JP5618606B2 - Plasma melt decomposition method for processing object - Google Patents

Plasma melt decomposition method for processing object Download PDF

Info

Publication number
JP5618606B2
JP5618606B2 JP2010099037A JP2010099037A JP5618606B2 JP 5618606 B2 JP5618606 B2 JP 5618606B2 JP 2010099037 A JP2010099037 A JP 2010099037A JP 2010099037 A JP2010099037 A JP 2010099037A JP 5618606 B2 JP5618606 B2 JP 5618606B2
Authority
JP
Japan
Prior art keywords
rate
decomposition
plasma
processing
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010099037A
Other languages
Japanese (ja)
Other versions
JP2011224513A (en
Inventor
良 山崎
良 山崎
隆裕 片寄
隆裕 片寄
田頭 成能
成能 田頭
清水由章
由章 清水
康司 梶原
康司 梶原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Nippon Steel Engineering Co Ltd
Original Assignee
Nippon Steel Engineering Co Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Engineering Co Ltd, Kobelco Eco Solutions Co Ltd filed Critical Nippon Steel Engineering Co Ltd
Priority to JP2010099037A priority Critical patent/JP5618606B2/en
Publication of JP2011224513A publication Critical patent/JP2011224513A/en
Application granted granted Critical
Publication of JP5618606B2 publication Critical patent/JP5618606B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/10Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation
    • A62D3/19Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by subjecting to electric or wave energy or particle or ionizing radiation to plasma
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D3/00Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances
    • A62D3/40Processes for making harmful chemical substances harmless or less harmful, by effecting a chemical change in the substances by heating to effect chemical change, e.g. pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09BDISPOSAL OF SOLID WASTE
    • B09B3/00Destroying solid waste or transforming solid waste into something useful or harmless
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21FPROTECTION AGAINST X-RADIATION, GAMMA RADIATION, CORPUSCULAR RADIATION OR PARTICLE BOMBARDMENT; TREATING RADIOACTIVELY CONTAMINATED MATERIAL; DECONTAMINATION ARRANGEMENTS THEREFOR
    • G21F9/00Treating radioactively contaminated material; Decontamination arrangements therefor
    • G21F9/28Treating solids
    • G21F9/30Processing

Landscapes

  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Emergency Management (AREA)
  • Processing Of Solid Wastes (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma & Fusion (AREA)

Description

本発明は、PCB汚染物等の処理対象物を空気プラズマによってバッチ式で分解処理するプラズマ溶融分解処理方法に関する。   The present invention relates to a plasma melt decomposition processing method in which a processing object such as PCB contaminants is decomposed in a batch manner by air plasma.

PCB(ポリ塩化ビフェニル)は、かつてトランス、コンデンサ、蛍光灯安定器等の電気機器の絶縁油、ボイラ等の熱媒体などに使用されていたが、毒性があり且つ残留性があるため、現在ではPCBの使用は禁止され、またPCB汚染物の無害化処理が進められている。   PCB (polychlorinated biphenyl) was once used in insulating oils for electrical equipment such as transformers, condensers and fluorescent ballasts, and heat media such as boilers, but it is currently toxic and persistent. The use of PCB is prohibited, and PCB contamination is being detoxified.

PCB汚染物の無害化処理方法の一つとして、PCB汚染物を空気プラズマによって分解処理するプラズマ溶融分解処理方法がある(例えば特許文献1,2参照)。
処理対象物であるPCB汚染物には、汚泥、ウェス、感圧複写紙、廃活性炭、化学防護服等、種々のものがあり、これらのPCB汚染物は、搬入保管容器に封入されて処理施設に搬入され、プラズマ溶融分解処理の前に、その種類毎に所定の投入容器に詰め替えられる。そして、投入容器は1缶単位でプラズマ溶融分解処理炉に投入され、空気プラズマによってバッチ式で分解処理される。
As one of the PCB contaminant detoxification methods, there is a plasma melt decomposition method in which PCB contaminants are decomposed by air plasma (see, for example, Patent Documents 1 and 2).
There are various types of PCB contaminants, such as sludge, waste, pressure-sensitive copying paper, waste activated carbon, and chemical protective clothing. These PCB contaminants are enclosed in a carry-in storage container. And is refilled into a predetermined charging container for each type before the plasma melt decomposition treatment. Then, the charging container is put into a plasma melting and decomposing furnace in units of cans, and decomposed in batch by air plasma.

しかし、このようにプラズマ溶融分解処理はバッチ式で行われるため、どうしても処理効率が悪く、処理時間がかかるという問題があった。また、処理対象物を処理する際に発生するガスの発生量は処理対象物の種類によって大きく異なるが、そのガスを処理する排気処理設備は最大発生量に対応した設備とする必要があるため、平均発生量に対しては過大な設備仕様となるという問題もあった。   However, since the plasma melt decomposition process is performed in a batch manner as described above, there is a problem that the process efficiency is inevitably low and the process time is long. In addition, the amount of gas generated when processing an object to be processed varies greatly depending on the type of object to be processed, but the exhaust treatment facility for processing the gas needs to be a facility corresponding to the maximum amount generated, There was also a problem that the specifications were too large for the average generation amount.

