JP5617167B2 - Method for producing sintered ore for blast furnace - Google Patents

Method for producing sintered ore for blast furnace Download PDF

Info

Publication number
JP5617167B2
JP5617167B2 JP2009029572A JP2009029572A JP5617167B2 JP 5617167 B2 JP5617167 B2 JP 5617167B2 JP 2009029572 A JP2009029572 A JP 2009029572A JP 2009029572 A JP2009029572 A JP 2009029572A JP 5617167 B2 JP5617167 B2 JP 5617167B2
Authority
JP
Japan
Prior art keywords
feo
iron ore
raw material
ore
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009029572A
Other languages
Japanese (ja)
Other versions
JP2010185104A (en
Inventor
智 町田
智 町田
大山 伸幸
伸幸 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2009029572A priority Critical patent/JP5617167B2/en
Publication of JP2010185104A publication Critical patent/JP2010185104A/en
Application granted granted Critical
Publication of JP5617167B2 publication Critical patent/JP5617167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)

Description

本発明は、高炉用焼結鉱の製造方法に関し、特にドワイトロイド型焼結機等の下方吸引式焼結機により、アルミナ含有率の高い鉄鉱石を主原料として高炉操業に適した焼結鉱を得るに際し、その歩留りおよび生産性の向上を図ろうとするものである。   The present invention relates to a method for producing a blast furnace sinter, and in particular, a sinter ore suitable for blast furnace operation using iron ore having a high alumina content as a main raw material by a downward suction type sintering machine such as a dwythroid type sintering machine. In order to obtain the above, it is intended to improve the yield and productivity.

高炉原料として使用される焼結鉱の品質は、高炉操業の安定性や高炉の炉内通気性および還元性等に大きな影響を与える。従って、焼結鉱は、その強度、被還元性および耐還元粉化性などの品質水準が厳しく管理されている。また、焼結鉱の製造コストを下げるために、焼結鉱の製造工程における焼結鉱の歩留りや生産性も重要な管理項目になっている。   The quality of sintered ore used as a blast furnace raw material has a great influence on the stability of blast furnace operation, the in-furnace air permeability and reducibility of the blast furnace, and the like. Therefore, quality levels of sintered ore are strictly controlled, such as strength, reducibility, and reduction dust resistance. Further, in order to reduce the manufacturing cost of sintered ore, the yield and productivity of the sintered ore in the manufacturing process of the sintered ore are also important management items.

従来、焼結鉱の品質を良好にし、かつ安定したものにするために、その原料として主に赤鉄鉱〔主成分:Fe2O3(ヘマタイト)〕や磁鉄鉱〔主成分:Fe3O4(マグネタイト)〕のような良質の鉄鉱石が使用されてきた。そして、安定した品質の焼結鉱を得るために、種々の性質を有する銘柄の鉄鉱石をブレンドして使用するのが一般的である。 Conventionally, in order to improve the quality of sintered ore and make it stable, hematite [main component: Fe 2 O 3 (hematite)] and magnetite [main component: Fe 3 O 4 ( Good quality iron ore such as magnetite)] has been used. In order to obtain a sintered ore with a stable quality, it is common to use a mixture of brand iron ores having various properties.

しかしながら、近年、良質鉄鉱石の産出量が減少し、これに伴いアルミナ(Al2O3)含有率の高い鉄鉱石、すなわち高アルミナ鉄鉱石の使用量が次第に増加する傾向にある。
ところで、焼結鉱中のAl2O3含有率を増加させると、それに伴って焼結鉱の強度や耐還元粉化性が低下する。その結果、焼結鉱製造工程においては、歩留りや生産性が低下し、また高炉操業においては、操業の安定性を阻害する要因となる。
そこで、従来は、鉄鉱石中のAl2O3成分の希釈剤としてSiO2成分が利用され、焼結鉱へのSiO2成分の添加が行われてきた。
However, in recent years, the production of high-quality iron ore has decreased, and along with this, the amount of iron ore having a high alumina (Al 2 O 3 ) content, that is, the amount of high alumina iron ore tends to increase gradually.
By the way, when the Al 2 O 3 content in the sintered ore is increased, the strength and reduction dust resistance of the sintered ore are reduced accordingly. As a result, in the sinter manufacturing process, yield and productivity are lowered, and in blast furnace operation, it becomes a factor that hinders the stability of the operation.
Therefore, conventionally, the SiO 2 component has been used as a diluent for the Al 2 O 3 component in the iron ore, and the SiO 2 component has been added to the sintered ore.

ところが、最近では、高炉におけるスラグ比低減や燃料比低減の要請により、鉄鉱石中のAl2O3含有率の低減が指向されるようになってきたことから、高アルミナ鉄鉱石の使用による焼結鉱中Al2O3含有率の上昇は、一層大きな問題となっている。
また、高アルミナ鉄鉱石は、通常の鉄鉱石よりも安価であるため、高アルミナ鉄鉱石の使用技術の確立は、高炉操業における最重要課題の一つである。
Recently, however, the demand for reducing the slag ratio and fuel ratio in blast furnaces has led to the reduction of the Al 2 O 3 content in iron ore. The increase in the Al 2 O 3 content in the ore has become a bigger problem.
In addition, since high alumina iron ore is cheaper than ordinary iron ore, the establishment of technology for using high alumina iron ore is one of the most important issues in blast furnace operation.

これまで、焼結鉱製造工程において高アルミナ鉄鉱石を多量に配合したときに生じる成品焼結鉱の歩留り低下を、その品質の低下なしに防止する技術として、種々の提案がなされている。これらの技術はいずれも、焼結原料の焼成過程において生成する融液の流動性を適正化すると共に、焼結原料充填層(以下、原料ベットという)内に通気孔を形成させることによって、焼結鉱品質の向上を図ろうとするものである。   Until now, various proposals have been made as techniques for preventing the yield reduction of the product sintered ore that occurs when a large amount of high alumina iron ore is blended in the sintered ore production process without lowering its quality. Both of these technologies optimize the fluidity of the melt produced in the sintering raw material firing process, and form a ventilation hole in the sintered raw material packed layer (hereinafter referred to as the raw material bed), thereby firing the sintered material. It is intended to improve the quality of the ore.

例えば、特許文献1には、フッ化物、バリウム化合物またはホウ素化合物を、原料ベットの中層部1/3部分、または下層部2/3部分に適正量、配合・添加する方法が提案されている。
また、特許文献2には、金属鉄を含む物質、例えば還元鉄粉、粒銑、ダライ粉または鉄スクラップ細片を、原料ベット表層より200mm以上下方に適正量、配合・添加する方法が提案されている。
しかしながら、これらの先行技術では、造粒設備を増設し、原料搬送ラインを組み替える必要があるだけでなく、焼結機パレットへの原料供給機を2ヶ所に設けて操業する必要が生じるため、多大な設備投資が必要となる。
For example, Patent Document 1 proposes a method of blending and adding an appropriate amount of fluoride, barium compound, or boron compound to the middle layer 1/3 portion or the lower layer 2/3 portion of the raw material bed.
Patent Document 2 proposes a method of adding and adding an appropriate amount of a substance containing metallic iron, for example, reduced iron powder, granule, dairy powder, or iron scrap strip, 200 mm or more below the raw material bed surface layer. ing.
However, in these prior arts, it is not only necessary to expand the granulation equipment and rearrange the raw material transfer line, but it is also necessary to operate with two raw material supply machines for the sintering machine pallet. Large capital investment is required.

特開平5−311254号公報JP-A-5-31254 特開平6−330192号公報JP-A-6-330192

本発明は、上記の問題を有利に解決するもので、高アルミナ鉄鉱石の多量配合操業を行うに際し、多大な設備投資を必要とせず、また焼結ベット内の通気性悪化等による焼結鉱の生産性の低下および品質の劣化による歩留り低下をきたすことのない、高炉用焼結鉱の製造方法を提案することを目的とする。   The present invention advantageously solves the above problems, and does not require a large capital investment when performing a large amount of high-alumina iron ore blending operation. It aims at proposing the manufacturing method of the sintered ore for blast furnaces which does not bring about the fall of the yield by the fall of productivity and deterioration of quality.

さて、発明者らは、特許文献1と同様、焼結時に生成する融液の流動性に着目し、成品焼結鉱の品質を低下させることなく歩留りの向上を図るべく、種々の実験を重ねた。
以下、本発明を由来するに到った実験結果について説明する。
Now, as in Patent Document 1, the inventors focused on the fluidity of the melt produced during sintering and repeated various experiments in order to improve the yield without deteriorating the quality of the product sintered ore. It was.
Hereinafter, experimental results that led to the present invention will be described.

図1に、焼結時における焼結原料中成分の反応過程を示す。
同図に示したように、焼結時に焼結原料の擬似粒子から融液が生成するに際しては、まず1200℃程度で低融点のカルシウムフェライト融液が生成し、その後、温度上昇に伴い、鉄鉱石の主成分であるFe2O3並びにSiO2、Al2O3およびMnO等の微量成分がカルシウムフェライト融液中に溶解し、融液の発生量が増大していく。
FIG. 1 shows a reaction process of components in the sintering raw material during sintering.
As shown in the figure, when the melt is generated from the pseudo-particles of the sintering raw material during sintering, a low-melting calcium ferrite melt is first generated at about 1200 ° C. Trace components such as Fe 2 O 3 , SiO 2 , Al 2 O 3, and MnO, which are the main components of the stone, dissolve in the calcium ferrite melt, and the amount of melt generated increases.

なお、上記したような微量成分の溶け込んでいないカルシウムフェライト融液は、温度上昇に伴い、図2に示すようなレベルの粘度を呈する。   Note that the calcium ferrite melt in which the trace components are not dissolved as described above exhibits a viscosity at a level as shown in FIG. 2 as the temperature rises.

そこで、図2に示した各温度において、Al2O3を添加し、その添加量を増大していったときの融液の粘度について調査した。その結果を図3に示す。
同図に示したように、いずれの温度水準においても融液の粘度は、Al2O3添加量が増大するにつれて上昇することが判明した。
特に1300〜1350℃の温度水準においては、その温度水準に応じた一定のAl2O3濃度に達すると、融液の粘度は急激に上昇することが判明した。
Therefore, at each temperature shown in FIG. 2, the viscosity of the melt was investigated when Al 2 O 3 was added and the amount added was increased. The result is shown in FIG.
As shown in the figure, it was found that the viscosity of the melt increased as the Al 2 O 3 addition amount increased at any temperature level.
In particular, at a temperature level of 1300 to 1350 ° C., it has been found that when a certain Al 2 O 3 concentration corresponding to the temperature level is reached, the viscosity of the melt rapidly increases.

従来、焼結時の最高到達温度は1350℃程度であることが判明しており、これから判断して、カルシウムフェライト融液へのAl2O3の溶解に起因した流動性の悪化(低下)は、カルシウムフェライトの初期生成以後、最高温度に到達しても継続すると考えられ、その結果、原料の焼結性の悪化、ひいては焼結鉱の歩留り低下が生じるものと考えられる。 Conventionally, it has been found that the maximum temperature reached during sintering is about 1350 ° C. Judging from this, the deterioration (decrease) in fluidity caused by the dissolution of Al 2 O 3 in the calcium ferrite melt is After the initial generation of calcium ferrite, it is considered that it continues even if the maximum temperature is reached. As a result, it is considered that the sinterability of the raw material is deteriorated and the yield of sintered ore is reduced.

そこで、発明者らは、高アルミナ鉄鉱石を多量に配合した場合であっても、焼結原料の焼成過程において融液が生成したのち、この融液に対する原料中のAl2O3の溶解量が増大しても融液の粘性が急激に上昇しないような焼結鉱の製造方法の開発に取り組んだ。 Therefore, even when the high alumina iron ore is blended in a large amount, the inventors generated a melt in the firing process of the sintered raw material, and then dissolved the Al 2 O 3 in the raw material in the melt. We worked on the development of a method for producing sintered ore so that the viscosity of the melt would not rise sharply even if the amount of slag increased.

その結果、高アルミナ鉄鉱石の多量配合操業時に、Al2O3の溶解に起因したカルシウムフェライト融液の流動性の悪化を防止するには、溶解するAl2O3量に応じて、製鉄過程で発生する製鋼ダストやミルスケール等の含FeO原料を適量配合することが極めて有効であるとの知見を得た。
本発明は、上記の知見に立脚するものである。
As a result, the iron-making process depends on the amount of dissolved Al 2 O 3 in order to prevent the deterioration of the fluidity of the calcium ferrite melt due to the dissolution of Al 2 O 3 during mass blending operations of high alumina iron ore. It was found that it is extremely effective to mix an appropriate amount of FeO-containing raw materials such as steelmaking dust and mill scale.
The present invention is based on the above findings.

すなわち、本発明の要旨構成は次のとおりである。
1.Al2O3を0.6質量%以上3質量%以下含有する高アルミナ鉄鉱石を、全鉄鉱石量に対して50質量%以上配合し、かつこの高アルミナ鉄鉱石の配合と同時に、FeOを15〜90質量%含有するFeO源を、FeO源中のFeOと高アルミナ鉄鉱石中のAl2O3との質量比(FeO/Al2O3)で5.0以上30.0以下となるように配合した原料を、焼結原料として使用することを特徴とする高炉用焼結鉱の製造方法。
That is, the gist configuration of the present invention is as follows.
1. The high alumina iron ore containing al 2 O 3 less 3 wt% to 0.6 wt%, compounded least 50 mass% relative to the total iron ore weight and at the same time as the formulation of the high alumina iron ore, 15 the FeO A raw material containing 90% by mass of FeO source mixed so that the mass ratio (FeO / Al 2 O 3 ) of FeO in the FeO source to Al 2 O 3 in the high alumina iron ore is 5.0 or more and 30.0 or less. A method for producing a sintered ore for a blast furnace, characterized by being used as a raw material for sintering.

2.前記FeO源のFeO含有量が15〜70質量%であることを特徴とする上記1に記載の高炉用焼結鉱の製造方法。 2. 2. The method for producing a sintered ore for blast furnace as described in 1 above, wherein the FeO source has an FeO content of 15 to 70 % by mass.

本発明によれば、多大な設備投資を必要とせず、また焼結鉱の生産性、品質および歩留りの劣化を招くことなしに、高アルミナ鉄鉱石の多量配合操業を安定して行うことができる。   According to the present invention, a large amount of high-alumina iron ore can be stably mixed without requiring a large capital investment and without causing deterioration of the productivity, quality and yield of the sintered ore. .

焼結時における焼結原料中成分の反応過程を説明する図である。It is a figure explaining the reaction process of the component in a sintering raw material at the time of sintering. カルシウムフェライト融液の粘度の温度依存性を示すグラフである。It is a graph which shows the temperature dependence of the viscosity of a calcium ferrite melt. カルシウムフェライト融液の粘度に及ぼすAl2O3添加量の影響を示すグラフである。It is a graph showing the effect of Al 2 O 3 addition amount on the viscosity of the calcium ferrite melt. FeO/Al2O3比と焼結鉱の歩留りとの関係を示すグラフである。It is a graph showing the relationship between the FeO / Al 2 O 3 ratio and sintered ore yield. FeO/Al2O3比と生産率との関係を示すグラフである。It is a graph showing the relationship between the FeO / Al 2 O 3 ratio and production rate.

以下、本発明を具体的に説明する。
まず、本発明の主原料である高アルミナ鉄鉱石について説明する。
本発明において、全鉄鉱石量に対する高アルミナ鉄鉱石の配合量を50質量%以上にした理由は、配合量が50質量%未満であれば、Al2O3の溶解に起因したカルシウムフェライト融液の流動性の悪化についてはさほど心配する必要がないからである。
また、かかる高アルミナ鉄鉱石中のAl2O3量を0.6質量%以上とした理由は、Al2O3量が 0.6質量%未満であればアルミナの悪影響はほぼ無視できる程度に小さいからである。なお、高アルミナ鉄鉱石中のAl2O3量があまりに大きくなると、本発明をもってしてもカルシウムフェライト融液の流動性改善効果が望めなくなるので、Al2O3量の上限は3質量%とする。好ましくは2.5質量%である。
Hereinafter, the present invention will be specifically described.
First, the high alumina iron ore that is the main raw material of the present invention will be described.
In the present invention, the reason why the blending amount of the high alumina iron ore with respect to the total iron ore amount is 50% by mass or more is that if the blending amount is less than 50% by mass, the calcium ferrite melt resulting from the dissolution of Al 2 O 3 This is because there is no need to worry about the deterioration of liquidity.
The reason why the amount of Al 2 O 3 in the high alumina iron ore is 0.6% by mass or more is that if the amount of Al 2 O 3 is less than 0.6% by mass, the adverse effect of alumina is small enough to be ignored. . If the amount of Al 2 O 3 in the high alumina iron ore becomes too large, the effect of improving the fluidity of the calcium ferrite melt cannot be expected even with the present invention, so the upper limit of the amount of Al 2 O 3 is 3% by mass. To do. Preferably it is 2.5 mass%.

次に、FeO源について説明する。
本発明では、FeO源として、FeOを15〜90質量%の範囲で含有するものを用いる。というのは、FeO源中のFeOが15質量%に満たないと、FeO源としての効果が小さく、一方90質量%を超えても、それに見合う効果が得難いからである。より好ましいFeO含有量は15〜70質量%の範囲である。
Next, the FeO source will be described.
In this invention, what contains FeO in 15-90 mass% is used as a FeO source. This is because if the FeO content in the FeO source is less than 15% by mass, the effect as the FeO source is small, while if it exceeds 90% by mass, it is difficult to obtain an effect commensurate with it. A more preferable FeO content is in the range of 15 to 70% by mass.

また、本発明において、焼結原料に対するFeO源の配合量は、FeO源中のFeOと高アルミナ鉄鉱石中のAl2O3との質量比(FeO/Al2O3)が5.0以上を満足する量とすることが肝要である。
というのは、FeO源の配合量が、FeO/Al2O3比で5.0に満たないと、満足いくほどの融液粘度の低減効果が得られないからである。FeO/Al2O3の上限は30.0とする。好ましくはFeO/Al2O3比で5.0以上15.0以下である。なお、FeO/Al2O3比の上限を30.0としたのは、これ以上大きくしてもそれに見合う融液粘度の低減効果が得られないだけでなく、原料の造粒性が低下するからである。
In the present invention, the amount of FeO source to the sintering raw material satisfies the mass ratio of FeO in the FeO source to Al 2 O 3 in the high alumina iron ore (FeO / Al 2 O 3 ) of 5.0 or more. It is important to set the amount to be used.
This is because if the blending amount of the FeO source is less than 5.0 in terms of FeO / Al 2 O 3 ratio, a satisfactory melt viscosity reduction effect cannot be obtained . The upper limit of the Fe 2 O / Al 2 O 3 ratio is 30.0 . Preferably, the FeO / Al 2 O 3 ratio is 5.0 or more and 15.0 or less. Note that the upper limit of the Fe 2 O 3 / Al 2 O 3 ratio is set to 30.0 because not only the melt viscosity reduction effect corresponding to the upper limit is not obtained, but also the granulation property of the raw material is lowered. It is.

焼結原料として、
a)Al2O3量が0.5質量%の低アルミナ鉄鉱石中にFeO源としてミルスケールを種々の割合で配合したもの、
b)Al2O3量が1.5質量%の高アルミナ鉄鉱石中にFeO源としてミルスケールを種々の割合で配合したもの、
c)Al2O3量が1.5質量%の高アルミナ鉄鉱石中にFeO源として製鋼ダストを所定量配合したもの(FeO/Al2O3比:約7.0)
を用いて製造した焼結鉱の歩留りおよび生産性について調査した結果を、FeO/Al2O3比の関係で図4および図5に示す。
As a sintering raw material,
a) Formulated with various proportions of mill scale as FeO source in low alumina iron ore with 0.5% by mass of Al 2 O 3 ,
b) A blend of mill scales in various proportions as a source of FeO in high alumina iron ore with an Al 2 O 3 content of 1.5% by mass,
c) High alumina iron ore with an Al 2 O 3 content of 1.5% by mass containing a predetermined amount of steelmaking dust as a FeO source (FeO / Al 2 O 3 ratio: approx. 7.0)
FIG. 4 and FIG. 5 show the results of investigating the yield and productivity of the sintered ore manufactured by using the FeO / Al 2 O 3 ratio.

図4,5に示したとおり、ミルスケール(FeO源)の添加量が0の場合に比べて、ミルスケールを添加するにつれて成品歩留りおよび生産率は共に向上し、特にFeO/Al2O3比が5.0以上で良好な成品歩留りおよび生産率を得ることができた。しかしながら、FeO/Al2O3比が30.0%を超えると特に生産率の低下が顕著となった。この理由は、コークスに比べてFeOの反応が遅いことに起因しているものと考えられる。
なお、FeO源として、ミルスケールの代りに製鋼ダストを用いた場合でも、FeO/Al2O3比が本発明の範囲であれば、成品歩留りおよび生産率はいずれも改善される。
As shown in FIGS. 4 and 5, both the product yield and the production rate are improved as the mill scale is added, compared with the case where the amount of mill scale (FeO source) is 0, particularly the FeO / Al 2 O 3 ratio. However, good product yield and production rate were obtained at 5.0 or higher. However, when the FeO / Al 2 O 3 ratio exceeds 30.0%, the reduction in the production rate becomes particularly significant. This reason is considered to be due to the fact that the reaction of FeO is slower than that of coke.
Even when steelmaking dust is used instead of the mill scale as the FeO source, both the product yield and the production rate can be improved if the FeO / Al 2 O 3 ratio is within the range of the present invention.

なお、上記した鉄鉱石およびFeO源以外の焼結原料としては、石灰石、生石灰、珪石および返鉱などが挙げられるが、これらを常法に従って適宜混合することは何ら差し支えない。
また、本発明における焼結原料は、粉体のままで使用することもできるが、ペレットに造粒して使用することがより有利である。さらに、本発明の焼結原料は、全体の焼結原料の一部として使用することもできる。
In addition, examples of the sintering raw material other than the iron ore and the FeO source described above include limestone, quicklime, quartzite, and return mineral, but these may be mixed as appropriate according to a conventional method.
Moreover, although the sintering raw material in this invention can also be used with a powder, it is more advantageous to granulate it and use it. Furthermore, the sintering raw material of the present invention can be used as a part of the entire sintering raw material.

本発明において、FeO源としては、上述したミルスケールや製鋼ダストが好適であるが、その他、FeOを多量に含有する鉄鉱石なども使用することができる   In the present invention, as the FeO source, the above-mentioned mill scale and steelmaking dust are suitable, but iron ore containing a large amount of FeO can also be used.

この例では、実験室規模の小型焼結試験機に焼結原料を装入したのちに、バッチ焼成を実施した。
このとき使用した原料の化学成分を表1に示す。
粉コークスについては、FeOの発熱を考慮して熱量に応じた配合割合とした。なお、この粉コークスの比率は、各表の配合に返鉱を加えた原料に対する質量比率である。
表2に示すように各原料を配合して焼結原料とした。この例では、配合原料に水分を添加して造粒を行ったが、造粒機としてはドラムミキサーを用い、配合に応じた適量の水を添加したのちに3分間混合して造粒した。
In this example, the sintering raw material was charged into a small-scale sintering tester on a laboratory scale, and then batch firing was performed.
The chemical components of the raw materials used at this time are shown in Table 1.
About the powder coke, it was set as the mixture ratio according to the calorie | heat amount in consideration of the heat_generation | fever of FeO. In addition, the ratio of this powder coke is a mass ratio with respect to the raw material which added the return to the mixing | blending of each table | surface.
As shown in Table 2, each raw material was blended to obtain a sintered raw material. In this example, granulation was performed by adding water to the blended raw material, but a drum mixer was used as a granulator, and after adding an appropriate amount of water according to the blending, the mixture was granulated for 3 minutes.

得られた焼結鉱について、成品歩留り、落下強度、焼結時間および生産率について調べた結果を表2に併記する。
なお、成品は、焼結ケーキを2mの落差で破砕し+10mm割合で歩留りを評価し、さらに4回落下後の+5mm割合で落下強度を評価した。
Table 2 also shows the results obtained by examining the obtained sintered ore for product yield, drop strength, sintering time, and production rate.
For the product, the sintered cake was crushed with a drop of 2 m, the yield was evaluated at a rate of +10 mm, and the drop strength was evaluated at a rate of +5 mm after four drops.

Figure 0005617167
Figure 0005617167

Figure 0005617167
Figure 0005617167

表2に示したとおり、水準〜6,8の発明例はいずれも、高強度の鉄鉱石を、高い成品歩留りおよび生産性の下で得ることができた。 As shown in Table 2, all the inventive examples of levels 5 to 6 and 8 were able to obtain high-strength iron ore under high product yield and productivity.

本発明によれば、安価ではあるものの、その使用に際して成品歩留りや生産性の低下が懸念された高アルミナ鉄鉱石を、かようなおそれなしに使用できるので、低コストでの高炉鉄鉱石の供給が可能になる。   According to the present invention, high-alumina iron ore, which is low in cost but concerned about product yield and productivity reduction, can be used without such a fear, so supply of blast furnace iron ore at low cost Is possible.

Claims (2)

Al2O3を0.6質量%以上3質量%以下含有する高アルミナ鉄鉱石を、全鉄鉱石量に対して50質量%以上配合し、かつこの高アルミナ鉄鉱石の配合と同時に、FeOを15〜90質量%含有するFeO源を、FeO源中のFeOと高アルミナ鉄鉱石中のAl2O3との質量比(FeO/Al2O3)で5.0以上30.0以下となるように配合した原料を、焼結原料として使用することを特徴とする高炉用焼結鉱の製造方法。 The high alumina iron ore containing al 2 O 3 less 3 wt% to 0.6 wt%, compounded least 50 mass% relative to the total iron ore weight and at the same time as the formulation of the high alumina iron ore, 15 the FeO A raw material containing 90% by mass of FeO source mixed so that the mass ratio (FeO / Al 2 O 3 ) of FeO in the FeO source to Al 2 O 3 in the high alumina iron ore is 5.0 or more and 30.0 or less. A method for producing a sintered ore for a blast furnace, characterized by being used as a raw material for sintering. 前記FeO源のFeO含有量が15〜70質量%であることを特徴とする請求項1に記載の高炉用焼結鉱の製造方法。   The method for producing a sintered ore for a blast furnace according to claim 1, wherein the FeO content of the FeO source is 15 to 70 mass%.
JP2009029572A 2009-02-12 2009-02-12 Method for producing sintered ore for blast furnace Active JP5617167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009029572A JP5617167B2 (en) 2009-02-12 2009-02-12 Method for producing sintered ore for blast furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009029572A JP5617167B2 (en) 2009-02-12 2009-02-12 Method for producing sintered ore for blast furnace

Publications (2)

Publication Number Publication Date
JP2010185104A JP2010185104A (en) 2010-08-26
JP5617167B2 true JP5617167B2 (en) 2014-11-05

Family

ID=42765934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009029572A Active JP5617167B2 (en) 2009-02-12 2009-02-12 Method for producing sintered ore for blast furnace

Country Status (1)

Country Link
JP (1) JP5617167B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015193898A (en) * 2014-03-26 2015-11-05 Jfeスチール株式会社 Method for charging sintering blending raw material comprising magnetization component raw material
JP6357842B2 (en) * 2014-04-10 2018-07-18 新日鐵住金株式会社 Sinter ore manufacturing method

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61113729A (en) * 1984-11-06 1986-05-31 Sumitomo Metal Ind Ltd Manufacture of sintered ore using high alumina limonite
JPS61113731A (en) * 1984-11-06 1986-05-31 Sumitomo Metal Ind Ltd Manufacture of sintered ore
JP2711735B2 (en) * 1989-09-26 1998-02-10 新日本製鐵株式会社 Sinter production method
JP2711739B2 (en) * 1989-12-05 1998-02-10 新日本製鐵株式会社 Sinter production method
JPH05311254A (en) * 1992-05-01 1993-11-22 Nippon Steel Corp Production of sintered ore
JPH06330192A (en) * 1993-05-19 1994-11-29 Nippon Steel Corp Production of sintered ore
JPH06346159A (en) * 1993-06-07 1994-12-20 Kawasaki Steel Corp Production of sintered ore
JPH07278684A (en) * 1994-04-07 1995-10-24 Nippon Steel Corp Production of sintered ore
JP4887611B2 (en) * 2003-10-09 2012-02-29 Jfeスチール株式会社 Method for producing sintered ore and granulated particles
JP4501656B2 (en) * 2004-11-29 2010-07-14 Jfeスチール株式会社 Method for producing sintered ore

Also Published As

Publication number Publication date
JP2010185104A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
Fernández-González et al. Iron ore sintering: Quality indices
JP4793501B2 (en) Blast furnace operation method using ferro-coke
CN102242251A (en) Alkaline V-Ti pellet and preparation method thereof
CN104357657A (en) Method for preparing oxidized pellets from converter dedusting ash
Dwarapudi et al. Effect of fluxing agents on the swelling behavior of hematite pellets
KR20120042981A (en) Unfired carbon-containing agglomerate for blast furnaces and production method therefor
Umadevi et al. Influence of magnesia on iron ore sinter properties and productivity
US8287837B2 (en) Titanium-containing additive
JP5617167B2 (en) Method for producing sintered ore for blast furnace
JP5477170B2 (en) Method for producing sintered ore
JP2003096521A (en) Sintered ore blended with high alumina iron ore, and production method therefor
CN105063261B (en) A kind of production method of blast furnace ironmaking furnace charge
JP2009019224A (en) Method for manufacturing sintered ore
JP5768563B2 (en) Blast furnace operation method
JP6477167B2 (en) Method for producing sintered ore
JP2001348623A (en) METHOD FOR PRODUCING HIGH QUALITY AND LOW SiO2 SINTERED ORE FOR BLAST FURNACE
JP7135770B2 (en) Method for producing sintered ore
JP2002129246A (en) Method for producing sintered ore
JP2005187839A (en) METHOD FOR PRODUCING LOW SiO2 SINTERED ORE
JP4661077B2 (en) Method for producing sintered ore
KR20140004281A (en) Method for manufacturing pig iron for cast iron from copper slag
KR102328965B1 (en) Method for recycling Mn dust
JP2006265687A (en) Method for manufacturing sintered ore using magnesium oxide-containing refractory
KR101099792B1 (en) Preparation method for calciumferrite flux for steelmaking
JP5187473B2 (en) Method for producing sintered ore

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140819

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140901

R150 Certificate of patent or registration of utility model

Ref document number: 5617167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250