JP5618092B2 - Failure determination device for air-fuel ratio detection device - Google Patents

Failure determination device for air-fuel ratio detection device Download PDF

Info

Publication number
JP5618092B2
JP5618092B2 JP2011123351A JP2011123351A JP5618092B2 JP 5618092 B2 JP5618092 B2 JP 5618092B2 JP 2011123351 A JP2011123351 A JP 2011123351A JP 2011123351 A JP2011123351 A JP 2011123351A JP 5618092 B2 JP5618092 B2 JP 5618092B2
Authority
JP
Japan
Prior art keywords
fuel ratio
failure determination
air
intake air
air amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011123351A
Other languages
Japanese (ja)
Other versions
JP2012251461A (en
Inventor
健太 今岡
健太 今岡
齋藤 健司
健司 齋藤
加村 均
均 加村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011123351A priority Critical patent/JP5618092B2/en
Publication of JP2012251461A publication Critical patent/JP2012251461A/en
Application granted granted Critical
Publication of JP5618092B2 publication Critical patent/JP5618092B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の排気系に設けられた触媒の下流側に配置した空燃比検出装置の故障判定技術に関する。   The present invention relates to a failure determination technique for an air-fuel ratio detection device arranged downstream of a catalyst provided in an exhaust system of an internal combustion engine.

エンジン(内燃機関)の排気系には、排気を浄化するために、通常、三元触媒やNOx吸蔵触媒等の触媒が備えられている。そして、これらの触媒の下流に、空燃比制御を行なうために、酸素濃度センサのような空燃比を検出する空燃比検出装置が備えられているものがある。
また、内燃機関の燃料噴射モードを負荷等に応じて切り換える技術も知られている。燃料噴射モードは、例えば排気の空燃比をフィードバックしながらストイキオやリーン状態で運転を行う通常運転モードや、負荷の大きい場合等にリッチ化するように空燃比をオープンループ制御するエンリッチ運転モード、減速時等のような無負荷時に燃料噴射を停止する燃料カットモードがある。
In order to purify exhaust, an exhaust system of an engine (internal combustion engine) is usually provided with a catalyst such as a three-way catalyst or a NOx storage catalyst. Some of these catalysts are provided with an air-fuel ratio detection device for detecting an air-fuel ratio, such as an oxygen concentration sensor, in order to perform air-fuel ratio control downstream of the catalyst.
A technique for switching the fuel injection mode of an internal combustion engine according to a load or the like is also known. The fuel injection mode is, for example, a normal operation mode in which operation is performed in a stoichiometric or lean state while feeding back the air-fuel ratio of exhaust gas, an enrichment operation mode in which the air-fuel ratio is open-loop controlled to be enriched when the load is heavy, etc. There is a fuel cut mode in which fuel injection is stopped when there is no load such as time.

そして、触媒の下流に設けられた空燃比検出装置の故障判断をするために、燃料カットモード開始(燃料カット開始)から所定時間が経過した後に空燃比検出装置により排気がリッチであることが検出された場合に、空燃比検出装置が故障であると判定する技術が開示されている(特許文献1)。
また、このように触媒の下流側の空燃比検出装置の故障判定を行う際に、燃料カット前にエンリッチ運転モードよってリッチ運転を続けると、排気中の炭化水素や一酸化炭素が増加し、これらの成分が触媒に多く吸着された状態で燃料カットが開始された場合、触媒に吸着された炭化水素や一酸化炭素が酸化されるまで触媒から流出する排気がリッチとなり、所定時間を超えて空燃比検出装置がリッチであることを検出して空燃比検出装置が故障していると誤判定をする虞がある。
In order to determine the failure of the air-fuel ratio detection device provided downstream of the catalyst, the air-fuel ratio detection device detects that the exhaust gas is rich after a predetermined time has elapsed since the start of the fuel cut mode (start of fuel cut). In such a case, a technique for determining that the air-fuel ratio detection device is malfunctioning is disclosed (Patent Document 1).
Further, when performing the failure determination of the air-fuel ratio detection device on the downstream side of the catalyst in this way, if the rich operation is continued in the enrich operation mode before the fuel cut, hydrocarbons and carbon monoxide in the exhaust increase, and these When the fuel cut is started with a large amount of the components adsorbed on the catalyst, the exhaust gas flowing out from the catalyst becomes rich until the hydrocarbons and carbon monoxide adsorbed on the catalyst are oxidized, and the exhaust gas is exhausted over a predetermined time. There is a possibility that it is erroneously determined that the air-fuel ratio detection device has failed by detecting that the fuel-fuel ratio detection device is rich.

これに対し、特許文献1では、燃料カット前のオープンループ運転の継続時間に基づいて、燃料カットモード開始からの所定時間、即ち故障判定用の閾値を変更する技術が提案されている。   On the other hand, Patent Document 1 proposes a technique for changing a predetermined time from the start of the fuel cut mode, that is, a threshold for failure determination, based on the duration of the open loop operation before the fuel cut.

特許4062765号公報Japanese Patent No. 40642765

しかしながら、特許文献1では、燃料カット前のオープンループ運転の継続時間に基づいて故障判定の条件を変更しているため、燃料カット前のオープンループ運転の状態によっては、同じ継続時間であっても触媒に吸着される炭化水素や一酸化炭素の量が異なり、正確に故障判定用の閾値を設定することができず、精度の高い故障判定を行うことが困難である。   However, in Patent Document 1, since the failure determination condition is changed based on the duration of the open loop operation before the fuel cut, depending on the state of the open loop operation before the fuel cut, even if the duration is the same The amounts of hydrocarbons and carbon monoxide adsorbed on the catalyst are different, and a failure determination threshold value cannot be set accurately, making it difficult to perform failure determination with high accuracy.

本発明の目的は、オープンループ運転時に触媒に吸着される炭化水素や一酸化炭素による影響を正確に把握して、精度の高い故障判定を行うことが可能な故障判定装置を提供することにある。   An object of the present invention is to provide a failure determination apparatus capable of accurately grasping the influence of hydrocarbons and carbon monoxide adsorbed on a catalyst during open-loop operation and performing highly accurate failure determination. .

上記目的を達成するため、請求項1の空燃比検出装置の故障判定装置は、内燃機関の排気系に設けられた触媒の下流側に配置された空燃比検出装置の故障判定装置であって、内燃機関の作動中に燃料供給を停止し、当該燃料供給の停止後の空燃比検出装置により検出された排気の空燃比が所定範囲を変化する所要時間に基づいて当該空燃比検出装置の故障判定をする故障判定手段と、燃料供給の停止前において空燃比をリッチ状態にして運転する第1の運転モードでの内燃機関の吸入空気量を積算する吸入空気量積算手段と、吸入空気量積算手段により演算された吸入空気量の積算値に基づいて、該積算値が所定値を超えた場合に故障判定手段による空燃比検出装置の故障判定を制限する故障判定制限手段と、を備えたことを特徴とする。 In order to achieve the above object, a failure determination device for an air-fuel ratio detection device according to claim 1 is a failure determination device for an air-fuel ratio detection device disposed downstream of a catalyst provided in an exhaust system of an internal combustion engine, Determining failure of the air-fuel ratio detection device based on the time required for the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detection device after the fuel supply to stop to change within a predetermined range after stopping the fuel supply Failure determination means for performing the operation, intake air amount integration means for integrating the intake air amount of the internal combustion engine in the first operation mode in which the air-fuel ratio is made rich before the fuel supply is stopped, and intake air amount integration means A failure determination limiting means for limiting failure determination of the air-fuel ratio detection device by the failure determination means when the integrated value exceeds a predetermined value based on the integrated value of the intake air amount calculated by Features.

また、請求項2の空燃比検出装置の故障判定装置は、請求項1において、吸入空気量積算手段は、燃料供給の停止前において空燃比をストイキオまたはリーン状態で運転する第2の運転モード及び燃料供給を停止する第3の運転モードのうち少なくともいずれか一方での内燃機関の吸入空気量を第1の運転モードでの吸入空気量の積算値から減算し、第1の運転モードでの吸入空気量の積算値からの減算において、第3の運転モードでの内燃機関の吸入空気量の減算値は、第2の運転モードでの内燃機関の吸入空気量の減算値より大きくされ、故障判定制限手段は、吸入空気量の積算値が所定値を超えた場合に空燃比検出装置の故障判定を禁止するとともに、該故障判定の禁止の解除を該積算値がゼロ以下に低下した場合に行うことを特徴とする。
また、請求項3の空燃比検出装置の故障判定装置は、請求項1において、故障判定制限手段は、吸入空気量積算手段により演算された吸入空気量の積算値に基づいて、故障判定手段における空燃比検出装置の故障判定用の閾値を変更させることを特徴とする。
According to a second aspect of the present invention, there is provided a failure determination device for an air-fuel ratio detection device according to the first aspect, wherein the intake air amount integrating means operates in a stoichiometric or lean state of the air-fuel ratio before stopping the fuel supply. The intake air amount of the internal combustion engine in at least one of the third operation modes in which the fuel supply is stopped is subtracted from the integrated value of the intake air amount in the first operation mode, and the intake in the first operation mode is subtracted. In the subtraction from the integrated value of the air amount, the subtraction value of the intake air amount of the internal combustion engine in the third operation mode is made larger than the subtraction value of the intake air amount of the internal combustion engine in the second operation mode, so The limiting means prohibits the failure determination of the air-fuel ratio detection device when the integrated value of the intake air amount exceeds a predetermined value , and cancels the prohibition of the failure determination when the integrated value decreases to zero or less. With features That.
According to a third aspect of the present invention, there is provided the failure determination device according to the first aspect, wherein the failure determination limiting means is based on the integrated value of the intake air amount calculated by the intake air amount integration means. It is characterized in that the threshold value for failure determination of the air-fuel ratio detection device is changed.

た、請求項の空燃比検出装置の故障判定装置は、請求項1〜3のいずれか1項において、故障判定手段は、燃料供給の停止から空燃比検出装置により検出された排気の空燃比が所定空燃比に到達するまでの所要時間に基づいて、空燃比検出装置の故障判定をすることを特徴とする。 Also, the failure determination device for an air-fuel ratio detecting device according to claim 4, in any one of claims 1 to 3, failure determining means is empty from the stop of the fuel supply of the detected exhaust gas by the air-fuel ratio detecting device The failure determination of the air-fuel ratio detection device is performed based on the time required until the fuel ratio reaches a predetermined air-fuel ratio.

本発明の請求項1の空燃比検出装置の故障判定装置によれば、故障判定手段によって、燃料供給の停止後の排気の空燃比が所定範囲を変化する所要時間に基づき、例えば当該所要時間が所定時間を超えることで、燃料供給停止による所定範囲での空燃比の低下を正確に検出できていないと見なし、空燃比検出装置が故障であることを判定することが可能となる。
更に、燃料供給の停止前において空燃比をリッチ状態にして運転する第1の運転モードでの内燃機関の吸入空気量が積算され、当該積算値に基づいて、該積算値が所定値を超えた場合に故障判定が制限されるので、燃料供給の停止時に触媒に炭化水素や一酸化炭素が多く吸着されていることを原因とする故障判定手段での空燃比検出装置の故障の誤判定を回避することが可能となる。
According to the failure determination device for an air-fuel ratio detection apparatus of claim 1 of the present invention , for example, the required time is determined based on the required time for the air-fuel ratio of the exhaust gas after the fuel supply is stopped to change within a predetermined range by the failure determination means. By exceeding the predetermined time, it is considered that the decrease in the air-fuel ratio in the predetermined range due to the stop of fuel supply has not been accurately detected, and it is possible to determine that the air-fuel ratio detection device is malfunctioning.
Further, the intake air amount of the internal combustion engine in the first operation mode in which the air-fuel ratio is operated in a rich state before the fuel supply is stopped is integrated , and the integrated value exceeds a predetermined value based on the integrated value. In this case, failure determination is limited, so that erroneous determination of failure of the air-fuel ratio detection device in failure determination means due to the fact that a large amount of hydrocarbons or carbon monoxide is adsorbed to the catalyst when the fuel supply is stopped is avoided. It becomes possible to do.

特に、吸入空気量積算手段により、燃料供給の停止前におけるリッチ状態運転時での内燃機関の吸入空気量を積算することで、燃料供給の停止時における触媒での炭化水素や一酸化炭素の吸着量を推定して、故障判定時における影響を正確に把握することができる。これにより、故障判定の制限を正確に行うことができ、精度の高い故障判定を行うことが可能となる。   In particular, the intake air amount integrating means integrates the intake air amount of the internal combustion engine during the rich state operation before stopping the fuel supply, thereby adsorbing hydrocarbons and carbon monoxide on the catalyst when the fuel supply is stopped. By estimating the amount, it is possible to accurately grasp the influence at the time of failure determination. As a result, failure determination can be accurately restricted, and highly accurate failure determination can be performed.

本発明の請求項2の空燃比検出装置の故障判定装置によれば、燃料供給の停止前において空燃比をストイキオまたはリーン状態で運転する第2の運転モード、及び燃料供給を停止する第3の運転モードでの内燃機関の吸入空気量を、第1の運転モードでの吸入空気量の積算値から減算し、第3の運転モードでの内燃機関の吸入空気量の減算値は第2の運転モードでの内燃機関の吸入空気量の減算値より大きくするので、第2及び第3の運転モード時における触媒での炭化水素や一酸化炭素の吸着量の低下を反映させて、燃料供給の停止時での触媒の炭化水素や一酸化炭素の吸着量をより正確に推定することができる。
そして、燃料供給の停止前における第1の運転モードでの内燃機関の吸入空気量の積算値が所定値を超えた場合に空燃比検出装置の故障判定が禁止されるので、誤判定される可能性の高い状態での故障判定を回避して、精度の高い故障判定を行うことが可能となる。
本発明の請求項3の空燃比検出装置の故障判定装置によれば、燃料供給の停止前において第1の運転モードでの内燃機関の吸入空気量の積算値に基づいて故障判定手段における故障判定用の閾値が変更されるので、燃料供給の停止時に触媒に炭化水素や一酸化炭素が多く吸着されていることによる影響を正確に反映させて、故障判定手段での空燃比検出装置の故障判定を精度良く行うことが可能となる。
According to the failure determination device for the air-fuel ratio detection apparatus of the second aspect of the present invention, the second operation mode in which the air-fuel ratio is operated in the stoichiometric or lean state before the fuel supply is stopped, and the third fuel supply is stopped. The intake air amount of the internal combustion engine in the operation mode is subtracted from the integrated value of the intake air amount in the first operation mode, and the subtraction value of the intake air amount of the internal combustion engine in the third operation mode is the second operation. Since it is larger than the subtraction value of the intake air amount of the internal combustion engine in the mode, the fuel supply is stopped reflecting the decrease in the adsorption amount of hydrocarbons and carbon monoxide on the catalyst in the second and third operation modes. It is possible to more accurately estimate the amount of adsorption of hydrocarbons and carbon monoxide of the catalyst over time.
Since the failure determination of the air-fuel ratio detection device is prohibited when the integrated value of the intake air amount of the internal combustion engine in the first operation mode before the stop of fuel supply exceeds a predetermined value, an erroneous determination can be made. Thus, it is possible to avoid failure determination in a highly reliable state and perform failure determination with high accuracy.
According to the failure determination device for an air-fuel ratio detection device of claim 3 of the present invention, the failure determination means in the failure determination means based on the integrated value of the intake air amount of the internal combustion engine in the first operation mode before the fuel supply is stopped. Therefore, the failure determination means can correctly determine the failure of the air-fuel ratio detection device by accurately reflecting the effect of a large amount of hydrocarbons and carbon monoxide adsorbed on the catalyst when the fuel supply is stopped. Can be performed with high accuracy.

発明の請求項の空燃比検出装置の故障判定装置によれば、燃料供給の停止から排気の空燃比が所定空燃比に到達するまでの所要時間に基づき、例えば当該所要時間が所定時間を超えることで、燃料供給停止により低下する空燃比を正確に検出できていないと見なし、空燃比検出装置が故障であることを判定することが可能となる。 According to the failure determination device for an air-fuel ratio detection device of claim 4 of the present invention, for example, the required time is set to a predetermined time based on the required time from the stop of fuel supply until the air-fuel ratio of the exhaust reaches a predetermined air-fuel ratio. By exceeding this, it is considered that the air-fuel ratio that decreases due to the stop of fuel supply cannot be accurately detected, and it can be determined that the air-fuel ratio detection device is malfunctioning.

本発明の故障判定装置が適用されたエンジンの吸排気系の概略構成図である。1 is a schematic configuration diagram of an intake / exhaust system of an engine to which a failure determination device of the present invention is applied. 燃料カット前後での吸入空気量積算演算値及び酸素濃度センサの出力値の推移の一例を示すタイムチャートである。It is a time chart which shows an example of transition of the intake air amount integration calculation value before and after the fuel cut and the output value of the oxygen concentration sensor. 吸入空気量積算値と空燃比低下の所要時間との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between intake air amount integrated value and the time required for air-fuel ratio fall. 吸入空気量積算値と各判定状況との関係の一例を示すタイムチャートである。It is a time chart which shows an example of the relationship between an intake air amount integrated value and each determination condition.

以下、図面に基づき本発明の実施形態について説明する。
図1は、本発明の故障判定装置が適用されたエンジン1(内燃機関)の吸排気系の概略構成図である。
エンジン1は、車両に搭載され、例えば燃料を噴射弁から筒内に燃料を直接噴射する筒内燃料噴射式のガソリンエンジンである。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram of an intake / exhaust system of an engine 1 (internal combustion engine) to which a failure determination device of the present invention is applied.
The engine 1 is mounted on a vehicle and is, for example, an in-cylinder fuel injection type gasoline engine that directly injects fuel from an injection valve into a cylinder.

図1に示すように、エンジン1の吸気通路2には、吸入空気流量を調節する電子制御式のスロットルバルブ10が設けられている。スロットルバルブ10には、スロットルバルブ10の開き度合を検出するスロットルポジションセンサ11が備えられている。
また、スロットルバルブ10の上流側の吸気通路2には、吸気流量を検出するエアフローセンサ12が設けられている。
As shown in FIG. 1, an electronically controlled throttle valve 10 that adjusts the intake air flow rate is provided in the intake passage 2 of the engine 1. The throttle valve 10 is provided with a throttle position sensor 11 that detects the degree of opening of the throttle valve 10.
An air flow sensor 12 for detecting the intake air flow rate is provided in the intake passage 2 upstream of the throttle valve 10.

更にエンジン1には、クランク角を検出するクランク角センサ20、図示しないカム角センサや水温センサや等のエンジン1の運転状況を検出するセンサが設けられている。
エンジン1の排気通路3には、三元触媒等の排気浄化触媒30が介装されている。
排気浄化触媒30の上流側には排気浄化触媒30に流入する排気中の酸素濃度を検出する上流側酸素濃度センサ31と、下流側には排気浄化触媒30通過後の排気中の酸素濃度を検出する下流側酸素濃度センサ32(空燃比検出装置)とが設けられている。
Further, the engine 1 is provided with a crank angle sensor 20 that detects the crank angle, a cam angle sensor (not shown), a water temperature sensor, and other sensors that detect the operating state of the engine 1.
An exhaust purification catalyst 30 such as a three-way catalyst is interposed in the exhaust passage 3 of the engine 1.
An upstream oxygen concentration sensor 31 for detecting the oxygen concentration in the exhaust gas flowing into the exhaust purification catalyst 30 is detected on the upstream side of the exhaust purification catalyst 30, and an oxygen concentration in the exhaust gas after passing through the exhaust purification catalyst 30 is detected on the downstream side. And a downstream oxygen concentration sensor 32 (air-fuel ratio detection device).

