JP5613895B2 - Crystal filtration method - Google Patents

Crystal filtration method Download PDF

Info

Publication number
JP5613895B2
JP5613895B2 JP2010548369A JP2010548369A JP5613895B2 JP 5613895 B2 JP5613895 B2 JP 5613895B2 JP 2010548369 A JP2010548369 A JP 2010548369A JP 2010548369 A JP2010548369 A JP 2010548369A JP 5613895 B2 JP5613895 B2 JP 5613895B2
Authority
JP
Japan
Prior art keywords
filtration layer
crystal
crystal filtration
separated
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010548369A
Other languages
Japanese (ja)
Other versions
JPWO2010087055A1 (en
Inventor
昌治 城
昌治 城
正博 手塚
正博 手塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido Research Organization
Original Assignee
Hokkaido Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/JP2009/057042 external-priority patent/WO2009123350A1/en
Application filed by Hokkaido Research Organization filed Critical Hokkaido Research Organization
Priority to JP2010548369A priority Critical patent/JP5613895B2/en
Publication of JPWO2010087055A1 publication Critical patent/JPWO2010087055A1/en
Application granted granted Critical
Publication of JP5613895B2 publication Critical patent/JP5613895B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B3/00Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering
    • B04B3/02Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering discharging solid particles from the bowl by means coaxial with the bowl axis and moving to and fro, i.e. push-type centrifuges
    • B04B3/025Centrifuges with rotary bowls in which solid particles or bodies become separated by centrifugal force and simultaneous sifting or filtering discharging solid particles from the bowl by means coaxial with the bowl axis and moving to and fro, i.e. push-type centrifuges with a reversible filtering device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0004Crystallisation cooling by heat exchange
    • B01D9/0013Crystallisation cooling by heat exchange by indirect heat exchange
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D9/00Crystallisation
    • B01D9/0059General arrangements of crystallisation plant, e.g. flow sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B04CENTRIFUGAL APPARATUS OR MACHINES FOR CARRYING-OUT PHYSICAL OR CHEMICAL PROCESSES
    • B04BCENTRIFUGES
    • B04B7/00Elements of centrifuges
    • B04B7/08Rotary bowls
    • B04B7/18Rotary bowls formed or coated with sieving or filtering elements

Description

本発明は、溶液とその溶液に不溶の液体および固形物から構成される混合物の分離の技術に関する。   The present invention relates to a technique for separating a solution and a mixture composed of liquids and solids insoluble in the solution.

従来、液液混合物および固液混合物の分離技術としては、化学的および物理的分離技術がある。化学的分離技術は、ヘキサン等溶剤を用い目的物質を抽出するものである。また、物理的分離技術としては、主に以下の分離板型遠心分離法が用いられ、またろ過法等もある。なお、ここでの液液混合物とは溶液とその溶液に不溶の液体(以下不溶液体とする)(複数の不溶液体の場合もある)の混合した物であり、固液混合物とは液体と固形物(固形物が固化油の場合もある)の混合した物である。また、以下では液液混合物および固液混合物を被分離混合物と総称する場合がある。
1.分離板型遠心分離法
分離板型遠心分離法は、高速度の回転体が生ずる(強力な)遠心力を被分離混合物に与え、被分離混合物中の構成物質の運動速度に差を生じさせ構成物質を分離するものである。このことからその分離能力は、被分離混合物中の分散媒と分散媒に不溶の液体および固形物の比重差に比例し、また分散媒の粘度に反比例する。この技術は、液液、固液の分離技術としてよく用いられる技術である。
上記分離板型遠心分離法(Disk−centrifuge)の技術は、例えば特許文献1および非特許文献1,2にその構造および原理が記されている。
U.S.PAT.2179941,11/1939,233/27 Perry Robert H.,”Perry’s Chemical Engineers’Handbook,”6th ed.,P.19・89−103(1984) 外山健三、高木徹、渡辺武、”水産油糧学”、(株)恒星社厚生閣、P.19(1988)
Conventionally, there are chemical and physical separation techniques as separation techniques for liquid-liquid mixtures and solid-liquid mixtures. The chemical separation technique is to extract a target substance using a solvent such as hexane. Further, as a physical separation technique, the following separation plate type centrifugal separation method is mainly used, and there are a filtration method and the like. Here, the liquid-liquid mixture is a mixture of a solution and a liquid insoluble in the solution (hereinafter referred to as an insoluble body) (may be a plurality of insoluble bodies), and a solid-liquid mixture is a liquid and a solid. Product (solid may be solidified oil). Hereinafter, the liquid-liquid mixture and the solid-liquid mixture may be collectively referred to as a mixture to be separated.
1. Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugal Separation Plate Centrifugation Method The substance is separated. Therefore, the separation ability is proportional to the specific gravity difference between the dispersion medium in the mixture to be separated and the liquid and solid matter insoluble in the dispersion medium, and inversely proportional to the viscosity of the dispersion medium. This technique is often used as a liquid-liquid / solid-liquid separation technique.
The structure and principle of the technology of the above-mentioned separation plate type centrifugal separation method (Disk-centrifugation) are described in, for example, Patent Document 1 and Non-Patent Documents 1 and 2.
U. S. PAT. 2179941, 11/1939, 233/27 Perry Robert H. "Perry's Chemical Engineers'Handbook," 6th ed. , P.M. 19, 89-103 (1984) Kenzo Toyama, Toru Takagi, Takeshi Watanabe, “Fisheries Oil Science”, Housseisha Koseikaku Co., Ltd. 19 (1988)

2.ろ過法
ろ過法は、多孔性(珪藻土等)、または繊維状のろ過材でろ過層を形成し、そのろ過層に被分離混合物を圧力、または遠心力をかけ供給し、粘度小液体、または液体はろ過層を通過させ、粘度大液体、または固形物をそのろ過層に捕捉し分離するものである。
上記ろ過法は、微小・少量の粘性液体およびエマルジョン、サスペンジョンの分離、また比重差の小さい固液、液液混合物の分離に用いることのできる技術とされている。
上記ろ過法(Filtration)の技術は、例えば特許文献2および非特許文献3、4、5、6に記されている。
U.S.PAT.4368119,1/1983,210/137 Perry Robert H.,”Perry’s Chemical Engineers’Handbook,”6th ed.;P.19・65−89(1984) Spielman,L.A.and Goren,S.L.,”A review of progress in the coalescence of liquid−liquid suspension and a new theoretical framework for coalescence by porous media are presented,”Ind.Eng.Chem.,Vol.62,No.10,P.10−24(1970) Scheidegger,A.E.,”The Physics of Flow through Porous Media,”3rd ed.,University of Toronto Press,Toronto(1974) 古川俊夫、”液体清浄化におけるコストダウンの方策”、化学装置、工業調査会、P.32−43(1998)
2. Filtration method Filtration method forms a filtration layer with porous (diatomaceous earth, etc.) or fibrous filter material, supplies the separation mixture to the filtration layer under pressure or centrifugal force, and supplies a liquid with low viscosity or liquid Is passed through a filtration layer, and a high-viscosity liquid or solid is captured and separated in the filtration layer.
The filtration method is considered to be a technique that can be used for separation of minute and small viscous liquids and emulsions, suspensions, and solid-liquid and liquid-liquid mixtures having a small specific gravity difference.
The technique of the said filtration method (Filtration) is described in the patent document 2 and the nonpatent literature 3, 4, 5, 6, for example.
U. S. PAT. 4368119, 1/1983, 210/137 Perry Robert H. "Perry's Chemical Engineers'Handbook," 6th ed. P .; 19, 65-89 (1984) Spielman, L .; A. and Goren, S .; L. , “A review of progress in the coalescence of liquid-liquid suspension and a new theoretical framework for porous by media.”, A review of progress in the coalescence of liquid-liquid suspension and a new theoretic framework for porous by media. Eng. Chem. , Vol. 62, no. 10, P.I. 10-24 (1970) Scheidegger, A.M. E. "The Physics of Flow through Porous Media," 3rd ed. , University of Toronto Press, Toronto (1974) Toshio Furukawa, “Cost reduction measures for liquid cleaning”, Chemical Equipment, Industrial Research Committee, P.A. 32-43 (1998)

上記従来の化学的分離技術は、ヘキサン等溶剤による目的物質の変性、また溶剤回収のための蒸留操作により高コストな方法となる。
一方、物理的分離技術である分離板型遠心分離法およびろ過法等では、以下の問題点を抱えている。
1.分離板型遠心分離法
分離板型遠心分離法は、
▲1▼(前記1ページ15〜27行目の原理から)分離対象物間にほとんど比重差がとれない場合、または分散媒の粘度が大きい場合には用いることができない。
▲2▼また、上記原理(比重差および分散媒の粘度)は、被分離混合物の温度が高いほどその分離能力が高くなることになる。このため分離板型遠心分離法では被分離混合物を加温して用いる場合が多い。
▲3▼強力(高回転)な遠心力を必要とするため処理量(装置の大きさ)に限界がある。
2.ろ過法
従来のろ過法は、ろ過処理後のろ過材に捕捉された被捕捉物(粘性液体および固形物)とろ過材の分離が困難である。このため多くのろ過材(珪藻土等)は、以下の問題点を抱えている。
▲1▼ろ過材に捕捉された被捕捉物の回収ができない。
▲2▼上記▲1▼は、ろ過材の廃棄が悪臭等の公害問題にもなる。
▲3▼ろ過材交換のためのろ過材料費および使用後のろ過材の処分(廃棄等)に過剰のコストがかかる。
▲4▼上記▲2▼、▲3▼は、ろ過材への被捕捉物が多い場合には、ろ過法の適用が困難となることを意味することにもなる。
上記問題点の解決の方法として捕捉材料(ろ過材、または膜材料)の再生のための洗浄、または被捕捉物の回収の方法があるが、それらにも以下の問題点がある。
▲1▼水、または水溶液を用いた捕捉材料の洗浄再生:
(被捕捉物が細孔、または微細空間へ捕捉されているために)再生が不完全になる場合が多い。また、洗浄液の多量使用となる。このため洗浄後の洗浄液からの被捕捉物の回収が困難、または洗浄液の廃棄(廃液)処理が高コストになる。
▲2▼有機性溶媒を用いた捕捉材料の洗浄再生、または被捕捉物の回収:
上記溶媒使用後の溶媒と被捕捉物の分離は、一般的には蒸発法による(8ページ2〜7行目参照)。このため高コスト、また被捕捉物の変性の問題を抱えることになる。
なお、ろ過法の一種として親油性繊維状物質を用いたコアレッサ技術がある。コアレッサ技術は、水溶液中の廃油、または鉱物油の分離に用いられる。しかしこの技術は、(上記ろ過材(繊維状物質)で記した捕捉された被捕捉物の回収の困難性問題のため)固液の分離には適さず、また天然物(腐敗性)の油脂と水溶液の分離に用いられた例が見られない。
この他にろ過法と類似の分離技術として膜法がある。しかし、膜法は、天然物の油脂と水溶液の分離へ用いた場合、油脂の粘性およびろ過材の洗浄(高コスト等)が問題となり実用例は少ない。
本発明は、被分離混合物から目的物質を分離するための上記等の従来の分離の方法および装置の問題点を解決することを目的とするものである。
The above-mentioned conventional chemical separation technique becomes a high-cost method due to the modification of the target substance with a solvent such as hexane and the distillation operation for solvent recovery.
On the other hand, the separation plate type centrifugal separation method and the filtration method which are physical separation techniques have the following problems.
1. Separation plate type centrifugal separation method
{Circle around (1)} (from the principle of the first page, lines 15 to 27) When the specific gravity difference between the separation objects cannot be obtained or when the dispersion medium has a high viscosity, it cannot be used.
(2) Further, according to the above principle (specific gravity difference and dispersion medium viscosity), the higher the temperature of the mixture to be separated, the higher the separation ability. For this reason, in the separation plate type centrifugal separation method, the mixture to be separated is often used after being heated.
(3) Since a powerful (high rotation) centrifugal force is required, there is a limit to the amount of processing (size of the apparatus).
2. Filtration method In conventional filtration methods, it is difficult to separate the trapped material (viscous liquid and solid matter) trapped in the filter medium after the filtration treatment and the filter medium. For this reason, many filter media (diatomaceous earth etc.) have the following problems.
(1) It is not possible to recover the trapped material captured by the filter medium.
{Circle around (2)} In {circle around (1)} above, disposal of filter media also causes pollution problems such as bad odor.
(3) The cost of the filter material for replacing the filter medium and the disposal of the filter medium after use (disposal, etc.) are excessive.
{Circle around (4)} {circle over (2)} and {circle around (3)} mean that it is difficult to apply the filtration method when there are a large number of objects to be trapped in the filter medium.
As a method for solving the above-mentioned problems, there are cleaning methods for regeneration of the trapping material (filter material or membrane material) and recovery methods of the trapped material, but these also have the following problems.
(1) Cleaning and regeneration of trapping material using water or aqueous solution:
Regeneration is often incomplete (because the objects to be captured are trapped in pores or fine spaces). In addition, a large amount of cleaning liquid is used. For this reason, it is difficult to recover an object to be captured from the cleaning liquid after cleaning, or disposal (waste liquid) treatment of the cleaning liquid becomes expensive.
(2) Washing and regeneration of trapping materials using organic solvents, or recovery of trapped materials:
Separation of the solvent and the trapped substance after using the solvent is generally performed by an evaporation method (see page 8, lines 2 to 7). For this reason, there is a problem of high cost and denaturation of the captured object.
As one type of filtration method, there is a coalescer technique using a lipophilic fibrous substance. Coalessa technology is used to separate waste oil or mineral oil in aqueous solution. However, this technique is not suitable for solid-liquid separation (due to the difficulty in collecting the captured material described above with the filter medium (fibrous material)), and it is not natural (septic) oils and fats. There is no example used to separate the aqueous solution from the aqueous solution.
In addition, there is a membrane method as a separation technique similar to the filtration method. However, when the membrane method is used for separation of natural oils and fats and aqueous solutions, the viscosity of the oils and the cleaning of the filter medium (high cost, etc.) are problematic and there are few practical examples.
An object of the present invention is to solve the problems of conventional separation methods and apparatuses for separating a target substance from a mixture to be separated.

本発明は上記目的を達成するために、基本的に以下の工程1、工程2、工程3から構成される物理的分離の方法および装置となっている(図1)。
1)工程1: 原液1aからフイルタ結晶2aを生成する。
ここで、フイルタ結晶とは、以下の大きさ、または形状の単結晶および多結晶(以下結晶)である。微細(粒状を含む)結晶、または針・棒形状、または樹枝形状、または薄片・板形状、または破砕された結晶、または左記の結晶が含まれる結晶群、または左記結晶の混合物が含まれる結晶群である。なお、フイルタ結晶には、液体が同伴されていてもよい。
2)工程2: 上記フイルタ結晶2aによるろ過層(以下結晶ろ過層6a)を形成する。次に、その結晶ろ過層6aの表面に被分離混合物5aを供給し、被分離混合物5aを結晶ろ過層および結晶ろ過層支持壁(左記支持壁には回転バスケット孔壁、ろ布およびスクリーン等がある)を通過する通過液7aと結晶ろ過層に捕捉される結晶ろ過層の被捕捉物(粘度大溶液8bおよび固形物)とに分離する。
3)工程3: 結晶ろ過層6aと被捕捉物を融解タンク8に収集する。結晶ろ過層は、融解タンク8で融解される。
本発明の上記構成の作用は、以下となる(上記工程の1)、2)、3)に対応させて記述する)。
1)原液タンク1からフイルタ結晶生成機2に原液1aが送られる。
フイルタ結晶生成機2で原液1aからフイルタ結晶2aを生成する。左記のフイルタ結晶に関しては、以下の各種氷(人工雪等)の生成方法および装置が記されている。
特許文献3には、低湿度・低温度の圧縮空気を噴霧水に噴射して氷を生成する装置が記されている。また、Green Fine Air Tech Inc.(Korea)(2009)は、アイスパウダーを生成する回転凍結ドラムを用いた機器を販売している。また、加温加湿機からの水蒸気を冷却板に導き、冷却板上に霜を成長させ、その霜を冷却板から掻き取る氷生成の装置がある。さらに、低温加湿水蒸気からの水蒸気を回転する膜に導き、膜上に霜を成長させ、その霜を膜から除去する等の装置がある。
水以外で本発明のフイルタ結晶となり得る物の例としては、包接水和物(特許文献4)等がある。
PCT/JP2007/074330 U.S.PAT.6237346 B1 5/2001,62/4
In order to achieve the above object, the present invention is basically a physical separation method and apparatus composed of the following steps 1, 2, and 3 (FIG. 1).
1) Step 1: The filter crystal 2a is produced from the stock solution 1a.
Here, the filter crystal is a single crystal or polycrystal (hereinafter referred to as crystal) having the following size or shape. Fine (including granular) crystals, or needle / bar, or dendritic, flake / plate, or crushed crystals, crystals containing the crystals shown on the left, or crystals containing a mixture of the crystals shown on the left It is. The filter crystal may be accompanied by a liquid.
2) Step 2: A filtration layer (hereinafter, crystal filtration layer 6a) is formed using the filter crystal 2a. Next, the separation mixture 5a is supplied to the surface of the crystal filtration layer 6a, and the separation mixture 5a is divided into a crystal filtration layer and a crystal filtration layer support wall (the left support wall includes a rotating basket hole wall, a filter cloth, a screen, etc. The liquid is separated into the passing liquid 7a passing through the crystal filtration layer and the trapped substance (large viscosity solution 8b and solid matter) of the crystal filtration layer trapped in the crystal filtration layer.
3) Step 3: Collect the crystal filtration layer 6a and the material to be captured in the melting tank 8. The crystal filtration layer is melted in the melting tank 8.
The effect | action of the said structure of this invention is the following (it describes corresponding to 1 of said process, 2), and 3)).
1) The stock solution 1a is sent from the stock solution tank 1 to the filter crystal generator 2.
The filter crystal generator 2 generates the filter crystal 2a from the stock solution 1a. Regarding the filter crystal on the left, the following methods and devices for generating various types of ice (such as artificial snow) are described.
Patent Document 3 describes an apparatus that generates ice by injecting low-humidity / low-temperature compressed air into spray water. Also, Green Fine Air Tech Inc. (Korea) (2009) sells equipment using a rotating freezing drum that produces ice powder. In addition, there is an ice generating device that introduces water vapor from a warming humidifier to a cooling plate, grows frost on the cooling plate, and scrapes the frost from the cooling plate. Further, there is an apparatus for introducing water vapor from low-temperature humidified water vapor into a rotating film, growing frost on the film, and removing the frost from the film.
Examples of the product other than water that can be the filter crystal of the present invention include clathrate hydrate (Patent Document 4).
PCT / JP2007 / 074330 U. S. PAT. 6237346 B1 5/2001, 62/4

上記の方法等により生成される結晶の大きさおよび形状は、粘性溶液および固形物の捕捉のためのろ過材となると考えられる。
2)フイルタ結晶生成機2からのフイルタ結晶2aを分離機6に投入し、分離機内でフイルタ結晶2aをろ過材とした結晶ろ過層6aを形成する。ここで、フイルタ結晶生成機2からのフイルタ結晶2aを分離機6に送る手段としてスクリューコンベア等の輸送手段を用いると好適である。
次に被分離混合物5aを(分離機6において遠心力、圧力差、またはそれらの併用力の働いている)結晶ろ過層6aの表面へ供給する。ここで、分離機6は、遠心分離型の分離手段でなくともともよい(圧力差による筒、器によるもの等)。また、遠心分離型の分離機6においては、被分離混合物5aの結晶ろ過層6aへの供給は、散布が好ましい。
なお、供給する被分離混合物5aの温度は、フイルタ結晶2aがろ過材の役割を保つ温度とする。また、被分離混合物の温度は、フイルタ結晶の融点よりも低い温度であってもよい。
さらに、被分離混合物5aを(結晶ろ過層6aへ供給する前に)凍結させ、被分離混合物5a中のエマルションの解消効果を期待してもよい(非特許文献7)。
Iritani,E.,S.Matsumoto and N.Katagiri,”Formation and Consolidation of Filter Cake in Microfiltration of Emulsion−Slurry,”J.Membrane Sci.,318(1−2),56−64(2008)
The size and shape of the crystals produced by the above method are considered to be a filter medium for trapping viscous solutions and solids.
2) The filter crystal 2a from the filter crystal generator 2 is put into the separator 6, and a crystal filtration layer 6a using the filter crystal 2a as a filter medium is formed in the separator. Here, as a means for sending the filter crystal 2a from the filter crystal generator 2 to the separator 6, it is preferable to use a transport means such as a screw conveyor.
Next, the to-be-separated mixture 5a is supplied to the surface of the crystal filtration layer 6a (in which centrifugal force, pressure difference, or a combination force thereof works in the separator 6). Here, the separator 6 does not have to be a centrifugal separation means (such as a cylinder by a pressure difference or a vessel). In the centrifugal separator 6, the supply of the separated mixture 5 a to the crystal filtration layer 6 a is preferably sprayed.
In addition, let the temperature of the to-be-separated mixture 5a supplied be the temperature at which the filter crystal 2a maintains the role of a filter medium. The temperature of the mixture to be separated may be lower than the melting point of the filter crystal.
Further, the separation mixture 5a may be frozen (before being supplied to the crystal filtration layer 6a), and the effect of eliminating the emulsion in the separation mixture 5a may be expected (Non-patent Document 7).
Iritani, E .; S. Matsumoto and N.M. Katagiri, “Formation and Consolidation of Filter Cake in Microfiltration of Emulsion-Slurry,” J. Membrane Sci. , 318 (1-2), 56-64 (2008)

被分離混合物5aは、結晶ろ過層6aで以下の作用を受ける。
被分離混合物5aが液液混合物の場合は、
液液混合物中の粘度小溶液(水溶液等)が結晶ろ過層6aの結晶間および結晶ろ過層支持壁の孔を通過し結晶ろ過層支持壁外に排出され、粘度大溶液8b(油等)が結晶ろ過層に捕捉される。ここで粘度小溶液および粘度大溶液8bとは、液液混合物中の溶液と不溶液体をその粘度の比較において粘度小溶液と粘度大溶液8bとしている。
なお、溶液のろ過においては、ろ過層での溶液の捕捉能力(単位時間当たりの透過流量の逆数)はその溶液の粘度に比例することは公知のことである(例えば非特許文献4および非特許文献5(P.73−78,99−123)参照)。したがって、本発明は、粘度大溶液8bと粘度小溶液の分離に適した方法、装置となる。特に天然物等の油含有溶液(油脂と水溶液の混合物)においては、一般的に油は低温度になるほどその粘度を著しく増大させる(低温度が進むと固化する)。一方、水溶液は、低温度化による粘度の増加が緩慢である。このことから低温度な天然物等の油含有溶液は、溶液と不溶液体の粘度差が拡大し本発明への適用に好条件な被分離混合物5aとなる。
一方、被分離混合物5aが固液混合物の場合は、
固液混合物中の液体が結晶ろ過層および結晶ろ過層支持壁の孔を通過し結晶ろ過層支持壁外に排出され、固形物が結晶ろ過層に捕捉される。さらに、固液混合物中の液体が上記の液液混合物と同じに溶液と不溶液体から構成される場合は、本発明の用途別に粘度大溶液を結晶ろ過層に捕捉する場合もあり、捕捉しない場合もある。
さらに、本発明は、液液および固液混合物中の複数の不溶液体の分離を目的として、上記の液液混合物の場合と同じ原理により(不溶液体どうしの粘度差による)不溶液体中の粘度の大きい溶液と粘度の小さい溶液の分離を行う方法、装置として用いてもよい。
なお、発明では、分離前の被分離混合物に溶液、または不溶液体を加えてもよい(この場合、被分離混合物に固形物を含む場合であってもよい)。なお、この加液物は、被分離混合物の成分物質に限定されない。この被分離混合物への加液による処理は、分離板遠心法(前記1ページ15〜27行目参照)においては、分離効率が低下、または変わらない場合がある。このことは、分離板遠心法では被分離混合物の溶液、または不溶液体の増加により遠心力場での溶液、または不溶液体中の微粒子(溶液、不溶液体および固形物)の滞留時間の増加等がその原因と考えられる。このような被分離混合物の場合、加液による本発明の適用は好適である。
また、本発明は、上記分離機6として遠心分離法を用いたとしても分離板型遠心分離法(前記1ページ15〜27行目参照)に比べ高速回転を必要としない。その理由は、本発明の分離機での分離原理(遠心力の利用)が主に固液および液液のろ過層での透過性の差によるもの(粒・滴(エマルジョン等)の集合効果も含む)であり、一方、分離板型遠心分離法での分離原理(遠心力の利用)が比重差を求めていることによる。低速回転は、遠心分離機の材料および構造の強度を緩和させ遠心分離機を大型化(多量処理を可能とする)、また低コスト化できることになる。
3)上記操作を経て上記結晶ろ過層支持壁の通過液7aは通過液タンク7に収集し、また結晶ろ過層6aと結晶ろ過層の被捕捉物(粘度大溶液8bおよび固形物)は融解タンク8に収集する。結晶ろ過層は、融解タンク8で融解される(以下結晶ろ過層の融解物を融解液とする)。
融解タンク中の混合物の分離(融解液と粘度大溶液(および固形物)の分離)は、静置分離法(比重差による分離)、または分離板型遠心分離法、円筒型遠心分離法、デカンター型分離法、または膜、ろ過、コアレッサ等により行うことができる。
さらに本方法は、(上記したように)ろ過層での被分離混合物5a中の粒・滴の集合効果を伴い、その集合物の一部が通過液7aに混入する。このため、通過液タンク7中の混合物、または通過液タンク中の混合物と融解タンク8中の混合物を混合した混合物の分離に静置分離法、分離板型遠心分離法、円筒型遠心分離法、デカンター型分離法、または膜、ろ過、コアレッサ等を用いてもよい。なお、粒・滴の集合物は、その集合の程度により大きさが異なり、大きい集合物ほどろ過層に捕捉されやすいことになる。
なお、上記各種分離技術により分離された融解液、粘度小溶液および粘度大溶液には、被分離混合物中の粘度大溶液、粘度小溶液、固形物およびそれらの混合物が(本発明の使用により(他の手段をその前後に行うことを含め)使用者の目的が達成される範囲の量において)混入されていてもよい。
分離した融解液は、フイルタ結晶生成機2の原液1aとして用いてもよい(再使用)。この場合、原液タンク1への新しい原液1aの補充、原液1aの冷却(または加温)のためのエネルギ、また上記融解液の排液処理等が低減され低コスト、省エネルギな方法、装置となる。また、融解液の再使用は、従来のろ過法に比べろ過材交換のためのろ過材料費および使用後のろ過材の処分(廃棄等)のためのコストを低減する。
さらに、この融解液の原液1aへの再使用において前記(4ページ23行目〜5ページ7行目)した(フイルタ結晶生成機での)原液の気化によるフイルタ結晶の生成は、融解液中に混入した粘度大溶液、粘度小溶液中の溶質および固形物のフイルタ結晶への混入を防ぐ利点をもつことになり、さらに低温度による気化はそれらの気化混入をよりいっそう防止することになる。
このように本発明は、ろ過材と被捕捉物の分離をろ過材を融解することにより行う方法である。このため以下の利点を持つ方法となる。
▲1▼捕捉材料(ろ過材、または膜材料)と被捕捉物の分離が容易となり、(左記分離のおいて)高い分離効率が得られる。このため被捕捉物を分離目的物質とすることも可能となる。
▲2▼ろ過材再生のためのろ過材の洗浄を必要としない。
▲3▼ろ過材廃棄の公害問題を解決する(融解液の再利用、またはろ過材を氷等の無公害物質とした場合)。
また、既存のろ過および膜技術で、捕捉材料からの被捕捉物の回収に水、水溶液、または有機性溶媒を用いた場合に比べ本発明は多くの場合において低コストな方法となる(前記3ページ18〜26行目参照)。これは、一般的に本発明で必要な熱エネルギ(ろ過材の融解および凝固潜熱)が、上記既存のろ過および膜技術で必要な熱エネルギ(蒸発潜熱および多量の洗浄液等)に比べ小さいことによる。例えば水は、蒸発潜熱が約560Kcal/Kgであり、凝固潜熱が約80Kcak/Kgである。
本発明は、被分離混合物中5aの目的物質が温度により変性、または酸化の懸念のされない低温度環境で行ってもよい。
また、本発明は、研究、実験および実証用等として上記各構成(フイルタ結晶生成機2、分離機6および融解タンク8)の操作を繰り返し行わない回分式(バッチ式)の被分離混合物5aの処理の方法、装置として用いてもよい。
また、本発明は、本発明のろ過材(フイルタ結晶)をろ過助剤(ボディフィード法(body feeding)およびプリコート法(precoating))として用いてもよい。
なお、米特許(特許文献5、特許文献6)には、氷結晶で形成された層を固液混合物、または液体が通過する技術が記されている。また、上記特許文献5には、以後の 発明を実施するための最良の形態 で記す回転するバスケットを用いて氷結晶層を形成する遠心脱水法が記されている。また、緩慢凍結で滞留時間を長くして球状氷結晶を作ること、さらに急速凍結で滞留時間を短くすると微細な氷結晶が生成することが記されている。また、上記特許文献6は、氷結晶と固形化したWAXをOilから分離する技術である。
U.S.PAT.3845230,10/1974,426/384 U.S.PAT.3320153,5/1967,208/33
The to-be-separated mixture 5a receives the following effects in the crystal filtration layer 6a.
When the separated mixture 5a is a liquid-liquid mixture,
A low viscosity solution (such as an aqueous solution) in the liquid-liquid mixture passes between the crystals of the crystal filtration layer 6a and through the holes in the crystal filtration layer support wall, and is discharged out of the crystal filtration layer support wall. It is trapped in the crystal filtration layer. Here, the low-viscosity solution and the high-viscosity solution 8b are a solution in a liquid-liquid mixture and a non-solution body, which are a low-viscosity solution and a high-viscosity solution 8b in the comparison of the viscosities.
In the filtration of a solution, it is well known that the ability of trapping the solution in the filtration layer (the reciprocal of the permeation flow rate per unit time) is proportional to the viscosity of the solution (for example, Non-Patent Document 4 and Non-Patent Document 4). Reference 5 (refer to P. 73-78, 99-123). Therefore, the present invention provides a method and apparatus suitable for separating the high viscosity solution 8b and the low viscosity solution. In particular, in oil-containing solutions such as natural products (a mixture of fats and aqueous solutions), the viscosity of oil generally increases remarkably as the temperature decreases (solidifies as the temperature decreases). On the other hand, the aqueous solution has a slow increase in viscosity due to lowering of temperature. Therefore, a low temperature oil-containing solution such as a natural product has a viscosity difference between the solution and the non-solution body, and becomes a separated mixture 5a that is favorable for application to the present invention.
On the other hand, when the separated mixture 5a is a solid-liquid mixture,
The liquid in the solid-liquid mixture passes through the pores of the crystal filtration layer and the crystal filtration layer support wall, is discharged out of the crystal filtration layer support wall, and the solid matter is captured by the crystal filtration layer. Furthermore, when the liquid in the solid-liquid mixture is composed of a solution and a non-solution body in the same manner as the liquid-liquid mixture described above, a high viscosity solution may be trapped in the crystal filtration layer depending on the use of the present invention, and not trapped. There is also.
Furthermore, the present invention aims to separate a plurality of non-solution bodies in a liquid-liquid and solid-liquid mixture by the same principle as in the case of the above-mentioned liquid-liquid mixture (due to the difference in viscosity between non-solution bodies). You may use as a method and an apparatus which isolate | separate a large solution and a solution with small viscosity.
In the invention, a solution or a non-solution body may be added to the mixture to be separated before separation (in this case, the mixture to be separated may contain a solid substance). In addition, this liquid addition thing is not limited to the component substance of a to-be-separated mixture. In the treatment by adding the liquid to the mixture to be separated, the separation efficiency may be lowered or not changed in the separation plate centrifugal method (see page 1, lines 15 to 27). This is because the separation plate centrifugal method increases the residence time of the solution in the centrifugal force field due to the increase in the solution of the mixture to be separated, or the non-solution, or the fine particles (solution, non-solution and solids) in the non-solution. This is considered to be the cause. In the case of such a mixture to be separated, the application of the present invention by adding liquid is suitable.
Moreover, even if a centrifugal separation method is used as the separator 6, the present invention does not require high-speed rotation as compared with a separation plate centrifugal separation method (see the first page, lines 15 to 27). The reason is that the separation principle (utilization of centrifugal force) in the separator of the present invention is mainly due to the difference in permeability between the solid-liquid and liquid-liquid filtration layers (granule / droplet (emulsion, etc.) gathering effect. On the other hand, it is because the separation principle (use of centrifugal force) in the separation plate type centrifugal separation method requires a specific gravity difference. The low-speed rotation can reduce the strength of the material and structure of the centrifuge, increase the size of the centrifuge (allowing a large amount of processing), and reduce the cost.
3) Through the above operation, the passing liquid 7a of the crystal filtration layer support wall is collected in the passing liquid tank 7, and the crystal filtration layer 6a and the trapped substance (large viscosity solution 8b and solid matter) of the crystal filtration layer are the melting tank. Collect in 8. The crystal filtration layer is melted in the melting tank 8 (hereinafter, the melt of the crystal filtration layer is used as a melt).
Separation of the mixture in the melting tank (separation of melt and high viscosity solution (and solids)) can be done by static separation (separation by specific gravity difference), separation plate centrifugal method, cylindrical centrifugal method, decanter It can be carried out by a mold separation method, membrane, filtration, coalescer or the like.
Furthermore, this method is accompanied by the effect of collecting particles and droplets in the mixture 5a to be separated in the filtration layer (as described above), and a part of the aggregate is mixed into the passing liquid 7a. For this reason, a stationary separation method, a separation plate type centrifugal separation method, a cylindrical centrifugal separation method, and the separation of the mixture in the passage liquid tank 7 or the mixture obtained by mixing the mixture in the passage liquid tank and the mixture in the melting tank 8; A decanter type separation method or a membrane, filtration, coalescer, or the like may be used. The size of the aggregate of particles / drops varies depending on the degree of the aggregation, and the larger aggregate is more easily captured by the filtration layer.
The melt, small viscosity solution and large viscosity solution separated by the above-described various separation techniques include the large viscosity solution, the low viscosity solution, the solid matter and the mixture thereof in the mixture to be separated (by the use of the present invention ( Including other means before and after that) may be incorporated in an amount (to the extent that the user's purpose is achieved).
The separated melt may be used as the stock solution 1a of the filter crystal generator 2 (reuse). In this case, energy for replenishing the stock solution 1a to the stock solution tank 1 and cooling (or warming) the stock solution 1a, and draining treatment of the melt, etc. are reduced, and a low-cost, energy-saving method and apparatus are provided. Become. In addition, the reuse of the melt reduces the cost of the filter material for replacing the filter medium and the cost for disposal (disposal) of the filter medium after use, as compared with the conventional filtration method.
Furthermore, in the re-use of this melt into the stock solution 1a, the generation of filter crystals by vaporization of the stock solution (in the filter crystal generator) (page 4, line 23 to page 5, line 7) is performed in the melt. It will have the advantage of preventing contamination of the high viscosity solution, the solute in the low viscosity solution and the solid matter into the filter crystal, and vaporization at a low temperature will further prevent the vaporization and contamination thereof.
As described above, the present invention is a method of separating the filter medium and the captured object by melting the filter medium. For this reason, the method has the following advantages.
{Circle around (1)} Separation of the trapping material (filter material or membrane material) and the trapped substance becomes easy, and high separation efficiency can be obtained (in the separation described on the left). For this reason, it becomes possible to use the trapped substance as a separation target substance.
(2) It is not necessary to clean the filter media for regenerating the filter media.
(3) Resolve the pollution problem of filter media disposal (when reusing the melt or making the filter medium a non-polluting substance such as ice).
In addition, in many cases, the present invention is a low-cost method compared to the case where water, an aqueous solution, or an organic solvent is used to recover an object to be captured from a capture material by using existing filtration and membrane technology (see 3 above). Page 18-26). This is because the heat energy necessary for the present invention (melting and solidifying latent heat of the filter medium) is generally smaller than the heat energy required for the existing filtration and membrane technology (latent heat of evaporation and a large amount of cleaning liquid, etc.). . For example, water has a latent heat of evaporation of about 560 Kcal / Kg and a latent heat of solidification of about 80 Kcak / Kg.
The present invention may be carried out in a low temperature environment where the target substance 5a in the mixture to be separated is not subject to denaturation or oxidation due to temperature.
Further, the present invention provides a batch-type separation target mixture 5a in which the above-described components (filter crystal generator 2, separator 6 and melting tank 8) are not repeatedly operated for research, experiment and demonstration purposes. You may use as a processing method and an apparatus.
In the present invention, the filter medium (filter crystal) of the present invention may be used as a filter aid (body feeding method and pre-coating method).
Note that US Patents (Patent Documents 5 and 6) describe a technique in which a solid-liquid mixture or liquid passes through a layer formed of ice crystals. Further, Patent Document 5 describes a centrifugal dehydration method in which an ice crystal layer is formed using a rotating basket described in the best mode for carrying out the present invention. In addition, it is described that spherical ice crystals are formed by increasing the residence time by slow freezing, and that fine ice crystals are formed by shortening the residence time by rapid freezing. Moreover, the said patent document 6 is a technique which isolate | separates an ice crystal and solidified WAX from Oil.
U. S. PAT. 3845230, 10/1974, 426/384 U. S. PAT. 3320153, 5/1967, 208/33

上記により本発明は、以下の効果をもつ方法、装置となる。
その技術がろ過法であるためエマルジョン、サスペンジョンの分離(特に天然物は、脂肪酸およびモノグリセリド等が界面活性作用を持ち油脂等が微細化している)、また比重差の小さい固液、液液混合物の分離が可能となる。
また、本発明では、
▲1▼捕捉材料に捕捉された固形物および液体の回収を可能としている。
▲2▼ろ過材の再生のためのろ過材の洗浄を必要としない。
▲3▼ろ過材廃棄の公害問題を解決する(融解液の再利用、またはろ過材を氷等の無公害物質とした場合)。
さらに、本発明では、ろ過材を氷(人工雪および天然雪であってもよい)とした場合、上記以外に以下の利点を持つことになる。
▲1▼分離後の分離物へのろ過材の混入による有害性の問題を生じることがない。
▲2▼ろ過材の新たな製造が容易である。
▲3▼(低温度であるため)分離目的物質の劣化(酸化・変性)を防ぐことができる。
As described above, the present invention provides a method and apparatus having the following effects.
Separation of emulsions and suspensions because the technology is filtration (especially natural products, fatty acids, monoglycerides, etc. have a surface-active effect, and fats and oils, etc. are refined), and solid-liquid and liquid-liquid mixtures with small specific gravity difference Separation is possible.
In the present invention,
{Circle around (1)} It is possible to recover the solid matter and liquid trapped in the trapping material.
(2) It is not necessary to clean the filter media for regenerating the filter media.
(3) Resolve the pollution problem of filter media disposal (when reusing the melt or making the filter medium a non-polluting substance such as ice).
Furthermore, in the present invention, when the filter medium is ice (which may be artificial snow or natural snow), the following advantages are obtained in addition to the above.
(1) There is no problem of harmfulness due to mixing of the filter material into the separated product after separation.
(2) New production of filter media is easy.
(3) Deterioration (oxidation / denaturation) of the target substance can be prevented (because of the low temperature).

図1は本発明の実施の形態を示す工程図である。なお、この図1では、捕捉結晶ろ過層の融解後の分離は液液混合物の場合での静置分離法としている。また、静置分離法での融解液8aを原液として再使用する場合を点線で示している。
図2はフイルタ結晶生成機で冷却板型の概略図である。
図3は分離機でろ布反転型のものであり、その動作を示す断面概略図である。
FIG. 1 is a process diagram showing an embodiment of the present invention. In FIG. 1, separation after the trapped crystal filtration layer is melted is a stationary separation method in the case of a liquid-liquid mixture. Moreover, the case where the melt 8a in the stationary separation method is reused as a stock solution is indicated by a dotted line.
FIG. 2 is a schematic diagram of a cooling plate type in a filter crystal generator.
FIG. 3 is a cross-sectional schematic diagram showing the operation of the separator of the filter cloth reversal type.

1 原液タンク
1a 原液
2 フイルタ結晶生成機(工程1)
21 冷却板型のフイルタ結晶生成機
211 冷却板
212 気化機
213 原液の気化物
214 掻き取り器具
215 フイルタ結晶の排出
221 冷凍機
222 冷媒、または熱媒体
2a フイルタ結晶
5 被分離混合物タンク
5a 被分離混合物
6 分離機(工程2)
61 ろ布反転型の分離機
611 回転孔壁バスケット
612 ろ布
6a 結晶ろ過層
6b 捕捉結晶ろ過層(結晶ろ過層と結晶ろ過層に捕捉した粘度大溶液および固形物等)
7 通過液タンク
7a 通過液
8 融解タンク(工程3)
8a 融解液
8b 粘度大溶液
a : フイルタ結晶の供給工程
b : 被分離混合物の供給工程
c : 捕捉結晶ろ過層の排出工程
1 Stock solution tank 1a Stock solution 2 Filter crystal generator (Process 1)
DESCRIPTION OF SYMBOLS 21 Cooling plate type filter crystal generator 211 Cooling plate 212 Vaporizer 213 Raw material vaporized 214 Scraping device 215 Filter crystal discharge 221 Refrigerator 222 Refrigerant or heat medium 2a Filter crystal 5 Separation mixture tank 5a Separation mixture 6 Separator (Process 2)
61 Filter cloth reversing type separator 611 Rotating hole wall basket 612 Filter cloth 6a Crystal filtration layer 6b Capture crystal filtration layer (crystal filtration layer, large viscosity solution and solid substance trapped in the crystal filtration layer, etc.)
7 Passing liquid tank 7a Passing liquid 8 Melting tank (Process 3)
8a Melting solution 8b High viscosity solution a: Filter crystal supply step b: Separation mixture supply step c: Capture crystal filtration layer discharge step

本発明のフイルタ結晶生成機2としては、特許文献7に記した回転円筒型および円筒内部掻き取り型の他に、噴霧水型、アイスパウダー型、冷却板型、膜型等の機器がある。
また、本発明の分離機6には、特許文献7に記した押し出し板型、スクリュー型、ろ布反転型、自動回分型、円錐バスケット型および底部排出型等の機器がある。
PCT/JP2007/074330
As the filter crystal generator 2 of the present invention, there are devices such as a spray water type, an ice powder type, a cooling plate type, and a membrane type in addition to the rotating cylindrical type and cylindrical internal scraping type described in Patent Document 7.
Further, the separator 6 of the present invention includes devices such as an extrusion plate type, a screw type, a filter cloth reversal type, an automatic batch type, a conical basket type, and a bottom discharge type described in Patent Document 7.
PCT / JP2007 / 074330

なお、本発明は、本発明のフイルタ結晶生成機2と分離機6の組み合わせを上記(および以下)のフイルタ結晶生成機2および分離機6のどの組み合わせとしてもよい。
以下、本発明の実施の形態をフイルタ結晶生成機2を冷却板型21(図2)とし、分離機6をろ布反転型61(図3)とした場合について記す。
冷却板型フイルタ結晶生成機21は、基本的に気化機212、冷却板211および掻き取り器具214によって構成されている。また、ろ布反転型分離機61は、基本的に回転する孔壁バスケット611およびその孔壁バスケット611の内側に装着されたろ布612によって構成されている。
上記構成の動作を説明する。
冷却板型フイルタ結晶生成機21
原液タンク1からの原液1aが気化機212(加温以外の気化であってもよい)に送られる。気化機212において原液を気化させ、その気化物(水蒸気等)を冷却板211に導き、冷却板表面上に結晶を発生させる。冷却板表面の裏面には、冷媒、または熱媒体(Thermal medium)が流れている。冷却板表面に形成された結晶は、冷却板表面に近接された掻き取り器具214により冷却板表面から連続的に剥離される。この剥離された結晶がフイルタ結晶2aとなる。
なお、上記冷却板型フイルタ結晶生成機で生成されるフイルタ結晶2aの形状および大きさは冷却板211の温度、気化物の冷却板への供給量・速度および掻き取り器具214の掻き取り速度等の調整により行うことができる。
ろ布反転型分離機61
(a)フイルタ結晶生成機2からのフイルタ結晶2aが、回転する孔壁バスケット611の内側に装着されたろ布612に投入され(ろ布は、バスケットと一体となり回転する)、孔壁バスケット611の回転遠心力によりフイルタ結晶2aをろ過材とした結晶ろ過層6aを形成する。
(b)形成された結晶ろ過層6aの表面へ被分離混合物5aを供給する。供給された被分離混合物5aは、粘度小溶液は結晶ろ過層およびバスケット壁孔を通過し(通過液7a)、粘度大溶液8bおよび固形物は結晶ろ過層に捕捉される。
(c)被分離混合物の供給を停止する。その後、ろ布612を反転(裏返り)させ捕捉結晶ろ過層6b(結晶ろ過層と結晶ろ過層に捕捉した粘度大溶液8bおよび固形物等)をろ布612から剥離する。剥離された捕捉結晶ろ過層6bは、分離機底部から落下排出される。
なお、この分離機においては、目的物の分離効率および分離量を高めるためにフイルタ結晶2aおよび被分離混合物5aの供給量および供給速度、また回転孔壁バスケットの回転速度および回転時間等の調整を行う。
また、フイルタ結晶2aおよび被分離混合物5aの分離機への供給は、その供給管が共通のものであってもよいが、別であることが好ましい。
上記等の分離機の操作を経て結晶ろ過層支持壁の通過液7aは通過液タンク7に収集し、また結晶ろ過層と結晶ろ過層の被捕捉物(粘度大溶液および固形物等)は融解タンク8に収集する。結晶ろ過層は、融解タンク8で融解される。
In the present invention, the combination of the filter crystal generator 2 and the separator 6 of the present invention may be any combination of the filter crystal generator 2 and the separator 6 described above (and below).
Hereinafter, an embodiment of the present invention will be described in the case where the filter crystal generator 2 is a cooling plate type 21 (FIG. 2) and the separator 6 is a filter cloth inversion type 61 (FIG. 3).
The cooling plate type filter crystal generator 21 is basically composed of a vaporizer 212, a cooling plate 211 and a scraping device 214. The filter cloth reversing type separator 61 is basically composed of a rotating hole wall basket 611 and a filter cloth 612 mounted inside the hole wall basket 611.
The operation of the above configuration will be described.
Cooling plate type filter crystal generator 21
The stock solution 1a from the stock solution tank 1 is sent to a vaporizer 212 (which may be a vaporization other than heating). The stock solution is vaporized in the vaporizer 212, the vaporized product (water vapor or the like) is guided to the cooling plate 211, and crystals are generated on the surface of the cooling plate. A refrigerant or a heat medium flows through the back surface of the cooling plate surface. The crystals formed on the surface of the cooling plate are continuously peeled from the surface of the cooling plate by the scraping tool 214 close to the surface of the cooling plate. The peeled crystal becomes the filter crystal 2a.
The shape and the size of the filter crystal 2a generated by the cooling plate type filter crystal generator are the temperature of the cooling plate 211, the supply amount / speed of vaporized material to the cooling plate, the scraping speed of the scraping tool 214, etc. This can be done by adjusting.
Filter cloth reversing type separator 61
(A) The filter crystal 2a from the filter crystal generator 2 is put into a filter cloth 612 mounted inside the rotating hole wall basket 611 (the filter cloth rotates together with the basket). A crystal filtration layer 6a using the filter crystal 2a as a filter material is formed by a rotational centrifugal force.
(B) The mixture 5a to be separated is supplied to the surface of the formed crystal filtration layer 6a. In the supplied mixture 5a to be separated, the low-viscosity solution passes through the crystal filtration layer and the basket wall hole (passage liquid 7a), and the high-viscosity solution 8b and the solid matter are captured by the crystal filtration layer.
(C) Stop supplying the mixture to be separated. Thereafter, the filter cloth 612 is reversed (turned over), and the trapped crystal filtration layer 6b (the crystal filtration layer, the large viscosity solution 8b trapped in the crystal filter layer, solids, etc.) is peeled from the filter cloth 612. The separated trapped crystal filtration layer 6b is dropped and discharged from the bottom of the separator.
In this separator, in order to increase the separation efficiency and separation amount of the target product, the supply amount and supply speed of the filter crystal 2a and the mixture to be separated 5a, and the rotation speed and rotation time of the rotating hole wall basket are adjusted. Do.
Further, the supply of the filter crystal 2a and the mixture to be separated 5a to the separator may be common in the supply pipe, but is preferably separate.
Through the operation of the separator, etc., the passing liquid 7a on the support wall of the crystal filtration layer is collected in the pass liquid tank 7, and the crystal filtration layer and the trapped substances (such as high viscosity solution and solid matter) of the crystal filtration layer are melted. Collect in tank 8. The crystal filtration layer is melted in the melting tank 8.

本発明は、フイルタ結晶を氷とし、被分離混合物を天然物(油と水溶液の混合物)とした場合に好適である。天然物から分離される有用成分は、(化学合成物に比べ)動物(人体等)・植物へ無害である場合が多く、その利用は急拡大している。   The present invention is suitable when the filter crystal is ice and the mixture to be separated is a natural product (a mixture of oil and aqueous solution). Useful components separated from natural products are often harmless to animals (human body, etc.) and plants (compared to chemical compounds), and their use is rapidly expanding.

Claims (5)

a)原液からそのままでろ過材となる脱液工程の必要のないフイルタ結晶を生成し、
b)該フイルタ結晶による結晶ろ過層を形成し、形成された該結晶ろ過層の表面に被分離混合物を供給し、該被分離混合物を該結晶ろ過層に捕捉される被捕捉物と、該結晶ろ過層および結晶ろ過層支持壁の孔を通過する通過液とに分離し、
c)該結晶ろ過層と該結晶ろ過層に捕捉された該被捕捉物を収集し、該結晶ろ過層を融解し結晶ろ過層融解液とし該結晶ろ過層と該被捕捉物を分離し、
d)該結晶ろ過層融解液を原液として再利用する、
該被分離混合物からの分離物を生産する方法。
a) A filter crystal that does not require a liquid removal step to be used as a filter medium as it is from the stock solution is produced,
b) forming a crystal filtration layer by the filter crystal, supplying a mixture to be separated to the surface of the formed crystal filtration layer, and a substance to be captured that is captured by the crystal filtration layer; Separated into a filtrate passing through the pores of the filtration layer and the crystal filtration layer support wall,
c) Collecting the crystal filtration layer and the trapped material captured by the crystal filtration layer, melting the crystal filtration layer to form a crystal filtration layer melt, and separating the crystal filtration layer and the trapped material ;
d) reusing the crystal filtration layer melt as a stock solution;
A method for producing a separated product from the separated mixture.
a)原液を気化させフイルタ結晶を生成し、
b)該フイルタ結晶による結晶ろ過層を形成し、形成された該結晶ろ過層の表面に被分離混合物を供給し、該被分離混合物を該結晶ろ過層に捕捉される被捕捉物と、該結晶ろ過層および結晶ろ過層支持壁の孔を通過する通過液とに分離し、
c)該結晶ろ過層と該結晶ろ過層に捕捉された該被捕捉物を収集し、該結晶ろ過層を融解し結晶ろ過層融解液とし該結晶ろ過層と該被捕捉物を分離する、
該被分離混合物からの分離物を生産する方法。
a) vaporizing the stock solution to produce filter crystals;
b) forming a crystal filtration layer by the filter crystal, supplying a mixture to be separated to the surface of the formed crystal filtration layer, and a substance to be captured that is captured by the crystal filtration layer; Separated into a filtrate passing through the pores of the filtration layer and the crystal filtration layer support wall,
c) Collecting the crystal filtration layer and the trapped substance trapped in the crystal filtration layer, melting the crystal filtration layer to separate the crystal filtration layer and the trapped substance as a crystal filtration layer melt,
A method for producing a separated product from the separated mixture.
a)原液を噴霧化させフイルタ結晶を生成し、
b)該フイルタ結晶による結晶ろ過層を形成し、形成された該結晶ろ過層の表面に被分離混合物を供給し、該被分離混合物を該結晶ろ過層に捕捉される被捕捉物と、該結晶ろ過層および結晶ろ過層支持壁の孔を通過する通過液とに分離し、
c)該結晶ろ過層と該結晶ろ過層に捕捉された該被捕捉物を収集し、該結晶ろ過層を融解し結晶ろ過層融解液とし該結晶ろ過層と該被捕捉物を分離し、
d)該結晶ろ過層融解液を原液として再利用する、
該被分離混合物からの分離物を生産する方法。
a) The stock solution is atomized to produce filter crystals,
b) forming a crystal filtration layer by the filter crystal, supplying a mixture to be separated to the surface of the formed crystal filtration layer, and a substance to be captured that is captured by the crystal filtration layer; Separated into a filtrate passing through the pores of the filtration layer and the crystal filtration layer support wall,
c) Collecting the crystal filtration layer and the trapped material captured by the crystal filtration layer, melting the crystal filtration layer to form a crystal filtration layer melt, and separating the crystal filtration layer and the trapped material ;
d) reusing the crystal filtration layer melt as a stock solution;
A method for producing a separated product from the separated mixture.
a)原液からパウダー状のフイルタ結晶を生成し、
b)該フイルタ結晶による結晶ろ過層を形成し、形成された該結晶ろ過層の表面に被分離混合物を供給し、該被分離混合物を該結晶ろ過層に捕捉される被捕捉物と、該結晶ろ過層および結晶ろ過層支持壁の孔を通過する通過液とに分離し、
c)該結晶ろ過層と該結晶ろ過層に捕捉された該被捕捉物を収集し、該結晶ろ過層を融解し結晶ろ過層融解液とし該結晶ろ過層と該被捕捉物を分離し、
d)該結晶ろ過層融解液を原液として再利用する、
該被分離混合物からの分離物を生産する方法。
a) generating powdery filter crystals from the stock solution,
b) forming a crystal filtration layer by the filter crystal, supplying a mixture to be separated to the surface of the formed crystal filtration layer, and a substance to be captured that is captured by the crystal filtration layer; Separated into a filtrate passing through the pores of the filtration layer and the crystal filtration layer support wall,
c) Collecting the crystal filtration layer and the trapped material captured by the crystal filtration layer, melting the crystal filtration layer to form a crystal filtration layer melt, and separating the crystal filtration layer and the trapped material ;
d) reusing the crystal filtration layer melt as a stock solution;
A method for producing a separated product from the separated mixture.
a)原液から結晶を生成し、
b)該結晶を破砕しフイルタ結晶を作り、
c)該フイルタ結晶による結晶ろ過層を形成し、形成された該結晶ろ過層の表面に被分離混合物を供給し、該被分離混合物を該結晶ろ過層に捕捉される被捕捉物と、該結晶ろ過層および結晶ろ過層支持壁の孔を通過する通過液とに分離し、
d)該結晶ろ過層と該結晶ろ過層に捕捉された該被捕捉物を収集し、該結晶ろ過層を融解し結晶ろ過層融解液とし該結晶ろ過層と該被捕捉物を分離する、
該被分離混合物からの分離物を生産する方法。
a) producing crystals from the stock solution;
b) crushing the crystals to make filter crystals,
c) Forming a crystal filtration layer by the filter crystal, supplying a mixture to be separated to the surface of the formed crystal filtration layer, and a substance to be captured that is captured by the crystal filtration layer, and the crystal Separated into a filtrate passing through the pores of the filtration layer and the crystal filtration layer support wall,
d) Collecting the crystal filtration layer and the trapped substance trapped in the crystal filtration layer, melting the crystal filtration layer to separate the crystal filtration layer and the trapped substance as a crystal filtration layer melt,
A method for producing a separated product from the separated mixture.
JP2010548369A 2009-02-02 2009-09-30 Crystal filtration method Expired - Fee Related JP5613895B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010548369A JP5613895B2 (en) 2009-02-02 2009-09-30 Crystal filtration method

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2009041440 2009-02-02
JP2009041440 2009-02-02
JPPCT/JP2009/057042 2009-03-31
PCT/JP2009/057042 WO2009123350A1 (en) 2008-04-04 2009-03-31 Method and device for crystal filtration
PCT/JP2009/067452 WO2010087055A1 (en) 2009-02-02 2009-09-30 Method and apparatus for crystal filtration
JP2010548369A JP5613895B2 (en) 2009-02-02 2009-09-30 Crystal filtration method

Publications (2)

Publication Number Publication Date
JPWO2010087055A1 JPWO2010087055A1 (en) 2012-07-26
JP5613895B2 true JP5613895B2 (en) 2014-10-29

Family

ID=42395323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010548369A Expired - Fee Related JP5613895B2 (en) 2009-02-02 2009-09-30 Crystal filtration method

Country Status (2)

Country Link
JP (1) JP5613895B2 (en)
WO (1) WO2010087055A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140346126A1 (en) * 2008-04-04 2014-11-27 Local Independent Administrative Agency Method and system using melting filter for separating mixture
CN106391331B (en) * 2016-11-07 2018-08-28 品第信息科技(上海)有限公司 A kind of hot melt material method of purification and device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114585B1 (en) * 1969-08-01 1976-05-11
JPS5274960A (en) * 1975-12-18 1977-06-23 Nikku Ind Co Oil and water separating device
JPS59109264A (en) * 1982-12-14 1984-06-23 Toray Ind Inc Centrifugal separation of slurry
JPS62250923A (en) * 1986-04-23 1987-10-31 Hitachi Ltd Filtering method
JPH06226018A (en) * 1993-02-08 1994-08-16 Ebara Corp Preparation of slurry mixture for precoating material
JPH0938405A (en) * 1995-08-01 1997-02-10 Kiichi Watanabe Oil separator
JP2001009218A (en) * 1999-04-26 2001-01-16 Ishii Noboru Filtration and filtration equipment using basket type centrifugal separator
WO2008075689A1 (en) * 2006-12-20 2008-06-26 Iceman Co., Ltd. Snowmaking accelerating apparatus and method of snowmaking acceleration
WO2009123350A1 (en) * 2008-04-04 2009-10-08 株式会社 城 Method and device for crystal filtration

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5114585B1 (en) * 1969-08-01 1976-05-11
JPS5274960A (en) * 1975-12-18 1977-06-23 Nikku Ind Co Oil and water separating device
JPS59109264A (en) * 1982-12-14 1984-06-23 Toray Ind Inc Centrifugal separation of slurry
JPS62250923A (en) * 1986-04-23 1987-10-31 Hitachi Ltd Filtering method
JPH06226018A (en) * 1993-02-08 1994-08-16 Ebara Corp Preparation of slurry mixture for precoating material
JPH0938405A (en) * 1995-08-01 1997-02-10 Kiichi Watanabe Oil separator
JP2001009218A (en) * 1999-04-26 2001-01-16 Ishii Noboru Filtration and filtration equipment using basket type centrifugal separator
WO2008075689A1 (en) * 2006-12-20 2008-06-26 Iceman Co., Ltd. Snowmaking accelerating apparatus and method of snowmaking acceleration
WO2009123350A1 (en) * 2008-04-04 2009-10-08 株式会社 城 Method and device for crystal filtration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013042138; 手塚正博,城昌治,城和久: '天然物からの油分離のための氷を用いた装置' 産業・化学機械と安全部門講演会2008講演論文集 , 20080522, p.9-10, 社団法人 日本機械学会 *

Also Published As

Publication number Publication date
JPWO2010087055A1 (en) 2012-07-26
WO2010087055A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
JP5422794B2 (en) Crystal filtration method and apparatus
US20220371922A1 (en) Systems and methods for activating and dewatering sludge using acoustic pressure shock waves
WO2015081878A1 (en) System for recycling all oil base mud from oil base mud well drilling waste
WO2019201314A1 (en) Method and device for treating oily aqueous substance
CN104291541A (en) Method for recycling crude oil from storage and transportation oil sludge
JP5613895B2 (en) Crystal filtration method
US20140346126A1 (en) Method and system using melting filter for separating mixture
MXPA06012086A (en) Process for separating one or more solids from water miscible fluids and an apparatus therefor.
CN103849454B (en) A kind of device by producing base oil by regenerating waste lubricating oil
CN203807424U (en) Device using used lubricating oil to regenerate base oil
CA2740468C (en) Method of processing a bituminous feed by staged addition of a bridging liquid
CA2738194C (en) Method of processing a bituminous feed using an emulsion
JP3866029B2 (en) Freeze-thaw separation method
US9457295B2 (en) Systems and methods for separating mine tailings from water-absorbing polymers and regenerating the separated water-absorbing polymers
KR20010042375A (en) Waste acid recovery
CN109111011A (en) A kind of waste emulsified mixture innocuity disposal system and demulsifier
CN103820200B (en) A kind of technique by producing base oil by regenerating waste lubricating oil
JP3792108B2 (en) Sludge concentration dewatering equipment
CN204569838U (en) NSF diesel oil coalescer
JP2015120146A (en) Separation method of mixture using melting filter medium
CN209019947U (en) It is a kind of for handling the continuous separation device of cold rolling Magnetic filter product
RU2737925C1 (en) Method of producing graphene-containing suspensions by graphite exfoliation and device for implementation thereof
CN117398760B (en) Impurity separating device
CN105753196B (en) Concrete plant area sewage water treatment method
JP5910878B2 (en) Functional resin powder production system and functional resin powder production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130903

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131016

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140122

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20140617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140815

R150 Certificate of patent or registration of utility model

Ref document number: 5613895

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees