JP5617141B2 - Method for producing phospholipid - Google Patents

Method for producing phospholipid Download PDF

Info

Publication number
JP5617141B2
JP5617141B2 JP2009134235A JP2009134235A JP5617141B2 JP 5617141 B2 JP5617141 B2 JP 5617141B2 JP 2009134235 A JP2009134235 A JP 2009134235A JP 2009134235 A JP2009134235 A JP 2009134235A JP 5617141 B2 JP5617141 B2 JP 5617141B2
Authority
JP
Japan
Prior art keywords
phospholipid
fatty acid
solvent
layer
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009134235A
Other languages
Japanese (ja)
Other versions
JP2010068799A (en
Inventor
立志 田中
立志 田中
雄吾 岩崎
雄吾 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Kaneka Corp
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Kaneka Corp
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Kaneka Corp, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2009134235A priority Critical patent/JP5617141B2/en
Publication of JP2010068799A publication Critical patent/JP2010068799A/en
Application granted granted Critical
Publication of JP5617141B2 publication Critical patent/JP5617141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6481Phosphoglycerides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Description

本発明は、リン脂質の製造方法に関し、特に食用に適したリン脂質の製造方法に関する。 The present invention relates to a method for producing a phospholipid, the production method of the phosphorus lipid relates particularly edible.

近年の脂質に関する研究から、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)などの高度不飽和脂肪酸が学習機能向上、動脈硬化性予防、脂質代謝改善機能など様々な機能を持つことが明らかになっている。特にDHAは、ホスファチジルコリンのようなリン脂質に結合した形態で摂取することにより、トリグリセリド型と比較して抗酸化性が強く安定性が高まり、また吸収が良いためDHAの持つ生理活性が発現しやすいことが明らかになっている。DHA以外のEPAや共役リノール酸、アラキドン酸などの機能性脂肪酸においてもリン脂質に結合することで生理活性が高まることが期待できる。   Recent research on lipids revealed that highly unsaturated fatty acids such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) have various functions such as improved learning function, prevention of arteriosclerosis, and lipid metabolism improvement function. ing. In particular, when DHA is ingested in a form bound to a phospholipid such as phosphatidylcholine, it has a strong anti-oxidation property and stability as compared with the triglyceride type, and because it absorbs well, the physiological activity of DHA is easily expressed. It has become clear. EPA other than DHA and functional fatty acids such as conjugated linoleic acid and arachidonic acid can also be expected to increase physiological activity by binding to phospholipids.

DHAをはじめとする機能性の脂肪酸が結合したリン脂質の製造方法は、天然に存在するものを抽出する方法と、大豆リン脂質などを原料として合成する方法に分けられる。具体的には、水産動物の卵を原料としてDHA結合リン脂質を抽出する方法(特許文献1)、イカなどの海産物から有機溶剤により抽出する方法などが挙げられる(特許文献2)。   The method for producing phospholipids to which functional fatty acids such as DHA are bound is divided into a method for extracting naturally occurring ones and a method for synthesizing soybean phospholipids as raw materials. Specifically, there are a method of extracting DHA-binding phospholipids from aquatic animal eggs as a raw material (Patent Document 1), a method of extracting from marine products such as squid with an organic solvent, and the like (Patent Document 2).

しかし、これらの方法では原料が高価であり供給が必ずしも安定しておらず、またリン脂質の組成が原料に依存しているため、DHA以外の機能性脂肪酸を結合させたものは製造することはできない。   However, in these methods, the raw materials are expensive, the supply is not always stable, and the composition of phospholipids depends on the raw materials, so that it is possible to produce a product in which a functional fatty acid other than DHA is bound. Can not.

原料の組成によらず所望の脂肪酸を導入できる方法として、微生物の培養液に任意の脂肪酸を添加し、微生物に該脂肪酸を組み込ませたリン脂質を製造する方法が挙げられるが(特許文献3)、この方法では大量の培養液から少量のリン脂質しか得られず、生産効率が良いものではない。   As a method for introducing a desired fatty acid regardless of the composition of the raw material, there is a method of adding a desired fatty acid to a microorganism culture solution and producing a phospholipid in which the fatty acid is incorporated (Patent Document 3). In this method, only a small amount of phospholipid can be obtained from a large amount of culture solution, and the production efficiency is not good.

一方、大豆リン脂質等にDHAを結合させる方法としては、リパーゼ及びホスホリパーゼの反応系に高誘電率水素結合形成物を添加する方法が挙げられるが(特許文献4)、この方法ではリパーゼによるリゾリン脂質と脂肪酸の反応で高反応率が得られているものの、ホスホリパーゼA2による反応では高い反応率が得られなかった。DHA結合リン脂質の生理活性の発現にはDHAがリン脂質の2位に結合していることが重要であるところ、リパーゼによる反応では主に目的の脂肪酸はリン脂質の1位に結合するため、実用性が高いとは言えない。   On the other hand, as a method of binding DHA to soybean phospholipid or the like, there is a method of adding a high dielectric constant hydrogen bond-forming product to a reaction system of lipase and phospholipase (Patent Document 4). In this method, lysophospholipid by lipase is used. Although a high reaction rate was obtained by the reaction of fatty acid and fatty acid, a high reaction rate was not obtained by the reaction with phospholipase A2. It is important that DHA binds to the 2-position of phospholipid for the expression of the physiological activity of DHA-bound phospholipid. Since the target fatty acid binds mainly to the 1-position of phospholipid in the lipase reaction, It cannot be said that it is highly practical.

また、ホスホリパーゼA2を用いて高い反応率でリン脂質の2位に脂肪酸を導入できる方法としてトルエンを溶剤として反応させる方法(非特許文献1)、グリセリンとホルムアミドを添加する系で反応させる方法(非特許文献2)が挙げられるが、これらはトルエンやホルムアミドなどの有害な物質を使用する必要があるため食品への用途には適さない。   In addition, as a method for introducing a fatty acid into the 2-position of phospholipid with a high reaction rate using phospholipase A2, a method of reacting with toluene as a solvent (Non-patent Document 1), a method of reacting in a system in which glycerin and formamide are added (non- Patent Document 2) can be mentioned, but these are not suitable for food applications because of the use of harmful substances such as toluene and formamide.

そこで、食用として用い得る原料のみを使用し、高い反応率でリン脂質の2位に脂肪酸を導入できる方法、とりわけDHAのような高度不飽和脂肪酸を2位に導入したリン脂質及びその製法の開発が望まれている。   Therefore, using only raw materials that can be used for food, a method capable of introducing a fatty acid into the 2-position of the phospholipid with a high reaction rate, in particular, a phospholipid in which a highly unsaturated fatty acid such as DHA is introduced into the 2-position, and a process for producing the same. Is desired.

特開平8−59678号公報JP-A-8-59678 特開平8−325192号公報JP-A-8-325192 特開2007−129973号公報JP 2007-129773 A 特開平8−56683号公報JP-A-8-56683

Biochimica et, Biophysica Acta 1997年、1343巻、76−84項Biochimica et, Biophysica Acta 1997, 1343, 76-84. Fisheries Science 2006年、72巻、909−911項Fishers Science 2006, 72, 909-911.

本発明の目的は、種々の用途の中でも特に食品用途に適した安全な原料を用いて効率良くリン脂質の2位に任意の脂肪酸を結合させたリン脂質を効率よく製造する方法を提供することである。 An object of the present invention provides a method for producing Li phospholipids efficiently bound with any fatty acid, particularly 2-position of efficiently phospholipids using safe raw material suitable for food applications among various applications That is.

本発明者らは上記課題を解決するために鋭意研究を重ねた結果、ホスホリパーゼA2を含む系でのリゾリン脂質と脂肪酸の反応の際に、当該反応系にアミノ酸を添加することにより効率よく反応を行うことができ、所望の脂肪酸をリゾリン脂質の2位に導入したリン脂質を大量に得ることができることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have efficiently reacted by adding an amino acid to the reaction system in the reaction of lysophospholipid and fatty acid in a system containing phospholipase A2. It was found that a large amount of phospholipid obtained by introducing a desired fatty acid into position 2 of lysophospholipid can be obtained, and the present invention has been completed.