ECU40は、エンジン1の運転制御をはじめとして総合的な制御を行うための制御装置であり、入出力装置、記憶装置(ROM、RAM、不揮発性RAM等)、中央処理装置(CPU)等を含んで構成されている。
ECU40の入力側には、上記スロットルポジションセンサ11、エアフローセンサ12、クランク角センサ20、上流側酸素濃度センサ31、下流側酸素濃度センサ32、及び図示しない水温センサ、アクセルの開度を検出するアクセルポジションセンサ、車速センサ、その他エンジン1及び車両の運転状態を検出するセンサ類からの検出情報が入力される。
The ECU 40 is a control device for performing comprehensive control including operation control of the engine 1, and includes an input / output device, a storage device (ROM, RAM, nonvolatile RAM, etc.), a central processing unit (CPU), and the like. It consists of
On the input side of the ECU 40, the throttle position sensor 11, the airflow sensor 12, the crank angle sensor 20, the upstream oxygen concentration sensor 31, the downstream oxygen concentration sensor 32, a water temperature sensor (not shown), and an accelerator for detecting the accelerator opening. Detection information from a position sensor, a vehicle speed sensor, and other sensors for detecting the operating state of the engine 1 and the vehicle is input.

ECU40の出力側には、上記スロットルバルブ10や燃料噴射弁4、点火プラグ5等の各種出力デバイスが接続されている。ECU40は、各種センサ類からの検出情報に基づいて目標スロットル開度、燃料噴射量、燃料噴射時期、点火時期等を演算し、各種出力デバイスにそれぞれ出力することで、スロットルバルブ10、燃料噴射弁4等を制御する。   Various output devices such as the throttle valve 10, the fuel injection valve 4, and the spark plug 5 are connected to the output side of the ECU 40. The ECU 40 calculates a target throttle opening, a fuel injection amount, a fuel injection timing, an ignition timing, and the like based on detection information from various sensors, and outputs them to various output devices. 4 etc. are controlled.

特に、ECU40は、エンジン1の燃料噴射モードを負荷等に応じて切り換える。燃料噴射モードは、例えばストイキオ状態あるいはリーン状態となるように排気の空燃比をフィードバックしながら運転を行う通常運転モード(第2の運転モード)や、負荷の大きい場合等に空燃比をリッチ化するようにオープンループ制御するエンリッチ運転モード(第1の運転モード)、減速時等のような無負荷時に燃料噴射を停止する燃料カットモード(第3の運転モード)がある。なお、通常運転モードでは上流側酸素濃度センサ31及び下流側酸素濃度センサ32からの出力に基づいてフィードバック運転を行い、エンリッチ運転モード及び燃料カットモードでは、オープンループ運転を行う。   In particular, the ECU 40 switches the fuel injection mode of the engine 1 according to the load or the like. The fuel injection mode enriches the air-fuel ratio when, for example, the normal operation mode (second operation mode) in which the operation is performed while feeding back the air-fuel ratio of the exhaust so as to be in the stoichiometric state or the lean state, or when the load is large, etc. Thus, there are an enriched operation mode (first operation mode) in which open loop control is performed, and a fuel cut mode (third operation mode) in which fuel injection is stopped at no load such as during deceleration. In the normal operation mode, a feedback operation is performed based on outputs from the upstream oxygen concentration sensor 31 and the downstream oxygen concentration sensor 32, and an open loop operation is performed in the enrich operation mode and the fuel cut mode.

また、ECU40は、下流側酸素濃度センサ32の故障判定機能を有している。
下流側酸素濃度センサ32の故障判定は、エンジン運転中に燃料カットモードに移行して燃料噴射を停止(燃料カット)した際に、下流側酸素濃度センサ32により検出した排気の空燃比の変化に基づいて下流側酸素濃度センサ32の故障判定を行う(故障判定手段)。
The ECU 40 has a failure determination function for the downstream oxygen concentration sensor 32.
The failure determination of the downstream oxygen concentration sensor 32 is based on the change in the air-fuel ratio of the exhaust gas detected by the downstream oxygen concentration sensor 32 when the fuel injection mode is stopped (fuel cut) by shifting to the fuel cut mode during engine operation. Based on this, failure determination of the downstream oxygen concentration sensor 32 is performed (failure determination means).

図2は、燃料カット前後での吸入空気量積算値Qol及び下流側酸素濃度センサ32の出力値Vの推移の一例を示すタイムチャートである。図中実線は燃料カット開始前に通常運転を行った場合、図中破線は燃料カット開始前にエンリッチ運転を行った場合を示している。
図2中実線で示すように、例えば通常運転モードによる空燃比のフィードバック運転から燃料カットすると、下流側酸素濃度センサ32の出力値Vは、燃料カット開始からタイムラグをおいて下がり始める。そして、このときの下流側酸素濃度センサ32の出力値の低下度合い、具体的には下流側酸素濃度センサ32の出力値Vが所定範囲(V1からV2まで)変化する際の所要時間Tslopeは略一定の値となる。また、燃料カット開始から下流側酸素濃度センサ32の出力値Vが所定値V2まで低下するまでの所要時間Trlも略一定の値となる。
FIG. 2 is a time chart showing an example of changes in the intake air amount integrated value Qol and the output value V of the downstream oxygen concentration sensor 32 before and after the fuel cut. The solid line in the figure indicates the case where the normal operation is performed before the fuel cut is started, and the broken line in the figure indicates the case where the enrichment operation is performed before the fuel cut is started.
As shown by a solid line in FIG. 2, for example, when the fuel is cut from the air-fuel ratio feedback operation in the normal operation mode, the output value V of the downstream oxygen concentration sensor 32 starts to fall with a time lag from the start of the fuel cut. The degree of decrease in the output value of the downstream oxygen concentration sensor 32 at this time, specifically, the required time Tslope when the output value V of the downstream oxygen concentration sensor 32 changes within a predetermined range (from V1 to V2) is approximately. It becomes a constant value. The required time Trl from the start of fuel cut until the output value V of the downstream oxygen concentration sensor 32 decreases to the predetermined value V2 is also a substantially constant value.

ECU40は、この所要時間Tslopeを測定し、この値があらかじめ設定された閾値Ta以下である場合には下流側酸素濃度センサ32が正常であると判定し、閾値Taを超える場合には下流側酸素濃度センサ32が故障であると判定する。また、所要時間Tslopeの代わりに、所要時間Trlを測定し、あらかじめ設定された閾値Tb以下である場合には下流側酸素濃度センサ32が正常であると判定し、閾値Tbを超える場合には下流側酸素濃度センサ32が故障であると判定してもよい。   The ECU 40 measures the required time Tslope, and determines that the downstream oxygen concentration sensor 32 is normal when this value is equal to or less than a preset threshold Ta, and when the value exceeds the threshold Ta, the downstream oxygen It is determined that the density sensor 32 is malfunctioning. Further, instead of the required time Tslope, the required time Trl is measured. When the required time Trl is less than or equal to the preset threshold value Tb, it is determined that the downstream oxygen concentration sensor 32 is normal, and when the threshold value Tb is exceeded, the downstream time It may be determined that the side oxygen concentration sensor 32 is out of order.

更に、本実施形態では、燃料カット開始前にエンリッチ運転モードであった場合に、上記下流側酸素濃度センサ32の故障判定を制限する機能を有する。
図2中破線で示すように、例えばエンリッチ運転モードによる空燃比のオープンループ運転から燃料カットすると、下流側酸素濃度センサ32の出力値Vは、燃料カット開始からタイムラグをおいて下がり始めるものの、その下がり方は図2中実線で示す通常運転モードからの燃料カット時と比べて緩やかなものとなる(所要時間Tslope’及びTrl’がTslope、Trlより大きくなる。)。したがって、下流側酸素濃度センサ32が故障していると誤判定する虞がある。
Further, the present embodiment has a function of limiting failure determination of the downstream oxygen concentration sensor 32 when the enrichment operation mode is set before the fuel cut is started.
As shown by the broken line in FIG. 2, for example, when the fuel is cut from the air-fuel ratio open loop operation in the enrich operation mode, the output value V of the downstream oxygen concentration sensor 32 starts to fall with a time lag from the start of the fuel cut. The descending direction is more gradual than when the fuel is cut from the normal operation mode indicated by the solid line in FIG. 2 (required times Tslope 'and Trl' are larger than Tslope and Trl). Therefore, there is a risk of erroneously determining that the downstream oxygen concentration sensor 32 has failed.

そこで、ECU40は、燃料カット開始前におけるオープンループ運転時における吸入空気量積算値Qolを演算し(吸入空気量積算手段)、当該吸入空気量積算値Qolが閾値Qolhを超えた場合には、上記下流側酸素濃度センサ32の故障判定を禁止する(故障判定禁止手段)。なお、触媒に吸着された炭化水素や一酸化炭素が下流側酸素濃度センサ32の出力値Vに与える影響を確実に除去するため、この下流側酸素濃度センサ32の故障判定の禁止の解除は、吸入空気量積算値Qolが0以下に低下した場合に行う。また、ECU40電源ON時には、初期設定として、下流側酸素濃度センサ32の故障判定の禁止は解除される。   Therefore, the ECU 40 calculates the intake air amount integrated value Qol during open loop operation before the start of fuel cut (intake air amount integration means), and if the intake air amount integrated value Qol exceeds the threshold value Qolh, the ECU 40 The failure determination of the downstream oxygen concentration sensor 32 is prohibited (failure determination prohibiting means). In order to reliably remove the influence of hydrocarbons and carbon monoxide adsorbed on the catalyst on the output value V of the downstream oxygen concentration sensor 32, the prohibition on the failure determination of the downstream oxygen concentration sensor 32 is cancelled. This is performed when the intake air amount integrated value Qol drops below 0. Further, when the ECU 40 is turned on, the prohibition on the failure determination of the downstream oxygen concentration sensor 32 is canceled as an initial setting.

図3は、吸入空気量積算値Qolと所要時間Tslopeとの関係の一例を示すグラフである。
図3に示すように、オープンループ運転時の吸入空気量積算値Qolが図中Qbを超えたあたりから、所要時間Tslopeが故障判定用の閾値Taを超す傾向となる。当該Qbは、排気浄化触媒30の容量や、炭化水素や一酸化炭素の吸着能力によって定められる値であって、このQbをあらかじめ確認の上、閾値Qolhとして設定すればよい。
FIG. 3 is a graph showing an example of the relationship between the intake air amount integrated value Qol and the required time Tslope.
As shown in FIG. 3, the required time Tslope tends to exceed the failure determination threshold Ta from when the intake air amount integrated value Qol during open loop operation exceeds Qb in the figure. The Qb is a value determined by the capacity of the exhaust purification catalyst 30 and the adsorption ability of hydrocarbons and carbon monoxide. The Qb may be set as the threshold value Qolh after confirmation in advance.

次に、オープンループ運転時の吸入空気量積算値Qolの演算方法について説明する。
ECU40は、下表1の(1)〜(6)の優先順位で夫々の条件が成立した場合に、所定時間(例えば100ms)毎にエアフローセンサ12により検出した吸入空気量を積算または減算し、吸入空気量積算値Qol(n)を演算する。
Next, a method for calculating the intake air amount integrated value Qol during open loop operation will be described.
The ECU 40 integrates or subtracts the intake air amount detected by the airflow sensor 12 every predetermined time (for example, 100 ms) when the respective conditions are satisfied in the priorities (1) to (6) in Table 1 below. The intake air amount integrated value Qol (n) is calculated.

Figure 0005618092
表1に示すように、ECU40電源投入時あるいはドライビングサイクル開始時(優先順位1、2)には、初期値として吸入空気量積算値Qolを0とする。エンストモード中、始動モード中、または始動後経過時間所定時間以下である場合(優先順位3)には、吸入空気量積算値Qol(n)を前回の演算値Qol(n-1)から増減させない。
Figure 0005618092
As shown in Table 1, when the ECU 40 is turned on or when the driving cycle is started (priorities 1 and 2), the intake air amount integrated value Qol is set to 0 as an initial value. When the engine stall mode, the start mode, or the elapsed time after the start is less than the predetermined time (priority order 3), the intake air amount integrated value Qol (n) is not increased or decreased from the previous calculated value Qol (n-1). .

燃料カットモード中、詳しくは全気筒燃料カットモード中またはオーバラン燃料カットモード中または片バンク燃料カットモード中(V型エンジンのみ適用)(優先順位4)では、前回の演算値Qol(n-1)から、吸入空気量Qaに係数A1(例えば10)を掛けた値を減算して、吸入空気量積算値Qol(n)を求める。通常運転モード中、詳しくは空燃比フィードバック運転モード中またはストイキオフィードバック運転モード中(優先順位5)では、前回の演算値Qol(n-1)から、吸入空気量Qaに係数A2(例えば1)を掛けた値を減算して、吸入空気量積算値Qol(n)を求める。このように、燃料カット時(優先順位4)とフィードバック運転時(優先順位5)では空燃比をリッチからリーン側にする要因となるので、吸入空気量積算値Qol(n)を前回の演算値Qol(n-1)より減少させる。なお、燃料カット時の方がフィードバック運転時より大幅に空燃比をリッチからリーン側にするので、吸入空気量積算値Qol(n)の減少量を演算するための燃料カット時の係数A1は、フィードバック運転時の係数A2より大きな値に設定されている。   During the fuel cut mode, more specifically during the all cylinder fuel cut mode, overrun fuel cut mode or single bank fuel cut mode (only applicable to V-type engines) (priority level 4), the previous calculated value Qol (n-1) Then, a value obtained by multiplying the intake air amount Qa by a coefficient A1 (for example, 10) is subtracted to obtain an intake air amount integrated value Qol (n). In the normal operation mode, specifically, in the air-fuel ratio feedback operation mode or the stoichiometric feedback operation mode (priority order 5), the coefficient A2 (for example, 1) is added to the intake air amount Qa from the previous calculated value Qol (n-1). The value multiplied by is subtracted to obtain the intake air amount integrated value Qol (n). Thus, since the air-fuel ratio is changed from rich to lean when the fuel is cut (priority order 4) and during feedback operation (priority order 5), the intake air amount integrated value Qol (n) is calculated from the previous calculation value. Reduced from Qol (n-1). Since the air-fuel ratio is greatly changed from rich to lean when the fuel is cut, the coefficient A1 at the time of the fuel cut for calculating the reduction amount of the intake air amount integrated value Qol (n) is It is set to a value larger than the coefficient A2 during feedback operation.

上記以外のオープンループ運転時(エンリッチ運転モード)では、空燃比をリッチ側にすることから、吸入空気量積算値Qol(n)を前回の演算値Qol(n-1)より増加させる。また、吸入空気量積算値Qolは、排気浄化触媒30の炭化水素や一酸化炭素の最大吸着可能量から上限値Qhが設けられている。
なお、V型エンジンのようにバンク毎に燃料噴射を制御するエンジンでは、各バンク毎に吸入空気量積算値Qolを演算すればよい。
In open loop operation other than the above (enrich operation mode), the air-fuel ratio is made rich, so the intake air amount integrated value Qol (n) is increased from the previous calculated value Qol (n-1). The intake air amount integrated value Qol has an upper limit value Qh based on the maximum adsorbable amount of hydrocarbons and carbon monoxide of the exhaust purification catalyst 30.
In an engine that controls fuel injection for each bank, such as a V-type engine, the intake air amount integrated value Qol may be calculated for each bank.

図4は、吸入空気量積算値Qolと各判定状況との関係の一例を示すタイムチャートである。
図4では、上記のように制御するエンジン1において、互いに時間をおいて2回の燃料カットモードを実行し、その前に各運転モードを実行した場合での吸入空気量積算値Qolの推移と、それに伴う故障判定禁止及び故障判定実行許可の判定状況の推移を示すタイムチャートである。
FIG. 4 is a time chart showing an example of the relationship between the intake air amount integrated value Qol and each determination state.
In FIG. 4, in the engine 1 controlled as described above, the transition of the intake air amount integrated value Qol in the case where the fuel cut mode is executed twice with time and each operation mode is executed before that. FIG. 5 is a time chart showing a transition of determination statuses of failure determination prohibition and failure determination execution permission associated therewith.

図4に示すように、区間1では、燃料カットを除くオープンループ運転時であるので、吸入空気量積算値Qolが増加する(上記表1の優先順位6の条件に該当)。ここで、吸入空気量積算値Qolが所定値Qolhを超えた時点で故障判定禁止となる(ポイントA)。なお、区間1において、吸入空気量積算値Qolが上限値Qhに達した場合は、上限値Qhに維持される。区間2では、フィードバック運転時であるので、吸入空気量積算値Qolは減少する(上記表1の優先順位5の条件に該当)。また、区間3では、燃料カットモード(上記表1の優先順位4の条件に該当)であるので、吸入空気量積算値Qolは減少する。そして、吸入空気量積算値が0以下となれば故障判定禁止が解除される(ポイントB)。実際の故障判定は、燃料カット開始時に故障判定禁止が成立している場合に実行不能となるので、本図での1回目の燃料カットモード時には故障判定は行われない(ポイントC)。   As shown in FIG. 4, in section 1, since it is an open loop operation excluding fuel cut, the intake air amount integrated value Qol increases (corresponds to the condition of priority 6 in Table 1 above). Here, failure determination is prohibited when the intake air amount integrated value Qol exceeds a predetermined value Qolh (point A). In the section 1, when the intake air amount integrated value Qol reaches the upper limit value Qh, the upper limit value Qh is maintained. In section 2, since the feedback operation is being performed, the intake air amount integrated value Qol decreases (corresponds to the condition of priority 5 in Table 1 above). In section 3, since it is a fuel cut mode (corresponding to the condition of priority 4 in Table 1 above), the intake air amount integrated value Qol decreases. If the intake air amount integrated value becomes 0 or less, the failure determination prohibition is canceled (point B). Since the actual failure determination is impossible when failure determination prohibition is established at the start of fuel cut, failure determination is not performed in the first fuel cut mode in this figure (point C).

その後も同様に、吸入空気量積算値Qolの積算が続けられるが、図3に示すように、2回目の燃料カットモード開始時には、吸入空気量積算値Qolが閾値Qolhを超えていないので、故障判定禁止が解除されている。したがって、2回目の燃料カットモード時には故障判定実行が許可される(ポイントD)。
以上のように、本実施形態では、燃料カット時に下流側酸素濃度センサの故障判定を行う際に、それまでのオープンループ運転での吸入空気量積算値Qolが閾値Qolhを超えた場合には、故障判定の禁止を行うようにしている。これにより、排気浄化触媒30に炭化水素や一酸化炭素が多く吸着されていることを原因とする下流側酸素濃度センサ32の故障の誤判定を回避することが可能となる。
Thereafter, the integration of the intake air amount integrated value Qol continues in the same manner. However, as shown in FIG. 3, at the start of the second fuel cut mode, the intake air amount integrated value Qol does not exceed the threshold value Qolh. Judgment prohibition has been lifted. Therefore, failure determination execution is permitted in the second fuel cut mode (point D).
As described above, in the present embodiment, when the failure determination of the downstream oxygen concentration sensor is performed at the time of fuel cut, if the intake air amount integrated value Qol in the open loop operation so far exceeds the threshold value Qolh, The failure judgment is prohibited. As a result, it is possible to avoid erroneous determination of a failure of the downstream oxygen concentration sensor 32 due to a large amount of hydrocarbons and carbon monoxide adsorbed on the exhaust purification catalyst 30.

特に、本実施形態では、故障判定の禁止を燃料カットモード開始前のオープンループ運転時間に基づいて判定するのではなく、吸入空気量積算値Qolを演算して判定するので、燃料カットモード開始時での排気浄化触媒30での炭化水素や一酸化炭素の吸着量を推定することができ、故障判定時の影響を正確に把握することができる。これにより、故障判定の禁止を正確に行うことができ、精度の高い故障判定を行うことが可能となる。   In particular, in this embodiment, the prohibition of failure determination is not determined based on the open loop operation time before the start of the fuel cut mode, but is calculated by calculating the intake air amount integrated value Qol. Thus, it is possible to estimate the amount of adsorption of hydrocarbons and carbon monoxide by the exhaust purification catalyst 30 in the above, and to accurately grasp the influence at the time of failure determination. As a result, failure determination can be accurately prohibited, and highly accurate failure determination can be performed.

また、燃料カットモード及び通常運転モードでフィードバック運転する場合に、吸入空気量積算値Qolを減算するので、その後の燃料カット開始時における排気浄化触媒30に吸着されている炭化水素や一酸化炭素による影響を正確に推定することができる。
なお、本実施形態では、吸入空気量積算値Qolが閾値Qolhを超えたときに、故障判定の禁止を行なうが、本願発明はこれに限定するものではない。例えば吸入空気量積算値Qolに基づいて下流側酸素濃度センサ32の故障判定用の閾値TaまたはTbを変化させるようにしてもよい。詳しくは、吸入空気量積算値Qolが大きくなるにしたがって、故障判定用の閾値TaまたはTbを大きくすればよい。このようにすれば、吸入空気量積算値Qolが大きくなるにしたがって、排気浄化触媒30に吸着されている炭化水素や一酸化炭素による影響により下流側酸素濃度センサ32の検出値の変化が小さくなる(所要時間Tslope、Trlが大きくなる)が、故障判定用の閾値TaまたはTbを大きくすることで、故障であると誤判定され難くなる。
Further, when feedback operation is performed in the fuel cut mode and the normal operation mode, the intake air amount integrated value Qol is subtracted, so that it depends on hydrocarbons and carbon monoxide adsorbed on the exhaust purification catalyst 30 at the time of subsequent fuel cut start. The impact can be estimated accurately.
In the present embodiment, the failure determination is prohibited when the intake air amount integrated value Qol exceeds the threshold value Qolh, but the present invention is not limited to this. For example, the failure determination threshold value Ta or Tb of the downstream oxygen concentration sensor 32 may be changed based on the intake air amount integrated value Qol. Specifically, the failure determination threshold value Ta or Tb may be increased as the intake air amount integrated value Qol increases. In this way, as the intake air amount integrated value Qol increases, the change in the detected value of the downstream oxygen concentration sensor 32 becomes smaller due to the influence of hydrocarbons and carbon monoxide adsorbed on the exhaust purification catalyst 30. (The required times Tslope and Trl increase), but it becomes difficult to erroneously determine that there is a failure by increasing the threshold Ta or Tb for failure determination.

また、本発明は上記実施形態のように筒内燃料噴射式のガソリンエンジンだけでなく、各種内燃機関に適用可能であり、その排気系に設けられた各種触媒の下流側に配置された空燃比検出装置の故障判定に広く適用することができる。   Further, the present invention is applicable not only to an in-cylinder fuel injection type gasoline engine as in the above embodiment, but also to various internal combustion engines, and an air-fuel ratio disposed downstream of various catalysts provided in the exhaust system thereof. It can be widely applied to the failure determination of the detection device.

1 エンジン
30 排気浄化触媒
32 下流側酸素濃度センサ
40 ECU
1 Engine 30 Exhaust purification catalyst 32 Downstream oxygen concentration sensor 40 ECU

Claims (4)

内燃機関の排気系に設けられた触媒の下流側に配置された空燃比検出装置の故障判定装置であって、
前記内燃機関の作動中に燃料供給を停止し、当該燃料供給の停止後の前記空燃比検出装置により検出された排気の空燃比が所定範囲を変化する所要時間に基づいて当該空燃比検出装置の故障判定をする故障判定手段と、
前記燃料供給の停止前において空燃比をリッチ状態にして運転する第1の運転モードでの前記内燃機関の吸入空気量を積算する吸入空気量積算手段と、
前記吸入空気量積算手段により演算された前記吸入空気量の積算値に基づいて、該積算値が所定値を超えた場合に前記故障判定手段による前記空燃比検出装置の故障判定を制限する故障判定制限手段と、を備えたことを特徴とする空燃比検出装置の故障判定装置。
A failure determination device for an air-fuel ratio detection device disposed downstream of a catalyst provided in an exhaust system of an internal combustion engine,
The fuel supply is stopped during the operation of the internal combustion engine, and the air-fuel ratio detection apparatus detects the air-fuel ratio detection apparatus based on the time required for the air-fuel ratio of the exhaust detected by the air-fuel ratio detection apparatus to change within a predetermined range after the fuel supply is stopped. Failure determination means for determining failure;
Intake air amount integration means for integrating the intake air amount of the internal combustion engine in a first operation mode in which the air-fuel ratio is operated in a rich state before stopping the fuel supply;
Based on the integrated value of the intake air amount calculated by the intake air amount integrating means, a failure determination that limits failure determination of the air-fuel ratio detection device by the failure determining means when the integrated value exceeds a predetermined value A failure determination device for an air-fuel ratio detection device.
前記吸入空気量積算手段は、前記燃料供給の停止前において空燃比をストイキオまたはリーン状態で運転する第2の運転モード及び燃料供給を停止する第3の運転モードのうち少なくともいずれか一方での前記内燃機関の吸入空気量を前記第1の運転モードでの吸入空気量の積算値から減算し、
前記第1の運転モードでの吸入空気量の積算値からの減算において、前記第3の運転モードでの前記内燃機関の吸入空気量の減算値は、前記第2の運転モードでの前記内燃機関の吸入空気量の減算値より大きくされ、
前記故障判定制限手段は、前記吸入空気量の積算値が所定値を超えた場合に前記空燃比検出装置の故障判定を禁止するとともに、該故障判定の禁止の解除を該積算値がゼロ以下に低下した場合に行うことを特徴とする請求項1に記載の空燃比検出装置の故障判定装置。
The intake air amount integration means is configured to output at least one of the second operation mode in which the air-fuel ratio is operated in a stoichiometric or lean state before the fuel supply is stopped and the third operation mode in which the fuel supply is stopped. Subtracting the intake air amount of the internal combustion engine from the integrated value of the intake air amount in the first operation mode;
In the subtraction from the integrated value of the intake air amount in the first operation mode, the subtraction value of the intake air amount of the internal combustion engine in the third operation mode is the internal combustion engine in the second operation mode. Is larger than the subtracted value of the intake air amount of
The failure determination limiting means prohibits the failure determination of the air-fuel ratio detection device when the integrated value of the intake air amount exceeds a predetermined value , and cancels the prohibition of the failure determination to reduce the integrated value to zero or less. The failure determination device for an air-fuel ratio detection device according to claim 1, wherein the failure determination device is performed when the air pressure decreases .
前記故障判定制限手段は、前記吸入空気量積算手段により演算された前記吸入空気量の積算値に基づいて、前記故障判定手段における前記空燃比検出装置の故障判定用の閾値を変更させることを特徴とする請求項1に記載の空燃比検出装置の故障判定装置。   The failure determination limiting means changes a failure determination threshold value of the air-fuel ratio detection device in the failure determination means based on the integrated value of the intake air amount calculated by the intake air amount integration means. The failure determination device for an air-fuel ratio detection device according to claim 1. 前記故障判定手段は、前記燃料供給の停止から前記空燃比検出装置により検出された排気の空燃比が所定空燃比に到達するまでの所要時間に基づいて、前記空燃比検出装置の故障判定をすることを特徴とする請求項1から3のいずれか1項に記載の空燃比検出装置の故障判定装置。 The failure determination means determines a failure of the air-fuel ratio detection device based on a required time from the stop of the fuel supply until the air-fuel ratio of the exhaust gas detected by the air-fuel ratio detection device reaches a predetermined air-fuel ratio. The failure determination device for an air-fuel ratio detection device according to any one of claims 1 to 3 .
JP2011123351A 2011-06-01 2011-06-01 Failure determination device for air-fuel ratio detection device Active JP5618092B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011123351A JP5618092B2 (en) 2011-06-01 2011-06-01 Failure determination device for air-fuel ratio detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011123351A JP5618092B2 (en) 2011-06-01 2011-06-01 Failure determination device for air-fuel ratio detection device

Publications (2)

Publication Number Publication Date
JP2012251461A JP2012251461A (en) 2012-12-20
JP5618092B2 true JP5618092B2 (en) 2014-11-05

Family

ID=47524500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011123351A Active JP5618092B2 (en) 2011-06-01 2011-06-01 Failure determination device for air-fuel ratio detection device

Country Status (1)

Country Link
JP (1) JP5618092B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013005562A1 (en) * 2011-07-01 2013-01-10 日産自動車株式会社 Degradation diagnosis device and degradation diagnosis method for exhaust gas sensor
JP2017008794A (en) * 2015-06-19 2017-01-12 日立オートモティブシステムズ株式会社 Diagnosis device of internal combustion engine

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4062765B2 (en) * 1998-01-30 2008-03-19 マツダ株式会社 Failure detection device for air-fuel ratio detection device
JP4682463B2 (en) * 2001-07-04 2011-05-11 トヨタ自動車株式会社 Oxygen sensor abnormality diagnosis device
JP4869315B2 (en) * 2008-10-21 2012-02-08 本田技研工業株式会社 Block heater operation judgment device
JP5332708B2 (en) * 2009-02-23 2013-11-06 日産自動車株式会社 Diagnostic device for exhaust sensor for internal combustion engine
JP4835704B2 (en) * 2009-02-23 2011-12-14 トヨタ自動車株式会社 Oxygen sensor abnormality determination device

Also Published As

Publication number Publication date
JP2012251461A (en) 2012-12-20

Similar Documents

Publication Publication Date Title
US20150369153A1 (en) Exhaust purification apparatus for internal combustion engine
US20080245056A1 (en) System operable to control exhaust gas emission of engine
JP5346989B2 (en) Air-fuel ratio sensor abnormality determination device
JP5187458B2 (en) Control device for internal combustion engine
US10774767B2 (en) Catalyst diagnosis device
EP1403479B1 (en) Exhaust gas purifying catalyst for internal combustion engine
US6546719B2 (en) Air-fuel ratio control apparatus of internal combustion engine
JP2008291761A (en) Control device for internal combustion engine
JP2016079852A (en) Abnormality determination system of exhaust emission control device of internal combustion engine
JP5618092B2 (en) Failure determination device for air-fuel ratio detection device
JP4636273B2 (en) Exhaust gas purification device for internal combustion engine
JP6610874B2 (en) Catalyst deterioration judgment device
US9650936B2 (en) Abnormality detection apparatus for exhaust gas purification apparatus
JP6414466B2 (en) Oxygen concentration sensor failure determination device
EP2682576A1 (en) Catalyst deterioration determining system
JP6534941B2 (en) Abnormality diagnosis device for exhaust purification mechanism
JP4366976B2 (en) Exhaust gas sensor abnormality detection device
US20160177817A1 (en) Failure detection device of internal combustion engine
JP5673797B2 (en) Catalyst deterioration judgment system
JP6499061B2 (en) Exhaust gas purification device for internal combustion engine
JP4289133B2 (en) Air-fuel ratio control device for internal combustion engine
WO2024047839A1 (en) Air–fuel ratio control method and device for internal combustion engine
JP5308870B2 (en) Catalyst deterioration judgment device
US7415818B2 (en) Control device of internal combustion engine
JP2008088962A (en) Catalyst thermal degradation determining device and catalyst thermal degradation restraining device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20140501

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140820

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R151 Written notification of patent or utility model registration

Ref document number: 5618092

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350