特開2006−297233号公報JP 2006-297233 A 特開2007−296415号公報JP 2007-296415 A

本発明が解決しようとする課題は、バッチ式で行われる処理対象物のプラズマ溶融分解処理において、その処理効率を向上させ、処理時間を短縮化することにある。   The problem to be solved by the present invention is to improve the processing efficiency and shorten the processing time in the plasma melt decomposition processing of the processing object performed in a batch system.

さらに、プラズマ溶融分解処理の際に発生するガスの最大発生量を低減し、排気処理設備の規模を小さくできるようにすることにある。   Furthermore, it is intended to reduce the maximum amount of gas generated during the plasma melting decomposition process and to reduce the scale of the exhaust treatment facility.

上記課題を解決するため、本発明者は、プラズマ溶融分解処理方法によって分解処理される処理対象物には、大別して、高温のプラズマを媒介とした熱エネルギーの伝達により溶融分解されるもの、すなわち分解処理が溶融速度律速のものと、強固に原子レベルで結合しているために溶融分解ではなく酸化分解によって処理されるもの、すなわち分解処理が酸素供給律速によるものとがあることに着目し、溶融速度律速の処理対象物と酸素供給律速の処理対象物とを混合して処理すれば、溶融分解による処理と酸化分解による処理が同時並行して進み、個別に処理するよりも処理効率が向上することを知見し、本発明を完成させるに至った。   In order to solve the above-mentioned problems, the present inventor roughly classifies the object to be decomposed by the plasma melting / decomposing method by melting and decomposing by the transfer of thermal energy mediated by high-temperature plasma, that is, Focusing on the fact that the decomposition process is controlled by the melt rate and the one that is processed by oxidative decomposition rather than melt decomposition because it is firmly bonded at the atomic level, that is, the decomposition process is based on the oxygen supply rate control, By mixing and processing the melt-rate-controlled process object and the oxygen supply-controlled process object, the process by melt decomposition and the process by oxidative decomposition proceed in parallel, improving the processing efficiency compared to individual processing As a result, the present invention has been completed.

すなわち本発明は、処理対象物を空気プラズマによってバッチ式で分解処理するプラズマ溶融分解処理方法において、分解処理が溶融速度律速の処理対象物(以下「溶融速度律速物」という。)と、分解処理が酸素供給律速の処理対象物(以下「酸素供給律速物」という。)とを混合して分解処理することを特徴とする。   That is, according to the present invention, in a plasma melt decomposition method in which an object to be processed is decomposed batchwise by air plasma, the object to be decomposed is controlled at a melting rate (hereinafter referred to as “melt rate controlled object”), and the decomposition process. Is characterized by being mixed with an oxygen supply rate-determined object to be treated (hereinafter referred to as “oxygen supply rate-determined product”) for decomposition treatment.

具体的にはプラズマ溶融分解処理設備は、処理対象物を溶融分解処理する溶融分解処理能力(kg/h)と処理対象物を酸化分解処理する酸化分解処理能力(kg/h)とを各々独立して有することから、各々の処理能力に応じて溶融速度律速物と酸素供給律速物とを混合して分解処理するこれによって、プラズマ溶融分解処理設備の各々の能力を最大限に活用して処理対象物を分解処理することができるので、処理効率が向上する。 Specifically, the plasma melting / decomposing equipment has independent melting / decomposing capability (kg / h) for subjecting the object to be processed to oxidative decomposition (kg / h) for oxidizing / decomposing the object to be processed. Therefore, the melting rate-determining product and the oxygen supply rate-limiting product are mixed and decomposed according to each processing capability . As a result, the processing object can be decomposed by making the best use of the capabilities of each of the plasma melting decomposition processing facilities, so that the processing efficiency is improved.

より具体的に本発明では、例えば出力1500kW程度のプラズマトーチを有するプラズマ溶融分解処理設備であれば、副資材を加味した溶融速度律速物を30kg〜120kg/バッチ、酸素供給律速物(廃活性炭など)を10kg〜50kg/バッチの範囲で混合処理するのが好ましい。また、酸素供給律速物(セルロース、オレフィン系高分子化合物)には処理開始時に一挙に熱分解してガス化するものがあるため、これらは10kg/バッチ以下で混合するように制限することによりプラズマ溶融分解処理設備の後段の排気処理設備をコンパクトにすることができる。   More specifically, in the present invention, for example, in the case of a plasma melt decomposition processing facility having a plasma torch with an output of about 1500 kW, a melt rate rate limiting material including auxiliary materials is 30 kg to 120 kg / batch, an oxygen supply rate limiting material (such as waste activated carbon) ) Is preferably mixed in the range of 10 kg to 50 kg / batch. In addition, some oxygen-limited substances (cellulose, olefin polymer compounds) are thermally decomposed and gasified at the start of the treatment, so these are limited to be mixed at 10 kg / batch or less to produce plasma. The exhaust treatment facility at the latter stage of the melt decomposition treatment facility can be made compact.

本発明は、主としてPCB汚染物を処理対象物とする。PCB汚染物において溶融速度律速物であるものは、金属成分が多い蛍光灯安定器(主に鉄)、無機汚泥(主にシリカ)、ブッシング(主にアルミナ)等であり、溶融処理後のスラグ塩基度を調整するために必要な石灰石やケイ砂も含まれる。また、酸素供給律速物であるものは、廃活性炭、感圧複写紙(主にセルロース)、防護服等の廃石油化学製品(主にオレフィン系高分子化合物)等である。酸素供給律速物のうち、廃活性炭は、固相表面での炭素の酸化反応(C+O→CO)によって分解されることから、酸素供給律速物の典型例であり、プラズマ溶融分解処理原理に基づいた熱エネルギー投入に対しても処理速度はそれに比例しては増大しない。一方、セルロースやオレフィン系の高分子化合物は処理開始時に一挙に熱分解ガス化し、その発生ガスはプラズマ溶融分解処理炉外へ排出されるが、約20%は炭化物として炉内にとどまる。この炭化物は廃活性炭と同じ挙動を示す。さらに、蛍光灯安定器は溶融速度律速成分(金属成分)と酸素供給律速成分との混合物であり、溶融分解処理と酸化分解処理が独立的に行われるが、処理時間は主成分である金属成分の溶融分解処理が律速となるので、溶融速度律速物である。 The present invention mainly treats PCB contaminants as processing objects. Among the PCB contaminants, those that are controlled by the melting rate are fluorescent lamp stabilizers (mainly iron), inorganic sludge (mainly silica), bushings (mainly alumina), etc. with many metal components. It also includes limestone and silica sand necessary to adjust basicity. Examples of oxygen supply rate-limiting products include waste activated carbon, pressure-sensitive copying paper (mainly cellulose), and waste petrochemical products (mainly olefin polymer compounds) such as protective clothing. Among the oxygen supply rate-determined products, waste activated carbon is decomposed by the carbon oxidation reaction (C + O 2 → CO 2 ) on the solid surface, which is a typical example of oxygen supply rate-determined products. The processing speed does not increase in proportion to the input of thermal energy. On the other hand, cellulose and olefin-based polymer compounds are pyrolyzed and gasified at the start of the treatment, and the generated gas is discharged out of the plasma melt decomposition treatment furnace, but about 20% remains in the furnace as carbides. This carbide shows the same behavior as waste activated carbon. Furthermore, the fluorescent lamp ballast is a mixture of a melting rate-controlling component (metal component) and an oxygen supply-controlling component, and the melt decomposition treatment and the oxidative decomposition treatment are performed independently, but the processing time is the main component of the metal component. Therefore, the melt decomposition treatment is a rate-determining product.

このように本明細書では、プラズマ溶融分解処理において、溶融分解処理される成分を「溶融速度律速成分」、酸化分解処理される成分を「酸素供給律速成分」といい、これらの成分の単独あるいは混合物であって、全体として分解処理が溶融速度律速の処理対象物を「溶融速度律速物」、酸素供給律速の処理対象物を「酸素供給律速物」という。   As described above, in the present specification, in the plasma melt decomposition process, a component to be melt-decomposed is referred to as a “melt rate-determining component”, and a component to be subjected to an oxidative decomposition process is referred to as an “oxygen supply-determining component”. A processing object that is a mixture and whose decomposition treatment is rate-determined by the melting rate as a whole is referred to as a “melting rate-determining item”, and a processing object that has an oxygen supply rate-determining process is referred to as an “oxygen supply-limiting item”.

また本発明では、PCB汚染物のほか、アスベスト、医療廃棄物、あるいは放射性廃棄物を含む有害物質を処理対象物とすることができる。   In the present invention, in addition to PCB contaminants, hazardous substances including asbestos, medical waste, or radioactive waste can be treated.

本発明では、溶融速度律速物と酸素供給律速物を混合して合計バッチ回数分となる(例えば、混合前の溶融速度律速物が2バッチ分、酸素供給律速物が2バッチ分であれば、合計4バッチ分となる)ように投入容器に詰め分けて処理することにより、溶融分解による処理と酸化分解による処理が互いに律速にならないため同時並行して進むことから処理効率が向上し、それぞれの処理への所要時間を加算するよりも短時間で処理を行うことができる。   In the present invention, the melt rate-controlling material and the oxygen supply rate-controlling material are mixed to be the total number of batches (for example, if the melt rate-controlling material before mixing is for 2 batches and the oxygen supply rate-controlling material is for 2 batches, By processing in an input container so that the total amount is 4 batches), the processing by melt decomposition and the processing by oxidative decomposition are not rate-limiting to each other, and the processing efficiency is improved since the process proceeds in parallel. Processing can be performed in a shorter time than adding the time required for processing.

また、従来、溶融速度律速物と酸素供給律速物を個別に処理する場合、酸素供給律速物の処理時には熱エネルギーが有効利用されないが、本発明の混合処理の場合、熱エネルギーは溶融速度律速物の処理に利用されるので、常に熱エネルギーを有効利用できる。
さらに、上記のような混合処理を行うと、混合された処理対象物の反応形態(分解処理形態)の違いから、処理開始後、分解処理に伴うガスの最大発生時間が異なるようになる。そのため、全量単一の処理対象物を処理する場合に比べ、ガスの最大発生量が低減されるため排ガス処理設備の最大処理能力が小さくて済み、排気処理設備の規模を小さくすることができる。
Further, conventionally, when individually processing the melt rate-controlled product and the oxygen supply-controlled product, thermal energy is not effectively used when processing the oxygen supply-controlled product, but in the case of the mixing process of the present invention, the heat energy is melt-rate controlled product. Because it is used for the treatment of heat, the thermal energy can always be used effectively.
Further, when the mixing process as described above is performed, the maximum generation time of the gas accompanying the decomposition process after the start of the process differs due to the difference in the reaction form (decomposition process form) of the mixed processing objects. Therefore, compared with the case where the entire amount of a single processing object is processed, the maximum amount of gas generated is reduced, so that the maximum processing capacity of the exhaust gas processing facility can be reduced, and the scale of the exhaust processing facility can be reduced.

本発明によるプラズマ溶融分解処理方法の流れを示す図である。It is a figure which shows the flow of the plasma melt decomposition processing method by this invention. 本発明のプラズマ溶融分解処理の進行過程を示す概念図である。It is a conceptual diagram which shows the progress process of the plasma melt decomposition process of this invention. 本発明のプラズマ溶融分解処理の進行過程を示す概念図である。It is a conceptual diagram which shows the progress process of the plasma melt decomposition process of this invention.

以下、処理対象物としてPCB汚染物をプラズマ溶融分解処理する例によって本発明の実施の形態を説明する。   Hereinafter, an embodiment of the present invention will be described with reference to an example in which a PCB contaminant is processed as a processing target by plasma melting and decomposition.

図1は、本発明によるプラズマ溶融分解処理方法の流れを示す図である。分解処理が溶融速度律速及び酸素供給律速のPCB汚染物は、それぞれ搬入保管容器に封入された状態でPCB処理施設に搬入され保管される。これらの搬入保管容器はプラズマ溶融分解処理の前に、PCB処理施設内の前処理設備に搬入される。前処理設備にて、搬入保管容器を開封し、内容物の確認を行った後に、溶融速度律速及び酸素供給律速のPCB汚染物を所定の混合割合となるように投入容器に詰め替える。すなわち、溶融速度律速及び酸素供給律速のPCB汚染物を所定の割合で混合する。その後、投入容器はプラズマ溶融分解処理炉に投入され、空気プラズマによってバッチ式で分解処理される。これによってPCB汚染物は無害化される。プラズマ溶融分解処理炉からは分解処理によって発生したガスと分解残渣のスラグが排出される。ガスは、排ガス処理設備で所定の処理がなされた後に、大気に放出される。   FIG. 1 is a diagram showing a flow of a plasma melting decomposition processing method according to the present invention. The PCB contamination whose decomposition treatment is controlled by the melting rate and the oxygen supply rate is carried in and stored in a PCB processing facility in a state of being enclosed in a carry-in storage container. These carry-in storage containers are carried into a pretreatment facility in the PCB treatment facility before the plasma melting decomposition treatment. In the pretreatment facility, the carrying-in storage container is opened, and after confirming the contents, the melting rate-determining rate and oxygen supply rate-determined PCB contaminants are refilled into the charging vessel so as to have a predetermined mixing ratio. In other words, the melted rate-limited and oxygen supply-limited PCB contaminants are mixed at a predetermined ratio. Thereafter, the charging container is put into a plasma melting and decomposing furnace and decomposed batchwise by air plasma. This detoxifies PCB contaminants. Gas generated by the decomposition process and decomposition residue slag are discharged from the plasma melting and decomposition furnace. The gas is released into the atmosphere after being subjected to a predetermined treatment in the exhaust gas treatment facility.

このように本発明では、溶融速度律速及び酸素供給律速の処理対象物(PCB汚染物)を混合してプラズマ溶融分解処理を行う。図2は、この本発明のプラズマ溶融分解処理の進行過程を示す概念図である。図2では溶融速度律速成分(鉄、カルシウム、珪素、アルミなど)を「成分A」、酸素供給律速成分(活性炭、高分子化合物など)を「成分B」と表記している。   As described above, in the present invention, the plasma melt decomposition treatment is performed by mixing the object to be processed (PCB contamination) having the rate-determined rate and the rate of oxygen supply. FIG. 2 is a conceptual diagram showing the progress of the plasma melt decomposition process of the present invention. In FIG. 2, a melting rate-limiting component (iron, calcium, silicon, aluminum, etc.) is indicated as “component A”, and an oxygen supply rate-limiting component (activated carbon, polymer compound, etc.) is indicated as “component B”.

成分Aと成分Bは、それぞれプラズマ溶融分解処理における分解メカニズムが異なる。すなわち、成分Aは溶融分解し、成分Bは酸化分解し、これらの分解反応は互いに独立して進行する。したがって成分Aと成分Bを混合処理すると、溶融分解による処理と酸化分解による処理が同時並行して進む。図2では、成分Aと成分Bの分解処理が同時並行して進む時間帯を交差斜線で示しており、成分Aと成分Bを個別に処理する場合に比べ、その分だけ処理時間を短縮できる。   Component A and component B have different decomposition mechanisms in the plasma melting decomposition process. That is, component A is melt decomposed, component B is oxidatively decomposed, and these decomposition reactions proceed independently of each other. Therefore, when component A and component B are mixed, the melt decomposition process and the oxidative decomposition process proceed in parallel. In FIG. 2, the time zone in which the decomposition processing of component A and component B proceeds in parallel is indicated by cross diagonal lines, and the processing time can be shortened by that amount compared to the case where component A and component B are processed individually. .

一方、成分Aは溶融速度律速、言い換えれば伝熱律速であるため、その分解反応は徐々に進行し、熱分解ガスは発生しない。これに対して成分B中の高分子化合物など熱分解ガス化する成分「B’=成分Bの約80質量%」は、空気プラズマ中においては初期の段階で急激に熱分解とガス化反応が進み、ガス発生量も初期の段階がピークとなる。その後、炭素分を主成分とする残分(成分Bの約20質量%)の分解反応は酸素供給律速となる。なお、厳密にはこの炭素分を主成分とする残分(「成分B−成分B’」)が「酸素供給律速成分」である。   On the other hand, since component A is rate controlled by the melting rate, in other words, rate of heat transfer, the decomposition reaction proceeds gradually and no pyrolysis gas is generated. On the other hand, the component “B ′ = about 80% by mass of component B” such as a polymer compound in component B that undergoes thermal decomposition and gasification undergoes rapid thermal decomposition and gasification reaction in the air plasma at an early stage. The gas generation amount reaches a peak at the initial stage. Thereafter, the decomposition reaction of the residue containing carbon as a main component (about 20% by mass of component B) becomes the rate of oxygen supply. Strictly speaking, a residue (“component B-component B ′”) containing this carbon component as a main component is an “oxygen supply rate-determining component”.

従来は、これらの成分A及び成分Bを含有する処理対象物を、それぞれ単独で投入容器に入れてバッチ式でプラズマ溶融分解処理を行っており、例えば主成分が成分Bである処理対象物(酸素供給律速物)を処理し、次に主成分が成分Aである処理対象物(溶融速度律速物)を処理した場合、そのガス発生量は、図3の上段に示すように、成分Bの処理の初期段階がピークとなる。したがって、プラズマ溶融分解処理炉からの排ガスを処理する排気処理設備の処理能力は、前記ピーク時のガス発生量に対応できるようにする必要がある。   Conventionally, the processing object containing these component A and component B is individually put into a charging container and subjected to batch-type plasma melting decomposition treatment. For example, a processing object whose main component is component B ( When an oxygen supply rate-determined product) is processed, and then a processing object whose main component is component A (melting rate-controlled product) is processed, the amount of gas generated is as shown in the upper part of FIG. The initial stage of processing peaks. Therefore, the processing capacity of the exhaust treatment facility for treating the exhaust gas from the plasma melting decomposition treatment furnace needs to be able to cope with the gas generation amount at the peak.

これに対して本発明では、溶融速度律速物(成分A)と酸素供給律速物(成分B)を混合して処理するので、例えば溶融速度律速物(成分A)と酸素供給律速物(成分B)をそれぞれ従来法の半分ずつ混合して処理した場合、図3の下段に示すように、ガス発生量のピーク値は、従来法の約半分になる。これは、上述のとおり、成分Aと成分Bでは、処理開始後のガスの最大発生時間が異なるため、混合処理時、基本的にはガス発生が重複しないためである。このように本発明法では従来法に比べ、ガス発生量のピーク値を低くすることができるので、排気処理設備の最大処理能力が小さくて済み、排気処理設備の規模を小さくすることができる。   On the other hand, in the present invention, the melt rate-controlling material (component A) and the oxygen supply rate-controlling material (component B) are mixed and processed. For example, the melting rate-controlling material (component A) and the oxygen supply rate-controlling material (component B) ) Are mixed by half of the conventional method, and the peak value of the gas generation amount is about half that of the conventional method, as shown in the lower part of FIG. This is because, as described above, the component A and the component B are different in the maximum gas generation time after the start of processing, and therefore, gas generation basically does not overlap during the mixing process. Thus, in the method of the present invention, the peak value of the gas generation amount can be lowered as compared with the conventional method, so that the maximum processing capacity of the exhaust treatment facility can be reduced and the scale of the exhaust treatment facility can be reduced.

また、図2でも説明したように、溶融速度律速物(成分A)と酸素供給律速物(成分B)を混合処理すると、その分解処理は同時並行して進むので、図3でもわかるように、溶融速度律速物(成分A)と酸素供給律速物(成分B)の総処理時間は、本発明法の方が従来法よりも短縮される。   Further, as described in FIG. 2, when the melting rate-controlling material (component A) and the oxygen supply-controlling material (component B) are mixed, the decomposition process proceeds in parallel. The total processing time of the melt rate-controlled product (component A) and the oxygen supply controlled product (component B) is shorter in the method of the present invention than in the conventional method.

なお、溶融速度律速物(成分A)と酸素供給律速物(成分B)の混合割合は、その発生量や具体的な種別・性状等によって適宜決定するが、処理時間の短縮の点からは混合処理時の成分Aの処理時間と成分B(厳密には「成分B−成分B’」)の処理時間が等しくなるような割合で混合するのが最適である。   In addition, the mixing ratio of the melt rate-controlling material (component A) and the oxygen supply rate-controlling material (component B) is appropriately determined depending on the generation amount, specific type / characteristics, etc., but from the viewpoint of shortening the processing time. It is optimal to mix at a rate such that the processing time of component A during processing and the processing time of component B (strictly, “component B-component B ′”) are equal.

溶融速度律速物(PCB汚染物)として蛍光灯安定器60kgと、酸素供給律速物(PCB汚染物)として廃活性炭44kgを、本発明法及び従来法でプラズマ溶融分解処理したときの処理時間を比較した。   Comparison of processing time when 60 kg of fluorescent light ballast is used as the melting rate-controlling material (PCB contaminant) and 44 kg of waste activated carbon is used as the oxygen supply-controlling material (PCB contamination) by plasma melting and decomposition using the method of the present invention and the conventional method. did.

本発明法では、投入容器1缶あたり蛍光灯安定器30kgと廃活性炭22kgを詰め合わせて2回に分けて処理した。1缶あたりの処理時間は24分であり、合計48分で処理できた。   In the method of the present invention, 30 kg of fluorescent lamp stabilizers and 22 kg of waste activated carbon were packed in each can of the input container, and were processed in two steps. The processing time per can was 24 minutes, and processing was possible in a total of 48 minutes.

一方、従来法では、蛍光灯安定器60kgと廃活性炭44kgをそれぞれ別の投入容器に詰め、個別に処理した。蛍光灯安定器60kgの処理時間は30分、廃活性炭44kgの処理時間は38分であり、合計68分かかった。   On the other hand, in the conventional method, 60 kg of the fluorescent lamp stabilizer and 44 kg of the waste activated carbon are packed in separate charging containers, and individually processed. The treatment time of 60 kg of the fluorescent lamp stabilizer was 30 minutes, and the treatment time of 44 kg of the waste activated carbon was 38 minutes, which took a total of 68 minutes.

以上のように、本発明法では処理時間を20分短縮できた。すなわち、能力としては1.4倍向上したことになる。   As described above, in the method of the present invention, the processing time can be shortened by 20 minutes. In other words, the ability is improved by 1.4 times.

次に、蛍光灯安定器と廃活性炭との最適な混合割合について検討した。そのために、表1に示す要領で、蛍光灯安定器と廃活性炭を各々単独で処理した。   Next, the optimum mixing ratio of the fluorescent lamp stabilizer and the waste activated carbon was examined. Therefore, the fluorescent lamp ballast and the waste activated carbon were each treated in the manner shown in Table 1.

Figure 0005618606
Figure 0005618606

蛍光灯安定器は60kgを単独で塩基度調整剤と混合して1バッチドラム缶で処理した。この場合、溶融速度律速成分が80kg、酸素供給律速成分(熱分解ガス化後の炭化物ベースすなわち上記の「成分B−成分B’」)が6.7kgとなり、30分で処理された。ここで、溶融速度律速成分=蛍光灯安定器60kg×溶融成分43.5%+塩基度調整剤54kg=80kg、酸素供給律速成分=蛍光灯安定器60kg×可燃成分56%×炭化物移行分20%=6.7kg、熱分解ガス化成分=60kg×可燃成分56%×80%=26.9kgである。   The fluorescent light ballast was processed in a single batch drum by mixing 60 kg alone with a basicity adjusting agent. In this case, the melt rate-limiting component was 80 kg, and the oxygen supply rate-limiting component (carbide base after pyrolysis gasification, that is, the above-mentioned “component B-component B ′”) was 6.7 kg, which was processed in 30 minutes. Here, melting rate-controlling component = fluorescent lamp ballast 60 kg × melting component 43.5% + basicity adjusting agent 54 kg = 80 kg, oxygen supply rate-limiting component = fluorescent lamp ballast 60 kg × combustible component 56% × carbide migration 20% = 6.7 kg, pyrolysis gasification component = 60 kg × combustible component 56% × 80% = 26.9 kg.

一方、廃活性炭の処理では1バッチに35kg詰め、30分で酸化分解処理されたことが確認された。すなわち、30分÷35kg=0.857分/kgの処理時間である。   On the other hand, in the treatment of waste activated carbon, it was confirmed that 35 kg was packed in one batch and oxidative decomposition treatment was performed in 30 minutes. That is, the processing time is 30 minutes ÷ 35 kg = 0.857 minutes / kg.

この廃活性炭処理の結果から、蛍光灯安定器を1バッチ処理するのに必要な時間は溶融速度律速成分30分に対し、酸素供給律速成分の処理に要している時間は0.857×6.7kg=5.7分であることがわかる。したがって、蛍光灯安定器60kgを処理するときの最適な混合割合は、30−5.7=24.3分の酸素供給律速成分を混合した割合となる。すなわち、24.3÷0.857=28.3kgの廃活性炭を蛍光灯安定器60kgと混合するのが最適である。   From the result of this waste activated carbon treatment, the time required for processing one batch of the fluorescent lamp ballast is 30 minutes for the melting rate-controlling component, and the time required for processing the oxygen supply-controlling component is 0.857 × 6. It can be seen that 0.7 kg = 5.7 minutes. Therefore, the optimum mixing ratio when processing 60 kg of the fluorescent lamp ballast is the ratio of mixing the oxygen supply rate-limiting component of 30−5.7 = 24.3 minutes. That is, it is optimal to mix 24.3 ÷ 0.857 = 28.3 kg of waste activated carbon with 60 kg of a fluorescent lamp stabilizer.

以上、処理対象物としてPCB汚染物を処理する例を説明したが、本発明の特徴は、溶融速度律速物と、酸素供給律速物とを混合処理することにあり、処理対象物はPCB汚染物に限定されない。例えば処理対象物に、アスベスト、医療廃棄物、放射性廃棄物等の有害物質を含む場合において、溶融速度律速物と酸素供給律速物を混合して分解処理することもできる。   As mentioned above, although the example which processes PCB contaminant as a process target object was demonstrated, the characteristic of this invention exists in carrying out the mixing process of a melting rate rate-control thing and an oxygen supply rate-control thing, and a process target object is PCB contaminant. It is not limited to. For example, in the case where the object to be treated contains harmful substances such as asbestos, medical waste, radioactive waste, etc., it can be decomposed by mixing the melting rate rate-limiting material and the oxygen supply rate-limiting material.

Claims (3)

投入容器に詰め替えられ、1缶単位でプラズマ溶融分解炉に投入された処理対象物を空気プラズマによってバッチ式で分解処理し、スラグを排出するプラズマ溶融分解処理方法において、分解処理が溶融速度律速の処理対象物と、分解処理が酸素供給律速の処理対象物とをプラズマ溶融分解処理設備の溶融分解処理能力(kg/h)と酸化分解処理能力(kg/h)に応じて、分解処理が溶融速度律速の処理対象物を30kg〜120kg/バッチ、分解処理が酸素供給律速の処理対象物を10kg〜50kg/バッチの混合割合となるように投入容器に詰め替え、混合して分解処理して、分解処理が溶融速度律速の処理対象物及び分解処理が酸素供給律速の処理対象物を、それぞれ単独で投入容器に入れてバッチ式でプラズマ溶融分解処理する所要時間を加算するよりも短時間で処理を行うことができるようにすることを特徴とする処理対象物のプラズマ溶融分解処理方法。 In a plasma melt decomposition process method in which a processing object that has been refilled into an input container and charged into a plasma melting cracking furnace in units of one can is batch-processed with air plasma and slag is discharged , the cracking is controlled at a melting rate. a processing object, the decomposition process in accordance with the melt decomposition treatment capability of the processing object of the oxygen supply rate-limiting plasma melting decomposition treatment facility (kg / h) and the oxidative decomposition treatment capability (kg / h), the decomposition process is melted The rate-controlled process target is 30 kg to 120 kg / batch, and the decomposition process is oxygen supply-controlled process target is refilled into the input container so that the mixing rate is 10 kg to 50 kg / batch, mixed and decomposed , and decomposed. Plasma melt decomposition treatment is performed batch-wise by placing the processing object whose melting rate is controlled by the treatment and the processing object whose decomposition treatment is the oxygen supply-controlled treatment, respectively, into an input container. Plasma melting cracking process of the processing object, characterized in that to be able to carry out the process in a shorter time than adding the required time that. 処理対象物がPCB汚染物である請求項記載の処理対象物のプラズマ溶融分解処理方法。 Plasma melting cracking process of the processing object according to claim 1, wherein the processing object is a PCB contaminant. 処理対象物が、アスベスト、医療廃棄物、あるいは放射性廃棄物を含む有害物質である請求項記載の処理対象物のプラズマ溶融分解処理方法。 The method for plasma melting and decomposing a processing target according to claim 1 , wherein the processing target is a harmful substance including asbestos, medical waste, or radioactive waste.
JP2010099037A 2010-04-22 2010-04-22 Plasma melt decomposition method for processing object Active JP5618606B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010099037A JP5618606B2 (en) 2010-04-22 2010-04-22 Plasma melt decomposition method for processing object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010099037A JP5618606B2 (en) 2010-04-22 2010-04-22 Plasma melt decomposition method for processing object

Publications (2)

Publication Number Publication Date
JP2011224513A JP2011224513A (en) 2011-11-10
JP5618606B2 true JP5618606B2 (en) 2014-11-05

Family

ID=45040565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010099037A Active JP5618606B2 (en) 2010-04-22 2010-04-22 Plasma melt decomposition method for processing object

Country Status (1)

Country Link
JP (1) JP5618606B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000171015A (en) * 1998-12-04 2000-06-23 Kyoei Steel Ltd Method and device for incinerating waste
JP2002115822A (en) * 2000-10-05 2002-04-19 Nkk Corp Equipment and method for waste disposal
JP2007296415A (en) * 2006-03-14 2007-11-15 Nippon Steel Corp Treatment method of polybiphenyl chloride pollutant and treatment system therefor

Also Published As

Publication number Publication date
JP2011224513A (en) 2011-11-10

Similar Documents

Publication Publication Date Title
US5298233A (en) Method and system for oxidizing hydrogen- and carbon-containing feed in a molten bath of immiscible metals
RU2096685C1 (en) Method of treatment of wastes and reworking of wastes into atmospheric gases
TW313621B (en)
US9744575B2 (en) Treatment of waste
JP5603865B2 (en) Method for processing solid or molten material
JP5843877B2 (en) Recycling method of organic waste
RU2105785C1 (en) Method of processing inorganic solid wastes
KR20080053870A (en) Method of calcinating v, mo and ni contents and rotary kiln for calcinating the same
JP2022508878A (en) Pre-chlorination-sintering process for high chlorine metallurgical waste and incinerator fly ash
US5733356A (en) Method and device for processing free-flowing materials
KR20010073025A (en) Process for thermal treatment of residual materials containing oil and iron oxide
JP5618606B2 (en) Plasma melt decomposition method for processing object
JP2012196672A (en) Process enabling complete combustion and oxidation of mineral fraction of waste treated in direct incineration-vitrification apparatus
KR20090057993A (en) Process for the heat treatment of metallic residues contaminated by organic compounds, and device for its implementation
CN109073215B (en) Plasma melting method for treating object to be treated and plasma furnace used therefor
JP2005270874A (en) Treatment method of polluted soil and apparatus thereof
JP2023537839A (en) Method for recovering non-ferrous metals, especially black copper and/or blister copper from organic-containing wastes
RU2183794C2 (en) Method of plasmathermal processing of solid waste and device for realization of this method
CN1266287C (en) Method and device for treating a fine-particled feedstock especially containing metal
JP3961441B2 (en) Soil treatment method and apparatus
JPH02122109A (en) Disposal method of city garbage incinerated ash
JP2020186958A (en) Method for disposing of radioactive wastes
CN115141932A (en) Valuable metal recovery method and application thereof
JP2000144143A (en) Non-polluting pyrolytic carbonization and melt- reducuction having high temperature-thermostatic/ transporting equipment such as multistage thermostatic/ transporting equipment for pyrolytic carbonization and melt-reducting gasification equipment
RU2183872C2 (en) Method for high-temperature recovery of spent radioactive catalysts in shaft furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130830

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140624

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140916

R150 Certificate of patent or registration of utility model

Ref document number: 5618606

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250