即ち、本発明の第一は、ホスホリパーゼA2によるリゾリン脂質のエステル化反応において、該エステル化反応をグリセリン中で行い、かつ当該反応系にアミノ酸及び/又はアミノ酸が3残基以下のペプチドを添加することを特徴とするリン脂質の製造方法に関する。また、前記アミノ酸が、グリシン、アラニン、アスパラギン、グルタミン、イソロイシン、ロイシン、セリン、トレオニン、バリン、フェニルアラニン、チロシンからなる群より選ばれる少なくとも1種である上記記載のリン脂質の製造方法、前記アミノ酸3残基以下のペプチドが、グリシン、アラニン、セリンの組み合わせからなるペプチドである上記記載のリン脂質の製造方法、前記エステル化反応を35℃以上80℃以下で行う上記記載のリン脂質の製造方法、前記リゾリン脂質が大豆由来である上記記載のリン脂質の製造方法に関する。   That is, in the first aspect of the present invention, in the esterification reaction of lysophospholipid with phospholipase A2, the esterification reaction is performed in glycerin, and an amino acid and / or a peptide having 3 or less amino acids is added to the reaction system. The present invention relates to a method for producing phospholipids. The method for producing phospholipid as described above, wherein the amino acid is at least one selected from the group consisting of glycine, alanine, asparagine, glutamine, isoleucine, leucine, serine, threonine, valine, phenylalanine, and tyrosine; The method for producing a phospholipid according to the above, wherein the peptide below the residue is a peptide comprising a combination of glycine, alanine, and serine, the method for producing the phospholipid according to the above, wherein the esterification reaction is performed at 35 ° C. or more and 80 ° C. or less, The said lysophospholipid is related with the manufacturing method of the said phospholipid as described in a soybean.

更に、前記エステル化反応後に、ケトン溶剤を加えてグリセリン溶液層とケトン溶剤層を形成させ、該ケトン溶剤層を分離し、その後ケトン溶剤層中の溶剤を留去した後、脂肪酸を除去してリン脂質を得る上記記載のリン脂質の製造方法、前記エステル化反応後に、炭素数4以下のアルコールを加えた後、炭化水素溶剤及び/又はケトン溶剤及び/又はエステル溶剤からなる溶剤を加えてグリセリン溶液層と溶剤層を形成させ、該溶剤層を分離し、その後前記溶剤層中の溶剤を留去し、脂肪酸を除去してリン脂質を得る上記記載のリン脂質の製造方法、前記ケトン溶剤がアセトンである上記記載のリン脂質の製造方法、前記炭素数4以下のアルコールがエタノールである上記記載のリン脂質の製造方法に関する。   Further, after the esterification reaction, a ketone solvent is added to form a glycerin solution layer and a ketone solvent layer, the ketone solvent layer is separated, and then the solvent in the ketone solvent layer is distilled off, and then the fatty acid is removed. The method for producing a phospholipid as described above for obtaining phospholipid, after adding an alcohol having 4 or less carbon atoms after the esterification reaction, adding a solvent comprising a hydrocarbon solvent and / or a ketone solvent and / or an ester solvent to add glycerin A solution layer and a solvent layer are formed, the solvent layer is separated, and then the solvent in the solvent layer is distilled off, and the fatty acid is removed to obtain a phospholipid. The present invention relates to a method for producing a phospholipid as described above, which is acetone, and a method for producing a phospholipid as described above, wherein the alcohol having 4 or less carbon atoms is ethanol.

本発明の第三は、ホスホリパーゼA2によりリン脂質の2位を加水分解して得られたリゾリン脂質を含む反応系に、アミノ酸及び/又はアミノ酸が3残基以下のペプチド、及び脂肪酸を混合してから、ホスホリパーゼA2によるリゾリン脂質のエステル化反応を行うことで、リン脂質の2位に脂肪酸を導入する方法に関する。   In the third aspect of the present invention, an amino acid and / or a peptide having 3 or less amino acids is mixed with a reaction system containing lysophospholipid obtained by hydrolyzing the 2-position of phospholipid with phospholipase A2. Thus, the present invention relates to a method for introducing a fatty acid into the 2-position of a phospholipid by conducting an esterification reaction of lysophospholipid with phospholipase A2.

本発明によれば、安全な原料を用いて効率良くリン脂質の2位に任意の脂肪酸を結合させたリン脂質を効率よく製造する方法を提供することができる。
According to the present invention, it is possible to provide a method for efficiently producing efficiently phosphorus lipid bound with any fatty acid in the 2-position of phospholipids using a safe raw material.

以下、本発明につき、さらに詳細に説明する。本発明のリン脂質は、ホスホリパーゼA2によるリゾリン脂質のエステル化反応において、反応系にアミノ酸及び/又はアミノ酸が3残基以下のペプチドを添加することにより製造することができる。   Hereinafter, the present invention will be described in more detail. The phospholipid of the present invention can be produced by adding an amino acid and / or a peptide having 3 or less amino acids to the reaction system in the esterification reaction of lysophospholipid with phospholipase A2.

本発明におけるリゾリン脂質は、リン脂質から2位の脂肪酸を除いたものを指し、リン脂質とは異なる脂質を意味する。本発明に用いるリゾリン脂質は、リン脂質を改質したものを用いることができ、入手のし易さからは大豆由来、菜種由来、卵黄由来のものが好ましく、価格面からは大豆由来のものがより好ましいが、その他の植物由来のリゾリン脂質も用いることができる。   The lysophospholipid in the present invention refers to a phospholipid obtained by removing the fatty acid at the 2-position, and means a lipid different from the phospholipid. As the lysophospholipid used in the present invention, a phospholipid-modified one can be used. From the viewpoint of availability, those derived from soybean, rapeseed, and egg yolk are preferable, and those derived from soybean from the price aspect. More preferably, other plant-derived lysophospholipids can also be used.

リン脂質を改質してその2位の脂肪酸を除く方法としては、有害な物質を使用しない限り特に限定はないが、例えばホスホリパーゼA2などを用いてリン脂質の2位の脂肪酸を加水分解する方法などが挙げられる。この場合に用いることができるリン脂質は、グリセリン骨格とリン酸基及び2つの脂肪酸エステルを持つ分子で、ホスホリパーゼA2の基質になり得るものであり、スフィンゴシン骨格を持つものは含まれない。具体的には、ホスファチジルコリン、ホスファチジルエタノールアミン、ホスファチジルセリンなどが例示できる。   The method of modifying the phospholipid to remove the fatty acid at the 2-position is not particularly limited as long as no harmful substance is used. For example, a method of hydrolyzing the fatty acid at the 2-position of phospholipid using phospholipase A2 or the like Etc. The phospholipid that can be used in this case is a molecule having a glycerin skeleton, a phosphate group, and two fatty acid esters, which can be a substrate for phospholipase A2, and does not include those having a sphingosine skeleton. Specific examples include phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and the like.

本発明で行うリゾリン脂質と脂肪酸のエステル化反応において、リゾリン脂質の2位に導入する脂肪酸としては、特に限定はないが、昨今の消費者の健康志向から、生理活性を高められる脂肪酸が好ましく、共役リノール酸、アラキドン酸、ドコサヘキサエン酸(DHA)、エイコサペンタエン酸(EPA)などの高度不飽和脂肪酸が例示できる。前記DHAやEPAは、主に海産動物油や藻類から得られる油脂を加水分解し遊離脂肪酸の形態にしたものを用いることができる。   In the esterification reaction of lysophospholipid and fatty acid performed in the present invention, the fatty acid to be introduced at the 2-position of lysophospholipid is not particularly limited, but from the recent consumer health orientation, fatty acids that can enhance physiological activity are preferable, Highly unsaturated fatty acids such as conjugated linoleic acid, arachidonic acid, docosahexaenoic acid (DHA), and eicosapentaenoic acid (EPA) can be exemplified. As the DHA and EPA, those obtained by hydrolyzing fats and oils obtained mainly from marine animal oils and algae to form free fatty acids can be used.

尚、本発明で高度不飽和脂肪酸とは、炭素−炭素間の2重結合の数が3つ以上の不飽和脂肪酸、又は共役リノール酸を意味するものとする。   In the present invention, the highly unsaturated fatty acid means an unsaturated fatty acid having 3 or more carbon-carbon double bonds or conjugated linoleic acid.

本発明に用いる脂肪酸はリン脂質100重量部に対して、30〜1000重量部を用いることが好ましい。30重量部未満であると、反応後に脂肪酸の結合していないリゾリン脂質が多く残存し反応効率が悪くなる場合があり、1000重量部を超えて使用するとコスト面で不利な場合がある。   The fatty acid used in the present invention is preferably 30 to 1000 parts by weight with respect to 100 parts by weight of phospholipid. If the amount is less than 30 parts by weight, a large amount of lysophospholipid not bound with fatty acid may remain after the reaction and the reaction efficiency may deteriorate, and if it exceeds 1000 parts by weight, it may be disadvantageous in terms of cost.

また、DHAなどのように、天然由来のものを単体で入手が困難である場合は、所望の脂肪酸を含有する脂肪酸の混合物を用いることができる。その際、脂肪酸混合物中の所望の脂肪酸の含有量は、概ね20重量%以上であることが望ましい。DHAの場合を例示すると、DHA含有脂肪酸中のDHAの濃度は好ましくは20重量%以上であり、45重量%以上のDHA濃度を持つものを用いることがより好ましい。尚、本発明によるエステル化反応の後に溶剤分別などを行い反応生成物であるリン脂質の濃度を高めても構わない。   In addition, when it is difficult to obtain a naturally derived material alone such as DHA, a mixture of fatty acids containing a desired fatty acid can be used. At that time, the content of the desired fatty acid in the fatty acid mixture is desirably approximately 20% by weight or more. In the case of DHA, the concentration of DHA in the DHA-containing fatty acid is preferably 20% by weight or more, and more preferably having a DHA concentration of 45% by weight or more. The concentration of the phospholipid as a reaction product may be increased by performing solvent fractionation after the esterification reaction according to the present invention.

本発明に用いるホスホリパーゼA2は、特にその由来は問わないが、一般に食用に用いることができるものが好ましく、例えばブタ膵臓由来のものや微生物由来のものが挙げられる。   The phospholipase A2 used in the present invention is not particularly limited in its origin, but those that can be generally used for food are preferable, and examples thereof include those derived from porcine pancreas and microorganisms.

本発明に用いるアミノ酸は、主にタンパク質の構成要素となるもので分子内にカルボキシル基とアミノ基を有する分子を指し、食用として用いることができるものが好ましい。中でも、酵素の電荷状態に比較的影響を与えず酵素を活性化できることから、中性アミノ酸が好ましく、グリシン、アラニン、アスパラギン、グルタミン、イソロイシン、ロイシン、セリン、トレオニン、バリン、フェニルアラニン、チロシンなどが例示でき、本発明のリン脂質の製造方法に用いる場合は、それらの群より選ばれる少なくとも1種を用いることができる。   The amino acid used in the present invention refers to a molecule that mainly serves as a component of a protein and has a carboxyl group and an amino group in the molecule, and is preferably an edible one. Among them, neutral amino acids are preferable because the enzyme can be activated without relatively affecting the charge state of the enzyme, and examples include glycine, alanine, asparagine, glutamine, isoleucine, leucine, serine, threonine, valine, phenylalanine, and tyrosine. In addition, when used in the method for producing a phospholipid of the present invention, at least one selected from these groups can be used.

本発明に用いるアミノ酸が3残基以下のペプチドとは、アミノ酸同士がアミド結合により主に2量体または3量体になったものを指し、アミノ酸から合成したものであるか、タンパク質を酵素などにより分解したものであるかは問わないが、グリセリンに対する溶解度が比較的高いことからグリシン、アラニン、セリンからなるペプチドであることが好ましく、グリシルグリシンなどが例示できる。   A peptide having 3 or less amino acids used in the present invention refers to a peptide in which amino acids are mainly dimerized or trimerized by an amide bond and is synthesized from amino acids, or a protein is converted to an enzyme, etc. However, it is preferably a peptide composed of glycine, alanine, and serine because of its relatively high solubility in glycerin, and examples thereof include glycylglycine.

本発明では、前記のとおりアミノ酸が3残基以下のペプチドであることを特徴の一つとするものであるが、その理由は、アミノ酸残基が少ない方がグリセリンに溶解した際に高いモル濃度が得られ、効率的にホスホリパーゼA2を活性化できるためである。   In the present invention, as described above, one of the features is that the amino acid is a peptide having 3 or less residues. The reason for this is that the smaller the amino acid residue, the higher the molar concentration when dissolved in glycerin. This is because the resulting phospholipase A2 can be efficiently activated.

前記のようなアミノ酸やアミノ酸が3残基以下のペプチドは、少なくとも何れかがホスホリパーゼA2によるリゾリン脂質のエステル化反応において添加されていればよく、その添加量としては、リゾリン脂質100重量部に対して10〜2000重量部加えることが好ましく、より好ましくは50〜500重量部である。10重量部未満であると反応効率が悪くなる場合があり、2000重量部を超えるとコストが不利になり、また反応効率も悪くなる場合がある。さらにアミノ酸や、アミノ酸が3残基以下のペプチドは、エステル化反応系中における合計の溶解量を多くするために2種類以上を組み合わせて添加してもかまわない。   It is sufficient that at least one of the amino acids and peptides having 3 or less amino acids as described above is added in the esterification reaction of lysophospholipid with phospholipase A2, and the amount added is 100 parts by weight of lysophospholipid. It is preferable to add 10 to 2000 parts by weight, more preferably 50 to 500 parts by weight. If it is less than 10 parts by weight, the reaction efficiency may be deteriorated, and if it exceeds 2000 parts by weight, the cost may be disadvantageous and the reaction efficiency may be deteriorated. Furthermore, amino acids or peptides having 3 or less amino acids may be added in combination of two or more in order to increase the total amount of dissolution in the esterification reaction system.

本発明では、必要に応じて抗酸化剤を添加してもよい。本発明において使用できる抗酸化剤は、食品用途として用いることができ、DHAなどの脂肪酸に対する抗酸化力が期待できるものであれば種類を問わないが、トコフェロール、カテキンなどのポリフェノール、アスコルビン酸、ジブチルヒドロキシトルエン(BHT)などが好適に用いられる。尚、この場合、後述の製造方法で得られるリン脂質は、抗酸化剤との混合物であってもよい。   In the present invention, an antioxidant may be added as necessary. Antioxidants that can be used in the present invention can be used for food, and any type can be used as long as they can be expected to have an antioxidant power against fatty acids such as DHA, but polyphenols such as tocopherol and catechin, ascorbic acid, and dibutyl Hydroxytoluene (BHT) or the like is preferably used. In this case, the phospholipid obtained by the production method described later may be a mixture with an antioxidant.

また、同様に脂肪酸の酸化を防止するため、リゾリン脂質のエステル化反応は酸素を遮断し、窒素雰囲気下で行ってもよい。   Similarly, in order to prevent fatty acid oxidation, the esterification reaction of lysophospholipid may be performed in a nitrogen atmosphere while blocking oxygen.

本発明では、前記エステル化反応は、アミノ酸を溶解し得る溶剤を用いて行うことができるが、食品への使用が可能で、極性の高いグリセリンを使用する。   In this invention, although the said esterification reaction can be performed using the solvent which can melt | dissolve an amino acid, it can be used for a foodstuff and uses highly polar glycerol.

本発明のリン脂質の製造方法の好適例の一つを以下に示す。
まず、リゾリン脂質およびDHAなどの脂肪酸を、グリセリンに溶解し、アミノ酸、又は/及びアミノ酸が3残基以下のペプチドおよびホスホリパーゼA2を加え攪拌することによりリゾリン脂質のエステル化反応を行う。この際、酵素の活性化のためにカルシウムイオンが反応系に存在していることが好ましい。カルシウム源としては、溶解度が比較的高く、食品原料としても用いられることから、塩化カルシウムが好ましい。
One preferred example of the method for producing a phospholipid of the present invention is shown below.
First, a fatty acid such as lysophospholipid and DHA is dissolved in glycerin, and an esterification reaction of lysophospholipid is performed by adding an amino acid or / and a peptide having 3 or less amino acids and phospholipase A2 and stirring. At this time, calcium ions are preferably present in the reaction system for the activation of the enzyme. As the calcium source, calcium chloride is preferable because it has a relatively high solubility and is used as a food material.

この際、ホスホリパーゼA2によるリゾリン脂質のエステル化反応は、酵素の至適温度や脂肪酸の酸化等の観点から、35℃〜80℃の温度範囲で行うことが好ましく、45℃〜70℃の範囲で行うことがより好ましい。また、前記反応中の脂肪酸の酸化を防ぐため、予め抗酸化剤を添加してリゾリン脂質のエステル化反応を行ってもよいし、酸素を遮断して窒素雰囲気下で前記反応を行っても良く、これらを単独であるいは併用してもよい。また、ホスホリパーゼA2による反応では、反応が進行すると水が生成するなどして、加水分解が進行し過ぎる場合は、反応の途中で減圧等の操作を適宜行うことにより水分を除去してもよい。減圧により水分を除去する場合、その条件としては、例えば、温度が35〜80℃、150torr(20kPa)以下で、12〜24時間行えばよい。尚、エステル化反応の進行は薄層クロマトグラフィ(TLC)等により確認することができる。   At this time, the esterification reaction of lysophospholipid by phospholipase A2 is preferably performed in a temperature range of 35 ° C. to 80 ° C. from the viewpoint of optimal enzyme temperature and fatty acid oxidation, and in the range of 45 ° C. to 70 ° C. More preferably. In addition, in order to prevent fatty acid oxidation during the reaction, an antioxidant may be added in advance to perform esterification of lysophospholipid, or the reaction may be performed in a nitrogen atmosphere with oxygen blocked. These may be used alone or in combination. Further, in the reaction with phospholipase A2, when hydrolysis proceeds excessively, for example, when the reaction proceeds, water may be removed by appropriately performing an operation such as decompression during the reaction. When moisture is removed by decompression, the conditions may be, for example, a temperature of 35 to 80 ° C. and 150 torr (20 kPa) or less for 12 to 24 hours. The progress of the esterification reaction can be confirmed by thin layer chromatography (TLC) or the like.

以上のようにしてリゾリン脂質と脂肪酸のエステル化反応を行うことによりリゾリン脂質の2位に所望の脂肪酸を導入した本発明のリン脂質が生成される。本発明では、上記のような反応液の状態でも、リン脂質溶液として種々の用途に使用可能であるが、後述の抽出操作を行うことにより、純度の高いリン脂質を得ることもできる。   By performing esterification reaction of lysophospholipid and fatty acid as described above, the phospholipid of the present invention in which a desired fatty acid is introduced at the 2-position of lysophospholipid is produced. In the present invention, even in the state of the reaction solution as described above, it can be used as a phospholipid solution for various uses. However, a highly purified phospholipid can also be obtained by performing an extraction operation described later.

本発明では、純度の高いリン脂質を得るための抽出操作として、次の操作を行うのが好ましい。
即ち、上述のエステル化反応終了後の反応液に、炭化水素溶剤及び/又はケトン溶剤及び/又はエステル溶剤からなる溶剤を加えて、グリセリン溶液層と溶剤層を形成させる。この際、当該溶剤層(上層)にリン脂質と脂肪酸が、グリセリン溶液層(下層)にはそれら以外の物質が移行する。そして当該溶剤層を分離(分取)する。尚、このような所定溶剤の添加および分取操作は、純度の向上と作業効率を考慮し、適宜繰り返しても良い。
In the present invention, the following operation is preferably performed as an extraction operation for obtaining a highly pure phospholipid.
That is, a solvent composed of a hydrocarbon solvent and / or a ketone solvent and / or an ester solvent is added to the reaction solution after the completion of the esterification reaction to form a glycerin solution layer and a solvent layer. At this time, phospholipids and fatty acids are transferred to the solvent layer (upper layer), and other substances are transferred to the glycerol solution layer (lower layer). Then, the solvent layer is separated (sorted). Note that the addition of the predetermined solvent and the preparative operation may be repeated as appropriate in consideration of improvement in purity and work efficiency.

ここで前記炭化水素溶剤とは、炭素と水素のみから構成される化合物のうち溶剤として用いることができるものを指す。具体的にはペンタン、ヘキサン、ヘプタン等であるが、沸点が低いため留去しやすくかつ食品添加物として使用できることからヘキサンがより好ましい。   Here, the hydrocarbon solvent refers to a compound that can be used as a solvent among compounds composed only of carbon and hydrogen. Specifically, pentane, hexane, heptane and the like are preferable, but hexane is more preferable because it has a low boiling point and can be easily distilled off and used as a food additive.

また前記ケトン溶剤とは、分子内にケト基を持つ分子のうち溶剤として用いることができるものを指す。具体的にはアセトン、ブタノン等であるが、沸点が低いため留去しやすくかつ食品添加物として使用できることからアセトンが好ましい。   The ketone solvent refers to a molecule that has a keto group in the molecule and can be used as a solvent. Specific examples include acetone and butanone, but acetone is preferable because it has a low boiling point and can be easily distilled off and used as a food additive.

さらに前記エステル溶剤とは、分子内にエステル結合を持つものうち、溶剤として利用できるものを指し、具体的には酢酸メチル、酢酸エチル等であるが、食品用途として用いられることから酢酸エチルが好ましい。   Further, the ester solvent refers to those having an ester bond in the molecule and usable as a solvent, specifically, methyl acetate, ethyl acetate, etc., but ethyl acetate is preferable because it is used for food use. .

本発明では、上述のエステル化反応終了後、前記の溶剤を添加する前に炭素数4以下のアルコールを添加するのが好ましい。これにより、抽出操作中の加水分解を防ぎ、ホスホリパーゼA2を失活させると共にグリセリンの粘度を下げて抽出を行いやすくなる傾向にある。尚、前記の溶剤として、前記ケトン溶剤のみからなる溶剤を用いる場合は、上記のような抽出操作中の加水分解、ホスホリパーゼA2の活性、グリセリンの粘度の影響は低いため、前記アルコールを添加しなくてもよい。   In the present invention, it is preferable to add an alcohol having 4 or less carbon atoms after the above esterification reaction and before adding the solvent. This tends to prevent hydrolysis during the extraction operation, deactivate phospholipase A2, and lower the viscosity of glycerin to facilitate extraction. In addition, when using the solvent which consists only of the said ketone solvent as said solvent, since the influence of the hydrolysis in the above extraction operation, the activity of phospholipase A2, and the viscosity of glycerol is low, it does not add the said alcohol. May be.

ここで前記炭素数4以下のアルコールとは、メタノール、エタノール、プロパノール及びブタノールのことを指すが、毒性が低く食品添加物として利用できることからエタノールが好ましい。   Here, the alcohol having 4 or less carbon atoms refers to methanol, ethanol, propanol and butanol, and ethanol is preferable because it has low toxicity and can be used as a food additive.

上記のように溶剤層を分離(分取)した後、脂肪酸を除去する方法としては特に限定はなく、ケトン溶剤、エタノール−ヘキサン混合溶剤などで脱脂する方法、シリカゲルを用いて脂肪酸を除去する方法などが例示できる。   The method for removing the fatty acid after separating (sorting) the solvent layer as described above is not particularly limited, and a method of degreasing with a ketone solvent, an ethanol-hexane mixed solvent, or the like, a method of removing the fatty acid using silica gel Etc. can be exemplified.

例えば、ケトン溶剤等を用いる方法としては、分離(分取)した溶剤層中の前記溶剤を留去した後に別途新たにケトン溶剤等を加え、冷却することでリン脂質を析出させ、脂肪酸の溶解したケトン溶剤を分離除去することで、リゾリン脂質の2位に所望の脂肪酸を導入した、純度の高い本発明のリン脂質を得ることができる。ここで、上記溶剤留去後に加えるケトン溶剤等は、沸点が低く、留去し易く且つ食品添加物として使用できるアセトンが好ましい。   For example, as a method using a ketone solvent, etc., after the solvent in the separated (prepared) solvent layer is distilled off, a new ketone solvent is added separately and cooled to precipitate phospholipids and dissolve fatty acids. By separating and removing the obtained ketone solvent, it is possible to obtain the phospholipid of the present invention having high purity in which a desired fatty acid is introduced at the 2-position of the lysophospholipid. Here, the ketone solvent added after the solvent is distilled off is preferably acetone which has a low boiling point, can be easily distilled off and can be used as a food additive.

またシリカゲルを用いて脂肪酸を除去する方法としては、上記溶剤層を分離後に、当該溶剤層を、シリカゲルを充填したカラムに流してリン脂質を吸着させ、脂肪酸を流出させることにより取り除き、その後カラムに流出溶剤を流してシリカゲルに吸着したリン脂質を脱着させ、所望のリン脂質画分のみを分取した後、リン脂質を再結晶化することで、リゾリン脂質の2位に所望の脂肪酸を導入した、純度の高い本発明のリン脂質を得ることができる。   In addition, as a method of removing fatty acid using silica gel, after separating the solvent layer, the solvent layer is passed through a column filled with silica gel to adsorb phospholipids, and the fatty acid is allowed to flow out. The phospholipid adsorbed on the silica gel was desorbed by flowing the effluent solvent, and only the desired phospholipid fraction was collected, and then the phospholipid was recrystallized to introduce the desired fatty acid at the 2-position of the lysophospholipid. Thus, the highly purified phospholipid of the present invention can be obtained.

尚、本発明には、リゾリン脂質を直接使用することに代えて、リン脂質を出発原料とする場合も含まれる。例えば、ホスホリパーゼA2によりリン脂質の2位を加水分解した後、得られたリゾリン脂質、アミノ酸及び/又はアミノ酸が3残基以下のペプチド、及び所望の脂肪酸をグリセリン中で反応させ、ホスホリパーゼA2によるリゾリン脂質のエステル化反応を行うことで、リン脂質の2位の脂肪酸を所望の脂肪酸に交換することができる。   The present invention includes a case where phospholipid is used as a starting material instead of directly using lysophospholipid. For example, after hydrolyzing position 2 of phospholipid with phospholipase A2, the obtained lysophospholipid, an amino acid and / or a peptide having 3 or less amino acids, and a desired fatty acid are reacted in glycerin, and lysoline by phospholipase A2 By performing the esterification reaction of the lipid, the fatty acid at the 2-position of the phospholipid can be exchanged for the desired fatty acid.

本発明のリン脂質の製造方法は、食用リン脂質の製造に好適に用いることができ、その為には製造過程で食用に適さない原料やトルエン、ホルムアミドなどの溶剤などを使用さえしなければよい。また、このようにして得られたリン脂質、特に、その2位に高度不飽和脂肪酸が導入されたものは、高機能の食用リン脂質として好適に用いることができる。   The method for producing phospholipids of the present invention can be suitably used for the production of edible phospholipids. For this purpose, it is only necessary to use raw materials that are not edible or solvents such as toluene and formamide in the production process. . In addition, the phospholipid thus obtained, in particular, a product in which a highly unsaturated fatty acid is introduced at the 2-position thereof can be suitably used as a high-functional edible phospholipid.

以下に実施例を示し、本発明をより具体的に説明するが、本発明はこれらの実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.

<リン脂質の脂肪酸組成の測定>
実施例および比較例において、エステル化反応終了後、反応溶液50μlにエタノール50μlと飽和塩化ナトリウム溶液0.5mlを加えて攪拌し、ヘキサン200μlでリン脂質、リゾリン脂質及び脂肪酸を抽出する操作を4回繰りかえした。リン脂質、リゾリン脂質及び脂肪酸を有する有機層をTLC(薄層クロマトグラフィー)で展開し、リン脂質及びリゾリン脂質画分を分取して、ナトリウムメチラートでメチルエステル化を行い、リン脂質及びリゾリン脂質に結合している脂肪酸の脂肪酸組成をガスクロマトグラフィー(島津製作所製「GC−14B」)で測定し、各脂肪酸に対応する面積比を、各脂肪酸の脂肪酸組成全体中の重量比とした。
<Measurement of fatty acid composition of phospholipid>
In Examples and Comparative Examples, after completion of the esterification reaction, 50 μl of the reaction solution was added with 50 μl of ethanol and 0.5 ml of saturated sodium chloride solution and stirred, and phospholipid, lysophospholipid and fatty acid were extracted with 200 μl of hexane four times. Repeated. An organic layer containing phospholipids, lysophospholipids and fatty acids is developed by TLC (thin layer chromatography), phospholipids and lysophospholipid fractions are separated, methyl esterified with sodium methylate, and phospholipids and lysolin The fatty acid composition of the fatty acid bound to the lipid was measured by gas chromatography (“GC-14B” manufactured by Shimadzu Corporation), and the area ratio corresponding to each fatty acid was defined as the weight ratio of the fatty acid composition in the entire fatty acid composition.

<リン脂質・リゾリン脂質の抽出量比測定>
実施例9〜13,比較例7〜8で得られた各上層とクロロホルム−メタノール層(アセトン層と分別した下層)をクロロホルム:メタノール=2:1の溶剤50μlに溶解させ、それぞれ2μlずつTLCにスポットし、ホスファチジルコリン及びリゾホスファチジルコリンのスポットについて画像解析ソフト「ImageJ」を用いて計算し、それぞれホスファチジルコリン、リゾホスファチジルコリンごとの抽出量比を各層の合計が100%になるよう百分率で表した。
<Measurement of extraction ratio of phospholipid and lysophospholipid>
Each upper layer and chloroform-methanol layer (lower layer separated from acetone layer) obtained in Examples 9 to 13 and Comparative Examples 7 to 8 were dissolved in 50 μl of a solvent of chloroform: methanol = 2: 1, and 2 μl each was added to TLC. The spots of phosphatidylcholine and lysophosphatidylcholine were calculated using image analysis software “ImageJ”, and the extraction ratio for each phosphatidylcholine and lysophosphatidylcholine was expressed as a percentage so that the total of each layer was 100%.

<各抽出法の総合評価>
実施例9〜13,比較例7〜8において、前記リン脂質・リゾリン脂質の抽出量比測定で得られた各上層中のホスファチジルコリン抽出量比(x)は多いほど良く、逆に各上層中のリゾホスファチジルコリン抽出量比(y)は少ないほど良く、以下の基準で評価した。評価点は、
xに関しては、5点:100%>x>80%、4点:80%≧x>60%、3点:60%≧x>40%、2点:40%≧x>20%、1点:20%≧x、
yに関しては、3点:30%≧y、2点:60%≧y>30%、1点:y>60%
とし、抽出方法としての総合評価をそれぞれの評価点の和として、
◎:(xの評価点)+(yの評価点)≧7点、即ち、反応したリン脂質が十分量抽出され、なおかつ未反応のリゾリン脂質の抽出量が少なく、品質の良いリン脂質が得られた、
○:7点>(xの評価点)+(yの評価点)≧6点、即ち、反応したリン脂質が十分量抽出された、
△:6点>(xの評価点)+(yの評価点)≧5点、即ち、反応したリン脂質の抽出量が不十分である、
×:5点>(xの評価点)+(yの評価点)、即ち、反応したリン脂質の抽出量が著しく不十分である、
とした。
<Comprehensive evaluation of each extraction method>
In Examples 9 to 13 and Comparative Examples 7 to 8, the phosphatidylcholine extract ratio (x) in each upper layer obtained by the extraction ratio measurement of the phospholipid / lysophospholipid is better as it is larger. The smaller the lysophosphatidylcholine extraction ratio (y), the better and the evaluation was based on the following criteria. Evaluation point is
Regarding x, 5 points: 100%>x> 80%, 4 points: 80% ≧ x> 60%, 3 points: 60% ≧ x> 40%, 2 points: 40% ≧ x> 20%, 1 point : 20% ≧ x,
Regarding y, 3 points: 30% ≧ y, 2 points: 60% ≧ y> 30%, 1 point: y> 60%
And the overall evaluation as the extraction method as the sum of the evaluation points,
A: (evaluation point of x) + (evaluation point of y) ≧ 7, that is, a sufficient amount of reacted phospholipid is extracted, and the extraction amount of unreacted lysophospholipid is small and a high quality phospholipid is obtained. Was
○: 7 points> (x evaluation point) + (y evaluation point) ≧ 6 points, that is, a sufficient amount of reacted phospholipids was extracted,
Δ: 6 points> (x evaluation point) + (y evaluation point) ≧ 5 points, that is, the extracted amount of the reacted phospholipid is insufficient.
X: 5 points> (evaluation point of x) + (evaluation point of y), that is, the extracted amount of the reacted phospholipid is remarkably insufficient.
It was.

(実施例1)
リゾホスファチジルコリン(辻製油社製「SLP−LPC70H」)35mgにオレイン酸(東京化成工業社製)97mg、グリセリン(阪本薬品工業社製)1gを加えて、さらにグリシン(和光純薬工業社製)50mgを加えた。さらにホスホリパーゼA2(ノボザイムズジャパン社製「レシターゼ100S」、130Iu/mg)10mgと1.0mol/l塩化カルシウム(富田製薬社製)溶液2.5μlを加えて60℃で24時間反応させ、オレイン酸が2位に結合したリン脂質(ホスファチジルコリン)を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、オレイン酸含量は39.2重量%であった。
Example 1
97 mg of oleic acid (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1 g of glycerin (manufactured by Sakamoto Pharmaceutical Co., Ltd.) are added to 35 mg of lysophosphatidylcholine (“SLP-LPC70H” manufactured by Sakai Oil Co., Ltd.), and 50 mg of glycine (manufactured by Wako Pure Chemical Industries, Ltd.) is further added. Was added. Furthermore, 10 mg of phospholipase A2 (“Lecitase 100S” manufactured by Novozymes Japan, 130 Iu / mg) and 2.5 μl of 1.0 mol / l calcium chloride (manufactured by Tomita Pharmaceutical) were added and reacted at 60 ° C. for 24 hours. A phospholipid (phosphatidylcholine) having an acid bonded to the 2-position was obtained. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the oleic acid content was 39.2% by weight.

(実施例2)
リゾホスファチジルコリン(辻製油社製「SLP−LPC70」)35mgにDHA(東京化成工業社製)113mg、グリセリン(和光純薬工業社製)1gを加えて、さらにグリシン(和光純薬工業社製)50mgを加えた。さらにホスホリパーゼA2(ノボザイムズジャパン社製「レシターゼ100S」、130Iu/mg)10mgと1.0mol/l塩化カルシウム(和光純薬工業社製)溶液2.5μlを加え、さらに抗酸化剤としてジブチルヒドロキシトルエン3mg(和光純薬工業社製)を加えて60℃で48時間反応させ、高度不飽和脂肪酸(DHA)が2位に結合したリン脂質(ホスファチジルコリン)を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、DHA含量は34.2重量%であった。
(Example 2)
To 35 mg of lysophosphatidylcholine (“SLP-LPC70” manufactured by Sakai Oil Co., Ltd.), 113 mg of DHA (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1 g of glycerin (manufactured by Wako Pure Chemical Industries, Ltd.) are added, and 50 mg of glycine (manufactured by Wako Pure Chemical Industries, Ltd.) is further added. Was added. Further, 10 mg of phospholipase A2 (“Lecitase 100S” manufactured by Novozymes Japan, 130 Iu / mg) and 2.5 μl of 1.0 mol / l calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and dibutylhydroxy as an antioxidant. 3 mg of toluene (manufactured by Wako Pure Chemical Industries, Ltd.) was added and reacted at 60 ° C. for 48 hours to obtain a phospholipid (phosphatidylcholine) having a highly unsaturated fatty acid (DHA) bonded to the 2-position. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the DHA content was 34.2% by weight.

(実施例3)
リゾホスファチジルコリン(辻製油社製SLP−LPC70)35mgにDHA(東京化成工業社製)113mg、グリセリン(和光純薬工業社製)1gを加えて、さらにグリシルグリシン(和光純薬工業社製)60mgを加えた。さらにホスホリパーゼA2(サンヨーファイン社製、粉末リゾナーゼ、53Iu/mg)20mgと1.2mol/l塩化カルシウム(和光純薬工業社製)溶液2.5μlを加え、さらに抗酸化剤としてカテキンを含有するサンカトールNO1(太陽化学社製)3mg、及びアスコルビン酸3mg(和光純薬工業社製)を加えて60℃で48時間反応させ、高度不飽和脂肪酸(DHA)が2位に結合したリン脂質(ホスファチジルコリン)を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、DHA含量は30.7重量%であった。
Example 3
To 35 mg of lysophosphatidylcholine (SLP-LPC70 manufactured by Sakai Oil Co., Ltd.), 113 mg of DHA (manufactured by Tokyo Chemical Industry Co., Ltd.) and 1 g of glycerin (manufactured by Wako Pure Chemical Industries, Ltd.) are added, and further glycylglycine (manufactured by Wako Pure Chemical Industries, Ltd.) 60 mg Was added. Further, 20 mg of phospholipase A2 (manufactured by Sanyo Fine Co., Ltd., powdered lysonase, 53Iu / mg) and 2.5 μl of 1.2 mol / l calcium chloride (manufactured by Wako Pure Chemical Industries, Ltd.) were added, and sancatel containing catechin as an antioxidant was added. Phospholipid (phosphatidylcholine) in which highly unsaturated fatty acid (DHA) is bonded to the 2-position by adding 3 mg of NO1 (manufactured by Taiyo Kagaku) and 3 mg of ascorbic acid (manufactured by Wako Pure Chemical Industries, Ltd.) and reacting at 60 ° C. for 48 hours. Got. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the DHA content was 30.7% by weight.

(実施例4)
DHA113mgの代わりにEPA(ナカライテスク社製)104mgを用い、さらにグリシルグリシン60mgの代わりにグリシン60mgを用いた以外は実施例2と同様にして高度不飽和脂肪酸(EPA)が2位に結合したリン脂質を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、EPA含量は28.5重量%であった。
Example 4
Polyunsaturated fatty acid (EPA) was bonded to the 2-position in the same manner as in Example 2 except that 104 mg of EPA (manufactured by Nacalai Tesque) was used instead of 113 mg of DHA, and 60 mg of glycine was used instead of 60 mg of glycylglycine. A phospholipid was obtained. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the EPA content was 28.5% by weight.

(実施例5)
DHA113mgの代わりにアラキドン酸(シグマアルドリッチジャパン社製)103mgを用い、さらにグリシルグリシン60mgの代わりにグリシン40mgを用いた以外は実施例2と同様にして高度不飽和脂肪酸(アラキドン酸)が2位に結合したリン脂質(ホスファチジルコリン)を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、アラキドン酸含量は32.3重量%であった。
(Example 5)
The polyunsaturated fatty acid (arachidonic acid) was in the second position in the same manner as in Example 2 except that 103 mg of arachidonic acid (manufactured by Sigma-Aldrich Japan) was used instead of 113 mg of DHA, and 40 mg of glycine was used instead of 60 mg of glycylglycine. A phospholipid (phosphatidylcholine) bound to was obtained. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the arachidonic acid content was 32.3% by weight.

(実施例6)
リゾホスファチジルコリン(辻製油社製「SLP−LPC70」)35mgにDHA−50G(日本化学飼料社製、DHA51.8重量%含有)を定法により加水分解して調製したDHA含有脂肪酸105mg、グリセリン(阪本薬品工業社製)1gを加えて、さらにグリシン(昭和電工社製)75mgを加えた。さらにホスホリパーゼA2(サンヨーファイン社製「粉末リゾナーゼ」)20mgを加えて0.6torr(80Pa)で10分減圧して水分を除去した後、0.3mol/l塩化カルシウム(富田製薬社製)溶液10μlを加えて60℃で48時間反応させ、高度不飽和脂肪酸(DHA)が2位に結合したリン脂質(ホスファチジルコリン)を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、DHA含量は15.5重量%であった。
(Example 6)
DHA-containing fatty acid 105 mg prepared by hydrolyzing DHA-50G (manufactured by Nippon Chemical Feed Co., Ltd., containing 51.8% by weight of DHA) in 35 mg of lysophosphatidylcholine (“SLP-LPC70” manufactured by Sakai Oil Co., Ltd.), glycerin (Sakamoto Yakuhin) 1 g of Kogyo Co., Ltd. was added, and 75 mg of glycine (Showa Denko) was further added. Further, 20 mg of phospholipase A2 (“Powder Lysonase” manufactured by Sanyo Fine Co., Ltd.) was added and the water was removed by reducing the pressure at 0.6 torr (80 Pa) for 10 minutes, and then 10 μl of 0.3 mol / l calcium chloride (manufactured by Tomita Pharmaceutical Co., Ltd.) solution. And reacted at 60 ° C. for 48 hours to obtain a phospholipid (phosphatidylcholine) in which a highly unsaturated fatty acid (DHA) was bonded to the 2-position. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the DHA content was 15.5% by weight.

(実施例7)
リゾホスファチジルコリン(辻製油社製「SLP−LPC70」)35mgにDHA−50G(日本化学飼料社製、DHA51.8重量%含有)を定法により加水分解して調製したDHA含有脂肪酸105mg、グリセリン(阪本薬品工業社製)1gを加えて、さらにグリシン(昭和電工社製)37.5mgとアラニン(武蔵野化学研究所社製)37.5mgを加えた。さらにホスホリパーゼA2(サンヨーファイン社製「粉末リゾナーゼ」)20mgを加えて0.6torr(80Pa)で10分減圧して水分を除去した後、0.3mol/l塩化カルシウム(富田製薬社製)溶液10μlを加えて60℃で48時間反応させ、高度不飽和脂肪酸(DHA)が2位に結合したリン脂質(ホスファチジルコリン)を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、DHA含量は17.2重量%であった。
(Example 7)
DHA-containing fatty acid 105 mg prepared by hydrolyzing DHA-50G (manufactured by Nippon Chemical Feed Co., Ltd., containing 51.8% by weight of DHA) in 35 mg of lysophosphatidylcholine (“SLP-LPC70” manufactured by Sakai Oil Co., Ltd.), glycerin (Sakamoto Yakuhin) 1 g of Kogyo Co., Ltd. was added, and 37.5 mg of glycine (manufactured by Showa Denko KK) and 37.5 mg of alanine (manufactured by Musashino Chemical Laboratory) were further added. Further, 20 mg of phospholipase A2 (“Powder Lysonase” manufactured by Sanyo Fine Co., Ltd.) was added and the water was removed by reducing the pressure at 0.6 torr (80 Pa) for 10 minutes, and then 10 μl of 0.3 mol / l calcium chloride (manufactured by Tomita Pharmaceutical Co., Ltd.) solution. And reacted at 60 ° C. for 48 hours to obtain a phospholipid (phosphatidylcholine) in which a highly unsaturated fatty acid (DHA) was bonded to the 2-position. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the DHA content was 17.2% by weight.

(実施例8) ホスファチジルコリン純度向上用リン脂質含有エステル化反応溶液の作製
リゾホスファチジルコリン(辻製油社製「SLP−LPC70」)35mgにDHA−50G(日本化学飼料社製、DHA51.8重量%含有)を定法により加水分解して調製したDHA含有脂肪酸30mg、グリセリン(阪本薬品工業社製)1gを加えて、さらにグリシン(昭和電工社製)37.5mgとアラニン(武蔵野化学研究所社製)37.5mgを加えた。さらにホスホリパーゼA2(サンヨーファイン社製「粉末リゾナーゼ」)20mgを加え、さらに0.5mol/l塩化カルシウム(富田製薬社製)溶液6μlを加え、0.6torr(80Pa)で10分減圧して水分を除去し、50℃で24時間反応させ、ホスファチジルコリン純度向上用のリン脂質含有エステル化反応溶液を得た。該反応液中に含まれるリン脂質、及びリゾリン脂質中のDHA含量は15.3重量%であった。
(Example 8) Preparation of phospholipid-containing esterification reaction solution for improving phosphatidylcholine purity 35 mg of lysophosphatidylcholine (“SLP-LPC70” manufactured by Sakai Oil Co., Ltd.) and DHA-50G (manufactured by Nippon Chemical Feed Co., Ltd., containing 51.8% by weight of DHA) 30 mg of DHA-containing fatty acid prepared by hydrolyzing the above and 1 g of glycerin (manufactured by Sakamoto Yakuhin Kogyo Co., Ltd.), 37.5 mg of glycine (manufactured by Showa Denko KK) and alanine (manufactured by Musashino Chemical Laboratory) 5 mg was added. Furthermore, 20 mg of phospholipase A2 (“Powder Lysonase” manufactured by Sanyo Fine Co., Ltd.) was added, 6 μl of 0.5 mol / l calcium chloride (manufactured by Tomita Pharmaceutical Co., Ltd.) solution was added, and the water was reduced by reducing the pressure at 0.6 torr (80 Pa) for 10 minutes. The resultant was removed and reacted at 50 ° C. for 24 hours to obtain a phospholipid-containing esterification reaction solution for improving phosphatidylcholine purity. The DHA content in the phospholipid and lysophospholipid contained in the reaction solution was 15.3% by weight.

(比較例1)
グリシンを用いなかった以外は実施例1と同様にしてオレイン酸が2位に結合したリン脂質を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、オレイン酸含量は19.4重量%であった。
(Comparative Example 1)
A phospholipid having oleic acid bound to the 2-position was obtained in the same manner as in Example 1 except that glycine was not used. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the oleic acid content was 19.4% by weight.

(比較例2)
グリシルグリシンを用いなかった以外は実施例3と同様にして高度不飽和脂肪酸(DHA)が2位に結合したリン脂質を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、DHA含量は12.9重量%であった。
(Comparative Example 2)
A phospholipid having a highly unsaturated fatty acid (DHA) bound to the 2-position was obtained in the same manner as in Example 3 except that glycylglycine was not used. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the DHA content was 12.9% by weight.

(比較例3)
グリシンを用いず、水を60μl加えた以外は実施例4と同様にして高度不飽和脂肪酸(EPA)が2位に結合したリン脂質を得た。得られたリン脂質の及びリゾリン脂質中の脂肪酸組成において、EPA含量は8.9重量%であった。
(Comparative Example 3)
A phospholipid having a highly unsaturated fatty acid (EPA) bound to the 2-position was obtained in the same manner as in Example 4 except that 60 μl of water was added without using glycine. In the fatty acid composition of the obtained phospholipid and lysophospholipid, the EPA content was 8.9% by weight.

(比較例4)
グリシンを用いなかった以外は実施例5と同様にして高度不飽和脂肪酸(アラキドン酸)が2位に結合したリン脂質を得た。得られたリン脂質及びリゾリン脂質中の脂肪酸組成において、アラキドン酸含量は5.5重量%であった。
(Comparative Example 4)
A phospholipid having a highly unsaturated fatty acid (arachidonic acid) bonded to the 2-position was obtained in the same manner as in Example 5 except that glycine was not used. In the fatty acid composition in the obtained phospholipid and lysophospholipid, the arachidonic acid content was 5.5% by weight.

(比較例5)
グリシンを用いなかったこと以外は実施例6と同様にして高度不飽和脂肪酸(DHA)が2位に結合したリン脂質を得た。得られたリン脂質の、及びリゾリン脂質中の脂肪酸組成において、DHA含量は4.4重量%であった。
(Comparative Example 5)
A phospholipid having a highly unsaturated fatty acid (DHA) bound to the 2-position was obtained in the same manner as in Example 6 except that glycine was not used. In the fatty acid composition of the obtained phospholipid and in the lysophospholipid, the DHA content was 4.4% by weight.

(比較例6)
グリシン及びアラニンを用いなかったこと以外は実施例8と同様にして高度不飽和脂肪酸(DHA)が2位に結合したリン脂質を得た。得られたリン脂質の、及びリゾリン脂質中の脂肪酸組成において、DHA含量は7.6重量%であった。
(Comparative Example 6)
A phospholipid in which a highly unsaturated fatty acid (DHA) was bonded to the 2-position was obtained in the same manner as in Example 8 except that glycine and alanine were not used. In the fatty acid composition of the obtained phospholipid and lysophospholipid, the DHA content was 7.6% by weight.

(実施例9) アセトン抽出
実施例8で得られた反応液100mgにアセトン100μlを加えて分液し、アセトン層(上層)を分取する操作を2回繰り返した。またアセトン層と分別した下層にクロロホルム−メタノール(v/v=2:1)を200μl加え、飽和塩化ナトリウム水溶液300μlを加えて分液してクロロホルム−メタノール層(アセトン層と分別した下層)を抽出した。アセトン層(上層)とクロロホルム−メタノール層(アセトン層と分別した下層)についてそれぞれTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Example 9) Acetone extraction The operation of adding 100 μl of acetone to 100 mg of the reaction solution obtained in Example 8 for liquid separation and separating the acetone layer (upper layer) was repeated twice. In addition, 200 μl of chloroform-methanol (v / v = 2: 1) is added to the lower layer separated from the acetone layer, and 300 μl of saturated aqueous sodium chloride solution is added for liquid separation to extract the chloroform-methanol layer (lower layer separated from the acetone layer). did. TLC was performed on the acetone layer (upper layer) and the chloroform-methanol layer (lower layer separated from the acetone layer), respectively, and comprehensive evaluation as an extraction method was also performed. The results are summarized in Table 1.

(実施例10) エタノール+ヘキサン抽出
実施例8で得られた反応液100mgにエタノール50μlを加えて撹拌した後、ヘキサン50μlを加えて分液してヘキサン層(上層)を分取する操作を2回繰り返した。またヘキサン層と分別した下層は、実施例8と同様に処理しそれぞれヘキサン層(上層)、ヘキサン層と分別した下層についてTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Example 10) Ethanol + hexane extraction After adding 50 μl of ethanol to 100 mg of the reaction solution obtained in Example 8 and stirring, 50 μl of hexane was added for liquid separation to separate the hexane layer (upper layer). Repeated times. The lower layer separated from the hexane layer was treated in the same manner as in Example 8, and TLC was performed on the lower layer separated from the hexane layer (upper layer) and the hexane layer, respectively, and an overall evaluation as an extraction method was also performed. The results are summarized in Table 1.

(実施例11) エタノール+アセトン抽出
実施例8で得られた反応液100mgにエタノール25μlを加えて撹拌した後、アセトン75μlを加えて分液してアセトン層(上層)を分取する操作を2回繰り返した。またアセトン層と分別した下層は、実施例8と同様に処理しそれぞれアセトン層(上層)、アセトン層と分別した下層についてTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Example 11) Ethanol + acetone extraction After adding 25 μl of ethanol to 100 mg of the reaction solution obtained in Example 8 and stirring, 75 μl of acetone was added for liquid separation to separate the acetone layer (upper layer). Repeated times. The lower layer separated from the acetone layer was treated in the same manner as in Example 8, and TLC was performed on the acetone layer (upper layer) and the lower layer separated from the acetone layer, respectively, and an overall evaluation as an extraction method was also performed. The results are summarized in Table 1.

(実施例12) エタノール+アセトン/ヘキサン抽出
実施例8で得られた反応液100mgにエタノール100μlを加えて撹拌した後、アセトン50μlとヘキサン50μlの混合溶媒を加えて分液してアセトン/ヘキサン混合溶媒層(上層)を分取する操作を2回繰り返した。またアセトン/ヘキサン混合溶媒層と分別した下層は、実施例8と同様に処理しそれぞれ上層、下層についてTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Example 12) Extraction with ethanol + acetone / hexane After adding 100 μl of ethanol to 100 mg of the reaction solution obtained in Example 8 and stirring, a mixed solvent of 50 μl of acetone and 50 μl of hexane was added for liquid separation, and acetone / hexane mixing was performed. The operation of separating the solvent layer (upper layer) was repeated twice. The lower layer separated from the acetone / hexane mixed solvent layer was treated in the same manner as in Example 8, TLC was performed on the upper layer and the lower layer, respectively, and an overall evaluation as an extraction method was also performed. The results are summarized in Table 1.

(実施例13) エタノール+酢酸エチル抽出
実施例8で得られた反応液100mgにエタノール25μlを加えて撹拌した後、酢酸エチル75μlを加えて分液して酢酸エチル層(上層)を分取する操作を2回繰り返した。酢酸エチル層と分別した下層は、実施例8と同様に処理しそれぞれ酢酸エチル層(上層)、酢酸エチル層と分別した下層についてTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Example 13) Ethanol + ethyl acetate extraction To 100 mg of the reaction solution obtained in Example 8, 25 μl of ethanol was added and stirred, and then 75 μl of ethyl acetate was added and separated to separate the ethyl acetate layer (upper layer). The operation was repeated twice. The lower layer separated from the ethyl acetate layer was treated in the same manner as in Example 8, and TLC was performed on the lower layer separated from the ethyl acetate layer (upper layer) and the ethyl acetate layer, respectively, and an overall evaluation as an extraction method was also performed. The results are summarized in Table 1.

(参考例1)
実施例8で得られた反応液100mgにヘキサン100μlを加えて分液し、ヘキサン層(上層)を分取する操作を2回繰り返した。ヘキサン層と分別した下層は、実施例8と同様に処理し、それぞれヘキサン層(上層)、ヘキサン層と分別した下層についてTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Reference Example 1)
To 100 mg of the reaction solution obtained in Example 8, 100 μl of hexane was added for liquid separation, and the operation of separating the hexane layer (upper layer) was repeated twice. The lower layer separated from the hexane layer was treated in the same manner as in Example 8. TLC was performed on the lower layer separated from the hexane layer (upper layer) and the hexane layer, respectively, and an overall evaluation as an extraction method was also performed. The results are summarized in Table 1.

(参考例2)
実施例8で得られた反応液100mgに酢酸エチル100μlを加えて分液し、酢酸エチル層(上層)を分取する操作を2回繰り返した。酢酸エチル層と分別した下層は、実施例8と同様に処理し、それぞれ酢酸エチル層(上層)、酢酸エチル層と分別した下層についてTLCを行い、抽出法としての総合評価も行った。それらの結果を表1にまとめた。
(Reference Example 2)
The operation of adding 100 μl of ethyl acetate to 100 mg of the reaction solution obtained in Example 8 for liquid separation and separating the ethyl acetate layer (upper layer) was repeated twice. The lower layer separated from the ethyl acetate layer was treated in the same manner as in Example 8. TLC was performed on the lower layer separated from the ethyl acetate layer (upper layer) and the ethyl acetate layer, respectively, and comprehensive evaluation as an extraction method was also performed. The results are summarized in Table 1.

Figure 0005617141
Figure 0005617141


Claims (9)

ホスホリパーゼA2によるリゾリン脂質と脂肪酸のエステル化反応において、該エステル化反応をグリセリン中で行い、当該反応系にアミノ酸及び/又はアミノ酸が3残基以下のペプチドを添加することを特徴とし、前記アミノ酸が、グリシン、アラニン、アスパラギン、グルタミン、イソロイシン、ロイシン、セリン、トレオニン、バリン、フェニルアラニン、チロシンからなる群より選ばれる少なくとも1種であるリン脂質の製造方法。 Phospholipase A2 in the esterification reaction of lysophospholipids and fatty acids by perform the esterification reaction with glycerin, and characterized by amino acid and / or amino acid to the reaction system is added following peptides three residues, said amino acid Is a method for producing phospholipids, which is at least one selected from the group consisting of glycine, alanine, asparagine, glutamine, isoleucine, leucine, serine, threonine, valine, phenylalanine and tyrosine . 前記ペプチドが、グリシン、アラニン、セリンの組み合わせからなる請求項1に記載のリン脂質の製造方法。 The method for producing a phospholipid according to claim 1, wherein the peptide comprises a combination of glycine, alanine and serine. 前記エステル化反応を35℃以上80℃以下で行う請求項1又は2に記載のリン脂質の製造方法。 The method for producing a phospholipid according to claim 1 or 2 , wherein the esterification reaction is performed at 35 ° C or more and 80 ° C or less. 前記リゾリン脂質が大豆由来である請求項1〜の何れかに記載のリン脂質の製造方法。 The method for producing phospholipid according to any one of claims 1 to 3 , wherein the lysophospholipid is derived from soybean. 前記エステル化反応後に、ケトン溶剤を加えてグリセリン溶液層とケトン溶剤層を形成させ、該ケトン溶剤層を分離し、その後ケトン溶剤層中の溶剤を留去した後、脂肪酸を除去してリン脂質を得る請求項1〜何れかに記載のリン脂質の製造方法。 After the esterification reaction, a ketone solvent is added to form a glycerol solution layer and a ketone solvent layer, the ketone solvent layer is separated, and then the solvent in the ketone solvent layer is distilled off, and then the fatty acid is removed to remove phospholipids. The method for producing a phospholipid according to any one of claims 1 to 4, wherein: 前記エステル化反応後に、炭素数4以下のアルコールを加えた後、更に炭化水素溶剤及び/又はケトン溶剤及び/又はエステル溶剤からなる溶剤を加えてグリセリン溶液層と溶剤層を形成させ、該溶剤層を分離し、その後前記溶剤層中の溶剤を留去した後、脂肪酸を除去してリン脂質を得る請求項1〜何れかに記載のリン脂質の製造方法。 After the esterification reaction, an alcohol having 4 or less carbon atoms is added, and a solvent comprising a hydrocarbon solvent and / or a ketone solvent and / or an ester solvent is further added to form a glycerin solution layer and a solvent layer, and the solvent layer The method for producing a phospholipid according to any one of claims 1 to 4, wherein the phospholipid is obtained by removing the fatty acid and then distilling off the solvent in the solvent layer. 前記ケトン溶剤がアセトンである請求項又はに記載のリン脂質の製造方法。 The method for producing a phospholipid according to claim 5 or 6 , wherein the ketone solvent is acetone. 前記炭素数4以下のアルコールがエタノールである請求項に記載のリン脂質の製造方法。 The method for producing a phospholipid according to claim 6 , wherein the alcohol having 4 or less carbon atoms is ethanol. ホスホリパーゼA2によりリン脂質の2位を加水分解して得られたリゾリン脂質を含む反応系にアミノ酸及び/又はアミノ酸が3残基以下のペプチド、及び脂肪酸を混合してから、ホスホリパーゼA2によるリゾリン脂質のエステル化反応を行うことで、リン脂質の2位に脂肪酸を導入する方法であって、前記アミノ酸がグリシン、アラニン、アスパラギン、グルタミン、イソロイシン、ロイシン、セリン、トレオニン、バリン、フェニルアラニン、チロシンからなる群より選ばれる少なくとも1種である方法A reaction system containing lysophospholipid obtained by hydrolyzing the 2-position of phospholipid with phospholipase A2 is mixed with an amino acid and / or a peptide having 3 or less amino acids and a fatty acid, and then lysophospholipid by phospholipase A2 is added. A method of introducing a fatty acid at the 2-position of a phospholipid by carrying out an esterification reaction , wherein the amino acid comprises glycine, alanine, asparagine, glutamine, isoleucine, leucine, serine, threonine, valine, phenylalanine, tyrosine The method which is at least 1 sort chosen from more .
JP2009134235A 2008-08-22 2009-06-03 Method for producing phospholipid Active JP5617141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009134235A JP5617141B2 (en) 2008-08-22 2009-06-03 Method for producing phospholipid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008214560 2008-08-22
JP2008214560 2008-08-22
JP2009134235A JP5617141B2 (en) 2008-08-22 2009-06-03 Method for producing phospholipid

Publications (2)

Publication Number Publication Date
JP2010068799A JP2010068799A (en) 2010-04-02
JP5617141B2 true JP5617141B2 (en) 2014-11-05

Family

ID=42201168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009134235A Active JP5617141B2 (en) 2008-08-22 2009-06-03 Method for producing phospholipid

Country Status (1)

Country Link
JP (1) JP5617141B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8530208B2 (en) 2009-07-06 2013-09-10 Kaneka Corporation Method for producing phospholipid
JP5894377B2 (en) * 2011-06-03 2016-03-30 株式会社カネカ Method for producing phospholipid
JP5477521B1 (en) * 2012-06-13 2014-04-23 株式会社カネカ Method for producing phospholipid-containing composition and phospholipid-containing composition
JP6177862B2 (en) * 2015-12-01 2017-08-09 株式会社カネカ Method for producing phospholipid
JPWO2021070969A1 (en) * 2019-10-11 2021-04-15

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677506B2 (en) * 1987-03-23 1994-10-05 キユーピー株式会社 Method for producing phospholipid-treated product
JPH05236974A (en) * 1991-03-29 1993-09-17 Nichiro Corp Production of highly unsaturated fatty acid-containing phospholipid

Also Published As

Publication number Publication date
JP2010068799A (en) 2010-04-02

Similar Documents

Publication Publication Date Title
JP4978751B2 (en) Method for producing phospholipid
JP3905538B2 (en) Methods for reducing environmental pollutants in oil or fat, volatile environmental pollutant reducing working fluids, health supplements and animal feed products
JP5111363B2 (en) Method for producing highly unsaturated fatty acid concentrated oil
DK2172558T3 (en) Process for producing an EPA-enriched oil and DHA-enriched oil
JP4271575B2 (en) Functional acylglycerides
JP5617141B2 (en) Method for producing phospholipid
US10160984B2 (en) Method for producing phospholipid-containing composition, and phospholipid-containing composition
EP1981982A1 (en) Microbial fermentation-based production of phospholipids containing long-chain polyunsaturated fatty acids as their constituents
JP5894377B2 (en) Method for producing phospholipid
JP6177862B2 (en) Method for producing phospholipid
JP4036596B2 (en) Lipids containing 5,11,14-eicosatrienoic acid and / or 5,11,14,17-eicosatetraenoic acid and method for producing the same
Yamamoto et al. Lipase-catalyzed preparation of phospholipids containing n-3 polyunsaturated fatty acids from soy phospholipids
JP5041790B2 (en) Process for producing phosphatidylserine having polyunsaturated fatty acid as a constituent
WO2000018944A1 (en) Triacylglycerols of enriched cla content
JP2016053156A (en) Production method of polyunsaturated fatty acid-binding phospholipid
CN115478083B (en) Method for preparing phospholipid type polyunsaturated fatty acid by solvent-free system
JP2008125365A (en) Method for preparing high-purity plasmologen
Bandi et al. Substrate specificity of enzymes catalyzing the biosynthesis of ionic alkoxylipids from alcohols
JP6614581B2 (en) Phospholipid type α-linolenic acid-containing composition
CN106714566A (en) Composition
JP2006340733A (en) Lipid containing n-4 system and/or n-7 system highly unsaturated fatty acids and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140829

R150 Certificate of patent or registration of utility model

Ref document number: 5617141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250