JP5615499B2 - Early stabilization method for waste treatment plant - Google Patents

Early stabilization method for waste treatment plant Download PDF

Info

Publication number
JP5615499B2
JP5615499B2 JP2009022516A JP2009022516A JP5615499B2 JP 5615499 B2 JP5615499 B2 JP 5615499B2 JP 2009022516 A JP2009022516 A JP 2009022516A JP 2009022516 A JP2009022516 A JP 2009022516A JP 5615499 B2 JP5615499 B2 JP 5615499B2
Authority
JP
Japan
Prior art keywords
solidification
landfill
incineration residue
retarder
waste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009022516A
Other languages
Japanese (ja)
Other versions
JP2010179196A (en
Inventor
正明 海老原
正明 海老原
定光 清永
定光 清永
康治 又吉
康治 又吉
勝幸 落合
勝幸 落合
利幸 寺嶋
利幸 寺嶋
芳久 金田
芳久 金田
清水 剛
剛 清水
利郎 押方
利郎 押方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Miyoshi Oil and Fat Co Ltd
Fukuoka University
Original Assignee
Taisei Corp
Miyoshi Oil and Fat Co Ltd
Fukuoka University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp, Miyoshi Oil and Fat Co Ltd, Fukuoka University filed Critical Taisei Corp
Priority to JP2009022516A priority Critical patent/JP5615499B2/en
Publication of JP2010179196A publication Critical patent/JP2010179196A/en
Application granted granted Critical
Publication of JP5615499B2 publication Critical patent/JP5615499B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Processing Of Solid Wastes (AREA)

Description

本発明は、廃棄物処理場の早期安定化方法に関するものである。   The present invention relates to an early stabilization method for a waste treatment plant.

一般廃棄物最終処分場と産業廃棄物の管理型最終処分場のような最終処分場は、法で定められた廃止基準を満たさなければ廃止できない。そのため、浸出水処理施設を長期間運転しなければならない。
ところがこの廃止基準のハードルがかなり高く、通常の処分場では、埋め立て終了後廃止できるまでには20年とも30年以上も掛かるとも言われている。
このため、(1)管理者は埋め立て終了後も長期に亘って水処理施設を稼動させ続ける必要があり維持管理費が嵩む。(2)長期に亘って多くの有害物質等を含んだ浸出水が埋立地から発生し続けるため、周辺住民は長期に亘って環境リスクを負い続ける。(3)廃止までに長期間必要になるため、住民サービスの1つである埋立地の本格的な跡地利用が図れるまで長期間待たされる。等々の課題があり、これが最終処分場の新規立地に際して地域住民の了解が得られない大きな原因の1つにもなっている。
一方わが国では、廃棄物の焼却処理が進んでおり、埋立廃棄物の無機化が進んでいる。
そのために埋立廃棄物の安定化に寄与する洗出しの必要性が増加し、その代わり微生物分解の必要性は減じている。
その中で、洗い出しに着目すると特に被覆型処分場では、浸出水処理施設を小型化するため散水量を少なめに設定している場合が多く、効率的な洗出しが求められている。
さらに焼却工場では、塩化ビニール等を燃やした時に発生する塩化水素ガスを除去する目的で、廃ガス処理装置(バグフィルター)の直前に消石灰や生石灰を大量に投入している。
そのことから、未反応の消石灰や生石灰が焼却残渣に混入したまま排出される。
これが埋め立て後に、埋立地内の各所で不均質に固化して、有害物質等の洗出しを阻害する要因になっている。
ここで、コンクリートのように強度のある焼却灰の固化体が得られれば、焼却残渣中に含まれる重金属類等の有害物質も固化体中に封じ込められ、浸出水等に流出する恐れがなく、有害物質等の安定化に悪影響を及ぼさない。
Final disposal sites such as general waste final disposal sites and industrial waste management-type final disposal sites cannot be abolished unless they meet the decommissioning standards stipulated by law. Therefore, the leachate treatment facility must be operated for a long time.
However, the hurdles of this abolition standard are quite high, and it is said that it will take more than 30 years for both 20 years before it can be abolished after landfill.
For this reason, (1) it is necessary for the administrator to continue operating the water treatment facility for a long period of time even after the landfill is completed, which increases the maintenance cost. (2) Since leachate containing many harmful substances, etc. continues to be generated from landfills over a long period of time, neighboring residents continue to bear environmental risks for a long period of time. (3) Since it will be necessary for a long time before the abolition, it will wait for a long time until full-scale use of the landfill, which is one of the residents' services, can be planned. This is one of the major reasons why local residents do not get the consent of the new landfill site.
On the other hand, incineration of waste is progressing in Japan, and mineralization of landfill waste is progressing.
This increases the need for washout, which contributes to the stabilization of landfill waste, and instead reduces the need for microbial degradation.
In particular, focusing on washing out, especially in covered disposal sites, the amount of sprinkling is often set small in order to reduce the size of the leachate treatment facility, and efficient washing is required.
Furthermore, incinerators use a large amount of slaked lime and quick lime just before waste gas treatment equipment (bag filters) for the purpose of removing hydrogen chloride gas generated when vinyl chloride or the like is burned.
Therefore, unreacted slaked lime and quicklime are discharged while mixed in the incineration residue.
This has become a factor that, after reclamation, solidifies inhomogeneously at various locations within the landfill to hinder washing out of harmful substances.
Here, if a solidified body of incineration ash that is strong like concrete is obtained, harmful substances such as heavy metals contained in the incineration residue are also contained in the solidified body, and there is no risk of flowing out into leachate, etc. Does not adversely affect the stabilization of harmful substances.

特開2004−74009号公報。Japanese Patent Application Laid-Open No. 2004-74009.

従来の廃棄物処理場の早期安定化方法としては、WOWシステムと称する埋立前に焼却残渣を洗浄する方法がある。
この方法では、大規模な洗浄装置が必要になり、かつ洗浄水を多量に発生するためにその水処理費用も膨大なものとなる。
それとは別に、降雨の浸透を良くするため、埋立地の所々に縦型の砕石層を設ける埋立方法がある。
この方法では、砕石層を埋立地内部に設けた分だけ廃棄物の埋立量を減少させてしまい、産業廃棄物の管理型最終処分場では、その分だけ埋立処分費用の収入が減少して経済性を悪くするという問題がある。
As a conventional method for early stabilization of a waste disposal site, there is a method of cleaning incineration residue before landfill called a WOW system.
In this method, a large-scale cleaning apparatus is required, and since a large amount of cleaning water is generated, the cost of water treatment is enormous.
Apart from that, there is a landfill method in which vertical crushed stone layers are provided at various landfill sites to improve rainfall penetration.
This method reduces the amount of waste landfilled by the amount of crushed stone provided in the landfill, and the landfill disposal income is reduced by that amount at the managed final disposal site for industrial waste. There is a problem of worsening sex.

上記のような課題を解決するために、本発明の廃棄物処理場の早期安定化方法は、消石灰や生石灰を含む焼却残渣に、固化を遅らせる固化遅延剤を添加して埋立期間中に焼却残渣が固化するのを防止し、焼却残渣から有害物質の均質な洗い出しを図る廃棄物処理場の早期安定化方法であって、固化を遅らせる固化遅延剤として、糖類を含む産業廃棄物である焼酎廃液を採用したことを特徴とするものである。 In order to solve the problems as described above, the method for early stabilization of a waste treatment plant of the present invention adds a solidification retarder that delays solidification to an incineration residue containing slaked lime or quicklime, and incineration residue during the landfill period Is a method for early stabilization of a waste treatment plant that prevents the solidification of toxic substances from incineration residues and is an industrial waste containing sugar as a solidification retarder that delays solidification. It is characterized by having adopted.

本発明の廃棄物処理場の早期安定化方法は以上説明したようになるから次のような効果を得ることができる。
<1> 埋め立てた後の焼却残渣の固化防止が図れるため、安定化を促進して、廃止基準を満たすまでの期間を短縮できる。したがって埋立終了後の維持管理コストを大幅に削減可能である。
<2> 埋め立てた後に焼却灰が固化するのを防止することで、埋立廃棄物の上面に降った雨水や散水用の水の浸透がより均一になり、有害物質等の洗出しを比較的良い状態で確保できる。
<3> この結果、埋立地の安定化を促進し、埋立終了後、廃止基準を満たすまでの期間を短縮することができる。
<4> 実施に際して特に大きな設備の設置を必要としない。すなわち、全体設備からすると問題にならない程のわずかな追加設備によって実施が可能である。その際に使用する固化遅延剤のコストも、例えば廃止期間が埋立終了後20年間から10年間に短縮できたとすると、その10年間に浸出水の処理等に掛かるコストの1/10以下ですみコスト的にも有利である。
<5> 工程中で固化遅延剤を投入するが、その量は焼却残渣に含まれる石灰(Ca)濃度に対する重量比で0.2%程度であるので、埋立地の全体埋立量からすると全く無視できる量である。したがって埋立容量の減少は殆ど生じない。
<6> 埋立焼却残渣の量に比較して僅かな量の固化遅延剤の投入ですみ、費用の面でも経済的である。
<7> 浸出水処理施設に対して特に負荷を増加させない。
<8> 廃棄物最終処分場の廃止が早くできるため、地域住民が負う環境負荷がその分軽減できると共に、本格的な跡地利用が速やかに行えるようになり、最終処分場設置に対する地域住民の了解が得やすくなる。
Since the method for early stabilization of a waste treatment plant of the present invention is as described above, the following effects can be obtained.
<1> Since the incineration residue after landfill can be prevented from solidifying, it is possible to promote stabilization and shorten the period until the abolition standard is satisfied. Therefore, the maintenance cost after landfill can be greatly reduced.
<2> By preventing the incineration ash from solidifying after landfill, the penetration of rainwater and water for watering on the top surface of landfill waste becomes more uniform, and washing out harmful substances, etc. is relatively good Can be secured in the state.
<3> As a result, stabilization of the landfill site can be promoted, and the period until the abolition standard is satisfied after the completion of landfill can be shortened.
<4> It is not necessary to install large facilities for the implementation. In other words, it can be implemented with a few additional facilities that do not pose a problem for the entire facility. The cost of the solidification retarder used at that time is also less than 1/10 of the cost of leachate treatment, etc., if the abolition period can be shortened from 20 years to 10 years after the completion of landfill. This is also advantageous.
<5> A solidification retarder is added in the process, but the amount is about 0.2% by weight with respect to the lime (Ca) concentration contained in the incineration residue. It is. Therefore, the landfill capacity is hardly reduced.
<6> Compared to the amount of landfill incineration residue, a small amount of solidification retarder is required, which is economical in terms of cost.
<7> Do not increase the load on the leachate treatment facility.
<8> Since the abandonment of the final disposal site can be done quickly, the environmental burden on the local residents can be reduced accordingly, and full-scale use of the site can be made promptly. Is easier to obtain.

焼却残渣に遅延剤を混合した時の固化状況の比較図。The comparison figure of the solidification situation when a retarder is mixed with incineration residue. 焼却残渣固化材との混合・攪拌方法の一例の説明図。Explanatory drawing of an example of a mixing and stirring method with an incineration residue solidification material. 焼却残渣固化材との混合方法の他の例の説明図。Explanatory drawing of the other example of the mixing method with an incineration residue solidification material.

以下図面を参照にしながら本発明の好適な実施の形態を詳細に説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.

<1>基本の構成。
本発明は、消石灰や生石灰を含む焼却残渣に固化遅延剤を添加することで、埋立期間中に焼却残渣が固化するのを防止し、焼却残渣の早期安定化を図る方法である。
埋め立てた後に始まる焼却残渣の固化を防止できれば、降雨や散水用の水の埋立地内部への浸透流れに伴う水の道が出来にくく、均等な流れになるので洗出し効果が良くなり、焼却残渣に含まれる有害物質等を早期に洗い流して安定化を早めることができる。
消石灰や生石灰を含む焼却残渣は10%〜40%の石灰分を含有しており、これが水和反応により固化することになる。
そこで、この固化を、薬剤等を投入することで防止することが本発明の特徴である。
固化を遅らせる遅延剤としては、コンクリート固化遅延剤、糖類を含む産業廃棄物、たとえば焼酎廃液やバガス等などを採用することができる。
<1> Basic configuration.
The present invention is a method for preventing the incineration residue from solidifying during the landfill period by adding a solidification retarder to the incineration residue containing slaked lime and quicklime, thereby achieving early stabilization of the incineration residue.
If solidification of the incineration residue that begins after landfilling can be prevented, it will be difficult to create a uniform water flow due to the infiltration flow of rainwater and water for infusion into the landfill site, resulting in an even flow, and the incineration residue will be improved. It is possible to quickly stabilize the toxic substances contained in the shampoo.
The incineration residue containing slaked lime and quick lime contains 10% to 40% lime, which is solidified by the hydration reaction.
Therefore, it is a feature of the present invention to prevent this solidification by introducing a drug or the like.
As the retarder for delaying solidification, concrete solidification retarder, industrial waste containing saccharides such as shochu waste liquid, bagasse and the like can be employed.

<2>供給手段。
焼却残渣へコンクリート固化遅延剤を供給する手段としては次の方法を採用することができる。
(1)埋め立て前の焼却残渣に必要量の固化遅延剤を投入し、混合・撹拌してから埋め立てる方法。
(2)埋め立て前の焼却残渣に必要量の固化遅延剤を水等に溶解して散水し、埋め立てる方法。
(3)焼却残渣を埋め立てた後、散水用の水に固化遅延剤を必要な濃度になるよう混入させ、これを焼却残渣に散水する方法。
本発明の目的とする安定化は、いずれの方法を用いても同様の効果が得られる。
特に被覆型処分場の場合、散水設備が必ず設置されているので、焼却残渣埋め立てた後に固化遅延剤を散水する方法であれば、新たな設備を設けることなく本発明を実施できる。
<2> Supply means.
The following method can be adopted as means for supplying the concrete solidification retarder to the incineration residue.
(1) A method in which a necessary amount of a solidification retarder is added to the incineration residue before landfilling, mixed and stirred, and then landfilled.
(2) A method in which a necessary amount of a solidification retarder is dissolved in water or the like and sprayed to incineration residue before landfilling, and then landfilled.
(3) A method in which after incineration residue is landfilled, a solidification retarder is mixed in water for sprinkling to a required concentration, and this is sprayed on the incineration residue.
The stabilization which is the object of the present invention can achieve the same effect regardless of which method is used.
In particular, in the case of a covered-type disposal site, watering equipment is always installed, so that the present invention can be implemented without providing new equipment as long as it is a method of watering the solidification retarder after landfilling the incineration residue.

<3>比較例。
本発明の早期安定化方法は、焼却残渣に固化遅延剤を加えることで、埋め立てた後の固化を遅らせることを特徴としている。
そのための比較した実験結果を図1に示すが、これは焼却残渣に5種類の固化遅延剤を混合して強度を測定した実験結果である。
図1で示す遅延剤は次の通りである。
遅延剤A:T-21(竹本油脂)
遅延剤B:3GS-08024(竹本油脂、開発途上品)
遅延剤C:ジェットセッター(住友大阪セメント)
遅延剤D:D100セッター(電気化学工業)
遅延剤E:ダーレックスF-1(グレースケミカル)
この図から、固化遅延剤を石灰分に対して重量比で約0.2%程度混入することで、固化遅延剤を添加しなかったブランクと比較して強度が発現しておらず、固化しないことがわかる。
なお、実験結果では余り大きな強度差としては現れていないが、元々コンクリート等と異なり、焼却残渣には不純物が多く含まれる為それ自身では高い圧縮強度で固化しないので、おのずと固化していない物との差は小さくなる。
本発明の早期安定化方法では、固化するかしないかが重要であり、特に固化遅延剤Eを混合したケースでは全く固化していない。
更に、固化遅延剤Bは他のものと比べて混合比が1/10と少なくなっているが、この薬剤は開発中のもので、それ自身の濃度が他の物と比較して10倍高いためである。
固化遅延剤Bでは、添加量が0.2%を超えると粘性が増してしまうので、実際には0.2%程度が良いと考えられるが、その量に限られるものではない。
<3> Comparative example.
The early stabilization method of the present invention is characterized by delaying solidification after landfill by adding a solidification retarder to the incineration residue.
FIG. 1 shows the experimental results compared for this purpose, which are experimental results obtained by measuring the strength by mixing incineration residues with five kinds of solidification retarders.
The retarder shown in FIG. 1 is as follows.
Delay agent A: T-21 (Takemoto Yushi)
Retardant B: 3GS-08024 (Takemoto oil and fat, developing product)
Retarder C: Jet Setter (Sumitomo Osaka Cement)
Delay agent D: D100 setter (Electrochemical Industry)
Retarder E: Darrex F-1 (Grace Chemical)
From this figure, the solidification retarder is mixed with about 0.2% by weight with respect to the lime content, so that the strength is not developed compared with the blank to which the solidification retarder is not added and does not solidify. I understand that.
In addition, although it does not appear as a large difference in strength in the experimental results, unlike in concrete, the incineration residue contains a lot of impurities, so it does not solidify with high compressive strength by itself. The difference between is small.
In the early stabilization method of the present invention, whether or not to solidify is important, and in particular, in the case where the solidification retarder E is mixed, it is not solidified at all.
Furthermore, the setting retarder B has a mixing ratio as low as 1/10 compared to the other, but this drug is under development and its own concentration is 10 times higher than the other. Because.
In the case of the solidification retarder B, the viscosity increases when the addition amount exceeds 0.2%. Therefore, it is considered that about 0.2% is actually good, but the amount is not limited.

<4>次に本発明の早期安定化方法の実施例を説明する。 <4> Next, an example of the early stabilization method of the present invention will be described.

<5>固化遅延剤の量の決定。
まず最初の工程で、焼却残渣に含まれる石灰分(Ca濃度)を把握し、投入する固化遅延剤の量を決定する。
その際に、焼却工場で定期的に分析しているのでそのデータを基に石灰分を把握して、固化遅延剤の投入量を決定することもできる。あるいは現場ごとに独自に分析することもできる。
投入した固化遅延剤は、浸出水中に流出するので、浸出水の水質を分析してその分析結果をフィードバックしながら投入しても良い。
<5> Determination of amount of solidification retarder.
First, in the first step, the lime content (Ca concentration) contained in the incineration residue is grasped, and the amount of the solidification retarder to be introduced is determined.
At that time, since it is regularly analyzed at the incineration plant, it is possible to grasp the lime content based on the data and determine the input amount of the solidification retarder. Alternatively, each site can perform its own analysis.
Since the charged solidification retarder flows out into the leachate, it may be added while analyzing the quality of the leachate and feeding back the analysis results.

<6>固化遅延剤の投入。
前工程で固化遅延剤の投入量が決定したら、その量に応じて、焼却残渣に固化遅延剤を投入する。
この方法は前述のとおり、現場の状況に応じて少なくとも3種類の方法を採用することができる。
以下に三種類の方法を説明する。
<6> Addition of solidification retarder.
When the amount of the solidification retarding agent is determined in the previous step, the solidification retarding agent is thrown into the incineration residue according to the amount.
As described above, this method can employ at least three types of methods according to the situation at the site.
Three types of methods will be described below.

<7>埋め立て前に攪拌する方法。
埋め立て前の焼却残渣に、前工程で決定した必要量の固化遅延剤を投入し、混合・攪拌してから、埋立地に搬入して埋め立てを行う。
すなわち、埋立地に搬入されてきた焼却残渣に、所定の固化遅延剤を水に溶解して投入する。
焼却残渣と固化遅延剤の混合・攪拌は、例えば図2に示すように、バックホー1に取り付けたスケルトンバケット3で切り返して混合・攪拌する方法を採用することができる。
こうして混合・攪拌した後の焼却残渣を、従来の方法と同様の方法で埋め立てを行う。
なお、埋立地内で固化遅延剤を混合する方法について説明したが、これに限らず、発生源である焼却施設、その他の場所で混合する方法を採用することもできる。
さらにここでは、液状の固化遅延剤を前提に説明したが、これに限らず、粉末や粒状の固化遅延剤でも良く、また水に溶かさず直接焼却残渣に混合する方法を採用することもできる。
また図2では、バックホー1のスケルトンバケット2による混合方法について説明したが、ドラムミキサーやトロンメルを使う方法等、他の混合方法を採用することもできる。
なお、トロンメルは粒度選別を目的とするものであるがスケルトンバケットと同様に混合する機能も有している。
さらに、不燃破砕ごみ等と一緒に混合しても良い。
不燃破砕ごみ等と一緒に混合した場合、透水性等がさらに良くなり、良い効果が得られる可能性もある。
<7> A method of stirring before landfill.
The necessary amount of solidification retarder determined in the previous process is put into the incineration residue before landfill, mixed and stirred, and then transported to the landfill for landfill.
That is, a predetermined solidification retarder is dissolved in water and put into the incineration residue carried into the landfill.
For mixing and stirring the incineration residue and the solidification retarder, for example, as shown in FIG. 2, a method of turning back and mixing and stirring with a skeleton bucket 3 attached to the backhoe 1 can be adopted.
The incineration residue after mixing and stirring in this manner is landfilled by the same method as the conventional method.
In addition, although the method to mix the solidification retarder in a landfill was demonstrated, it is not restricted to this, The method of mixing in the incineration facility which is a generation source, and other places can also be employ | adopted.
Furthermore, although it demonstrated on the premise of a liquid solidification retarder here, not only this but a powder or a granular solidification retarder may be sufficient, and the method of mixing with an incineration residue directly without melt | dissolving in water can also be employ | adopted.
Although the mixing method using the skeleton bucket 2 of the backhoe 1 has been described with reference to FIG. 2, other mixing methods such as a method using a drum mixer or a trommel can be employed.
Trommel is intended for particle size selection, but has a function of mixing in the same manner as a skeleton bucket.
Furthermore, you may mix with noncombustible crushing garbage etc.
When mixed together with incombustible crushed garbage, water permeability and the like are further improved, and a good effect may be obtained.

<8>埋め立て前に散水する方法。
この方法では、埋め立て前の焼却残渣に必要量の固化遅延剤を水等に溶解して散水したのち、埋め立てを行う。
たとえば、図3に示すように、門型の散水設備3を設置し、焼却残渣を埋立地に搬入するトラックの荷台4の上に向けて門型散水設備3のシャワー装置から粉塵発生防止を兼ねて固化遅延剤を混合した水を散水し、その後に埋立地まで搬送して投棄する。
投棄した焼却残渣は従来と同様の方法で埋め立てる。
埋め立てる場合、投入した焼却残渣を直ぐに埋め立てても良く、前記の実施例のように、スケルトンバケット2などを使用して混合・攪拌作業を行ってから埋め立てることもできる。
<8> A method of watering before landfill.
In this method, a necessary amount of a solidification retarder is dissolved in water or the like and sprayed on the incineration residue before landfill, and then landfill is performed.
For example, as shown in FIG. 3, a gate-type watering facility 3 is installed, and dust generation is also prevented from a shower device of the gate-type watering facility 3 toward a truck bed 4 for bringing incineration residue into a landfill. Sprinkle the water mixed with the set retarder, then transport it to the landfill and discard it.
The discarded incineration residue is landfilled in the same way as before.
In the case of landfilling, the incineration residue that has been put in may be immediately landfilled, or as in the above-described embodiment, it may be landed after mixing and stirring operations using the skeleton bucket 2 or the like.

<9>埋め立て後に散水する方法。
この方法では、散水用の水に固化防止剤を混入させておき、焼却残渣を埋め立てた後に散水によって固化遅延剤の必要量を焼却残渣に供給して行うものである。
このように、固化遅延剤を散水用の水に混ぜ、埋立地への散水と同時に、固化遅延剤溶液を散水する。
その場合に、散水用の支柱から周囲にシャワー状に散水する設備において、各支柱毎に散水範囲を決めておけば、場所毎に固化遅延剤の投入量を設定することができる。
またこの場合、前述したように、浸出水の分析結果から固化遅延剤の投入
量をコントロールする方法を採用することもできる。
<9> A method of watering after landfill.
In this method, a solidification inhibitor is mixed in water for watering, and after the incineration residue is landfilled, the necessary amount of the solidification retarder is supplied to the incineration residue by watering.
Thus, a solidification retarder is mixed with water for watering, and a solidification retarder solution is sprinkled simultaneously with watering to a landfill.
In that case, if the watering range is determined for each strut in the facility for sprinkling water around the sprinkling strut, the amount of the solidification retarder can be set for each place.
In this case, as described above, a method of controlling the input amount of the solidification retarder from the analysis result of the leachate can also be adopted.

1:バックホー
2:スケルトンバケット
3:散水設備
4:荷台
1: Backhoe 2: Skeleton bucket 3: Sprinkling equipment 4: Loading platform

Claims (1)

消石灰や生石灰を含む焼却残渣に、
固化を遅らせる固化遅延剤を添加して
埋立期間中に焼却残渣が固化するのを防止し、焼却残渣から有害物質の均質な洗い出しを図る廃棄物処理場の早期安定化方法であって、
固化を遅らせる固化遅延剤として、糖類を含む産業廃棄物である焼酎廃液を採用した、
廃棄物処理場の早期安定化方法。
Incineration residue containing slaked lime and quicklime
An early stabilization method for a waste treatment plant that adds a solidification retarding agent that delays solidification to prevent solidification of the incineration residue during the landfill period and to uniformly wash out harmful substances from the incineration residue ,
As a solidification retarder that delays solidification, we adopted shochu liquor, an industrial waste containing sugars.
An early stabilization method for waste disposal sites.
JP2009022516A 2009-02-03 2009-02-03 Early stabilization method for waste treatment plant Active JP5615499B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009022516A JP5615499B2 (en) 2009-02-03 2009-02-03 Early stabilization method for waste treatment plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009022516A JP5615499B2 (en) 2009-02-03 2009-02-03 Early stabilization method for waste treatment plant

Publications (2)

Publication Number Publication Date
JP2010179196A JP2010179196A (en) 2010-08-19
JP5615499B2 true JP5615499B2 (en) 2014-10-29

Family

ID=42761155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009022516A Active JP5615499B2 (en) 2009-02-03 2009-02-03 Early stabilization method for waste treatment plant

Country Status (1)

Country Link
JP (1) JP5615499B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012081419A (en) * 2010-10-12 2012-04-26 Taisei Corp Early stabilization method for final disposal site
JP5804600B2 (en) * 2012-01-13 2015-11-04 大成建設株式会社 Early stabilization method for final disposal site

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3369620B2 (en) * 1993-02-10 2003-01-20 協同組合テクノ・クリーン Consolidation method of incineration ash
JP3274376B2 (en) * 1996-12-12 2002-04-15 脇田 吉広 Agglomerating agent for mud, solidifying agent using it
JPH10272435A (en) * 1997-03-28 1998-10-13 Nippon Kayaku Co Ltd Treating agent for heavy metal-containing waste product and stabilization treatment of heavy metal-containing waste product
JP3919892B2 (en) * 1997-08-29 2007-05-30 ニチハ株式会社 Manufacturing method of wood cement board
JP4280318B2 (en) * 1998-03-06 2009-06-17 株式会社エーアンドエーマテリアル Manufacturing method of plant fiber cement molding
JP2000007404A (en) * 1998-06-23 2000-01-11 Lion Corp Additive for ground improvement
JP2001150417A (en) * 1999-11-29 2001-06-05 Daicel Huels Ltd Concrete curing retarding resin composition and its manufacturing method
EP1494990A4 (en) * 2002-03-13 2010-05-26 Grace W R & Co Beneficiated water reducing compositions
JP4165247B2 (en) * 2003-02-18 2008-10-15 株式会社大林組 Incineration ash stabilization method
JP2004337675A (en) * 2003-05-13 2004-12-02 Taisei Corp Method for quickly stabilizing waste in waste disposal site
JP2006015190A (en) * 2004-06-30 2006-01-19 Taiheiyo Cement Corp Method for treating fly ash
JP2006279525A (en) * 2005-03-29 2006-10-12 Honda Elesys Co Ltd Antenna
JP4693459B2 (en) * 2005-03-31 2011-06-01 株式会社フジタ Incineration ash treatment method
JP2007105551A (en) * 2005-08-30 2007-04-26 Taisei Corp Early stabilization method for heavy metal-containing waste material
JP2007238368A (en) * 2006-03-08 2007-09-20 Denki Kagaku Kogyo Kk Woody cement board and its manufacturing method
JP5055852B2 (en) * 2006-06-21 2012-10-24 住友大阪セメント株式会社 Recovery method of iron resources
JP2009056351A (en) * 2007-08-30 2009-03-19 Taiheiyo Cement Corp Final disposal method of urban garbage

Also Published As

Publication number Publication date
JP2010179196A (en) 2010-08-19

Similar Documents

Publication Publication Date Title
Wang et al. Low-carbon and low-alkalinity stabilization/solidification of high-Pb contaminated soil
Colangelo et al. Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material
CN108295414A (en) A kind of incineration of refuse flyash solidification process for sequestration
JP5615499B2 (en) Early stabilization method for waste treatment plant
JP5063863B2 (en) Treatment method of construction waste mud generated by bubble shield method
JP4506184B2 (en) High water content mud treatment method, high water content mud treatment agent, and granulated treated soil production method from high water content mud soil
JP2007014881A (en) Recycling method of concrete mass
JP2003062598A (en) Method for treating sludgy waste
JP2008155069A (en) Method for manufacturing earth and sand alternative material using organic sludge as main raw material
JP3235019B2 (en) Construction sludge regeneration treatment method
Fan et al. Solidification of municipal solid waste incineration fly ash with alkali-activated technology
JP2007117909A (en) Scattering asbestos treatment method, apparatus used for the method, and vehicle loaded with the apparatus
JP2012081419A (en) Early stabilization method for final disposal site
US20200038924A1 (en) Method for producing a binder for the conditioning of sludges, soils containing water and for the neutralization of acids
US5468435A (en) Contaminant solidifying and stabilizing apparatus and process
JP5804600B2 (en) Early stabilization method for final disposal site
JP3156037B2 (en) How to recycle construction sludge
JPH1157684A (en) Method for treating oil-contaminated soil
JP4217202B2 (en) Recycling method of incinerated ash containing heavy metals
JP2005187805A (en) Effective use of waste frp
JP2010075774A (en) Method of cleaning soil contaminated with volatile organic compound and heavy metal
JP3980109B2 (en) Incineration ash firing method / fired product and method of using the fired product
JP2004089816A (en) Method of solidifying and insolubilizing fluorine or boron in soil or incineration ash
CN109574555A (en) Using building waste as the method for road basic material
JP4277590B2 (en) Solidification method of sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110801

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140527

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5615499

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250