,Sn,Pb等が挙げられ、金型基材10がタングステン(W)系合金からなる場合、添加される金属としてNi,Cu,Fe,Mo等が挙げられ、金型基材10がビスマス(Bi)系合金からなる場合、添加される金属としてCd,Sn,Pb,In,Sb等が挙げられ、金型基材10がアンチモン(Sb)系合金からなる場合、添加される金属としてPb,Sn等が挙げられます。金型基材10に添加する物質は上記のものにい限らず、本発明に用いる金型基材10の特性を損なわない範囲で種々の物質を添加可能である。   When the mold base 10 is made of an aluminum (Al) alloy, examples of the metal to be added include Si, Fe, Cu, Mn, Mg, Cr, Zn, Zr, Ti, V, Ni, and Ga. When the mold base 10 is made of a tantalum (Ta) alloy, examples of the metal to be added include Nb, Fe, Ti, W, Si, Ni, etc., and the mold base 10 is made of a niobium (Nb) alloy. In this case, Zr, Al, Sn, Ge, Ga and the like are listed as the added metal. When the mold base 10 is made of a titanium (Ti) alloy, the added metal is Al, V, Si, Fe, Mo, Sn, Zr, Nb, Cr, Mn, and the like are listed. When the mold base 10 is made of a hafnium (Hf) alloy, examples of the added metal include Sn, Fe, Zr, Cr, and Nb. When the mold base 10 is made of a zirconium (Zr) based alloy, examples of the metal to be added include Fe, Cu, Al, Mg, Sn, Cr, Ni, etc., and the mold base 10 is zinc (Zn). Added when made of alloy Examples of the genus include Al, Cu, Mg, Fe, Sn, and Pb. When the mold base 10 is made of a tungsten (W) alloy, Ni, Cu, Fe, Mo, or the like can be given as an added metal. When the mold base 10 is made of a bismuth (Bi) alloy, examples of the added metal include Cd, Sn, Pb, In, and Sb, and the mold base 10 is made of an antimony (Sb) alloy. In this case, Pb, Sn, etc. can be mentioned as added metals. The substances to be added to the mold base 10 are not limited to those described above, and various substances can be added as long as the characteristics of the mold base 10 used in the present invention are not impaired.

金型基材10におけるバルブ金属の含有率は、加工性が高く、金型としての強度を有しているように、50%以上99%未満であ、75%以上99%未満であるのが好ましく、85%以上99%未満であるのがより好ましい。バルブ金属の含有率が50%未満であると陽極酸化処理による表面の酸化層の形成が十分でなく、バルブ金属の含有率が99%以上であると金型として使用可能な十分な機械的強度及び加工性が得られない。 The content of the valve metal in the mold base 10, workability is high, as a strength as a mold, 50% or more and less than 99% der is, less than 75% or more 99% Is preferable, and it is more preferable that it is 85% or more and less than 99%. If the valve metal content is less than 50%, the formation of an oxide layer on the surface by anodization is not sufficient, and if the valve metal content is 99% or more, sufficient mechanical strength can be used as a mold. And processability is not obtained.

金型基材10としてアルミニウム膜20より低い比率でアルミニウム又はアルミニウム合金を含む合金(以下、アルミニウム系金属と呼ぶ)を用いるのが好ましい。高純度アルミニウムが非常に柔らかい材料であるのに対し、アルミニウム系金属は高強度化かつ高硬度化が可能であり、レンズ等の光学素子成形用の金型材として十分使用可能であるとともに、陽極酸化処理により表面に酸化層が形成されるため溶解反応が生じない。   It is preferable to use an alloy containing aluminum or an aluminum alloy (hereinafter referred to as an aluminum-based metal) at a lower ratio than the aluminum film 20 as the mold base 10. While high-purity aluminum is a very soft material, aluminum-based metals can be made stronger and harder, and can be used as a mold material for molding optical elements such as lenses, and anodized. Since an oxide layer is formed on the surface by the treatment, no dissolution reaction occurs.

金型基材10に用いるアルミニウム系金属は、Al-Zn-Mg-Cu系のA7075合金(超々ジュラルミン)、Al-Zn-Mg系のA7N01合金及びA7003合金等の7000系アルミニウム合金(JIS規格)、Al-Cu系のA2024(超ジュラルミン)等の2000系アルミニウム合金、Al-Mg系のA5052等の5000系アルミニウム合金が高強度であり好ましい。また金型基材10の他の例としては、チタン系金属としてTi-Al-V系の6-4合金(JIS60種)、Ti-V-Cr-Al-Sn系の15-3-3-3合金等のチタン合金、亜鉛系金属としてZn-Al-Cu-Mg-Fe系の亜鉛合金(ザマーク合金)、タングステン系金属としてW-Ni-Cu系のW-Ni-Fe系のタングステン合金等が挙げられる。   Aluminum metal used for mold base 10 is Al-Zn-Mg-Cu-based A7075 alloy (extra super duralumin), Al-Zn-Mg-based A7N01 alloy and A7003 alloy, etc. 7000 series aluminum alloys (JIS standard) Further, 2000 series aluminum alloys such as Al-Cu series A2024 (super duralumin) and 5000 series aluminum alloys such as Al-Mg series A5052 are preferable because of their high strength. Other examples of the mold base 10 include Ti-Al-V-based 6-4 alloy (JIS 60 class), Ti-V-Cr-Al-Sn-based 15-3-3- Titanium alloys such as 3 alloys, Zn-Al-Cu-Mg-Fe zinc alloy (Zamark alloy) as zinc metal, W-Ni-Cu W-Ni-Fe tungsten alloy as tungsten metal, etc. Is mentioned.

金型1は、ガラスモールド、射出成形等の種々の成形法に用いることができるが、射出成形用であるのが好ましい。   The mold 1 can be used for various molding methods such as glass molding and injection molding, but is preferably for injection molding.

ポーラスアルミナ21の複数の細孔は、金型1により成形される素子に使用する光の波長以下の周期で配置されているのが好ましい。これにより、金型1により素子に転写される微細凹凸構造に反射防止機能を付与すると同時に光の散乱の発生を避けることができる。   The plurality of pores of the porous alumina 21 are preferably arranged with a period equal to or less than the wavelength of light used for the element formed by the mold 1. Thereby, it is possible to impart an antireflection function to the fine concavo-convex structure transferred to the element by the mold 1 and to avoid the occurrence of light scattering.

[2] 金型の製造方法
図2(a) に示すように、所望の素子の表面のほぼ反転形状を有する金型基材10の表面に真空蒸着法、スパッタリング法等により高純度のアルミニウム膜20を形成する。
[2] Mold manufacturing method As shown in FIG. 2 (a), a high-purity aluminum film is formed on the surface of a mold base 10 having a substantially inverted shape of the surface of a desired element by vacuum deposition or sputtering. Form 20.

図3に示すように、アルミニウム膜20が形成された金型基材10を陽極にセットし、酸性電解液に浸漬し、電圧を印加して陽極酸化処理を施すことにより、図2(b) に示す二次元周期の細孔構造を有するポーラスアルミナ21を形成し、金型1を作製した。陽極酸化処理に用いる電解質としてはシュウ酸、硫酸、リン酸等が挙げられる。   As shown in FIG. 3, the mold base 10 on which the aluminum film 20 is formed is set on the anode, immersed in an acidic electrolyte, and an anodizing treatment is performed by applying a voltage, thereby FIG. A porous alumina 21 having a two-dimensional periodic pore structure shown in FIG. Examples of the electrolyte used for the anodizing treatment include oxalic acid, sulfuric acid, and phosphoric acid.

ポーラスアルミナ21の細孔の深さ、幅及び周期は陽極酸化処理時の印加電圧、電流、処理時間、酸性電解液の酸の種類、濃度、温度、処理するアルミの表面積等といった製造条件に相関する。そのため、これらの製造条件を調整することにより、ポーラスアルミナ21の細孔の深さ、幅及び周期を制御することができる。例えば、陽極酸化時に印加する電圧を高くすると周期が大きくなり、陽極酸化の処理時間を長くすると細孔の深さが大きくなる。   The pore depth, width, and period of porous alumina 21 correlate with manufacturing conditions such as applied voltage, current, treatment time, acid type, concentration, temperature, surface area of aluminum to be treated, etc. To do. Therefore, by adjusting these manufacturing conditions, the depth, width and period of the pores of the porous alumina 21 can be controlled. For example, when the voltage applied at the time of anodization is increased, the period is increased, and when the treatment time for anodization is increased, the depth of the pores is increased.

陽極酸化処理が終了した段階におけるポーラスアルミナの細孔径は、反射防止構造を転写するには小さいため、ポーラスアルミナ21の細孔径を拡大する処理を行っても良い。例えば、リン酸等の酸に浸漬することにより細孔径を大きくすることができる。酸の種類や濃度、温度、浸漬時間等の処理条件を調整し、転写して得られる構造が所望の光学特性となるよう、細孔径を調整すればよい。例えば、酸への浸漬時間を長くすると細孔の径を大きくすることができる。   Since the pore diameter of the porous alumina at the stage where the anodizing treatment is completed is small for transferring the antireflection structure, a treatment for expanding the pore diameter of the porous alumina 21 may be performed. For example, the pore diameter can be increased by immersing in an acid such as phosphoric acid. The pore diameter may be adjusted by adjusting the processing conditions such as the acid type, concentration, temperature, immersion time, etc., and the structure obtained by the transfer has desired optical characteristics. For example, if the immersion time in the acid is increased, the pore diameter can be increased.

陽極酸化処理によりポーラスアルミナを一旦形成し、クロム酸及びリン酸の混酸等の剥離液に浸漬してポーラスアルミナを剥離した後、再び陽極酸化処理を行ってポーラスアルミナ21を形成しても良い。このような前処理を行うことにより、ポーラスアルミナ21の表面状態及び細孔の周期性を調整することができる。   Porous alumina may be formed by once forming porous alumina by anodizing treatment, immersing it in a stripping solution such as a mixed acid of chromic acid and phosphoric acid to peel the porous alumina, and then performing anodizing treatment again. By performing such pretreatment, the surface state of the porous alumina 21 and the periodicity of the pores can be adjusted.

[3] 素子
本発明の金型1を用いて素子2の表面に微細凹凸構造を形成する。具体的には、図4に示すように、金型1に素子2を接触させ、素子2が軟化する温度まで加熱しつつ押圧することにより、素子2にポーラスアルミナ21の細孔構造を転写する方法(熱転写法、ホットエンボス法、熱インプリント法等)が挙げられる。また他の転写方法としては、金型1に溶融した樹脂を射出して硬化させることにより、素子2を成形すると同時に表面に細孔構造の転写を行なう方法(射出成形法)、金型1に熱硬化性樹脂や光硬化性樹脂等の流動性の高い樹脂を注入し、加熱又は光照射により硬化させることにより、素子2を成形すると同時に表面に細孔構造の転写を行なう方法(キャスティング法)、金型1と素子2とを接触させ、その隙間に流動性の高い熱硬化性樹脂を挿入し加熱により硬化させ、又は光硬化性樹脂を挿入し光照射により硬化させることにより、素子2の表面に細孔構造を転写する方法(特に紫外線硬化型の樹脂を用いた手法をUVインプリント法と呼ぶ。)等が挙げられる。金型1と素子2との離型性を良くするために、フッ素系材料等からなる金型離型剤を金型1の表面に塗布しても良い。
[3] Element A fine uneven structure is formed on the surface of the element 2 using the mold 1 of the present invention. Specifically, as shown in FIG. 4, the element 2 is brought into contact with the mold 1 and pressed while being heated to a temperature at which the element 2 is softened, thereby transferring the pore structure of the porous alumina 21 to the element 2. And methods (thermal transfer method, hot embossing method, thermal imprinting method, etc.). As another transfer method, a molten resin is injected into the mold 1 and cured to form the element 2 and simultaneously transfer the pore structure to the surface (injection molding method). A method of injecting a highly fluid resin such as a thermosetting resin or a photo-curing resin and curing it by heating or light irradiation to form a device 2 and simultaneously transfer the pore structure to the surface (casting method) The mold 1 and the element 2 are brought into contact with each other, a thermosetting resin having high fluidity is inserted into the gap and cured by heating, or a photocurable resin is inserted and cured by light irradiation. And a method of transferring the pore structure to the surface (in particular, a method using an ultraviolet curable resin is referred to as a UV imprint method). In order to improve the releasability between the mold 1 and the element 2, a mold release agent made of a fluorine-based material or the like may be applied to the surface of the mold 1.

得られた素子2は表面に微細凹凸構造を有する。微細凹凸構造は素子2の両面に設けられていても良い。素子2の微細凹凸構造は複数の円柱状凸部を有し、これらは使用する光の波長以下の二次元周期で配置されているのが好ましい。これにより、入射媒質の屈折率と素子2の屈折率との中間的な屈折率を有する反射防止膜として機能する。円柱状凸部の周期、高さ及び太さを制御することにより、その構造体の実効屈折率及び光学厚さを制御することができるため、従来の反射防止膜と比べて自由度があり、入射媒質及び基材の種類にかかわらず良好な反射防止特性が得られる。   The obtained element 2 has a fine uneven structure on the surface. The fine concavo-convex structure may be provided on both surfaces of the element 2. The fine concavo-convex structure of the element 2 has a plurality of columnar convex portions, and these are preferably arranged at a two-dimensional period equal to or less than the wavelength of light to be used. Thereby, it functions as an antireflection film having an intermediate refractive index between the refractive index of the incident medium and the refractive index of the element 2. By controlling the period, height and thickness of the cylindrical convex part, the effective refractive index and optical thickness of the structure can be controlled, so there is a degree of freedom compared to conventional antireflection films, Good antireflection characteristics can be obtained regardless of the type of incident medium and substrate.

微細凹凸構造は円柱状に限らず、反射防止効果を有するものであれば、円錐、円錐台、角柱、角錐等の構造を有するものでも良い。ポーラスアルミナの細孔形状を工夫し、転写されて得られる形状を先鋭化することにより、構造体の実効的な屈折率が入射媒質から素子にかけて緩やかに変化するような構造を形成しても良い。   The fine concavo-convex structure is not limited to a cylindrical shape, and may have a structure such as a cone, a truncated cone, a prism, or a pyramid as long as it has an antireflection effect. A structure in which the effective refractive index of the structure gradually changes from the incident medium to the element may be formed by devising the pore shape of the porous alumina and sharpening the shape obtained by the transfer. .

素子2は特に限定されないが、光学素子であるのが好ましい。図5に示すように、光学素子2の各面のほぼ反転形状をそれぞれ有する金型1a,1bを用いて、光学素子2の両面に微細凹凸構造を付与しても良い。これにより、光学素子2に良好な反射防止特性を付与することができる。   The element 2 is not particularly limited, but is preferably an optical element. As shown in FIG. 5, a fine concavo-convex structure may be provided on both surfaces of the optical element 2 using molds 1 a and 1 b each having a substantially inverted shape of each surface of the optical element 2. Thereby, a favorable antireflection characteristic can be imparted to the optical element 2.

金型1の円柱状凸部の周期は素子2の材料や入射光の波長によって適宜調節することができるが、使用する波長よりも小さいことが好ましい。円柱状凸部の周期が50〜1000 nmであるのが好ましい。円柱状凸部の高さ及び太さは、素子2の材料や入射光の波長により適宜調節することできる。円柱状凸部の周期、高さ及び太さを制御することにより、その構造体の実効屈折率及び光学厚さを制御することができるため、反射防止膜と比べて自由度があり、入射媒質及び基材の種類にかかわらず良好な反射防止特性が得られる。円柱状凸部の構造は図4及び5に示すものに限らず、反射防止効果を有するものであれば、円錐、円錐台、角柱、角錐等の構造を有するものでも良い。   Although the period of the cylindrical convex part of the metal mold | die 1 can be suitably adjusted with the material of the element 2, and the wavelength of incident light, it is preferable that it is smaller than the wavelength to be used. It is preferable that the period of the cylindrical convex portion is 50 to 1000 nm. The height and thickness of the cylindrical convex portion can be appropriately adjusted depending on the material of the element 2 and the wavelength of incident light. Since the effective refractive index and optical thickness of the structure can be controlled by controlling the period, height, and thickness of the cylindrical convex portion, there is a degree of freedom compared to the antireflection film, and the incident medium In addition, good antireflection properties can be obtained regardless of the type of substrate. The structure of the columnar convex portion is not limited to that shown in FIGS. 4 and 5 and may have a structure such as a cone, a truncated cone, a prism, or a pyramid as long as it has an antireflection effect.

以下実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

実施例1
超々ジュラルミン[YH75(白銅株式会社製)]からなる25 mm×25 mm×15 mmの金型基材10を使用し、金型基材10の25 mm×25 mmの1面を転写面とし研削・研磨により光学鏡面を形成した。金型基材10の光学鏡面に純度99.99%の高純度アルミニウム膜20を真空蒸着により約1μm成膜した。この金型基材10を17℃の0.3 Mシュウ酸電解質に浸漬し、陽極に電圧60Vを2分間印加し、金型基材10の表面にポーラスアルミナを形成した。この金型基材10をクロム酸及びリン酸の混酸の剥離液に浸漬し、このポーラスアルミナを剥離した。再び同じ条件で30秒間処理し金型基材10の表面にポーラスアルミナ21を形成し、30℃の5wt%リン酸に30分間浸漬して孔径拡大処理を行った。得られた金型基材10を純水により洗浄した後乾燥させ、金型1を作製した。
Example 1
Using a mold base 10 of 25 mm x 25 mm x 15 mm made of extra super duralumin [YH75 (manufactured by White Bronze Co., Ltd.)], grinding one surface of the mold base 10 of 25 mm x 25 mm -An optical mirror surface was formed by polishing. A high-purity aluminum film 20 having a purity of 99.99% was formed on the optical mirror surface of the mold base 10 by vacuum deposition to a thickness of about 1 μm. The mold base 10 was immersed in a 0.3 M oxalic acid electrolyte at 17 ° C., and a voltage of 60 V was applied to the anode for 2 minutes to form porous alumina on the surface of the mold base 10. This mold substrate 10 was immersed in a stripping solution of a mixed acid of chromic acid and phosphoric acid to strip the porous alumina. The treatment was again performed under the same conditions for 30 seconds to form porous alumina 21 on the surface of the mold base 10 and immersed in 5 wt% phosphoric acid at 30 ° C. for 30 minutes to perform pore diameter expansion treatment. The mold base 10 thus obtained was washed with pure water and then dried to produce the mold 1.

陽極酸化処理後の金型1の成形面の外観は特に欠陥等はなかった。SEM観察の結果、約150 nmの二次元周期を有する良好な微細凹凸構造が形成されていた。実施例1の金型1を用いて成形した素子は所望の形状および精度を有しており、また、ムラ、散乱等の問題は見られなかった。   The appearance of the molding surface of the mold 1 after the anodizing treatment was not particularly defective. As a result of SEM observation, a good fine concavo-convex structure having a two-dimensional period of about 150 nm was formed. The element molded using the mold 1 of Example 1 had a desired shape and accuracy, and problems such as unevenness and scattering were not observed.

実施例2
6-4チタン合金[チタンGRADE5(白銅株式会社製)]からなる25 mm×25 mm×15 mmの金型基材10を使用し、金型基材10以外は実施例1と同様に、金型1を作製した。
Example 2
A mold base 10 of 25 mm × 25 mm × 15 mm made of 6-4 titanium alloy [titanium GRADE5 (made by White Copper Co., Ltd.) was used. Mold 1 was produced.

実施例1と同様、陽極酸化処理後の金型1の成形面の外観は特に欠陥等は無く、SEM観察の結果、約150 nmの二次元周期を有する良好な微細凹凸構造の形成を確認した。また、実施例2の金型1を用いて成形した素子は所望の形状および精度を有しており、ムラ、散乱等の問題も見られなかった。   As in Example 1, the appearance of the molding surface of the mold 1 after the anodizing treatment was not particularly defective, and as a result of SEM observation, it was confirmed that a fine fine concavo-convex structure having a two-dimensional period of about 150 nm was formed. . In addition, the element molded using the mold 1 of Example 2 had a desired shape and accuracy, and problems such as unevenness and scattering were not observed.

比較例1
純度99.99%の高純度アルミニウムからなる25 mm×25 mm×15 mmの金型基材10を使用し、高純度アルミニウム膜20の真空蒸着を行わない以外は実施例1と同様に、金型1を作製した。金型1の外観は実施例1と同様に良好であったが、高純度アルミニウムは強度が小さいため、金型を成型装置へ組み付けるため強固に固定したり、成形時に大きい力や圧力を付加することにより金型形状が変形してしまうため、比較例1の金型1を用いて成形を行った結果、所望の精度の形状を持った素子を作製することができなかった。
Comparative Example 1
Mold 1 as in Example 1 except that a mold base 10 of 25 mm × 25 mm × 15 mm made of high-purity aluminum with a purity of 99.99% is used and no high-purity aluminum film 20 is vacuum deposited. Was made. The appearance of the mold 1 was as good as in Example 1. However, since high-purity aluminum has low strength, it is firmly fixed to assemble the mold into a molding apparatus, or a large force or pressure is applied during molding. As a result, the mold shape is deformed, and as a result of molding using the mold 1 of Comparative Example 1, an element having a desired precision shape could not be produced.

比較例2
高純度アルミニウム膜20の真空蒸着を行わない以外は実施例1と同様に、金型1を作製した。SEMで観察した結果、周期約150 nmの微細凹凸が形成されていたが、局所的に数100 nm〜数μmの欠陥が発生していた。また比較例2の金型1を用いて成形した素子には金型の欠陥転写に由来する散乱の発生が見られた。
Comparative Example 2
A mold 1 was produced in the same manner as in Example 1 except that the high-purity aluminum film 20 was not vacuum-deposited. As a result of observation by SEM, fine irregularities having a period of about 150 nm were formed, but defects of several hundred nm to several μm were locally generated. In addition, in the element molded using the mold 1 of Comparative Example 2, generation of scattering derived from defect transfer of the mold was observed.

比較例3
金型基材10の材料として石英ガラスを用いた以外は実施例1と同様に、金型1を作製した。金型1の外観は実施例1と同様に良好であったが、石英ガラスは脆く、強度が小さいため、成型装置に金型を強固に組み付けることができず、また、成形時に必要な力や圧力を付加することができないため、比較例3の金型1を用いて成形した素子は所望の形状および精度を得られなかった。
Comparative Example 3
A mold 1 was produced in the same manner as in Example 1 except that quartz glass was used as the material of the mold base 10. The appearance of the mold 1 was as good as in Example 1. However, the quartz glass is brittle and has low strength, so that the mold cannot be firmly assembled in the molding apparatus. Since pressure could not be applied, the element molded using the mold 1 of Comparative Example 3 could not obtain the desired shape and accuracy.

比較例4
金型基材10の材料としてステンレス鋼[HPM38(日立金属工具鋼株式会社製)]を用いた以外は実施例1と同様に、金型1を作製した。陽極酸化処理時にステンレス鋼の溶解反応が生じ、陽極酸化処理後の金型1の成形面には、溶解反応の影響によってアルミニウム膜の安定した陽極酸化処理が妨げられることが原因と思われる処理ムラが確認された。SEM観察の結果、所望の微細凹凸構造が得られておらず、また形状が不均一であった。
Comparative Example 4
A mold 1 was produced in the same manner as in Example 1 except that stainless steel [HPM38 (manufactured by Hitachi Metals Tool Steel Co., Ltd.)] was used as the material of the mold base 10. Dispersion of stainless steel occurs at the time of anodizing treatment, and unevenness of processing seems to be caused by the stable anodizing treatment of the aluminum film on the molding surface of the mold 1 after the anodizing treatment due to the influence of the dissolution reaction Was confirmed. As a result of SEM observation, the desired fine uneven structure was not obtained, and the shape was non-uniform.

1・・・金型
10・・・金型基材
20・・・アルミニウム膜
21・・・ポーラスアルミナ
2・・・素子
1 ... Mold
10 ... Mold base
20 ... Aluminum film
21 ... Porous alumina 2 ... Element

Claims (10)

50%以上99%未満の比率でバルブ金属又は前記バルブ金属の合金を含有する金型基材の成形面に、含有率99%以上の高純度アルミニウムからなるアルミニウム膜を形成し、前記アルミニウム膜に陽極酸化により複数の細孔を有するポーラスアルミナを形成することを特徴とする金型の製造方法。 An aluminum film made of high-purity aluminum having a content rate of 99% or more is formed on the molding surface of the mold base material containing the valve metal or the valve metal alloy at a ratio of 50% or more and less than 99%. A method for producing a mold, comprising forming porous alumina having a plurality of pores by anodization. 請求項に記載の金型の製造方法において、前記高純度アルミニウムの純度は99.9%以上であることを特徴とする金型の製造方法。 2. The mold manufacturing method according to claim 1 , wherein the purity of the high-purity aluminum is 99.9% or more. 請求項1又は2に記載の金型の製造方法において、前記バルブ金属はアルミニウム、タンタル、ニオブ、チタン、ハフニウム、ジルコニウム、亜鉛、タングステン、ビスマス又はアンチモンであることを特徴とする金型の製造方法。 3. The method of manufacturing a mold according to claim 1, wherein the valve metal is aluminum, tantalum, niobium, titanium, hafnium, zirconium, zinc, tungsten, bismuth or antimony. . 請求項3に記載の金型の製造方法において、前記バルブ金属はアルミニウムであることを特徴とする金型の製造方法。 4. The mold manufacturing method according to claim 3, wherein the valve metal is aluminum. 請求項1又は2に記載の金型の製造方法において、前記金型基材は超々ジュラルミンであることを特徴とする金型の製造方法。 3. The method for manufacturing a mold according to claim 1, wherein the mold base is ultraduralumin. 請求項1〜のいずれかに記載の方法により製造された金型。 The metal mold | die manufactured by the method in any one of Claims 1-5 . 請求項に記載の金型において、射出成形用であることを特徴とする金型。 7. The mold according to claim 6 , wherein the mold is for injection molding. 請求項に記載の金型において、前記複数の細孔は前記金型により成形された素子に使用する光の波長以下の二次元周期で形成されており、もって前記素子に反射防止構造を付与できることを特徴とする金型。 8. The mold according to claim 7 , wherein the plurality of pores are formed with a two-dimensional period equal to or less than a wavelength of light used for an element molded by the mold, thereby providing the element with an antireflection structure. A mold that can be made. 請求項6〜8のいずれかに記載の金型により成形された素子。 The element shape | molded by the metal mold | die in any one of Claims 6-8 . 請求項6〜8のいずれかに記載の金型により成形された光学素子。 The optical element shape | molded by the metal mold | die in any one of Claims 6-8 .
JP2010204088A 2010-09-13 2010-09-13 Mold, manufacturing method thereof, element and optical element Active JP5621436B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204088A JP5621436B2 (en) 2010-09-13 2010-09-13 Mold, manufacturing method thereof, element and optical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204088A JP5621436B2 (en) 2010-09-13 2010-09-13 Mold, manufacturing method thereof, element and optical element

Publications (2)

Publication Number Publication Date
JP2012056274A JP2012056274A (en) 2012-03-22
JP5621436B2 true JP5621436B2 (en) 2014-11-12

Family

ID=46053935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204088A Active JP5621436B2 (en) 2010-09-13 2010-09-13 Mold, manufacturing method thereof, element and optical element

Country Status (1)

Country Link
JP (1) JP5621436B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6008784B2 (en) * 2013-04-15 2016-10-19 信越化学工業株式会社 Pellicle frame, manufacturing method thereof, and pellicle

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4125151B2 (en) * 2003-02-07 2008-07-30 キヤノン株式会社 Manufacturing method of structure
JP4406553B2 (en) * 2003-11-21 2010-01-27 財団法人神奈川科学技術アカデミー Method for manufacturing antireflection film
JP4649222B2 (en) * 2004-03-31 2011-03-09 キヤノン株式会社 Manufacturing method of imaging lens
KR100898470B1 (en) * 2004-12-03 2009-05-21 샤프 가부시키가이샤 Reflection preventing material, optical element, display device, stamper manufacturing method, and reflection preventing material manufacturing method using the stamper
JP4874676B2 (en) * 2006-03-02 2012-02-15 富士フイルム株式会社 Structure and manufacturing method thereof
JP2009292707A (en) * 2008-06-09 2009-12-17 Hitachi Maxell Ltd Method of manufacturing mold for molding optical device, mold for molding optical device and manufacturing method of optical device

Also Published As

Publication number Publication date
JP2012056274A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
Zhang et al. Advances in precision micro/nano-electroforming: a state-of-the-art review
JP4406553B2 (en) Method for manufacturing antireflection film
JP2006124827A (en) Method for manufacturing nanostructure
US20070116934A1 (en) Antireflective surfaces, methods of manufacture thereof and articles comprising the same
TWI422477B (en) Optical element molding die and method for molding optical element
JP2014502035A (en) Method for fabricating highly ordered nanopillars or nanohole structures on large areas
JP2011237469A (en) Optical element and method of manufacturing the same
WO2008082421A1 (en) Antireflective surfaces, methods of manufacture thereof and articles comprising the same
JP5621436B2 (en) Mold, manufacturing method thereof, element and optical element
KR20140039773A (en) Metal mold for anti-reflection lenses with nanostructures on the surface using etch stop layer and manufacturing method thereof
JP2006235195A (en) Method for manufacturing member with antireflective structure
WO2017074264A1 (en) Nanoinjection molding
JP2009287123A (en) Casting mold comprising anodized porous alumina and method for manufacturing thereof
JP2010260279A (en) Method of manufacturing mold stamper, mold stamper and method of producing molding
JP5799393B2 (en) Ni-W electroforming liquid for molding dies, method for producing molding dies, method for producing molding dies and molded products
JP2006303454A (en) Nano imprint mold and methods for manufacturing same, transcribing method of convexo-concave pattern, and manufacturing method of member with concave
WO2019223109A1 (en) Flexible nanoimprint template and manufacturing method therefor
JP2012008419A (en) Optical element forming mold, optical element, and manufacturing method thereof
JP2011206938A (en) Mold for thermal imprint, method of manufacturing the mold and method of manufacturing resin material using the mold
JP5027182B2 (en) Method for producing imprint mold material and imprint mold material
JP5071143B2 (en) Method for manufacturing molded product and method for manufacturing recording medium
JP2002326232A (en) Mold for molding optical surface, optical element, lens and master mold
JP2006028604A (en) Method for transferring minute shape, method for manufacturing casting mold, surface treatment method for casting mold, and casting mold
JP2010100941A (en) Casting mold made of anodized porous alumina and method of manufacturing the same
JP2009299190A (en) Casting mold comprising anodized porous alumina and method for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20111209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140908

R150 Certificate of patent or registration of utility model

Ref document number: 5621436

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250