JP5613891B2 - Stress luminescent material and method for producing the same - Google Patents

Stress luminescent material and method for producing the same Download PDF

Info

Publication number
JP5613891B2
JP5613891B2 JP2010204132A JP2010204132A JP5613891B2 JP 5613891 B2 JP5613891 B2 JP 5613891B2 JP 2010204132 A JP2010204132 A JP 2010204132A JP 2010204132 A JP2010204132 A JP 2010204132A JP 5613891 B2 JP5613891 B2 JP 5613891B2
Authority
JP
Japan
Prior art keywords
stress
mol
zns
luminescent material
disk
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010204132A
Other languages
Japanese (ja)
Other versions
JP2012057119A (en
Inventor
嗣生 石原
嗣生 石原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hyogo Prefectural Government
Original Assignee
Hyogo Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hyogo Prefectural Government filed Critical Hyogo Prefectural Government
Priority to JP2010204132A priority Critical patent/JP5613891B2/en
Publication of JP2012057119A publication Critical patent/JP2012057119A/en
Application granted granted Critical
Publication of JP5613891B2 publication Critical patent/JP5613891B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Luminescent Compositions (AREA)

Description

本発明は、機械的エネルギーを光エネルギーに変換して発光する応力発光物質、及びその製造方法に関する。   The present invention relates to a stress-stimulated luminescent material that emits light by converting mechanical energy into light energy, and a method for producing the same.

物体の各部分に生じる応力の大きさを測定することは、機械又は構造物の設計分野をはじめとする多くの技術分野において重要である。これまでに応力測定が行われてきた技術分野としては、感圧シート、発光ボール、光ファイバーセンサ又は振動センサのような用途が挙げられる。   Measuring the magnitude of the stress generated in each part of an object is important in many technical fields, including the field of machine or structure design. The technical fields in which stress measurement has been performed so far include uses such as a pressure sensitive sheet, a light emitting ball, an optical fiber sensor, or a vibration sensor.

応力測定は、今後も様々な技術分野における応用の可能性も秘めている。例えば、プラント又は装置メーカーでは、プラント配管のモニタリングによる安全性検査に応用し得る。応力分布又は歪みの計測は、ビル又は鉄塔のような大型構造物から、ナノレベルの構造物まで、非常に幅広い分野で利用し得る。   Stress measurement has the potential to be applied in various technical fields. For example, a plant or equipment manufacturer can be applied to safety inspection by monitoring plant piping. Stress distribution or strain measurement can be used in a very wide range of fields, from large structures such as buildings or towers to nano-level structures.

これまでに、応力分布を測定するための種々の手法が開発されており、歪みゲージを測定対象物に貼り付けて応力測定する方法が一般的である。しかし、この方法では、応力分布を測定するために、多数の測定点に歪みゲージを貼り付ける必要があり、作業時間が長い。また、微細な領域の応力分布を測定することは不可能であり、個々の測定点における歪み値しか測定できない。   Various methods for measuring the stress distribution have been developed so far, and a method of measuring stress by attaching a strain gauge to an object to be measured is common. However, in this method, in order to measure the stress distribution, strain gauges need to be attached to a large number of measurement points, and the work time is long. Moreover, it is impossible to measure the stress distribution in a fine region, and only the strain value at each measurement point can be measured.

物体から放出される赤外線を検出して応力分布を測定する、赤外線応力画像法も開発されている。この方法では、測定対象物に解析専用の周期的な応力を加えると共に、赤外線カメラに応力の同期信号を印可する必要があるため、実際の使用条件下におけるリアルタイムでの応力測定はできない。   Infrared stress imaging methods have also been developed that measure the stress distribution by detecting infrared rays emitted from an object. In this method, since it is necessary to apply periodic stresses dedicated to analysis to the measurement object and to apply a stress synchronization signal to the infrared camera, it is not possible to measure stress in real time under actual use conditions.

これら以外にも、光学的測定が容易な透明樹脂で測定対象物の実体に近い模型を作製し、模型に加重を加えることにより応力分布を測定する光弾性法と呼ばれる方法が開発されている。この方法では、模型を作製するための作業時間及び費用が係り、実体と模型の材質の違いにために、測定対象物の実際の使用条件下におけるリアルタイムの応力測定を測定できない。   In addition to these, a method called a photoelastic method has been developed in which a model close to the substance of a measurement object is made of a transparent resin that can be easily measured optically, and stress distribution is measured by applying a weight to the model. This method involves working time and cost for producing a model, and because of the difference in material between the substance and the model, it is not possible to measure real-time stress measurement under the actual usage conditions of the measurement object.

一方、機械的な外力を加えると、その機械的エネルギーを光エネルギーに変換して発光する応力発光物質(メカノルミネッセンス物質)を使用して応力測定する方法も開発されている。応力発光物質としては、特許文献1に開示されているユーロピウム錯体、特許文献2に開示されているウルツ鉱型構造とせん亜鉛鉱型構造との共存構造を有する複合半導体結晶、特許文献3に開示されているストロンチウム及びアルミニウム含有複合金属酸化物、特許文献4に開示されているバリウムの複合酸化物等が知られている。   On the other hand, a method of measuring stress using a stress luminescent material (mechanoluminescence material) that emits light by converting mechanical energy into light energy when mechanical external force is applied has been developed. Examples of the stress luminescent substance include a europium complex disclosed in Patent Document 1, a composite semiconductor crystal having a coexistence structure of a wurtzite structure and a zincblende structure disclosed in Patent Document 2, and disclosed in Patent Document 3 Known composite metal oxides containing strontium and aluminum, and barium composite oxides disclosed in Patent Document 4 are known.

また、非特許文献1には、硫化亜鉛(ZnS)にマンガン(Mn)を添加することにより、応力発光物質として機能することが開示されている。   Non-Patent Document 1 discloses that manganese (Mn) is added to zinc sulfide (ZnS) to function as a stress luminescent substance.

特開平10−130639号公報Japanese Patent Laid-Open No. 10-130639 特開2004−43656号公報JP 2004-43656 A 特開2004−059746号公報JP 2004-059746 A 特開2006−124725号公報JP 2006-124725 A

K. MEYER, D. OBRIKAT, M. ROSSBERG, Kristall und Teknik, 5, 1, P5-49 (1970).K. MEYER, D. OBRIKAT, M. ROSSBERG, Kristall und Teknik, 5, 1, P5-49 (1970).

応力発光物質は、応力を受けると発光するという単純な原理によって、測定対象物にかかる応力をリアルタイムで測定可能であり、極めて応用範囲が広い。しかし、これまで知られている応力発光物質は、発光輝度が十分とは言えず、実用性に乏しかった。   A stress-stimulated luminescent substance can measure stress applied to an object to be measured in real time based on a simple principle that it emits light when stressed, and has a very wide application range. However, the stress-stimulated luminescent materials known so far cannot be said to have sufficient light emission luminance, and have poor practicality.

本発明は、従来の応力発光物質よりも発光強度が高く、しかも安価な応力発光物質と、その製造方法とを提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide a stress-stimulated luminescent material that has higher emission intensity than that of a conventional stress-stimulated luminescent material and is inexpensive, and a method for producing the stress-stimulated luminescent material.

本発明者は、圧電特性を有し、応力発光強度が大きい応力発光物質であるZnS:Mn(ZnSにMnを添加し、焼成した物質)に着目し、その発光強度を向上させるために、ZnSに添加するMn濃度の最適値について検討した。そして、Mn以外に、ガリウム(Ga)を特定濃度となるようにZnSにさらに添加して、還元性雰囲気下で焼成することにより、発光強度を向上させることができることを見出し、本発明を完成させるに至った。   The present inventor has focused on ZnS: Mn (a material obtained by adding Mn to ZnS and calcined), which has a piezoelectric property and has a high stress luminescence intensity. In order to improve the luminescence intensity, ZnS: The optimum value of Mn concentration to be added to was investigated. Further, in addition to Mn, gallium (Ga) is further added to ZnS so as to have a specific concentration, and the emission intensity can be improved by firing in a reducing atmosphere, thereby completing the present invention. It came to.

具体的に、本発明は、
Mnを0.5 mol%以上2.0 mol%以下、Gaを0.01 mol%以上0.3 mol%以下の濃度範囲で含有するZnSを、還元性雰囲気下、1000℃以上1250℃以下の温度で焼成することによって得られる応力発光物質に関する。
Specifically, the present invention
It is obtained by firing ZnS containing Mn in a concentration range of 0.5 mol% to 2.0 mol% and Ga in a concentration range of 0.01 mol% to 0.3 mol% at a temperature of 1000 ° C to 1250 ° C in a reducing atmosphere. The present invention relates to a stress luminescent material.

また、本発明は、
硫化亜鉛に対して、マンガンを0.5mol%以上2.0mol%以下、ガリウムを0.01 mol%以上0.3 mol%以下の濃度範囲で添加する添加工程と、
マンガン及びガリウムを添加した硫化亜鉛を、還元性雰囲気下、1000℃以上1250℃以下の温度で焼成する焼成工程と、
を有する応力発光物質の製造方法に関する。
The present invention also provides:
An addition step of adding manganese in a concentration range of 0.5 mol% to 2.0 mol% and gallium in a concentration range of 0.01 mol% to 0.3 mol% with respect to zinc sulfide;
A firing step of firing manganese sulfide and gallium sulfide in a reducing atmosphere at a temperature of 1000 ° C. to 1250 ° C.,
The present invention relates to a method for producing a stress-stimulated luminescent material.

ZnSに対するMnの添加濃度を調整するだけでは、従来の応力発光物質と比較して発光強度を十分に向上させることはできない。しかし、さらにGaを0.01 mol%以上0.3 mol%以下の濃度範囲となるように添加することにより、発光強度の向上を図ることができることを、本発明者は初めて見出したものである。   Only by adjusting the concentration of Mn added to ZnS, the emission intensity cannot be sufficiently improved as compared with the conventional stress luminescent material. However, the present inventors have found for the first time that the emission intensity can be improved by further adding Ga in a concentration range of 0.01 mol% to 0.3 mol%.

また、焼成温度についても、特定範囲とした場合にのみ発光強度の十分な向上を図れることも、本発明者は初めて見出した。焼成温度は、1150℃以上1250℃以下とすることがより好ましい。また、焼成時間は、1時間以上とすることが好ましい。   The inventors have also found for the first time that the emission intensity can be sufficiently improved only when the firing temperature is within a specific range. The firing temperature is more preferably 1150 ° C. or higher and 1250 ° C. or lower. Moreover, it is preferable that baking time shall be 1 hour or more.

ZnSに対するMnの添加濃度は、0.8 mol%以上1.5 mol%以下とすることがより好ましい。また、ZnSに対するGaの添加濃度は、0.03 mol%以上0.22 mol%以下とすることがより好ましい。   The addition concentration of Mn with respect to ZnS is more preferably 0.8 mol% or more and 1.5 mol% or less. Further, the Ga addition concentration with respect to ZnS is more preferably 0.03 mol% or more and 0.22 mol% or less.

なお、本発明でいう「還元性雰囲気下で焼成する」とは、例えば、(1) 窒素ガス若しくはアルゴンガスのような不活性ガス雰囲気下又は水素ガス雰囲気下で焼成すること;(2) 、内側のるつぼに試料を入れ、外側のるつぼに炭素(例えば、粒状、顆粒状若しくは粉末活性炭等)を入れて二重るつぼとした状態で焼成すること:が該当する。   In the present invention, “baking in a reducing atmosphere” means, for example, (1) baking in an inert gas atmosphere such as nitrogen gas or argon gas or in a hydrogen gas atmosphere; (2) This applies to: putting a sample in an inner crucible and putting carbon (for example, granular, granular or powdered activated carbon) in an outer crucible and firing it in a double crucible state.

本発明によれば、従来の応力発光物質よりも発光強度の高く、しかも安価な応力発光物質を得ることが可能である。   According to the present invention, it is possible to obtain a stress-stimulated luminescent material that has higher emission intensity than a conventional stress-stimulated luminescent material and that is inexpensive.

Mn添加濃度の異なる8種類のディスク状成型体の応力発光強度の測定結果を示すグラフである。It is a graph which shows the measurement result of the stress luminescence intensity of eight types of disk-shaped molded objects from which Mn addition density | concentration differs. Ga添加濃度の異なる7種類のディスク状成型体の応力発光強度の測定結果を示すグラフである。It is a graph which shows the measurement result of the stress luminescence intensity of seven types of disk-shaped molded objects from which Ga addition density | concentration differs. 2種類の応力発光物質について、焼成温度と発光強度との関係を示すグラフである。It is a graph which shows the relationship between a calcination temperature and luminescence intensity about two types of stress luminescent substances. ZnS:MnGa0.1を用いて作製されたディスク状成型体の、応力発光強度測定時の発光状態を撮影した写真である。ZnS: Mn 1 Ga 0.1 the disk-like molded body produced by using a photograph of the light emitting state when the stress light-emitting intensity measured. 図4と同じディスク状成型体に、縦方向に600Nの圧縮荷重をかけた場合の発光状態を撮影した写真である。FIG. 5 is a photograph of the light emission state when a compression load of 600 N is applied in the vertical direction to the same disk-shaped molded body as in FIG. 4. ZnS:Mn0.92Cu0.05を用いて作製されたディスク状成型体に、縦方向に600Nの圧縮荷重をかけた場合の発光状態を撮影した写真である。 ZnS: Mn 0.92 Cu 0.05 to disk-shaped molded body produced using a photograph of the light emitting state when the longitudinal direction times the compressive load of 600N.

本発明の実施の形態について、適宜図面を参酌しながら説明する。なお、本発明は、以下の記載に限定されない。   Embodiments of the present invention will be described with reference to the drawings as appropriate. The present invention is not limited to the following description.

<1.ZnSに添加するMnの至適濃度>
5N ZnS(硫化亜鉛)及び3N Mn(NO)・6HO(硝酸マンガン・六水和物)をモル比でZnS:Mn=100:x(x=0.25、0.5、0.8、1.0、1.5、2.0)の組成になるように秤量し、アルミナ乳鉢に入れ、エタノールを添加して湿式混合した。るつぼに混合物約20gを入れた後、混合物をいれたるつぼを、より大きなるつぼ内に入れた。外側のるつぼには、顆粒状活性炭約10gを入れ、蓋をして二重るつぼとした。この状態で、1100℃で2時間、電気炉内で焼成した。
<1. Optimum concentration of Mn added to ZnS>
5N ZnS (zinc sulfide) and 3N Mn (NO 3 ) 2 .6H 2 O (manganese nitrate hexahydrate) in a molar ratio of ZnS: Mn = 100: x (x = 0.25, 0.5, 0.8, 1.0, 1.5) 2.0) and weighed into an alumina mortar, added with ethanol and wet mixed. After about 20 g of the mixture was placed in the crucible, the crucible containing the mixture was placed in a larger crucible. In the outer crucible, about 10 g of granular activated carbon was put, and it was covered to make a double crucible. In this state, firing was performed in an electric furnace at 1100 ° C. for 2 hours.

また、5N ZnS(硫化亜鉛)及び2N MnS(硫化マンガン)をモル比でZnS:Mn=100:x(x=4.0、10.0)の組成になるように秤量し、上記と同様の操作を行った。   Further, 5N ZnS (zinc sulfide) and 2N MnS (manganese sulfide) were weighed so as to have a composition of ZnS: Mn = 100: x (x = 4.0, 10.0) in molar ratio, and the same operation as above was performed. .

得られた8種類の応力発光物質の粉末を、平均粒径が44μm以下になるようにアルミナ乳鉢を用いて粉砕した。その後、エポキシ樹脂(Epok812)に粉末を分散させ、60℃、12時間で固化させることによって、20mmφ、厚み3mmのディスク状成型体とした。   The obtained eight kinds of stress-luminescent substance powders were pulverized using an alumina mortar so that the average particle size was 44 μm or less. Thereafter, the powder was dispersed in an epoxy resin (Epok812) and solidified at 60 ° C. for 12 hours to obtain a disk-shaped molded body having a diameter of 20 mm and a thickness of 3 mm.

得られた8種類のディスク状成型体について、応力発光強度を測定した。まず、井元製作所製、引張・圧縮小型材料試験機(ロードセル定格容量1000N)を用いて、直径3mmの微小ガラス球による圧縮荷重をディスク状成型体に加えた。次に、600Nまで圧縮荷重を加えたときに生じた応力発光を、石英ガラスファイバーを用いて日立蛍光分光光度計(F-3010型)の分光室まで発光を導入した。中心波長580nm、バンドパス10nmにおける光電子倍増管(R928F)の強度を0.1秒間隔で測定することによって、応力発光強度を測定した。   Stress emission intensity was measured for the eight types of disk-shaped molded bodies obtained. First, using a tensile / compression small material testing machine (load cell rated capacity 1000 N) manufactured by Imoto Seisakusho, a compression load by a small glass sphere having a diameter of 3 mm was applied to the disk-shaped molded body. Next, the light emission of stress generated when a compressive load was applied up to 600 N was introduced into the spectroscopic chamber of the Hitachi fluorescence spectrophotometer (F-3010 type) using quartz glass fiber. The stress emission intensity was measured by measuring the intensity of the photomultiplier tube (R928F) at a central wavelength of 580 nm and a bandpass of 10 nm at 0.1 second intervals.

図1は、8種類のディスク状成型体の応力発光強度の測定結果を示すグラフである。図1では、Mnを1mol%添加して得られた応力発光物質から形成されたディスク状成型体の発光強度を「1」とした場合の、相対的な発光強度がプロットされている。図1より、Mnの添加濃度は、0.5 mol%以上2.0 mol%以下とすることが好ましく、0.8 mol%以上1.5 mol%以下とすることが特に好ましいことが確認された。   FIG. 1 is a graph showing measurement results of stress emission intensity of eight types of disk-shaped molded bodies. In FIG. 1, relative light emission intensity is plotted when the light emission intensity of a disk-shaped molded body formed from a stress light-emitting material obtained by adding 1 mol% of Mn is “1”. From FIG. 1, it was confirmed that the addition concentration of Mn is preferably 0.5 mol% or more and 2.0 mol% or less, and particularly preferably 0.8 mol% or more and 1.5 mol% or less.

<2.ZnSに添加するGaの至適濃度>
5N ZnS、3N Mn(NO)・6HO、及び3N Ga(NO)・9HO(硝酸ガリウム・九水和物)を、モル比でZnS:Mn:Ga=100:1:y(y=0.01、0.05、0.1、0.2、0.3、0.5、及び1.0)となるように秤量し、アルミナ乳鉢に入れ、エタノールを添加して湿式混合した。その後、上記と同様の還元性雰囲気中、1100℃で2時間、電気炉内で焼成した。
<2. Optimum concentration of Ga added to ZnS>
5N ZnS, 3N Mn (NO 3 ) 2 · 6H 2 O, and 3N Ga (NO 3 ) 3 · 9H 2 O (gallium nitrate · 9 hydrate) in a molar ratio of ZnS: Mn: Ga = 100: 1 : Y (y = 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, and 1.0) was weighed, put in an alumina mortar, added with ethanol, and wet mixed. Then, it baked in the electric furnace for 2 hours at 1100 degreeC in the reducing atmosphere similar to the above.

得られた7種類の応力発光物質の粉末を、上記と同様にして、20mmφ、厚さ3mmのディスク状成型体とし、応力発光強度を測定した。図2は、その結果を示すグラフである。   In the same manner as described above, the obtained seven kinds of stress luminescent substance powders were formed into a disk-shaped molded body having a diameter of 20 mmφ and a thickness of 3 mm, and the stress luminescence intensity was measured. FIG. 2 is a graph showing the results.

Ga添加濃度が0.5 mol%及び1.0 mol%のときには、Gaを添加しないときよりも発光強度が低下する現象が認められた。一方、Ga添加濃度が0.01 mol%以上0.3 mol%以下のときに、ZnS:Mnの発光強度が向上し、図2からは、0.03 mol%以上0.22 mol%以上のときに、相対強度が1.5以上となることが確認された。   When the Ga addition concentration was 0.5 mol% and 1.0 mol%, a phenomenon was observed in which the emission intensity was lower than when Ga was not added. On the other hand, the emission intensity of ZnS: Mn is improved when the Ga addition concentration is 0.01 mol% or more and 0.3 mol% or less. From FIG. 2, the relative intensity is 1.5 or more when 0.03 mol% or more and 0.22 mol% or more. It was confirmed that

<3.焼成温度の至適範囲>
5N ZnS、3N Mn(NO)・6HO、及び3N Ga(NO)・9HOを、モル比でZnS:Mn:Ga=100:1:0.1となるように秤量し、アルミナ乳鉢に入れ、エタノールを添加して湿式混合した。また、5N ZnS及び3N Mn(NO)・6HOをモル比でZnS:Mn=100:1となるように秤量し、アルミナ乳鉢に入れ、エタノールを添加して湿式混合した。これら2種類の混合物を、上記と同様の還元性雰囲気中、950℃〜1300℃の温度範囲で、2時間、電気炉内でそれぞれ焼成した。
<3. Optimum firing temperature range>
5N ZnS, 3N Mn (NO 3 ) 2 · 6H 2 O, and 3N Ga (NO 3 ) 3 · 9H 2 O are weighed in a molar ratio of ZnS: Mn: Ga = 100: 1: 0.1, It put into the alumina mortar, added ethanol and wet-mixed. Further, 5N ZnS and 3N Mn (NO 3 ) 2 .6H 2 O were weighed so that the molar ratio was ZnS: Mn = 100: 1, put in an alumina mortar, added with ethanol, and wet mixed. These two kinds of mixtures were each fired in an electric furnace in a reducing atmosphere similar to the above in a temperature range of 950 ° C. to 1300 ° C. for 2 hours.

得られた2種類の応力発光物質の粉末を、上記と同様にして、20mmφ、厚み3mmのディスク状成型体とした。そして、上記と同様にして、得られた2種類のディスク状成型体について、応力発光強度を測定した。図3は、その結果を示すグラフである。   The obtained two kinds of stress-stimulated luminescent material powders were formed into a disk-shaped molded body having a diameter of 20 mm and a thickness of 3 mm in the same manner as described above. Then, in the same manner as described above, the stress luminescence intensity was measured for the obtained two types of disk-shaped molded bodies. FIG. 3 is a graph showing the results.

ZnS:Mnの場合、焼成温度は1100℃付近が好ましいことが確認されたが、焼成温度による発光強度の変化は少なかった。一方、Gaを添加したZnS:MnGa0.1の場合、焼成温度は1200℃付近が好ましく、1300℃になると発光強度が急激に低下する現象が確認された。図3からは、ZnS:MnGa0.1の焼成温度は、1000℃以上1250℃以下が好ましく、1150℃以上1250℃以下がより好ましいことが確認された。 In the case of ZnS: Mn 1 , it was confirmed that the firing temperature is preferably around 1100 ° C., but the change in the emission intensity due to the firing temperature was small. On the other hand, in the case of ZnS: Mn 1 Ga 0.1 to which Ga was added, the firing temperature was preferably around 1200 ° C., and when 1300 ° C. was reached, a phenomenon was observed in which the emission intensity dropped sharply. From FIG. 3, it was confirmed that the firing temperature of ZnS: Mn 1 Ga 0.1 is preferably 1000 ° C. or higher and 1250 ° C. or lower, and more preferably 1150 ° C. or higher and 1250 ° C. or lower.

<4.応力発光物質の発光状態>
図4は、<3.焼成温度の至適範囲>において、1100℃で2時間、電気炉内で焼成して得られたZnS:MnGa0.1を用いて作製された20mmφ、厚み3mmのディスク状成型体の、応力発光強度測定時の発光状態を撮影した写真である。図4から明らかなように、本発明の応力発光物質は、600Nの圧縮過重によって強い発光を生じた。
<4. Emission state of stress luminescent material>
FIG. 4 shows <3. In the optimum range of the firing temperature>, a disk-shaped molded product having a thickness of 20 mmφ and a thickness of 3 mm produced using ZnS: Mn 1 Ga 0.1 obtained by firing in an electric furnace at 1100 ° C. for 2 hours, It is the photograph which image | photographed the light emission state at the time of stress light emission intensity measurement. As is clear from FIG. 4, the stress-stimulated luminescent material of the present invention produced strong luminescence due to 600 N compressive weight.

図5は、図4と同じディスク状成型体に、縦方向に600Nの圧縮荷重をかけた場合の発光状態を撮影した写真である。ディスク状成型体は、平坦なダイスを用いて縦方向に600Nの圧縮荷重がかけられており、応力が発生している上端部及び下端部が発光している。   FIG. 5 is a photograph of a light emission state when a compression load of 600 N is applied to the same disk-shaped molded body as in FIG. 4 in the vertical direction. The disk-shaped molded body is subjected to a compressive load of 600 N in the vertical direction using a flat die, and the upper end and the lower end where the stress is generated emit light.

一方、図6は、応力発光物質としてZnS:Mn0.92Cu0.05を用いて、上記と同様に作製されたディスク状成型体の、応力発光強度測定時の発光状態を撮影した写真である。このときにもディスク状成型体は、平坦なダイスを用いて縦方向に600Nの圧縮荷重がかけられており、応力が発生している上端部及び下端部が発光している。 On the other hand, FIG. 6 is a photograph of the light emission state at the time of measuring the stress luminescence intensity of a disk-shaped molded body produced in the same manner as described above using ZnS: Mn 0.92 Cu 0.05 as the stress luminescent substance. is there. Also at this time, the disk-shaped molded body is subjected to a compressive load of 600 N in the vertical direction using a flat die, and the upper end and the lower end where the stress is generated emit light.

図5と図6を比較すると、肉眼ではっきりと区別し得るほど、図5のディスク状成型体の方が、発光が明らかに強かった。なお、<3.焼成温度の至適範囲>において、1100℃で2時間、電気炉内で焼成して得られたZnS:Mnを用いて作製された20mmφ、厚み3mmのディスク状成型体について、同様に縦方向に圧縮荷重をかけた場合と比較しても、肉眼ではっきりと区別し得るほど、図5のディスク状成型体の方が、発光が明らかに強かった。 When FIG. 5 and FIG. 6 are compared, the disc-shaped molded body of FIG. 5 has clearly higher light emission so that it can be clearly distinguished with the naked eye. In addition, <3. In the optimum range of the firing temperature>, a disk-shaped molded body of 20 mmφ and 3 mm thickness produced using ZnS: Mn 1 obtained by firing in an electric furnace at 1100 ° C. for 2 hours is similarly longitudinal Compared with the case where a compressive load was applied to the disk, the disc-shaped molded body of FIG. 5 was clearly more luminescent so that it could be clearly distinguished with the naked eye.

<4.従来のZnS:Mnとの発光強度>
特許文献2の表1には、実施例4として「0.9ZnS・0.1MnS」が開示されている。この応力発光物質は、ZnSに対するMn添加濃度が10 mol%である。図1に示したように、本発明者が検討した結果では、ZnSに対するMnの添加濃度が10.0 mol%の場合には、600Nの圧縮荷重をかけても、ほとんど応力発光しないことが確認された。このため、Mnを0.5 mol%以上2.0 mol%以下、Gaを0.03 mol%以上0.22 mol%以下の濃度範囲で含有するZnSを、還元性雰囲気下、1000℃以上1250℃以下の温度で焼成することによって得られる本発明の応力発光物質は、特許文献2の表1に開示されているいずれの応力発光物質よりも、発光強度が高いと合理的に推察された。
<4. Luminous intensity with conventional ZnS: Mn>
Table 1 of Patent Document 2 discloses “0.9ZnS · 0.1MnS” as Example 4. This stress luminescent material has a Mn addition concentration of 10 mol% with respect to ZnS. As shown in FIG. 1, as a result of the study by the present inventors, it was confirmed that when the concentration of Mn added to ZnS is 10.0 mol%, even when a 600 N compressive load is applied, almost no stress emission occurs. . For this reason, ZnS containing Mn in a concentration range of 0.5 mol% to 2.0 mol% and Ga in a concentration range of 0.03 mol% to 0.22 mol% is calcined in a reducing atmosphere at a temperature of 1000 ° C to 1250 ° C. It was reasonably inferred that the stress-stimulated luminescent material of the present invention obtained by the above has higher luminescence intensity than any of the stress-stimulated luminescent materials disclosed in Table 1 of Patent Document 2.

本発明の応力発光物質は、硫化亜鉛、硝酸マンガン及び硝酸ガリウムのような安価な原料から、湿式混合及び焼成という簡単な方法によって製造することが可能であることも、特徴の一つとしている。   One of the characteristics of the stress-stimulated luminescent material of the present invention is that it can be produced from inexpensive raw materials such as zinc sulfide, manganese nitrate and gallium nitrate by a simple method of wet mixing and firing.

本発明の応力発光物質及びその製造方法は、応力分布の測定が必要とされる機械、建設又は音響をはじめとする、多くの技術分野において有用である。   The stress-stimulated luminescent material and method for producing the same of the present invention are useful in many technical fields including machinery, construction, and acoustics in which measurement of stress distribution is required.

Claims (2)

マンガンを0.5 mol%以上2.0 mol%以下、ガリウムを0.01 mol%以上0.3 mol%以下の濃度範囲で含有する硫化亜鉛を、還元性雰囲気下、1000℃以上1250℃以下の温度で焼成することによって得られる応力発光物質。   Obtained by firing zinc sulfide containing manganese in a concentration range of 0.5 mol% to 2.0 mol% and gallium in a concentration range of 0.01 mol% to 0.3 mol% at a temperature of 1000 ° C to 1250 ° C in a reducing atmosphere. Stress luminescent material. 硫化亜鉛に対して、マンガンを0.5 mol%以上2.0 mol%以下、ガリウムを0.01 mol%以上0.3 mol%以下の濃度範囲で添加する添加工程と、
マンガン及びガリウムを添加した硫化亜鉛を、還元性雰囲気下、1000℃以上1250℃以下の温度で焼成する焼成工程と、
を有する応力発光物質の製造方法。
An addition step of adding manganese in a concentration range of 0.5 mol% to 2.0 mol% and gallium in a concentration range of 0.01 mol% to 0.3 mol% with respect to zinc sulfide;
A firing step of firing manganese sulfide and gallium sulfide in a reducing atmosphere at a temperature of 1000 ° C. to 1250 ° C.,
A method for producing a stress-stimulated luminescent material.
JP2010204132A 2010-09-13 2010-09-13 Stress luminescent material and method for producing the same Expired - Fee Related JP5613891B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204132A JP5613891B2 (en) 2010-09-13 2010-09-13 Stress luminescent material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204132A JP5613891B2 (en) 2010-09-13 2010-09-13 Stress luminescent material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2012057119A JP2012057119A (en) 2012-03-22
JP5613891B2 true JP5613891B2 (en) 2014-10-29

Family

ID=46054598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204132A Expired - Fee Related JP5613891B2 (en) 2010-09-13 2010-09-13 Stress luminescent material and method for producing the same

Country Status (1)

Country Link
JP (1) JP5613891B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4099376A4 (en) * 2020-01-31 2023-10-18 Sony Group Corporation Substrate and semiconductor package

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005162948A (en) * 2003-12-04 2005-06-23 Mitsui Mining & Smelting Co Ltd Reddish orange fluorescent material and vapor deposition pellet, target for sputtering, display and led chip produced by using the same
JP2006045481A (en) * 2004-08-06 2006-02-16 Kasei Optonix Co Ltd Orange yellow photogenesis phosphor for low acceleration electronic beam and fluorescence display using the same

Also Published As

Publication number Publication date
JP2012057119A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
Tu et al. LiNbO3: Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence
Xu et al. Direct view of stress distribution in solid by mechanoluminescence
Chandra et al. Suitable materials for elastico mechanoluminescence-based stress sensors
Zheng et al. Mechanoluminescence and photoluminescence heterojunction for superior multimode sensing platform of friction, force, pressure, and temperature in fibers and 3D‐printed polymers
Xu et al. Dynamic visualization of stress distribution by mechanoluminescence image
KR101115855B1 (en) Fluorescent substance and process for producing the same, and luminescent element using the same
JP5007971B2 (en) High intensity stress luminescent material, method for producing the same, and use thereof
Akiyama et al. Recovery phenomenon of mechanoluminescence from Ca 2 Al 2 SiO 7: Ce by irradiation with ultraviolet light
JP6029962B2 (en) Strain / stress measurement method of structure and strain / stress sensor
Sahu et al. Generation of white light from dysprosium-doped strontium aluminate phosphor by a solid-state reaction method
Akiyama et al. Intense visible light emission from stress-activated ZrO 2: Ti
Hu et al. Synergistic defect engineering and microstructure tuning in lithium tantalate for high-contrast mechanoluminescence of Bi 3+: toward application for optical information display
JP5627882B2 (en) Strain / stress measurement method of structure, strain / stress sensor, and manufacturing method thereof
JP5613891B2 (en) Stress luminescent material and method for producing the same
Zhang et al. Green mechanoluminescence of Ca2MgSi2O7: Eu and Ca2MgSi2O7: Eu, Dy
Zheng et al. Eu 2+ and Mn 2+ co-doped Lu 2 Mg 2 Al 2 Si 2 O 12 phosphors for high sensitivity and multi-mode optical pressure sensing
Guo et al. Visual Representation of the Stress Distribution with a Color‐Manipulated Mechanoluminescence of Fluoride for Structural Mechanics
Fontenot et al. Effects of added dibutyl phosphate on the luminescent properties of europium tetrakis dibenzoylmethide triethylammonium
Zhao et al. Mechanoluminescence in (Sr, Ca, Ba) 2SnO4: Sm3+, La3+ ceramics
Liang et al. Intense mechanoluminescence, thermoluminescence and photoluminescence in Pr3+ doped K0. 02Na0. 98NbO3 ferroelectric phosphor
Zhang et al. Novel elastico-mechanoluminescence materials CaZnOS: Mn 2+ and CaZr (PO 4) 2: Eu 2+
JP2002194349A (en) Stress-induced light-emitting material and method for producing the same
Hu et al. Opto-mechano-thermo-sensitive allochroic luminescence based on coupled dual activators in tantalate towards multidimensional stimulus sensing
Tiwari et al. Mechanoluminescence, photoluminescence and thermoluminescence studies of SrZrO3: Ce phosphor
Sharma et al. Experimental and theoretical study of the mechanoluminescence of ZnS: Mn nanoparticles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R150 Certificate of patent or registration of utility model

Ref document number: 5613891

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees