JP5614935B2 - Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution - Google Patents

Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution Download PDF

Info

Publication number
JP5614935B2
JP5614935B2 JP2009023063A JP2009023063A JP5614935B2 JP 5614935 B2 JP5614935 B2 JP 5614935B2 JP 2009023063 A JP2009023063 A JP 2009023063A JP 2009023063 A JP2009023063 A JP 2009023063A JP 5614935 B2 JP5614935 B2 JP 5614935B2
Authority
JP
Japan
Prior art keywords
carrier gas
center rod
vaporizer
thin film
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009023063A
Other languages
Japanese (ja)
Other versions
JP2010180433A (en
Inventor
梅田 優
優 梅田
都田 昌之
昌之 都田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Watanabe Shoko KK
Original Assignee
Watanabe Shoko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009023063A priority Critical patent/JP5614935B2/en
Application filed by Watanabe Shoko KK filed Critical Watanabe Shoko KK
Priority to PCT/JP2010/051054 priority patent/WO2010090112A1/en
Priority to US13/147,668 priority patent/US8897627B2/en
Priority to KR20117020560A priority patent/KR20120005440A/en
Priority to KR1020167029843A priority patent/KR20160128441A/en
Publication of JP2010180433A publication Critical patent/JP2010180433A/en
Priority to US14/520,537 priority patent/US9020332B2/en
Priority to US14/520,457 priority patent/US9108120B2/en
Application granted granted Critical
Publication of JP5614935B2 publication Critical patent/JP5614935B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/448Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials
    • C23C16/4481Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for generating reactive gas streams, e.g. by evaporation or sublimation of precursor materials by evaporation using carrier gas in contact with the source material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01BBOILING; BOILING APPARATUS ; EVAPORATION; EVAPORATION APPARATUS
    • B01B1/00Boiling; Boiling apparatus for physical or chemical purposes ; Evaporation in general
    • B01B1/005Evaporation for physical or chemical purposes; Evaporation apparatus therefor, e.g. evaporation of liquids for gas phase reactions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、キャリアガスを用いて複数の薄膜形成材料からなる原料溶液等を気化するための気化器、この気化器を用いたMOCVD用気化器、これら気化器若しくはMOCVD用気化器に用いられるセンターロッド、及びキャリアガスの分散方法並びにキャリアガスの気化方法に関する。   The present invention relates to a vaporizer for vaporizing a raw material solution composed of a plurality of thin film forming materials using a carrier gas, a vaporizer for MOCVD using this vaporizer, a center used for these vaporizers or a vaporizer for MOCVD. The present invention relates to a rod, a carrier gas dispersion method, and a carrier gas vaporization method.

近年、電子デバイスの分野においては、回路の高密度化と共に電子デバイスの一層の小型化および高性能化が望まれており、例えば、トランジスタの組み合わせで情報の記憶動作を行うSRAM(Static Random Access read write Memory)、EEPROM(Electrically Erasable and Programmable Read Only Memory)、或いはトランジスタとキャパシタの組み合わせで情報の記憶動作を行うDRAM(Dynamic Random Access Memory)等のように、電子デバイスの機能を単に回路構成のみで達成するばかりではなく、機能性薄膜等の材料自体の特性を利用してデバイスの機能を実現することが有利になりつつある。   In recent years, in the field of electronic devices, there has been a demand for further miniaturization and higher performance of electronic devices along with higher circuit density. For example, an SRAM (Static Random Access read) that stores information by combining transistors. A circuit such as a write memory (EEPROM), an EEPROM (Electrically Erasable and Programmable Read Only Memory), or a DRAM (Dynamic Random Access Memory) that performs a storage operation of information with a combination of a transistor and a capacitor, and the like. In addition to achieving this, it is becoming more advantageous to realize device functions by utilizing the characteristics of materials such as functional thin films themselves. .

また、このような半導体にあっては、例えば、クレジットカード等のICチップとして搭載され、その技術はパスポート用個人情報記憶チップ等へと多様化しつつある。   In addition, such a semiconductor is mounted as an IC chip such as a credit card, for example, and the technology is diversifying into a personal information storage chip for a passport or the like.

そのため、電子部品に用いられる誘電体材料等の薄膜化が望まれている。このような材料を薄膜化する一つの方法として、CVD法がある。   Therefore, it is desired to reduce the thickness of dielectric materials used for electronic parts. One method for thinning such a material is a CVD method.

このCVD法は、PVD法、ゾルゲル法、その他の成膜法に比べて成膜速度が大きく、多層薄膜の製造が容易であるなどの特徴を有している。また、MOCVD法は、有機物を含む化合物を薄膜形成用の原料として用いるCVD法であり、安全性が高く、膜中のハロゲン化物の混入がないなどの利点を有する。   This CVD method has features such as a higher film formation speed and easier production of multilayer thin films than the PVD method, sol-gel method, and other film formation methods. The MOCVD method is a CVD method using a compound containing an organic substance as a raw material for forming a thin film, and has advantages such as high safety and no inclusion of halide in the film.

MOCVD法に用いられる原料は、一般的に固体粉末あるいは液体であり、これらの原料を容器に入れ、一般的に減圧中で加熱して原料を気化器で気化させた後、キャリアガスによって薄膜成膜装置内に送り込んでいる。   The raw materials used in the MOCVD method are generally solid powders or liquids. These raw materials are put in a container, generally heated in a reduced pressure to vaporize the raw materials in a vaporizer, and then a thin film is formed with a carrier gas. It is fed into the membrane device.

図7は、このようなMOCVD法の気化システムのシステムブロック図(特許文献1参照)である。   FIG. 7 is a system block diagram of such a MOCVD vaporization system (see Patent Document 1).

図7において、10は複数の原料溶液等を気化器1へと供給する供給部である。   In FIG. 7, reference numeral 10 denotes a supply unit that supplies a plurality of raw material solutions and the like to the vaporizer 1.

供給部10は、キャリアガス(例えば、N2又はAr)が充填されたガスボンベ11と、酸素が充填された酸素ボンベ12と、冷却水が貯留された貯水タンク13と、強誘電体薄膜用の原料(例えば、3種類の有機金属錯体としてSr(DPM)2、Bi(C6H5)3、Ta(OC2H5)5)並びに溶剤としてTHF(テトラヒドロフラン)を貯留した複数のリザーブタンク14〜17と、ガスボンベ11と気化器1とに接続されたガス供給管18と、酸素ボンベ12と気化器1とに接続された酸素供給管19と、貯水タンク13と気化器1とに接続された給水管20並びに配水管21と、リザーブタンク14〜17と気化器1とに接続された液体供給管22〜25と、リザーブタンク14〜17とガスボンベ11とに接続された多岐管26とを備えている。   The supply unit 10 includes a gas cylinder 11 filled with a carrier gas (for example, N2 or Ar), an oxygen cylinder 12 filled with oxygen, a water storage tank 13 in which cooling water is stored, and a raw material for a ferroelectric thin film. (For example, Sr (DPM) 2, Bi (C6H5) 3, Ta (OC2H5) 5 as three kinds of organometallic complexes) and a plurality of reserve tanks 14 to 17 storing THF (tetrahydrofuran) as a solvent; A gas supply pipe 18 connected to the vaporizer 1, an oxygen supply pipe 19 connected to the oxygen cylinder 12 and the vaporizer 1, a water supply pipe 20 and a water distribution pipe connected to the water storage tank 13 and the vaporizer 1. 21, liquid supply pipes 22 to 25 connected to the reserve tanks 14 to 17 and the vaporizer 1, and a manifold 26 connected to the reserve tanks 14 to 17 and the gas cylinder 11. To have.

ガス供給管18の経路中にはバルブ18aとマスフローコントローラ18bとが設けられ、酸素供給管19の経路中にはバルブ19aとマスフローコントローラ19bとバルブ19cとが設けられ、給水管20の経路中にはバルブ20aが設けられている。また、溶剤用の液体供給管22の経路中にはバルブ22aとマスフローコントローラ22bとが設けられ、錯体用の液体供給管23〜25の経路中にはバルブ23a〜25aとマスフローコントローラ23a〜25bとが設けられ、多岐管26の経路中にはバルブ26a〜26dとエアパージ26eとバルブ26fとが設けられている。尚、液体供給管23〜25は、液体供給管22と接続されるように分岐されており、それぞれバルブ23c〜25cが設けられている。   A valve 18 a and a mass flow controller 18 b are provided in the path of the gas supply pipe 18, and a valve 19 a, a mass flow controller 19 b and a valve 19 c are provided in the path of the oxygen supply pipe 19, and the path of the water supply pipe 20 is provided. Is provided with a valve 20a. Further, a valve 22a and a mass flow controller 22b are provided in the path of the liquid supply pipe 22 for the solvent, and valves 23a to 25a and mass flow controllers 23a to 25b are provided in the path of the liquid supply pipes 23 to 25 for the complex. In the path of the manifold 26, valves 26a to 26d, an air purge 26e, and a valve 26f are provided. The liquid supply pipes 23 to 25 are branched so as to be connected to the liquid supply pipe 22, and valves 23c to 25c are provided, respectively.

ガスボンベ11に充填されたキャリアガスは、ガス供給管18のバルブ18aを開くことにより、マスフローコントローラ18bに流量制御されて気化器1へと供給される。また、ガスボンベ11に充填されたキャリアガスは、多岐管26のバルブ26f並びにバルブ26a〜26dを開くと共にエアパージ用のバルブ26eの放出状態を閉とすることによりキャリアガスがリザーブタンク14〜17に送り込まれる。これにより、リザーブタンク14〜17内はキャリアガスにより加圧され、貯留された原料溶液はその溶液内に先端が臨んでいる液体供給管22〜25内を押し上げられてマスフローコントロ―ラ22b〜25bにより流量制御された後、気化器1に輸送される。   The carrier gas filled in the gas cylinder 11 is supplied to the vaporizer 1 by controlling the flow rate by the mass flow controller 18 b by opening the valve 18 a of the gas supply pipe 18. The carrier gas filled in the gas cylinder 11 is sent to the reserve tanks 14 to 17 by opening the valve 26f and the valves 26a to 26d of the manifold 26 and closing the discharge state of the air purge valve 26e. It is. Thereby, the inside of the reserve tanks 14 to 17 is pressurized by the carrier gas, and the stored raw material solution is pushed up in the liquid supply pipes 22 to 25 facing the tip of the solution, and the mass flow controllers 22b to 25b After the flow rate is controlled by the above, it is transported to the vaporizer 1.

また、同時に、酸素ボンベ12からマスフロ―コントロ―ラ19bで―定流量に制御された酸素(酸化剤)が気化器1へと輸送される。   At the same time, oxygen (oxidant) controlled to a constant flow rate is transported from the oxygen cylinder 12 to the vaporizer 1 by the mass flow controller 19b.

さらに、給水管20のバルブ20aを開くことにより貯水タンク13内の冷却水が気化器1の内部を循環して気化器1を冷却する。   Further, by opening the valve 20 a of the water supply pipe 20, the cooling water in the water storage tank 13 circulates inside the vaporizer 1 to cool the vaporizer 1.

尚、薄膜形成材料供給部27〜30は、図示例では気化器1の軸線方向に沿って並設されているが、実際には貯水タンク13からの給水管20又は配水管21と接続される接続部31,32とで放射状に交互に設けられている。   The thin film forming material supply units 27 to 30 are arranged in parallel along the axial direction of the vaporizer 1 in the illustrated example, but are actually connected to the water supply pipe 20 or the water distribution pipe 21 from the water storage tank 13. The connecting portions 31 and 32 are alternately provided radially.

リザーブタンク15〜17内に貯留された原料溶液は、溶剤であるTHFに常温で液体又は固体状の有機金属錯体(Sr(DPM)2、Bi(C6H5)3、Ta(OC2H5)5)を溶解しているため、そのまま放置しておくとTHF溶剤の蒸発によって有機金属錯体が析出し、最終的に固形状になる。   The raw material solution stored in the reserve tanks 15 to 17 dissolves liquid or solid organometallic complexes (Sr (DPM) 2, Bi (C6H5) 3, Ta (OC2H5) 5) at room temperature in the solvent THF. Therefore, if left as it is, the organometallic complex is precipitated by evaporation of the THF solvent, and finally becomes solid.

従って、原液と接触した液体供給管23〜25の内部がこれによって閉塞されることを防止するため、成膜作業終了後の液体供給管23〜25内及び気化器1内をリザーブタンク14内のTHFで洗浄すればよい。この際の洗浄は、マスフロ―コントローラ13b〜25bの出口側から気化器1までの区間とし、作業終了後にリザーブタンク14内に貯留されたTHFで洗い流すものである。   Therefore, in order to prevent the inside of the liquid supply pipes 23 to 25 coming into contact with the undiluted solution from being blocked by this, the inside of the liquid supply pipes 23 to 25 and the vaporizer 1 after the film forming operation are stored in the reserve tank 14. What is necessary is just to wash | clean with THF. The cleaning at this time is a section from the outlet side of the mass flow controllers 13b to 25b to the vaporizer 1, and is washed away with THF stored in the reserve tank 14 after the operation is completed.

図5は、気化器1の一例の要部の構成を示す断面図である(特許文献1参照)。   FIG. 5 is a cross-sectional view showing a configuration of a main part of an example of the vaporizer 1 (see Patent Document 1).

図5に示した気化器1は、気化器1は、ガス供給管18が接続される分散器(分散部本体)2と、分散器2の下流側に連続して接続された反応管3と、反応管3の周囲を覆うヒータ4とを備えている。   The vaporizer 1 shown in FIG. 5 includes a disperser (dispersing part body) 2 to which a gas supply pipe 18 is connected, and a reaction tube 3 continuously connected to the downstream side of the disperser 2. And a heater 4 covering the periphery of the reaction tube 3.

分散器2は、ガス供給管18と同軸上に位置するガス通路5を有する。このガス通路5の始端上流口5aと終端噴射口5bとの間には、各薄膜形成材料供給部27〜30の先端が臨んでおり(図では対向配置された薄膜形成材料供給部28,29のみ図示)、これによりリザーブタンク15〜17内に貯留された原料溶液がこのガス通路5内に供給可能となっている。また、分散器2には、接続部31,32に連通して貯水タンク13内の冷却水が循環するための冷却経路6が形成されている。さらに、分散器2には、ガス供給管18の始端上流口5aよりも上流側に一端が位置すると共に終端噴射口5bに他端が位置するセンターロッド7と、このセンターロッド7の先端側(ガス通路5の下流側)を支持するピン8と、を備えている。尚、センターロッド7の基端側(ガス通路5の上流側)はガス供給管18の端部付近に設けられたピン9により保持されている。   The disperser 2 has a gas passage 5 located coaxially with the gas supply pipe 18. The leading ends of the respective thin film forming material supply units 27 to 30 face between the start upstream port 5a and the terminal injection port 5b of the gas passage 5 (in the drawing, the thin film forming material supply units 28 and 29 arranged to face each other). As a result, the raw material solution stored in the reserve tanks 15 to 17 can be supplied into the gas passage 5. In addition, a cooling path 6 is formed in the disperser 2 so as to circulate the cooling water in the water storage tank 13 in communication with the connection portions 31 and 32. Further, the disperser 2 includes a center rod 7 having one end positioned upstream from the start upstream port 5a of the gas supply pipe 18 and the other end positioned from the terminal injection port 5b, and a tip end side of the center rod 7 ( And a pin 8 that supports the downstream side of the gas passage 5. The base end side of the center rod 7 (upstream side of the gas passage 5) is held by a pin 9 provided near the end of the gas supply pipe 18.

このような構成においては、分散器2の内部にキャリアガス導入穴を貫通し、そのキャリアガス導入穴の軸線と同軸上に位置するように、キャリアガス導入穴の内径(4.50mm)のよりも小さな外径(4.48mm)を有するセンターロッド7を配置する。   In such a configuration, the inner diameter (4.50 mm) of the carrier gas introduction hole is arranged so as to penetrate the carrier gas introduction hole inside the disperser 2 and to be coaxial with the axis of the carrier gas introduction hole. A center rod 7 having a small outer diameter (4.48 mm) is also arranged.

また、この分散器2のキャリアガス導入穴の内壁とセンターロッド7との間の協働によってガス通路5が形成される。   The gas passage 5 is formed by the cooperation between the inner wall of the carrier gas introduction hole of the disperser 2 and the center rod 7.

尚、ガス通路5の断面幅は0.02mmとなる。この際、ガス通路5の断面幅は、0.005〜0.10mmが好ましい。これは、0.005mm未満では加工が困難であり、0.10mmを超えるとキャリアガスを高速化するために高圧のキャリアガスを用いる必要が生じてしまうからである。   The cross-sectional width of the gas passage 5 is 0.02 mm. At this time, the cross-sectional width of the gas passage 5 is preferably 0.005 to 0.10 mm. This is because processing is difficult if it is less than 0.005 mm, and if it exceeds 0.10 mm, it is necessary to use a high-pressure carrier gas in order to increase the carrier gas speed.

ガス通路5の上流からは、ガス供給管18からキャリアガスが導入される。このキャリアガスには、ガス通路5の中途部に位置する各薄膜形成材料供給部27〜30の先端から原料溶液が滴下されるため、この原料溶液がガス通路5を通過するキャリアガスに分散されてミスト状となる。   A carrier gas is introduced from the gas supply pipe 18 from the upstream side of the gas passage 5. Since the raw material solution is dropped into the carrier gas from the tips of the respective thin film forming material supply units 27 to 30 located in the middle of the gas passage 5, the raw material solution is dispersed in the carrier gas that passes through the gas passage 5. It becomes a mist shape.

これにより、ガス通路5の下流の終端噴射口5bから反応管3に原料溶液を分散したキャリアガスが噴射され、反応管3内を流れる原料溶液を分散したキャリアガスをヒータ4で加熱し気化した後、図示を略する薄膜成膜装置へと送り込まれる。   As a result, the carrier gas in which the raw material solution is dispersed is injected from the terminal injection port 5b downstream of the gas passage 5 into the reaction tube 3, and the carrier gas in which the raw material solution flowing in the reaction tube 3 is dispersed is heated by the heater 4 and vaporized. Then, it is sent to a thin film deposition apparatus (not shown).

ところで、気化器1に配置される冷却部としては、上述したように、ガス通路5の略全長に跨る冷却経路6を形成する他、例えば、図6に示すように、センターロッド7の中途部から先端側に位置するガス通路5内を冷却する冷却システム33を配置したものも知られている(例えば、特許文献2参照)。   By the way, as a cooling part arrange | positioned at the vaporizer | carburetor 1, as above-mentioned, in addition to forming the cooling path 6 over the substantially full length of the gas passage 5, as shown in FIG. There is also known a system in which a cooling system 33 for cooling the inside of the gas passage 5 located on the tip side is disposed (see, for example, Patent Document 2).

尚、図6において、上記図5に示した気化器1と同様の機能には、同一の符号を付してその説明を省略する。   In FIG. 6, functions similar to those of the vaporizer 1 shown in FIG. 5 are given the same reference numerals, and descriptions thereof are omitted.

特開2008−001994号公報JP 2008-001994 A 特開2004−265938号公報JP 2004-265938 A

ところで、上記の如く構成された気化器1にあっては、気化器1の終端噴射口5bの周囲に薄膜原料が付着してしまうという現象が生じていた。   By the way, in the vaporizer 1 configured as described above, a phenomenon has occurred in which the thin film material adheres around the terminal injection port 5b of the vaporizer 1.

即ち、ガス通路5を通過するキャリアガス(特に、原料溶液が分散された後のキャリアガス)は、ガス通路5の内部が高温環境化にあるため、終端噴射口5bに至る前にミスト状の原料溶液の水分が蒸発してしまうと、その材料粉末成分等が終端噴射口5bの周囲に付着してしまう。また、このような材料粉末成分等は経時的に成長して終端噴射口5bの目詰りの原因となってしまうばかりでなく、不純物の混入といった問題にも発展してしまう虞が生じていた。   That is, the carrier gas that passes through the gas passage 5 (particularly the carrier gas after the raw material solution is dispersed) is in a mist state before reaching the final injection port 5b because the inside of the gas passage 5 is in a high temperature environment. When the water in the raw material solution evaporates, the material powder component and the like adhere to the periphery of the terminal injection port 5b. In addition, such a material powder component or the like grows with time and may cause clogging of the terminal injection port 5b, and also may develop into a problem of contamination of impurities.

そこで、このようなガス通路5内の高温環境化に対応するため、ガス通路5よりも外周に冷却経路6を形成し、この冷却経路6に冷却水を循環させることでガス通路5を冷却している。   Therefore, in order to cope with such a high temperature environment in the gas passage 5, the cooling passage 6 is formed on the outer periphery of the gas passage 5 and the cooling water is circulated through the cooling passage 6 to cool the gas passage 5. ing.

しかしながら、冷却経路6は分散器2に形成されていることから、ガス通路5の外側から伝熱効果を利用して間接的にガス通路5を冷却するため、ガス通路5と冷却経路6とを区画する分散器2の肉厚分だけ熱損失が発生する等、冷却効果が薄いという問題が生じていた。   However, since the cooling path 6 is formed in the disperser 2, the gas path 5 and the cooling path 6 are connected with each other in order to cool the gas path 5 indirectly from the outside of the gas path 5 using the heat transfer effect. There has been a problem that the cooling effect is low, such as heat loss corresponding to the wall thickness of the partitioning device 2 to be partitioned.

本発明は、上記問題を解決するため、キャリアガスを効率良く冷却することができ、ガス通路出口付近での材料目詰り発生防止効果を向上し得て、メンテナンス時期の長期化並びに稼動効率の向上に貢献することができ、しかも、より一層均一な分散効果を奏することができる気化器を提供することを目的とする。   In order to solve the above problems, the present invention can efficiently cool the carrier gas, can improve the material clogging prevention effect in the vicinity of the gas passage outlet, prolong the maintenance time, and improve the operation efficiency. Another object of the present invention is to provide a vaporizer capable of contributing to the above-mentioned and having a more uniform dispersion effect.

その目的を達成するため、参考発明の気化器は、分散部本体に形成されたキャリアガス導入穴に挿入されて該キャリアガス導入穴の内壁との協働によりガス通路を形成するセンターロッドと、前記分散部本体の前記キャリアガス導入穴の外周側に配置されて前記ガス通路内を冷却する冷却部と、前記センターロッドの軸線方向に沿い且つ前記センターロッドの略全長に跨って形成された冷却部材挿入穴と、該冷却部材挿入穴内に配置されて前記センターロッドを冷却する冷却部材と、を備えていることを特徴とする。 In order to achieve the object, the vaporizer of the reference invention includes a center rod that is inserted into a carrier gas introduction hole formed in the dispersion portion body and forms a gas passage through cooperation with the inner wall of the carrier gas introduction hole; A cooling part that is disposed on the outer peripheral side of the carrier gas introduction hole of the dispersion part main body and cools the inside of the gas passage, and cooling that is formed along the axial direction of the center rod and over substantially the entire length of the center rod A member insertion hole and a cooling member disposed in the cooling member insertion hole to cool the center rod are provided.

上記の気化器によれば、冷却部と冷却部材とによってキャリアガスを効率良く冷却することができる。 According to the vaporizer, she is possible to efficiently cool the carrier gas by the cooling unit and the cooling member.

請求項1に記載の気化器は、分散部本体に形成されたキャリアガス導入穴の全長に跨って挿入されて該キャリアガス導入穴の内壁との協働によりガス通路を形成するセンターロッドと、前記分散部本体の複数個所に形成されて前記ガス通路の中途部に複数の薄膜形成材料を供給する薄膜形成材料供給部と、前記分散部本体の前記キャリアガス導入穴の外周側に配置されて前記ガス通路内を冷却する冷却部と、前記センターロッドの軸線方向に沿い且つ前記センターロッドの略全長に跨って形成された冷却部材挿入穴と、該冷却部材挿入穴内に配置されて前記センターロッドを冷却する冷却部材と、を備え、
前記冷却部と前記冷却部材は、少なくとも薄膜形成材料供給部から前記ガス通路の下流端付近に跨って配置されていることを特徴とする。
The vaporizer according to claim 1, a center rod that is inserted over the entire length of the carrier gas introduction hole formed in the dispersion portion main body and forms a gas passage through cooperation with the inner wall of the carrier gas introduction hole, A thin film forming material supply part that is formed at a plurality of locations of the dispersion part main body and supplies a plurality of thin film forming materials to the middle part of the gas passage, and is disposed on the outer peripheral side of the carrier gas introduction hole of the dispersion part main body. A cooling portion for cooling the inside of the gas passage; a cooling member insertion hole formed along an axial direction of the center rod and extending over substantially the entire length of the center rod; and the center rod disposed in the cooling member insertion hole A cooling member for cooling,
The cooling unit and the cooling member are arranged to straddle at least the vicinity of the downstream end of the gas passage from the thin film forming material supply unit.

請求項に記載の気化器によれば、薄膜形成材料供給部から供給された薄膜形成材料を分散させたキャリアガスを含めてキャリアガスを効率良く冷却することができる。 According to the vaporizer of the first aspect , the carrier gas can be efficiently cooled including the carrier gas in which the thin film forming material supplied from the thin film forming material supply unit is dispersed.

請求項に記載のMOCVD用気化器は、上記の気化器に隣接して前記分散部本体で複数の薄膜形成材料を分散させたキャリアガスを気化する気化部を設けたことを特徴とする。 MOCVD vaporizer according to claim 3, characterized in that a vaporizing unit for vaporizing the carrier gas is dispersed a plurality of thin-film forming material by the dispersion main body adjacent the vaporizer .

請求項に記載のMOCVD用気化器によれば、冷却部と冷却部材とによって効率良く冷却されたキャリアガスの材料目詰り発生防止効果を向上し得て、メンテナンス時期の長期化並びに稼動効率の向上に貢献することができ、しかも、より一層均一な分散効果を奏することができる。 According to the vaporizer for MOCVD according to claim 3 , it is possible to improve the effect of preventing the material clogging of the carrier gas efficiently cooled by the cooling part and the cooling member, and the maintenance time can be prolonged and the operation efficiency can be improved. It is possible to contribute to improvement, and to achieve a more uniform dispersion effect.

請求項に記載のセンターロッドは、上記の気化器若しくはMOCVD用気化器に使用されるセンターロッドであって、前記センターロッドの外周に形成され且つ適用する薄膜形成材料と1対1で対応した複数のガイド溝を備えていることを特徴とする。 Center rod according to claim 4, the above vaporizer Wakashi Ku is a center rod used in the vaporizer for M MOCVD, the center thin-film forming material and a pair of outer circumference is formed and applied in the rod 1 It is characterized by having a plurality of guide grooves corresponding to.

請求項に記載のセンターロッドは、前記冷却部材が、略円筒形状のペルチェ素子であることを特徴とする。 The center rod according to claim 5 is characterized in that the cooling member is a substantially cylindrical Peltier element.

請求項に記載のセンターロッドは、前記冷却部材が、前記冷却部材挿入穴に吸熱部を配置したヒートパイプであることを特徴とする。 The center rod described in claim 6 is characterized in that the cooling member is a heat pipe in which a heat absorbing portion is disposed in the cooling member insertion hole.

請求項に記載のセンターロッドは、前記冷却部材が、ポンプを介して冷却水が給排水される螺旋状又は略U字状の冷水パイプであることを特徴とする。 The center rod described in claim 7 is characterized in that the cooling member is a spiral or substantially U-shaped cold water pipe through which cooling water is supplied and drained via a pump.

請求項に記載のセンターロッドは、前記冷却部材は、前記センターロッドに着脱可能に挿入されていることを特徴とする。 The center rod described in claim 8 is characterized in that the cooling member is detachably inserted into the center rod.

請求項9に記載のキャリアガスの冷却分散方法は、分散部本体に形成されたキャリアガス導入穴の内壁と該キャリアガス導入穴に挿入されたセンターロッドとの間に形成されたガス通路に複数の薄膜形成材料を分散させたキャリアガスを導入すると共に、該薄膜形成材料を分散させたキャリアガスを前記分散部本体に配置した冷却部と前記センターロッドに配置した冷却部材とで少なくとも薄膜形成材料供給部から前記ガス通路の下流端付近に跨って冷却しつつ前記ガス通路内を搬送することを特徴とする。 The method for cooling and dispersing the carrier gas according to claim 9 includes a plurality of gas passages formed between an inner wall of the carrier gas introduction hole formed in the dispersion portion main body and a center rod inserted into the carrier gas introduction hole. The carrier gas in which the thin film forming material is dispersed is introduced, and at least the thin film forming material is formed by the cooling part in which the carrier gas in which the thin film forming material is dispersed is arranged in the dispersion part main body and the cooling member arranged in the center rod. It is characterized in that the inside of the gas passage is conveyed while cooling from the supply section to the vicinity of the downstream end of the gas passage.

請求項に記載のキャリアガスの冷却分散方法によれば、冷却部と冷却部材とによって効率良く冷却されたキャリアガスを導入することができる。 According to the carrier gas cooling and dispersing method of the ninth aspect , the carrier gas cooled efficiently by the cooling unit and the cooling member can be introduced.

さらに、請求項10に記載のキャリアガスの気化方法は、分散部本体に形成されたキャリアガス導入穴の内壁と該キャリアガス導入穴に挿入されたセンターロッドとの間に形成されたガス通路にキャリアガスを導入すると共に、前記ガス通路の中途部複数箇所から薄膜形成材料を導入してキャリアガスに前記薄膜形成材料を分散させた後に、前記ガス通路の下流端部に配置されたセンターロッド先端によって互いに接近する方向に案内される合流部にて前記薄膜形成材料を分散させたキャリアガスを合流させた後に気化するキャリアガスの気化方法であって、少なくとも前記ガス通路の中途部複数箇所から導入された薄膜形成材料を分散させたキャリアガスを、前記分散部本体に配置した冷却部と前記センター
ロッドに配置した冷却部材とで少なくとも薄膜形成材料供給部から前記ガス通路の下流端付近に跨って冷却しつつ前記合流部に前記薄膜形成材料を分散させたキャリアガスを案内することを特徴とする。
Furthermore, the carrier gas vaporization method according to claim 10 is provided in a gas passage formed between an inner wall of a carrier gas introduction hole formed in the dispersion portion main body and a center rod inserted into the carrier gas introduction hole. A center rod tip disposed at the downstream end of the gas passage after introducing the carrier gas and introducing the thin film forming material from a plurality of locations in the middle of the gas passage to disperse the thin film forming material in the carrier gas. The vaporization method of the carrier gas, which is vaporized after merging the carrier gas in which the thin film forming material is dispersed at the merging portion guided in a direction approaching each other, introduced from at least a plurality of locations in the middle of the gas passage The carrier gas in which the thin film forming material is dispersed is divided into a cooling part arranged in the dispersion part main body and a cooling member arranged in the center rod. Characterized by guiding the carrier gas said thin film forming material is dispersed in the merging section while cooling over near the downstream end of the gas passage from the thin film forming material supply portion even without.

請求項10に記載のキャリアガスの気化方法によれば、不純物混入の少ないキャリアガスの気化に貢献することができる。
また、請求項2、9、10では、前記ガス通路と気化管との間に、該ガス出口の外側に該ガス出口の断面積よりも小さな断面積を有する孔を有する輻射防止部を備えていることを特徴とする。
According to the carrier gas vaporization method of the tenth aspect , it is possible to contribute to the vaporization of the carrier gas with less impurities.
According to a second, ninth, or tenth aspect of the present invention, a radiation preventing portion having a hole having a cross-sectional area smaller than the cross-sectional area of the gas outlet is provided outside the gas outlet between the gas passage and the vaporizing pipe. It is characterized by being.

本発明の気化器は、キャリアガスを効率良く冷却することができ、ガス通路出口付近での材料目詰り発生防止効果を向上し得て、メンテナンス時期の長期化並びに稼動効率の向上に貢献することができ、しかも、より一層均一な分散効果を奏することができる。   The vaporizer of the present invention can efficiently cool the carrier gas, can improve the material clogging prevention effect near the gas passage outlet, and contribute to longer maintenance time and improved operating efficiency. In addition, a more uniform dispersion effect can be achieved.

本発明のMOCVD用気化器の一実施形態を示す要部の断面図である。It is sectional drawing of the principal part which shows one Embodiment of the vaporizer for MOCVD of this invention. (A)は本発明のMOCVD用気化器に適用されるセンターロッド35の縦断面図、(B)は本発明のMOCVD用気化器に適用されるセンターロッド35の横断面図である。(A) is a longitudinal sectional view of the center rod 35 applied to the vaporizer for MOCVD of the present invention, and (B) is a transverse sectional view of the center rod 35 applied to the vaporizer for MOCVD of the present invention. 本発明のMOCVD用気化器に適用される変形例1のセンターロッド35の縦断面図である。It is a longitudinal cross-sectional view of the center rod 35 of the modification 1 applied to the vaporizer for MOCVD of this invention. 本発明のMOCVD用気化器に適用される変形例2のセンターロッド35の縦断面図である。It is a longitudinal cross-sectional view of the center rod 35 of the modification 2 applied to the vaporizer for MOCVD of this invention. 従来の気化器を示す要部の断面図である。It is sectional drawing of the principal part which shows the conventional vaporizer | carburetor. 従来の他の気化器を示す要部の断面図である。It is sectional drawing of the principal part which shows the other conventional vaporizer | carburetor. MOCVD法の気化システムのシステムブロック図である。It is a system block diagram of the vaporization system of MOCVD method.

次に、本発明のMOCVD用気化器を図面に基づいて説明する。尚、以下の各実施例において、原料供給システム等の見かけ上のシステム構成は図7に示したものと同一であるため、ここではシステム全体の詳細な説明は省略する。   Next, the vaporizer for MOCVD of this invention is demonstrated based on drawing. In each of the following embodiments, the apparent system configuration of the raw material supply system and the like is the same as that shown in FIG. 7, and therefore detailed description of the entire system is omitted here.

図1は、本発明に係るMOCVD用気化器の一実施形態を示す要部の断面図、図2(A)はセンターロッドの拡大縦断面図、図2(B)はセンターロッドの拡大横断面図である。   FIG. 1 is a cross-sectional view of an essential part showing an embodiment of a vaporizer for MOCVD according to the present invention, FIG. 2 (A) is an enlarged vertical cross-sectional view of a center rod, and FIG. 2 (B) is an enlarged cross-sectional view of the center rod. FIG.

図1において、気化器1は、分散器(分散部本体)2に形成されたキャリアガス導入穴に挿入されてキャリアガス導入穴の内壁との協働によりガス通路5を形成するセンターロッド35と、分散器2のキャリアガス導入穴の外周側に配置されてガス通路5内を冷却する冷却経路6と、センターロッド35の軸線方向に沿い且つセンターロッド35の略全長に跨って形成された冷却部材挿入穴35aと、冷却部材挿入穴35a内に配置されてセンターロッド35を冷却する冷却部材36と、を備えている。   In FIG. 1, a vaporizer 1 is inserted into a carrier gas introduction hole formed in a disperser (dispersing part main body) 2 and a center rod 35 that forms a gas passage 5 in cooperation with the inner wall of the carrier gas introduction hole; The cooling path 6 arranged on the outer peripheral side of the carrier gas introduction hole of the disperser 2 to cool the inside of the gas passage 5 and the cooling formed along the axial direction of the center rod 35 and over substantially the entire length of the center rod 35 A member insertion hole 35a and a cooling member 36 disposed in the cooling member insertion hole 35a for cooling the center rod 35 are provided.

また、分散器2には、その複数個所に形成されてガス通路5の中途部に複数の薄膜形成材料を供給する薄膜形成材料供給部27〜30(図1では、対向配置された薄膜形成材料供給部28,29のみ図示)が設けられている。   Further, the disperser 2 is provided with thin film forming material supply portions 27 to 30 (in FIG. 1, the thin film forming materials arranged opposite to each other) that supply a plurality of thin film forming materials to the middle portion of the gas passage 5. Only the supply units 28 and 29 are shown).

この際、冷却経路6と冷却部材36とは、少なくとも薄膜形成材料供給部27〜30の付近からガス通路5の下流端付近に跨って配置されている。   Under the present circumstances, the cooling path 6 and the cooling member 36 are arrange | positioned ranging over the downstream end vicinity of the gas channel 5 at least from the vicinity of the thin film formation material supply parts 27-30.

また、分散器2で複数の薄膜形成材料を分散させたキャリアガスを気化する気化部が反応管3とヒータ4とで構成されている。   In addition, a vaporizing section that vaporizes a carrier gas in which a plurality of thin film forming materials are dispersed by the disperser 2 is constituted by the reaction tube 3 and the heater 4.

以下、本発明の具体的な構成を説明する。   The specific configuration of the present invention will be described below.

本発明の気化器1にあっては、分散部を構成する分散器2の内部に形成されたガス通路5と、ガス通路5に連通するようにガス供給管18に形成されたキャリアガス導入用のガス導入口18aと、ガス通路5を通過するキャリアガスに原料溶液を供給して原料溶液をミスト化するための薄膜形成材料供給部27〜30と、そのミスト化された原料溶液を含むキャリアガスを気化部に送るための終端噴射口5bと、ガス通路5内を流れるキャリアガスを冷却するための冷却水が循環する冷却部としての冷却経路6と、一端がMOCVD装置の反応管に接続され、他端が分散器2の終端噴射口5bに接続された反応管3と、反応管3を加熱するためのヒータ4と、を備えている。   In the vaporizer 1 of the present invention, the gas passage 5 formed inside the disperser 2 constituting the dispersion portion and the carrier gas introduction formed in the gas supply pipe 18 so as to communicate with the gas passage 5 are provided. Gas introduction port 18a, a thin film forming material supply unit 27 to 30 for supplying a raw material solution to the carrier gas passing through the gas passage 5 to mist the raw material solution, and a carrier containing the misted raw material solution Terminal injection port 5b for sending gas to the vaporizing section, cooling path 6 as a cooling section through which cooling water for cooling the carrier gas flowing in the gas passage 5 circulates, and one end connected to the reaction tube of the MOCVD apparatus And a reaction tube 3 having the other end connected to the terminal injection port 5 b of the disperser 2 and a heater 4 for heating the reaction tube 3.

分散器2の内部は円筒状の中空とされ、この中空のキャリアガス導入穴にセンターロッド35が挿入されており、分散器2の内壁とセンターロッド35とによりガス通路5が形成されている。尚、キャリアガス導入穴は円筒状に限らず、他の形状でも良く、例えば、円錐状とするのが好ましい。円錐状のキャリアガス導入穴の円巣の角度としては、0〜45°が好ましく、8〜20°がより好ましい。他の実施例においても同様である。   The inside of the disperser 2 has a hollow cylindrical shape, and a center rod 35 is inserted into the hollow carrier gas introduction hole, and a gas passage 5 is formed by the inner wall of the disperser 2 and the center rod 35. The carrier gas introduction hole is not limited to a cylindrical shape, but may have another shape, for example, a conical shape. The angle of the cone of the conical carrier gas introduction hole is preferably 0 to 45 °, more preferably 8 to 20 °. The same applies to other embodiments.

尚、ガス通路の断面積は0.10〜0.5mm2が好ましい。0.10mm2未満では加工が困難である。0.5mm2を超えるとキャリアガスを高速化するために高圧で且つ大流量のキャリアガスを用いる必要が生じてしまう。   The cross-sectional area of the gas passage is preferably 0.10 to 0.5 mm2. If it is less than 0.10 mm2, processing is difficult. If it exceeds 0.5 mm 2, it is necessary to use a high-pressure and large-flow carrier gas in order to increase the carrier gas speed.

大流量のキャリアガスを用いると、反応チャンバーを減圧(例:1.0Torr)に維持するために、大容量の大型真空ポンプが必要になる。排気容量が、1万リットル/min.(at,1.0Torr)を超える真空ポンプの採用は困難であるから、工業的な実用化を図るためには、適正な流量即ちガス通路面積0.10〜0.5mm2が好ましい。   When a large flow rate of carrier gas is used, a large-capacity large vacuum pump is required to maintain the reaction chamber at a reduced pressure (eg, 1.0 Torr). The exhaust capacity is 10,000 liters / min. Since it is difficult to employ a vacuum pump exceeding (at, 1.0 Torr), an appropriate flow rate, that is, a gas passage area of 0.10 to 0.5 mm 2 is preferable in order to achieve industrial practical use.

このガス通路5の一端にはガス導入口18aが設けられている。このガス導入口18aにはキャリアガス(例えばN2,Ar,Heの少なくとも何れか)のガスボンベ11が接続されている。   A gas inlet 18 a is provided at one end of the gas passage 5. A gas cylinder 11 of a carrier gas (for example, at least one of N2, Ar, and He) is connected to the gas introduction port 18a.

分散器2の略中央部分には、ガス通路5に連通せしめて薄膜形成材料供給部27〜30を設け、原料溶液をガス通路5に滴下導入して、原料溶液をガス通路5を通過するキャリアガスに分散させることで原料ガスとすることができる。   In the substantially central portion of the disperser 2, thin film forming material supply units 27 to 30 are provided so as to communicate with the gas passage 5, the raw material solution is dropped into the gas passage 5, and the raw material solution passes through the gas passage 5. A raw material gas can be obtained by dispersing in a gas.

ガス通路5の一端には、反応管3に連通する終端噴射口5bを形成した輻射防止部37が設けられている。   At one end of the gas passage 5, there is provided a radiation preventing part 37 having a terminal injection port 5 b communicating with the reaction tube 3.

分散器2には、冷却水を循環させるための冷却経路6が形成されており、この冷却経路6に冷却水を流すことによりガス通路5内を流れるキャリアガスを冷却する。尚、この冷却経路6の代わりにペルチェ素子等を設置して冷却してもよい。また、ガス通路5内はヒータ4による熱影響を受けるためガス通路5内において原料溶液の溶剤と有機金属錯体との同時気化が生ずることなく、溶剤のみの気化が生じてしまう。そこで、ガス通路5内を流れる原料溶液が分散したキャリアガスを冷却することにより溶剤のみの気化を防止するのが好ましい。この際、薄膜形成材料供給部27〜30よりもガス通路5の下流側に対する冷却は特に重要であることから、少なくとも薄膜形成材料供給部27〜30よりも下流側のガス通路5内の冷却を行うのが好ましい。尚、その冷却温度は、溶剤の沸点以下の温度である(例えば、THFでは67℃以下)。特に、終端噴射口5bにおける温度が重要である。   A cooling path 6 for circulating cooling water is formed in the disperser 2, and the carrier gas flowing in the gas passage 5 is cooled by flowing cooling water through the cooling path 6. In place of this cooling path 6, a Peltier element or the like may be installed for cooling. Further, since the gas passage 5 is affected by the heat of the heater 4, the solvent of the raw material solution and the organometallic complex are not simultaneously vaporized in the gas passage 5, and only the solvent is vaporized. Therefore, it is preferable to prevent vaporization of only the solvent by cooling the carrier gas in which the raw material solution flowing in the gas passage 5 is dispersed. At this time, since cooling to the downstream side of the gas passage 5 with respect to the thin film forming material supply units 27 to 30 is particularly important, at least cooling of the gas passage 5 downstream of the thin film forming material supply units 27 to 30 is performed. Preferably it is done. The cooling temperature is a temperature not higher than the boiling point of the solvent (for example, 67 ° C. or lower for THF). In particular, the temperature at the terminal injection port 5b is important.

そこで、図2に示すように、本発明のセンターロッド35には、その軸線上に冷却部材挿入穴35aを形成すると共に、その冷却部材挿入穴35aにセンターロッド35を直接内部冷却する冷却部材36が配置されている。尚、センターロッド35の外周には、適用する薄膜形成材料を効率良く下流側へと供給するために薄膜形成材料供給部27〜30と1対1で対応した複数のガイド溝35bが形成されている。   Therefore, as shown in FIG. 2, the center rod 35 of the present invention has a cooling member insertion hole 35a formed on the axis thereof, and a cooling member 36 for directly cooling the center rod 35 directly into the cooling member insertion hole 35a. Is arranged. A plurality of guide grooves 35b corresponding to the thin film forming material supply sections 27 to 30 are formed on the outer periphery of the center rod 35 in order to efficiently supply the applied thin film forming material to the downstream side. Yes.

尚、センターロッド35は、図2(A)に示すように、中途部から始端上流口5a側に向かって互いに軸心方向に接近するように先細りとされている。   As shown in FIG. 2 (A), the center rod 35 is tapered so as to approach each other in the axial direction from the midway portion toward the start end upstream port 5a side.

この際、先端部は、円錐(又は截頭円錐)形状とするのが好ましく、この先端形状に沿うように分散器2のキャリアガス導入穴を形成することによりガス通路5が終端噴射口5bで合流(合流部)することとなる。尚、先端部37aは、角錐(又は截頭角錐)形状としても良い。この際、その角数(面数)は、4つの薄膜形成材料供給部27〜30に対応して四角錐とするが、ガス通路5の本数、即ち、リザーブタンク14〜17の数に相当する原料溶液(薄膜形成原料)の数に対応した面数の多角錐とすることができる。尚、この場合にはその各面にガイド溝35bが形成されることは勿論である。また、終端噴射口5bを合流部としているが、この合流部は終端噴射口5bよりもキャリアガス搬送方向上流側に設けても良い。   At this time, it is preferable that the tip portion has a conical (or frustoconical) shape, and the carrier gas introduction hole of the disperser 2 is formed along the tip shape so that the gas passage 5 is formed at the terminal injection port 5b. It will merge (merging part). The tip portion 37a may have a pyramid (or truncated pyramid) shape. At this time, the number of corners (number of surfaces) is a quadrangular pyramid corresponding to the four thin film forming material supply units 27 to 30, and corresponds to the number of gas passages 5, that is, the number of reserve tanks 14 to 17. It can be set as the polygonal cone of the number of surfaces corresponding to the number of raw material solutions (thin film formation raw material). In this case, of course, guide grooves 35b are formed on the respective surfaces. Moreover, although the terminal injection port 5b is used as a merging portion, this merging portion may be provided upstream of the terminal injection port 5b in the carrier gas transport direction.

冷却部材36は、例えば、外側を吸熱側とし且つ内側を放熱側とした円筒形状のものが用いられている。尚、図2(B)において、36a,36bはその配線コードである。   As the cooling member 36, for example, a cylindrical member having an outer side as a heat absorption side and an inner side as a heat dissipation side is used. In FIG. 2B, reference numerals 36a and 36b denote wiring codes.

尚、冷却部材36は、例えば、図3に示すように、吸熱側を冷却部材挿入穴35aの内部に位置させ且つ放熱側を冷却部材挿入穴35aの外部に位置させたヒートパイプや、図4に示すように、冷却水を循環させる螺旋状(又は略U字状)の冷水パイプ等、特に、限定されるものではないが、冷却温度に応じた形状(太さ等)とするのが好ましい。また、冷却部材36を、センターロッド35に直接形成した冷却通路等とはしないことにより、センターロッド35の形成の容易化並びに、分解等のメンテナンスの容易化に貢献することができる。さらに、冷却部材36は、センターロッド35の略全長に跨って配置することにより、事前にキャリアガスを冷却することができるが、その冷却温度を高く確保することができれば、少なくとも薄膜形成材料供給部27〜30よりも下流側のガス通路5内の冷却を行う構成でも良い。   As shown in FIG. 3, for example, the cooling member 36 includes a heat pipe in which the heat absorption side is located inside the cooling member insertion hole 35a and the heat radiation side is located outside the cooling member insertion hole 35a, as shown in FIG. As shown in Fig. 2, a helical (or substantially U-shaped) cold water pipe for circulating cooling water is not particularly limited, but it is preferable to have a shape (thickness etc.) according to the cooling temperature. . Further, by not using the cooling member 36 as a cooling passage or the like directly formed in the center rod 35, it is possible to contribute to facilitating the formation of the center rod 35 and facilitating maintenance such as disassembly. Furthermore, the cooling member 36 can cool the carrier gas in advance by being disposed over substantially the entire length of the center rod 35. However, if the cooling temperature can be secured high, at least the thin film forming material supply unit The structure which cools the inside of the gas passage 5 downstream from 27-30 may be sufficient.

終端噴射口5bを形成した輻射防止部37は、Oリング等のシール部材38,39によって密閉性が確保されている。尚、この輻射防止部37は、例えば、テフロン(登録商標)、ステンレス、セラミック等の熱伝導性の優れた材料により構成することが好ましい。   The radiation preventing part 37 in which the terminal injection port 5b is formed is sealed by sealing members 38 and 39 such as O-rings. In addition, it is preferable that this radiation prevention part 37 is comprised with the material excellent in thermal conductivity, such as Teflon (trademark), stainless steel, and ceramics, for example.

本発明者の知見によれば、従来技術に示したように、ガス通路5の外側のみを冷却した構成では、気化部における熱が、輻射熱として終端噴射口5bを介してガス通路5内におけるガスを過熱してしまう。従って、冷却水により冷却したとしてもキャリアガス中の低融点成分が終端噴射口5bの近傍に析出してしまう。   According to the knowledge of the present inventor, as shown in the prior art, in the configuration in which only the outside of the gas passage 5 is cooled, the heat in the vaporization section is radiated heat as the gas in the gas passage 5 via the terminal injection port 5b. Will overheat. Therefore, even if it is cooled by cooling water, the low melting point component in the carrier gas is deposited in the vicinity of the terminal injection port 5b.

そこで、上述した冷却部材36を配置すると共に、輻射防止部37をさらに配置することにより、このような輻射熱がキャリアガスに伝播することを一層抑制することが可能となる。従って、終端噴射口5bの断面積は、ガス通路5の断面積よりも小さくする(例えば、1/2以下、より好ましくは1/3以下)ことが好ましい。また、終端噴射口5bを微小化することが好ましい。特に、噴出するガス流速が亜音速となる寸法に微小化することが好ましい。   Therefore, it is possible to further suppress the propagation of such radiant heat to the carrier gas by disposing the above-described cooling member 36 and further disposing the radiation preventing portion 37. Therefore, the cross-sectional area of the terminal injection port 5b is preferably smaller than the cross-sectional area of the gas passage 5 (for example, 1/2 or less, more preferably 1/3 or less). Moreover, it is preferable to make the terminal injection port 5b minute. In particular, it is preferable that the jetting gas flow velocity is reduced to a dimension that makes subsonic velocity.

また、終端噴射口5bの長さは、終端噴射口5bの断面寸法の5倍以上であることが好ましく、10倍以上であることがより好ましい。   Further, the length of the terminal injection port 5b is preferably at least 5 times the cross-sectional dimension of the terminal injection port 5b, more preferably at least 10 times.

また、分散器2を冷却することにより、長期間にわる使用に対してもガス通路5内(特に終端噴射口5b)における炭化物による閉塞を生ずることが抑制されている。   Further, by cooling the disperser 2, it is possible to prevent clogging due to carbides in the gas passage 5 (particularly, the terminal injection port 5b) even when used for a long period of time.

分散器2の下流側は、反応管3が接続されている。分散器2と反応管3との接続は継手等によって行うことができる。   A reaction tube 3 is connected to the downstream side of the disperser 2. The disperser 2 and the reaction tube 3 can be connected by a joint or the like.

上記の構成においては、分散器2に形成されたキャリアガス導入穴の内壁とキャリアガス導入穴に挿入されたセンターロッド35との間に形成されたガス通路5にキャリアガスを導入すると共に、ガス通路5の中途部複数箇所から薄膜形成材料を導入してキャリアガスに薄膜形成材料を分散させると共に少なくともガス通路5の中途部複数箇所から導入された薄膜形成材料を分散させたキャリアガスを、分散器2に配置した冷却経路6とセンターロッド35に配置した冷却部材36とで冷却しつつ合流部に薄膜形成材料を分散させたキャリアガスを案内した後に、ガス通路5の下流端部に配置されたセンターロッド35先端によって互いに接近する方向に案内される合流部にて薄膜形成材料を分散させたキャリアガスを合流させたうえで、ヒータ4で加熱して気化した後、図示を略する薄膜成膜装置へと送り込まれる。 In the above configuration, the carrier gas is introduced into the gas passage 5 formed between the inner wall of the carrier gas introduction hole formed in the disperser 2 and the center rod 35 inserted in the carrier gas introduction hole, and the gas A thin film forming material is introduced from a plurality of locations in the middle of the passage 5 to disperse the thin film forming material in the carrier gas, and at least a carrier gas in which the thin film forming material introduced from a plurality of locations in the middle of the gas passage 5 is dispersed, After guiding the carrier gas in which the thin film forming material is dispersed in the merging portion while being cooled by the cooling path 6 disposed in the disperser 2 and the cooling member 36 disposed in the center rod 35, the carrier gas is disposed at the downstream end of the gas passage 5. After the carrier gas in which the thin film forming material is dispersed is joined at the joining portion guided in the direction approaching each other by the tip of the center rod 35 that has been made, After vaporized by heating at over motor 4, is fed into the thin film deposition apparatus abbreviated shown.

1…気化器
2…分散器(分散部本体)
3…反応管
4…ヒータ
5…ガス通路
5a…始端上流口
5b…終端噴射口(合流部)
6…冷却通路
7…センターロッド
8…ピン
9…ピン
10…供給部
11…ガスボンベ
12…酸素ボンベ
13…貯水タンク
14…リザーブタンク
15…リザーブタンク
16…リザーブタンク
17…リザーブタンク
18…ガス供給管
18b…マスフローコントローラ
18b…マスフローコントローラ
19…酸素供給管
19a…バルブ
19b…マスフローコントローラ
19c…バルブ
20…給水管
20a…バルブ
21…配水管
22…液体供給管
22a…バルブ
22b…マスフローコントローラ
22c…バルブ
23…液体供給管
23a…バルブ
23b…マスフローコントローラ
23c…バルブ
24…液体供給管
24a…バルブ
24b…マスフローコントローラ
24c…バルブ
25…液体供給管
25a…バルブ
25b…マスフローコントローラ
25c…バルブ
26…多岐管
26a…バルブ
26b…バルブ
26c…バルブ
26d…バルブ
26e…エアパージ
26f…バルブ
27…薄膜形成材料供給部
28…薄膜形成材料供給部
29…薄膜形成材料供給部
30…薄膜形成材料供給部
31…接続部
32…接続部
33…冷却システム
35…センターロッド
35a…冷却部材挿入穴
35b…ガイド溝
36…冷却部材
37…輻射防止部
38…シール部材
39…シール部材
1 ... Vaporizer 2 ... Disperser (dispersion body)
DESCRIPTION OF SYMBOLS 3 ... Reaction tube 4 ... Heater 5 ... Gas passage 5a ... Start end upstream port 5b ... End injection port (merging part)
6 ... Cooling passage 7 ... Center rod 8 ... Pin 9 ... Pin 10 ... Supply section 11 ... Gas cylinder 12 ... Oxygen cylinder 13 ... Water storage tank 14 ... Reserve tank 15 ... Reserve tank 16 ... Reserve tank 17 ... Reserve tank 18 ... Gas supply pipe 18b ... Mass flow controller 18b ... Mass flow controller 19 ... Oxygen supply pipe 19a ... Valve 19b ... Mass flow controller 19c ... Valve 20 ... Water supply pipe 20a ... Valve 21 ... Water distribution pipe 22 ... Liquid supply pipe 22a ... Valve 22b ... Mass flow controller 22c ... Valve 23 ... Liquid supply pipe 23a ... Valve 23b ... Mass flow controller 23c ... Valve 24 ... Liquid supply pipe 24a ... Valve 24b ... Mass flow controller 24c ... Valve 25 ... Liquid supply pipe 25a ... Valve 25b ... Mass flow Controller 25c ... Valve 26 ... Manifold 26a ... Valve 26b ... Valve 26c ... Valve 26d ... Valve 26e ... Air purge 26f ... Valve 27 ... Thin film forming material supply unit 28 ... Thin film forming material supply unit 29 ... Thin film forming material supply unit 30 ... Thin film Forming material supply unit 31 ... Connection unit 32 ... Connection unit 33 ... Cooling system 35 ... Center rod 35a ... Cooling member insertion hole 35b ... Guide groove 36 ... Cooling member 37 ... Radiation prevention unit 38 ... Sealing member 39 ... Sealing member

Claims (11)

分散部本体に形成されたキャリアガス導入穴の全長に跨って挿入されて該キャリアガス導入穴の内壁との協働によりガス通路を形成するセンターロッドと、前記分散部本体の複数個所に形成されて前記ガス通路の中途部に複数の薄膜形成材料を供給する薄膜形成材料供給部と、前記分散部本体の前記キャリアガス導入穴の外周側に配置されて前記ガス通路内を冷却する冷却部と、前記センターロッドの軸線方向に沿い且つ前記センターロッドの略全長に跨って形成された冷却部材挿入穴と、該冷却部材挿入穴内に配置されて前記センターロッドを冷却する冷却部材と、を備え、
前記冷却部と前記冷却部材は、少なくとも薄膜形成材料供給部から前記ガス通路の下流端付近に跨って配置されていることを特徴とする気化器。
A center rod that is inserted over the entire length of the carrier gas introduction hole formed in the dispersion part body and forms a gas passage in cooperation with the inner wall of the carrier gas introduction hole, and is formed at a plurality of locations of the dispersion part body. A thin film forming material supply unit that supplies a plurality of thin film forming materials to a middle part of the gas passage, and a cooling unit that is disposed on the outer peripheral side of the carrier gas introduction hole of the dispersion unit main body and cools the gas passage. A cooling member insertion hole formed along the axial direction of the center rod and over substantially the entire length of the center rod, and a cooling member disposed in the cooling member insertion hole to cool the center rod,
The vaporizer, wherein the cooling unit and the cooling member are disposed across at least the vicinity of the downstream end of the gas passage from the thin film forming material supply unit.
前記ガス通路と気化管との間に、該ガス出口の外側に該ガス出口の断面積よりも小さな断面積を有する孔を有する輻射防止部を備えていることを特徴とする請求項1記載の気化器。 The radiation prevention part which has the hole which has a cross-sectional area smaller than the cross-sectional area of this gas outlet in the outer side of this gas outlet between the said gas channel | path and a vaporization pipe | tube is provided. Vaporizer. 請求項1又は2記載の気化器に隣接して前記分散部本体で複数の薄膜形成材料を分散させたキャリアガスを気化する気化部を設けたことを特徴とするMOCVD用気化器。 A vaporizer for MOCVD, comprising a vaporizer for vaporizing a carrier gas in which a plurality of thin film forming materials are dispersed in the main body of the dispersion unit adjacent to the vaporizer according to claim 1 or 2. 請求項1又は2記載の気化器若しくは請求項3に記載のMOCVD用気化器に使用されるセンターロッドであって、
前記センターロッドの外周に形成され且つ適用する薄膜形成材料と1対1で対応した複数のガイド溝を備えていることを特徴とするセンターロッド。
A center rod used in the vaporizer according to claim 1 or 2, or the vaporizer for MOCVD according to claim 3,
A center rod comprising a plurality of guide grooves formed on an outer periphery of the center rod and corresponding one-to-one with a thin film forming material to be applied.
前記冷却部材が、略円筒形状のペルチェ素子であることを特徴とする請求項4に記載のセンターロッド。 The center rod according to claim 4, wherein the cooling member is a substantially cylindrical Peltier element. 前記冷却部材が、前記冷却部材挿入穴に吸熱部を配置したヒートパイプであることを特徴とする請求項4に記載のセンターロッド。 The center rod according to claim 4, wherein the cooling member is a heat pipe in which a heat absorbing portion is disposed in the cooling member insertion hole. 前記冷却部材が、ポンプを介して冷却水が給排水される螺旋状又は略U字状の冷水パイプであることを特徴とする請求項4に記載のセンターロッド。 The center rod according to claim 4, wherein the cooling member is a spiral or substantially U-shaped cold water pipe through which cooling water is supplied and drained via a pump. 前記冷却部材は、前記センターロッドに着脱可能に挿入されていることを特徴とする請求項4乃至請求項7のいずれか1項に記載のセンターロッド。 The center rod according to any one of claims 4 to 7, wherein the cooling member is detachably inserted into the center rod. 分散部本体に形成されたキャリアガス導入穴の内壁と該キャリアガス導入穴に挿入されたセンターロッドとの間に形成されたガス通路に複数の薄膜形成材料を分散させたキャリアガスを導入すると共に、該薄膜形成材料を分散させたキャリアガスを前記分散部本体に配置した冷却部と前記センターロッドに配置した冷却部材とで
少なくとも薄膜形成材料供給部から前記ガス通路の下流端付近に跨って冷却しつつ前記ガス通路内を搬送することを特徴とするキャリアガスの冷却分散方法。
While introducing a carrier gas in which a plurality of thin film forming materials are dispersed into a gas passage formed between an inner wall of a carrier gas introduction hole formed in the dispersion body and a center rod inserted into the carrier gas introduction hole The carrier gas in which the thin film forming material is dispersed is cooled across the vicinity of the downstream end of the gas passage from at least the thin film forming material supply unit by the cooling unit arranged in the dispersion unit main body and the cooling member arranged in the center rod. A carrier gas cooling and dispersing method, wherein the carrier gas is conveyed in the gas passage.
分散部本体に形成されたキャリアガス導入穴の内壁と該キャリアガス導入穴に挿入されたセンターロッドとの間に形成されたガス通路にキャリアガスを導入すると共に、前記ガス通路の中途部複数箇所から薄膜形成材料を導入してキャリアガスに前記薄膜形成材料を分散させた後に、前記ガス通路の下流端部に配置されたセンターロッド先端によって互いに接近する方向に案内される合流部にて前記薄膜形成材料を分散させたキャリアガスを合流させた後に気化するキャリアガスの気化方法であって、
少なくとも前記ガス通路の中途部複数箇所から導入された薄膜形成材料を分散させたキャリアガスを、前記分散部本体に配置した冷却部と前記センターロッドに配置した冷却部材とで
少なくとも薄膜形成材料供給部から前記ガス通路の下流端付近に跨って冷却しつつ前記合流部に前記薄膜形成材料を分散させたキャリアガスを案内することを特徴とするキャリアガスの気化方法。
The carrier gas is introduced into the gas passage formed between the inner wall of the carrier gas introduction hole formed in the dispersion body and the center rod inserted into the carrier gas introduction hole, and a plurality of locations in the middle of the gas passage After the thin film forming material is introduced from the carrier gas, the thin film forming material is dispersed in a carrier gas, and then the thin film is formed at a junction portion guided in a direction approaching each other by a center rod tip disposed at a downstream end portion of the gas passage. A method of vaporizing a carrier gas that is vaporized after the carrier gas in which the forming material is dispersed is merged,
At least a thin film forming material supply unit including a cooling unit disposed in the dispersion unit main body and a cooling member disposed in the center rod with a carrier gas in which a thin film forming material introduced from a plurality of locations in the middle of the gas passage is dispersed. The carrier gas vaporizing method is characterized in that the carrier gas in which the thin film forming material is dispersed is guided to the joining portion while cooling over the vicinity of the downstream end of the gas passage.
前記ガス通路と気化管との間に、該ガス出口の外側に該ガス出口の断面積よりも小さな断面積を有する孔を有する輻射防止部を備えていることを特徴とする請求項9に記載のキャリアガスの冷却分散方法又は請求項10に記載のキャリアガスの気化方法。 The radiation prevention part which has the hole which has a cross-sectional area smaller than the cross-sectional area of this gas outlet in the outer side of this gas outlet between the said gas channel and a vaporization pipe | tube is provided. The carrier gas cooling / dispersing method of claim 10 or the carrier gas vaporizing method according to claim 10.
JP2009023063A 2009-02-03 2009-02-03 Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution Expired - Fee Related JP5614935B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2009023063A JP5614935B2 (en) 2009-02-03 2009-02-03 Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution
US13/147,668 US8897627B2 (en) 2009-02-03 2010-01-27 Carburetor, carburetor for MOCVD using same, center rod for use in the carburetor or carburetor for MOCVD, method for dispersing carrier gas, and method for vaporizing carrier gas
KR20117020560A KR20120005440A (en) 2009-02-03 2010-01-27 Carburetor, carburetor for mocvd using same, center rod for use in the carburetor or carburetor for mocvd, method for dispersing carrier gas, and method for vaporizing carrier gas
KR1020167029843A KR20160128441A (en) 2009-02-03 2010-01-27 Carburetor, carburetor for mocvd using same, center rod for use in the carburetor or carburetor for mocvd, method for dispersing carrier gas, and method for vaporizing carrier gas
PCT/JP2010/051054 WO2010090112A1 (en) 2009-02-03 2010-01-27 Carburetor, carburetor for mocvd using same, center rod for use in the carburetor or carburetor for mocvd, method for dispersing carrier gas, and method for vaporizing carrier gas
US14/520,537 US9020332B2 (en) 2009-02-03 2014-10-22 Center rod for use in the carburetor or carburetor for MOCVD
US14/520,457 US9108120B2 (en) 2009-02-03 2014-10-22 Method for cooling and dispersing a carrier gas, and method for vaporizing a carrier gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009023063A JP5614935B2 (en) 2009-02-03 2009-02-03 Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014108382A Division JP2014159644A (en) 2014-05-26 2014-05-26 Vaporizer, mocvd vaporizer using this vaporizer, center rod used in these vaporizers, carrier gas dispersion method and carrier gas vaporization method

Publications (2)

Publication Number Publication Date
JP2010180433A JP2010180433A (en) 2010-08-19
JP5614935B2 true JP5614935B2 (en) 2014-10-29

Family

ID=42542012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009023063A Expired - Fee Related JP5614935B2 (en) 2009-02-03 2009-02-03 Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution

Country Status (4)

Country Link
US (3) US8897627B2 (en)
JP (1) JP5614935B2 (en)
KR (2) KR20120005440A (en)
WO (1) WO2010090112A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5993363B2 (en) * 2011-02-28 2016-09-14 株式会社渡辺商行 Vaporizer and vaporization method
KR20160147482A (en) * 2015-06-15 2016-12-23 삼성전자주식회사 Apparatus for manufacturing Semiconductor Devices Having a Gas Mixing Part

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4111365A (en) * 1973-12-26 1978-09-05 Isuzu Motors Limited Fuel injection system and its nozzle holder
TW322602B (en) * 1996-04-05 1997-12-11 Ehara Seisakusho Kk
JP3913841B2 (en) * 1997-07-02 2007-05-09 本田技研工業株式会社 Injection valve
JP3470055B2 (en) * 1999-01-22 2003-11-25 株式会社渡邊商行 MOCVD vaporizer and raw material solution vaporization method
JP5016416B2 (en) * 2001-01-18 2012-09-05 株式会社渡辺商行 Vaporizer and vaporization method
KR20040007439A (en) * 2001-01-18 2004-01-24 가부시키가이샤 와타나베 쇼코 Ferroelectric thin film, metal thin film or oxide thin film, and method and apparatus for preparation thereof, and electric or electronic device using said thin film
JPWO2002058141A1 (en) * 2001-01-18 2004-05-27 株式会社渡邊商行 Vaporizer, various devices using the same, and vaporization method
JP2004010969A (en) * 2002-06-07 2004-01-15 Taiheiyo Cement Corp Roller for rolling
JP4192008B2 (en) 2003-02-18 2008-12-03 株式会社渡辺商行 Vaporizer, vaporizer cleaning method, and apparatus using vaporizer
JP2004273766A (en) * 2003-03-07 2004-09-30 Watanabe Shoko:Kk Vaporizing device and film forming device using it, and method for vaporising and film forming
JP2005072194A (en) * 2003-08-22 2005-03-17 Watanabe Shoko:Kk Dispersing device for vaporizer, vaporizer for mocvd using the dispersing device, rod used for the dispersing device or vaporizer, method of dispersing carrier gas, and method of vaporizing carrier gas
JP2005072195A (en) * 2003-08-22 2005-03-17 Watanabe Shoko:Kk Dispersing device for vaporizer, vaporizer for mocvd using the same, and method of vaporizing carrier gas
JP5993363B2 (en) * 2011-02-28 2016-09-14 株式会社渡辺商行 Vaporizer and vaporization method

Also Published As

Publication number Publication date
WO2010090112A1 (en) 2010-08-12
US20150053137A1 (en) 2015-02-26
KR20120005440A (en) 2012-01-16
US20150069642A1 (en) 2015-03-12
JP2010180433A (en) 2010-08-19
US20120040098A1 (en) 2012-02-16
KR20160128441A (en) 2016-11-07
US9108120B2 (en) 2015-08-18
US8897627B2 (en) 2014-11-25
US9020332B2 (en) 2015-04-28

Similar Documents

Publication Publication Date Title
US6195504B1 (en) Liquid feed vaporization system and gas injection device
CN100595910C (en) Carburetor, various types of devices using carburetor, and method of vaporization
WO2003079422A1 (en) Vaporizer, various devices using the same, and vaporizing method
JP5614935B2 (en) Vaporizer, vaporizer for MOCVD using this vaporizer, center rod used in these vaporizers or vaporizer for MOCVD, and carrier gas distribution
JP2005101454A (en) Vaporizer
KR20040091738A (en) Method of depositing cvd thin film
JP2014159644A5 (en)
JP2014159644A (en) Vaporizer, mocvd vaporizer using this vaporizer, center rod used in these vaporizers, carrier gas dispersion method and carrier gas vaporization method
JP2005072195A (en) Dispersing device for vaporizer, vaporizer for mocvd using the same, and method of vaporizing carrier gas
JP2005072194A (en) Dispersing device for vaporizer, vaporizer for mocvd using the dispersing device, rod used for the dispersing device or vaporizer, method of dispersing carrier gas, and method of vaporizing carrier gas
KR100507961B1 (en) Liquid raw material gasification system and gas injection device
WO2002058129A1 (en) Ferroelectric thin film, metal thin film or oxide thin film, and method and apparatus for preparation thereof, and electric or electronic device using said thin film
JP4238239B2 (en) Vaporization method
JP2000226668A (en) Vaporizer
JP2015039001A (en) Vaporizer
JP5185726B2 (en) Vaporizer, thin film forming apparatus, and MOCVD apparatus
JP6014829B2 (en) Vaporizer
JP5542103B2 (en) Vaporizer
JP2007258733A (en) Vaporizing method and depositing method
JP2008205506A (en) Vaporizer, and various apparatus and vaporizing method using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131224

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140526

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140909

R150 Certificate of patent or registration of utility model

Ref document number: 5614935

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees