JP5612956B2 - Non-contact power transmission device - Google Patents

Non-contact power transmission device Download PDF

Info

Publication number
JP5612956B2
JP5612956B2 JP2010175261A JP2010175261A JP5612956B2 JP 5612956 B2 JP5612956 B2 JP 5612956B2 JP 2010175261 A JP2010175261 A JP 2010175261A JP 2010175261 A JP2010175261 A JP 2010175261A JP 5612956 B2 JP5612956 B2 JP 5612956B2
Authority
JP
Japan
Prior art keywords
coil
power
power transmission
circuit unit
receiving coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010175261A
Other languages
Japanese (ja)
Other versions
JP2012039692A (en
Inventor
堀内 晴宏
晴宏 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yazaki Corp
Original Assignee
Yazaki Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yazaki Corp filed Critical Yazaki Corp
Priority to JP2010175261A priority Critical patent/JP5612956B2/en
Publication of JP2012039692A publication Critical patent/JP2012039692A/en
Application granted granted Critical
Publication of JP5612956B2 publication Critical patent/JP5612956B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、電磁誘導作用によって一次側回路から二次側回路に電力を伝送する非接触電力伝送装置に関するものである。   The present invention relates to a non-contact power transmission device that transmits power from a primary circuit to a secondary circuit by electromagnetic induction.

従来の非接触電力伝送装置として、例えば、特許文献1に開示された、図8に示すワイヤレス伝送装置(図中、符号901で示す)がある。このワイヤレス伝送装置901は、一次側回路装置930と、二次側回路装置950と、で構成されている。一次側回路装置930は、電力誘導コイル903の一端と電力電源902の一方の出力端とに接続された共振キャパシタ951を備えている。二次側回路装置950は、電力受信コイル904に並列に接続された共振キャパシタ952を備えている。   As a conventional non-contact power transmission apparatus, for example, there is a wireless transmission apparatus (indicated by reference numeral 901 in the figure) disclosed in Patent Document 1 and shown in FIG. The wireless transmission device 901 includes a primary side circuit device 930 and a secondary side circuit device 950. The primary side circuit device 930 includes a resonance capacitor 951 connected to one end of the power induction coil 903 and one output end of the power source 902. The secondary circuit device 950 includes a resonance capacitor 952 connected in parallel to the power receiving coil 904.

そして、一次側回路装置930において、以下の式(i)を満たし、二次側回路装置950において、以下の式(ii)を満たすように各回路構成部材のパラメータを設定することにより、各回路装置において共振状態を生じさせて、電力を二次側回路装置950に供給していた。
ωL1−1/(ωC1)=0(即ち、f=1/(2π√(L11))・・・(i)
ωL2−1/(ωC2)=0(即ち、f=1/(2π√(L22))・・・(ii)
但し、ω=2πf、L1は電力誘導コイル903の自己インダクタンス、C1は共振キャパシタ951の静電容量、L2は電力受信コイル904の自己インダクタンス、C2は共振キャパシタ952の静電容量、fは電源周波数である。
In the primary side circuit device 930, the following equation (i) is satisfied, and in the secondary side circuit device 950, the parameters of the respective circuit components are set so as to satisfy the following equation (ii). A resonance state was generated in the device, and power was supplied to the secondary circuit device 950.
ωL 1 −1 / (ωC 1 ) = 0 (ie, f = 1 / (2π√ (L 1 C 1 )) (i)
ωL 2 −1 / (ωC 2 ) = 0 (that is, f = 1 / (2π√ (L 2 C 2 )) (ii)
Where ω = 2πf, L 1 is the self-inductance of the power induction coil 903, C 1 is the capacitance of the resonant capacitor 951, L 2 is the self-inductance of the power receiving coil 904, and C 2 is the capacitance of the resonant capacitor 952. f is a power supply frequency.

特開平10−322247号公報Japanese Patent Laid-Open No. 10-322247

しかしながら、二次側回路装置950においては、整流回路905、平滑キャパシタ913及び二次側負荷906などから構成される負荷が電力受信コイル904に直列に接続されているところ、上記式(ii)では、これら負荷のインピーダンスが考慮されていないので、この式(ii)を満たすように、電力受信コイル904の自己インダクタンスL2及び共振キャパシタ952の静電容量C2を設定しても、二次側回路装置950全体として共振状態にはならず、つまり、電力受信コイル904のリアクタンス等が残存してしまい、そのため、インピーダンスを整合できず、電力伝送効率が低下してしまうという問題があった。 However, in the secondary side circuit device 950, a load composed of the rectifier circuit 905, the smoothing capacitor 913, the secondary side load 906, and the like is connected in series to the power receiving coil 904. In the above equation (ii), Since the impedance of these loads is not taken into consideration, even if the self-inductance L 2 of the power receiving coil 904 and the capacitance C 2 of the resonant capacitor 952 are set so as to satisfy this equation (ii), the secondary side There is a problem that the circuit device 950 does not resonate as a whole, that is, reactance of the power receiving coil 904 remains, so that impedance cannot be matched and power transmission efficiency is reduced.

本発明は、上記課題に係る問題を解決することを目的としている。即ち、本発明は、二次側回路を共振状態にして電力伝送効率を高めることができる非接触電力伝送装置を提供することを目的としている。   The present invention aims to solve the above problems. That is, an object of the present invention is to provide a non-contact power transmission device capable of increasing the power transmission efficiency by bringing the secondary side circuit into a resonance state.

請求項1に記載された発明は、上記目的を達成するために、交流電源による電力を電磁誘導作用によって送信する送電コイルを有する一次側回路ユニットと、前記送電コイルから送信された前記電力を受信する受電コイルと該受電コイルに直列接続された負荷とを有する二次側回路ユニットと、を有する非接触電力伝送装置において、前記二次側回路ユニットが、前記受電コイルに並列に存在する静電容量CP2を有し、前記静電容量C P2 が、前記受電コイルの寄生静電容量によるものであり、そして、前記静電容量CP2が、以下の式(A)を満たすことを特徴とする非接触電力伝送装置である。
P2=(Z0±√(Z0 2−4ω22 2))/2ω202 ・・・(A)
但し、Z0≧2ωL2、ω=2πf、Z0は前記負荷のインピーダンス[Ω]、ωは角速度[rad/秒]、L2は前記受電コイルの自己インダクタンス[H]、fは前記交流電源の周波数[Hz]である。
In order to achieve the above object, the invention described in claim 1 receives a primary side circuit unit having a power transmission coil for transmitting power from an AC power source by electromagnetic induction and the power transmitted from the power transmission coil. A non-contact power transmission device having a power receiving coil and a secondary circuit unit having a load connected in series with the power receiving coil, wherein the secondary circuit unit exists in parallel with the power receiving coil. A capacitance C P2 , wherein the capacitance C P2 is due to a parasitic capacitance of the power receiving coil, and the capacitance C P2 satisfies the following formula (A): This is a non-contact power transmission device.
C P2 = (Z 0 ± √ (Z 0 2 -4ω 2 L 2 2 )) / 2ω 2 Z 0 L 2 (A)
However, Z 0 ≧ 2ωL 2 , ω = 2πf, Z 0 is the impedance [Ω] of the load, ω is the angular velocity [rad / sec], L 2 is the self-inductance [H] of the power receiving coil, and f is the AC power source. [Hz].

請求項に記載された発明は、請求項1に記載された発明において、前記送電コイルの巻き数と前記受電コイルの巻き数との巻き数比nが、以下の式(B)を満たすことを特徴とするものである。
n=N1/N2≧1 ・・・(B)
但し、N1が前記送電コイルの巻き数[回]、N2が前記受電コイルの巻き数[回]である。
The invention described in claim 2 is the invention described in claim 1 , wherein a winding ratio n between the number of turns of the power transmission coil and the number of turns of the power receiving coil satisfies the following formula (B). It is characterized by.
n = N 1 / N 2 ≧ 1 (B)
N 1 is the number of turns of the power transmission coil [times], and N 2 is the number of turns of the power receiving coil [ times].

請求項1に記載された発明によれば、二次側回路ユニットが、受電コイルに並列に存在する静電容量CP2を有し、そして、この静電容量CP2が、上記式(A)を満たすので、受電コイルに直列に接続された負荷を含めた二次側回路ユニット全体で共振状態にすることができ、そのため、受電コイルのリアクタンス等を打ち消すことができ、インピーダンスを整合させて電力伝送効率を高めることができる。 According to the first aspect of the present invention, the secondary circuit unit has the capacitance C P2 existing in parallel with the power receiving coil, and the capacitance C P2 is expressed by the above formula (A). Therefore, the entire secondary side circuit unit including the load connected in series with the power receiving coil can be brought into a resonance state, so that the reactance of the power receiving coil can be canceled and the impedance can be matched and the power can be reduced. Transmission efficiency can be increased.

また、請求項に記載された発明によれば、静電容量CP2が、受電コイルの寄生静電容量によるものであるので、部品を追加することなく、簡素な構成で電力伝送効率を高めることができる。 Further, according to the invention described in claim 1, the capacitance C P2 is, since due to the parasitic capacitance of the power receiving coil, without additional components, increasing the power transmission efficiency with a simple structure be able to.

請求項に記載された発明によれば、送電コイルの巻き数と受電コイルの巻き数との巻き数比が、上記式(B)を満たすので、巻き数比を調整することによりインピーダンス整合を容易に行うことができるとともに、受電コイルの巻き数を小さくして二次側回路ユニットを軽量化することができる。 According to the invention described in claim 2 , since the turn ratio between the number of turns of the power transmission coil and the number of turns of the power receiving coil satisfies the above formula (B), impedance matching is achieved by adjusting the turn ratio. This can be easily performed, and the number of turns of the power receiving coil can be reduced to reduce the weight of the secondary circuit unit.

本発明に係る非接触電力伝送装置の一実施形態の回路図である。It is a circuit diagram of one embodiment of a non-contact power transmission device concerning the present invention. 図1の非接触電力伝送装置に用いられる受電コイルにおける巻き数と自己インダクタンスとの関係を示すグラフである。It is a graph which shows the relationship between the winding number in a receiving coil used for the non-contact electric power transmission apparatus of FIG. 1, and a self-inductance. 図1の非接触電力伝送装置の変形例の構成を示す回路図である。It is a circuit diagram which shows the structure of the modification of the non-contact electric power transmission apparatus of FIG. 図1の非接触電力伝送装置において、二次側回路ユニットが備える共振キャパシタを、受電コイルと負荷との間に直列に接続した構成を示す回路図である。FIG. 2 is a circuit diagram showing a configuration in which a resonance capacitor included in a secondary circuit unit is connected in series between a power receiving coil and a load in the non-contact power transmission apparatus of FIG. 1. 図1の非接触電力伝送装置において、一次側回路ユニットが備える共振キャパシタを、交流電源と並列に接続し、且つ、二次側回路ユニットが備える共振キャパシタを、受電コイルと負荷との間に直列に接続した構成を示す回路図である。In the non-contact power transmission apparatus of FIG. 1, the resonance capacitor provided in the primary circuit unit is connected in parallel with the AC power supply, and the resonance capacitor provided in the secondary circuit unit is connected in series between the power receiving coil and the load. It is a circuit diagram which shows the structure connected to. 共振キャパシタの接続形態が異なる複数の非接触電力伝送装置における、送電コイル及び受電コイルの間隔と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the space | interval of a power transmission coil and a receiving coil, and power transmission efficiency in the some non-contact electric power transmission apparatus from which the connection form of a resonant capacitor differs. コイルの巻き数が異なる複数の非接触電力伝送装置における、送電コイル及び受電コイルの間隔と電力伝送効率との関係を示すグラフである。It is a graph which shows the relationship between the space | interval of a power transmission coil and a receiving coil, and power transmission efficiency in the some non-contact electric power transmission apparatus from which the winding number of a coil differs. 従来の非接触電力伝送装置の回路図である。It is a circuit diagram of the conventional non-contact electric power transmission apparatus.

以下、本発明の非接触電力伝送装置の一実施形態を、を図1〜図7を参照して説明する。   Hereinafter, an embodiment of the non-contact power transmission apparatus of the present invention will be described with reference to FIGS.

本発明の非接触電力伝送装置1は、図1に示すように、一次側回路ユニット10と、二次側回路ユニット20と、を有している。   As shown in FIG. 1, the non-contact power transmission device 1 of the present invention includes a primary circuit unit 10 and a secondary circuit unit 20.

一次側回路ユニット10は、周波数f[Hz]の交流電圧V1[V](即ち、交流電力)を出力する交流電源11と、交流電源11に直列に接続された送電コイル12と、交流電源11と送電コイル12との間に直列に挿入された一次側共振キャパシタ13と、を備えている。 The primary circuit unit 10 includes an AC power supply 11 that outputs an AC voltage V 1 [V] (that is, AC power) having a frequency f [Hz], a power transmission coil 12 that is connected in series to the AC power supply 11, and an AC power supply. 11 and a primary side resonance capacitor 13 inserted in series between the power transmission coil 12 and the power transmission coil 12.

送電コイル12は、例えば、銅からなる細線が環状に密に巻回されてなる平面型一様らせんコイルである。送電コイル12は、抵抗値R1となる内部抵抗15を含んでいる。送電コイル12は、交流電源11から交流電圧V1が与えられると、電磁誘導作用により電力を後述する受電コイル22に送信する。一次側共振キャパシタ13は、例えば、プラスチックフィルム型やセラミック型のキャパシタ等が用いられる。なお、一次側共振キャパシタ13は、交流電源11に並列に接続されていてもよく、また、一次側共振キャパシタを設けない構成でもよい。 The power transmission coil 12 is, for example, a planar uniform spiral coil in which fine wires made of copper are densely wound in an annular shape. Transmitting coil 12 includes an internal resistance 15 of the resistance R 1. When the AC voltage V 1 is applied from the AC power supply 11, the power transmission coil 12 transmits power to the power receiving coil 22 described later by electromagnetic induction. For example, a plastic film type or ceramic type capacitor is used as the primary side resonance capacitor 13. In addition, the primary side resonance capacitor 13 may be connected in parallel to the AC power supply 11, or may be configured such that the primary side resonance capacitor is not provided.

送電コイル12の自己インダクタンスL1、及び、一次側共振キャパシタ13の静電容量CS1は、次の式(1)を満たすように設定されている。 The self-inductance L 1 of the power transmission coil 12 and the capacitance C S1 of the primary side resonance capacitor 13 are set so as to satisfy the following expression (1).

Figure 0005612956
Figure 0005612956

このように、送電コイル12の自己インダクタンスL1、及び、一次側共振キャパシタ13の静電容量CS1を設定することによって、一次側回路ユニット10を共振状態にすることができる。 Thus, by setting the self-inductance L 1 of the power transmission coil 12 and the capacitance C S1 of the primary-side resonance capacitor 13, the primary-side circuit unit 10 can be brought into a resonance state.

二次側回路ユニット20は、受電コイル22と、受電コイル22に直列に接続された負荷24と、受電コイル22に並列に接続された二次側共振キャパシタ23と、を備えている。   The secondary circuit unit 20 includes a power receiving coil 22, a load 24 connected in series to the power receiving coil 22, and a secondary side resonance capacitor 23 connected in parallel to the power receiving coil 22.

受電コイル22は、例えば、銅からなる細線が環状に密に巻回されてなる、上述した送電コイル12と同一構成の平面型一様らせんコイルである。勿論、受電コイル22は、送電コイル12と異なる構成(材料、形状、巻き数など)であってもよく、特に、受電コイル22の巻き数N2を、送電コイルの巻き数N1以下(即ち、巻き数比n=N1/N2≧1)とすることが望ましい。受電コイル22は、抵抗値R2となる内部抵抗25を含んでいる。受電コイル22と送電コイル12との間には相互インダクタンスMが存在する。受電コイル22は、送電コイル12に対向して配置されることにより電磁誘導作用を受けて、送電コイル12から送信された電力を受信する(即ち、誘導電圧及び誘導電流が誘起される)。なお、本実施形態において、送電コイル12及び受電コイル22は平面型一様らせんコイルを用いているが、これに限定されるものではなく、本発明の目的に反しない限り、送電コイル12及び受電コイル22の構成は任意である。 The power receiving coil 22 is, for example, a planar uniform spiral coil having the same configuration as that of the power transmitting coil 12 described above, in which fine wires made of copper are densely wound in a ring shape. Of course, the power receiving coil 22 may have a configuration (material, shape, number of turns, etc.) different from that of the power transmitting coil 12, and in particular, the number of turns N 2 of the power receiving coil 22 is less than or equal to the number of turns N 1 of the power transmitting coil (that is, It is desirable that the winding ratio n = N 1 / N 2 ≧ 1). Receiving coil 22 includes an internal resistor 25 of the resistance R 2. A mutual inductance M exists between the power receiving coil 22 and the power transmitting coil 12. The power receiving coil 22 is arranged opposite to the power transmission coil 12 to receive an electromagnetic induction effect and receive power transmitted from the power transmission coil 12 (that is, an induced voltage and an induced current are induced). In the present embodiment, the power transmission coil 12 and the power reception coil 22 are planar flat spiral coils. However, the present invention is not limited to this, and the power transmission coil 12 and the power reception coil are not limited to the object of the present invention. The configuration of the coil 22 is arbitrary.

二次側共振キャパシタ23は、上述した一次側共振キャパシタ13と同様に、例えば、プラスチックフィルム型やセラミック型のキャパシタ等が用いられる。負荷24は、そのインピーダンスZ0が、例えば、50Ωに設定されている。 As the secondary side resonance capacitor 23, for example, a plastic film type or ceramic type capacitor is used similarly to the above-described primary side resonance capacitor 13. The load 24 has an impedance Z 0 set to 50Ω, for example.

ここで、図1において、受電コイル22から二次側共振キャパシタ23及び負荷24側を見たインピーダンスをZとすると、このインピーダンスZは、次の式(2)で示される。   Here, in FIG. 1, when the impedance of the power receiving coil 22 viewed from the secondary resonance capacitor 23 and the load 24 side is Z, the impedance Z is expressed by the following equation (2).

Figure 0005612956
Figure 0005612956

式(2)に示すように、インピーダンスZは、一般的に、実数項と虚数項との和で与えられ(Z=Re[Z]+jIm[Z])、インピーダンスZに含まれる虚数項(Im[Z])を0にして、インピーダンスZを実数項(Re[Z])のみにすることで、インピーダンス値を低下させて電力のロスを小さくできる。そして、この式(2)から、インピーダンスZの虚数項Im[Z]は次の式(3)で示される。   As shown in the equation (2), the impedance Z is generally given by the sum of the real term and the imaginary term (Z = Re [Z] + jIm [Z]), and the imaginary term (Im) included in the impedance Z [Z]) is set to 0 and the impedance Z is set to only a real term (Re [Z]), thereby reducing the impedance value and reducing the power loss. From this equation (2), the imaginary term Im [Z] of the impedance Z is expressed by the following equation (3).

Figure 0005612956
Figure 0005612956

そして、この虚数項Im[Z]と受電コイル22のリアクタンスωL2との和が0となる方程式を立てる。この方程式は次の式(4)で示される。 Then, an equation is established in which the sum of the imaginary term Im [Z] and the reactance ωL 2 of the receiving coil 22 becomes zero. This equation is expressed by the following equation (4).

Figure 0005612956
Figure 0005612956

そして、この式(4)を、二次側共振キャパシタ23の静電容量CP2について解くと、次の式(5)になる。 Then, when this equation (4) is solved for the capacitance C P2 of the secondary side resonance capacitor 23, the following equation (5) is obtained.

Figure 0005612956
Figure 0005612956

但し、Z0≧2ωL2、ω=2πf、Z0は負荷24のインピーダンス[Ω]、ωは角速度[rad/秒]、L2は受電コイル22のインダクタンス[H]、fは交流電源11の交流電圧V1の周波数[Hz]である。 However, Z 0 ≧ 2ωL 2 , ω = 2πf, Z 0 is the impedance [Ω] of the load 24, ω is the angular velocity [rad / sec], L 2 is the inductance [H] of the receiving coil 22, and f is the AC power source 11. The frequency of the AC voltage V 1 is [Hz].

そして、この式(5)を満たすように受電コイル22の自己インダクタンスL2、二次側共振キャパシタ23の静電容量CP2、及び、負荷24のインピーダンスZ0を設定することにより、二次側回路ユニット20が共振状態となって、リアクタンスωL2と虚数項Im[Z]とが互いに打ち消される。 Then, by setting the self-inductance L 2 of the receiving coil 22, the capacitance C P2 of the secondary resonance capacitor 23, and the impedance Z 0 of the load 24 so as to satisfy this equation (5), the secondary side The circuit unit 20 enters a resonance state, and the reactance ωL 2 and the imaginary term Im [Z] cancel each other.

次に、二次側回路ユニット20の各回路構成部材の値(パラメータ)の設定方法について説明する。   Next, a method for setting values (parameters) of each circuit component of the secondary circuit unit 20 will be described.

上述した非接触電力伝送装置1の二次側回路ユニット20の負荷24のインピーダンスZ0を50Ωとし、交流電源11の交流電圧V1の周波数を100kHzとする。このとき、上記式(5)の但し書きから、受電コイル22の自己インダクタンスL2は次の式
2≦Z0/2ω
を満足する必要があり、この式に上記値を代入すると、受電コイル22の自己インダクタンスL2は40μH未満の値となる。この自己インダクタンスL2は、伝送距離を伸ばすためには大きい値の方がよい。そして、この算出した自己インダクタンスL2を、図2に示すコイルの巻き数と自己インダクタンスとの関係を示すグラフに当てはめると、受電コイル22の巻き数は3回が適切であることが判る。そして、巻き数が3回の受電コイル22の自己インダクタンスL2を図2のグラフから求めて、これらf、Z0、L2と上記式(5)とを用いて二次側共振キャパシタ23の静電容量CP2をさらに求めて、これら値を各回路構成部材に設定する。
The impedance Z 0 of the load 24 of the secondary circuit unit 20 of the non-contact power transmission apparatus 1 described above is 50Ω, and the frequency of the AC voltage V 1 of the AC power supply 11 is 100 kHz. At this time, from the proviso of the above formula (5), the self-inductance L 2 of the power receiving coil 22 is expressed by the following formula: L 2 ≦ Z 0 / 2ω
If the above value is substituted into this equation, the self-inductance L 2 of the power receiving coil 22 becomes a value less than 40 μH. The self-inductance L 2 is preferably a large value in order to increase the transmission distance. Then, when the calculated self-inductance L 2 is applied to a graph showing the relationship between the number of turns of the coil and the self-inductance shown in FIG. 2, it can be seen that the number of turns of the power receiving coil 22 is three. Then, the self-inductance L 2 of the receiving coil 22 having three turns is obtained from the graph of FIG. 2, and the f-Z 0 , L 2 and the above equation (5) are used to determine the secondary resonance capacitor 23. The capacitance C P2 is further obtained, and these values are set for each circuit component.

以上より、本発明によれば、二次側回路ユニット20が、受電コイル22に並列に存在する静電容量CP2を有し、そして、この静電容量CP2が、上記式(5)を満たすので、受電コイル22に直列に接続された負荷24を含めた二次側回路ユニット20全体で共振状態にすることができ、そのため、受電コイル22のリアクタンスωL2を打ち消すことができ、インピーダンスを整合させて電力伝送効率を高めることができる。 As described above, according to the present invention, the secondary side circuit unit 20 has the electrostatic capacity C P2 present in parallel with the power receiving coil 22, and the electrostatic capacity C P2 is expressed by the above equation (5). As a result, the entire secondary side circuit unit 20 including the load 24 connected in series to the power receiving coil 22 can be brought into a resonance state, so that the reactance ωL 2 of the power receiving coil 22 can be canceled and the impedance can be reduced. The power transmission efficiency can be increased by matching.

また、静電容量CP2が、受電コイル22に並列に接続された二次側共振キャパシタ23によるものであるので、上記式(5)を満たす静電容量CP2を容易に設定することができる。 Further, since the capacitance C P2 is due to the secondary resonance capacitor 23 connected in parallel to the power receiving coil 22, the capacitance C P2 satisfying the above equation (5) can be easily set. .

また、送電コイル12の巻き数N1と受電コイル22の巻き数N2との巻き数比nが1以上(即ち、n=N1/N2≧1)であるので、巻き数比を調整することによりインピーダンス整合を容易に行うことができるとともに、受電コイル22の巻き数を小さくして二次側回路ユニット20を軽量化することができる。 Further, since the winding ratio n between the winding number N 1 of the power transmission coil 12 and the winding number N 2 of the power receiving coil 22 is 1 or more (that is, n = N 1 / N 2 ≧ 1), the winding ratio is adjusted. As a result, impedance matching can be easily performed, and the number of turns of the power receiving coil 22 can be reduced to reduce the weight of the secondary circuit unit 20.

上述した本実施形態によれば、静電容量CP2が、受電コイル22に並列に接続された二次側共振キャパシタ23によるものであったが、本発明はこれに限定されるものではない。例えば、上記構成において二次側共振キャパシタ23に代えて、上記静電容量CP2を受電コイル22の寄生静電容量によるものとしてもよく、このようにすることで、部品を追加することなく、簡素な構成で電力伝送効率を高めることができる。 According to the present embodiment described above, the capacitance C P2 is due to the secondary resonance capacitor 23 connected in parallel to the power receiving coil 22, but the present invention is not limited to this. For example, instead of the secondary side resonance capacitor 23 in the above configuration, the capacitance C P2 may be due to the parasitic capacitance of the power receiving coil 22, and in this way, without adding components, The power transmission efficiency can be increased with a simple configuration.

また、本実施形態によれば、一次側回路ユニット10の送電コイル12と二次側回路ユニット20の受電コイル22とが直接対向して配置されることにより電力を伝送するものであったが、本発明はこれに限定されるものではない。例えば、図3に示す構成の非接触電力伝送装置2であってもよい。   Further, according to the present embodiment, the power transmission coil 12 of the primary side circuit unit 10 and the power reception coil 22 of the secondary side circuit unit 20 are arranged to face each other directly, thereby transmitting power. The present invention is not limited to this. For example, the non-contact power transmission device 2 having the configuration shown in FIG. 3 may be used.

非接触電力伝送装置2は、第1回路ユニット40と中継回路ユニット60とを有する第1回路装置31と、第2回路ユニット50を有する第2回路装置32と、を備えている。   The non-contact power transmission device 2 includes a first circuit device 31 having a first circuit unit 40 and a relay circuit unit 60, and a second circuit device 32 having a second circuit unit 50.

第1回路ユニット40は、内部抵抗45を含む平面型一様らせんコイルである第1コイル42と、第1コイル42に直列に接続された第1負荷44と、第1コイル42に並列に接続された第1共振キャパシタ43と、第1コイル42に交流電圧を印加する図示しない交流電源と、を備えている。第1回路ユニット40において、第1コイル42の自己インダクタンスL1、第1共振キャパシタ43の静電容量CP1、第1負荷44のインピーダンスZ1が、上記式(5)を満たす値に設定されている(但し、式(5)において、L2をL1、CP2をCP1、Z0をZ1に読み替えて適用)。つまり、第1回路ユニット40は、交流電源の周波数fにおいて共振状態となる。 The first circuit unit 40 includes a first coil 42, which is a planar uniform helical coil including an internal resistor 45, a first load 44 connected in series to the first coil 42, and a parallel connection to the first coil 42. The first resonance capacitor 43 and an AC power supply (not shown) for applying an AC voltage to the first coil 42 are provided. In the first circuit unit 40, the self-inductance L 1 of the first coil 42, the capacitance C P1 of the first resonance capacitor 43, and the impedance Z 1 of the first load 44 are set to values that satisfy the above formula (5). (However, in the formula (5), L 2 is read as L 1 , C P2 is read as C P1 , and Z 0 is read as Z 1 ). That is, the first circuit unit 40 is in a resonance state at the frequency f of the AC power supply.

中継回路ユニット60は、内部抵抗65を含む平面型一様らせんコイルである中継コイル62と、中継コイル62に直列に接続された共振キャパシタ63と、を備えている。中継回路ユニット60において、中継コイル62の自己インダクタンスL3、共振キャパシタ63の静電容量C3が、上記式(1)を満たす値に設定されている(但し、式(1)において、L1をL3、CS1をC3に読み替えて適用)。つまり、中継回路ユニット60は、交流電源の周波数fにおいて共振状態となる。共振キャパシタ63に代えて、中継コイル62の寄生静電容量が上記静電容量C3となるようにしてもよい。 The relay circuit unit 60 includes a relay coil 62 that is a planar uniform helical coil including an internal resistor 65, and a resonance capacitor 63 connected in series to the relay coil 62. In the relay circuit unit 60, the self-inductance L 3 of the relay coil 62 and the capacitance C 3 of the resonant capacitor 63 are set to values that satisfy the above formula (1) (however, in the formula (1), L 1 Is replaced with L 3 and C S1 is replaced with C 3 ). That is, the relay circuit unit 60 enters a resonance state at the frequency f of the AC power supply. Instead of the resonant capacitor 63, the parasitic capacitance of the relay coil 62 may be set to be the capacitance C 3.

第2回路ユニット50は、第1回路ユニット40と同様に、内部抵抗55を含む平面型一様らせんコイルである第2コイル52と、第2コイル52に直列に接続された第2負荷54と、第2コイル52に並列に接続された第2共振キャパシタ53と、第2コイル52に交流電圧を印加する図示しない交流電源と、を備えている。第2回路ユニット50において、第2コイル52の自己インダクタンスL2、第2共振キャパシタ53の静電容量CP2、第2負荷54のインピーダンスZ0が、上記式(5)を満たす値に設定されている。つまり、第2回路ユニット50は、交流電源の周波数fにおいて共振状態となる。 Similar to the first circuit unit 40, the second circuit unit 50 includes a second coil 52 that is a planar uniform spiral coil including an internal resistance 55, and a second load 54 connected in series to the second coil 52. The second resonance capacitor 53 connected in parallel to the second coil 52 and an AC power source (not shown) for applying an AC voltage to the second coil 52 are provided. In the second circuit unit 50, the self-inductance L 2 of the second coil 52, the capacitance C P2 of the second resonance capacitor 53, and the impedance Z 0 of the second load 54 are set to values that satisfy the above equation (5). ing. That is, the second circuit unit 50 is in a resonance state at the frequency f of the AC power supply.

第1コイル42と第2コイル52と中継コイル62とはそれぞれ同軸に重ねられて、且つ、第1コイル42と第2コイル52との間に中継コイル62を挟むようにして配置されている。第1回路装置31から第2回路装置32に電力伝送を行うとき、第1コイル42が送電コイルとして、第2コイル52が受電コイルとして機能する。また、第2回路装置32から第1回路装置31に電力伝送を行うとき、第1コイル42が受電コイルとして、第2コイル52が送電コイルとして機能する。   The first coil 42, the second coil 52, and the relay coil 62 are arranged so as to be coaxially overlapped with each other and the relay coil 62 is sandwiched between the first coil 42 and the second coil 52. When power is transmitted from the first circuit device 31 to the second circuit device 32, the first coil 42 functions as a power transmission coil and the second coil 52 functions as a power reception coil. Further, when power is transmitted from the second circuit device 32 to the first circuit device 31, the first coil 42 functions as a power receiving coil, and the second coil 52 functions as a power transmitting coil.

このように、第1コイル42と第2コイル52との間に挟むように配置される中継コイル62とこの中継コイル62に直列に接続された共振キャパシタ63とを備えた、交流電源の周波数fにおいて共振状態となる、中継回路ユニット60を設けることにより、中継回路ユニット60が備える中継コイル62によって第1コイル42と第2コイル52との間で伝送される電力を中継して、第1コイル42と第2コイル52との伝送距離を伸ばすことができる。また、中継コイル62の巻き数を増やすことで、各コイル間の相互インダクタンスM13、M23が増加し、伝送距離をさらに伸ばすことができる。また、第1回路ユニット40及び第2回路ユニット50共に交流電源を備えており、双方向の電力伝送ができる。また、第1負荷44のインピーダンスZ1及び第2負荷54のインピーダンスZ0がそれぞれ50Ωになるように調整することにより、一般的な50Ω線路を使用することができ、インピーダンスの整合が容易にできる。 As described above, the frequency f of the AC power source including the relay coil 62 disposed so as to be sandwiched between the first coil 42 and the second coil 52 and the resonant capacitor 63 connected in series to the relay coil 62. By providing the relay circuit unit 60 that is in a resonance state, the power transmitted between the first coil 42 and the second coil 52 is relayed by the relay coil 62 included in the relay circuit unit 60, and the first coil The transmission distance between 42 and the second coil 52 can be extended. Further, by increasing the number of windings of the relay coil 62, the mutual inductance M 13, M 23 between the coils is increased, thereby further extend the transmission distance. Further, both the first circuit unit 40 and the second circuit unit 50 are provided with an AC power source, and bidirectional power transmission can be performed. In addition, by impedance Z 0 of the impedance Z1 and the second load 54 of the first load 44 is adjusted to 50Ω respectively, typical 50Ω line can be used, impedance matching can be easily.

(検証1)
本発明者は、上述した非接触電力伝送装置1の一次側回路ユニット10及び二次側回路ユニット20に設けられる各共振キャパシタの接続形態と電力伝送効率との関係について検証を行った。
(Verification 1)
The inventor verified the relationship between the connection form of each resonance capacitor provided in the primary side circuit unit 10 and the secondary side circuit unit 20 of the contactless power transmission device 1 and the power transmission efficiency.

(実施例1)
図1の非接触電力伝送装置1において、一次側回路ユニット10について、送電コイル12として、直径0.5mmの銅線からなる、巻き数10回、平均一辺長さ(即ち、外縁の一辺長さDoutと内縁の一辺長さDinとの平均一辺長さDavg;Davg=(Dout+Din)/2)が5cmの正方形環状密巻の平板型一様らせんコイルを用い、そして、交流電源11の出力する交流電圧V1の周波数fを100kHzとし、送電コイル12の自己インダクタンスL1と一次側共振キャパシタ13の静電容量CP1とが上記式(1)を満たすようにそれぞれの値を設定した。また、二次側回路ユニット20について、受電コイル22として、送電コイル12と同一構成の平板型一様らせんコイルを用い、そして、受電コイル22の自己インダクタンスL2と二次側共振キャパシタ23の静電容量CP2と負荷24のインピーダンスZ0とが、上記式(5)を満足するようにそれぞれの値を設定した。なお、図1の回路構成では、共振キャパシタを一次側に直列、二次側に並列に設けており、以下、「SP共振回路」という。
Example 1
In the non-contact power transmission apparatus 1 of FIG. 1, the primary circuit unit 10 is composed of a copper wire having a diameter of 0.5 mm, the number of windings is 10 times, and the average side length (that is, the length of one side of the outer edge) An average side length Davg of Dout and the side length Din of the inner edge Dav; Davg = (Dout + Din) / 2) is a square annular closely wound flat plate-shaped uniform spiral coil of 5 cm, and an AC output from the AC power supply 11 is used. The frequency f of the voltage V1 was set to 100 kHz, and the respective values were set so that the self-inductance L 1 of the power transmission coil 12 and the capacitance C P1 of the primary side resonance capacitor 13 satisfied the above formula (1). In the secondary side circuit unit 20, a flat plate-shaped uniform coil having the same configuration as that of the power transmission coil 12 is used as the power reception coil 22, and the self-inductance L 2 of the power reception coil 22 and the static resonance of the secondary side resonance capacitor 23 are used. The values were set so that the capacitance C P2 and the impedance Z 0 of the load 24 satisfied the above formula (5). In the circuit configuration of FIG. 1, the resonant capacitor is provided in series on the primary side and in parallel on the secondary side, and is hereinafter referred to as “SP resonant circuit”.

(実施例2)
実施例1において、送電コイル12及び受電コイル22の平均一辺長さを10cmに変更した以外は、実施例1と同一構成とした。
(Example 2)
In Example 1, it was set as the same structure as Example 1 except having changed the average one side length of the power transmission coil 12 and the receiving coil 22 into 10 cm.

(比較例1)
図4に示す非接触電力伝送装置4は、図1の非接触電力伝送装置1の二次側回路ユニット20が備える二次側共振キャパシタ23に代えて、受電コイル22と負荷24との間に直列に挿入された二次側共振キャパシタ27を備えている。これ以外は図1と同様の回路構成であり、同一部材には同一符号を付して示す。なお、図4の回路構成では、共振キャパシタを一次側に直列、二次側に直列に設けており、以下、「SS共振回路」という。そして、このSS共振回路において、一次側回路ユニット10について、実施例1と同一構成とし、二次側回路ユニット20について、受電コイル22及び負荷24は実施例1と同一構成とし、受電コイル22の自己インダクタンスL2と二次側共振キャパシタ27の静電容量CS2とが、次の式(6)を満たすように、それぞれの値を設定した。
(Comparative Example 1)
A contactless power transmission device 4 shown in FIG. 4 is arranged between a power receiving coil 22 and a load 24 instead of the secondary resonance capacitor 23 provided in the secondary circuit unit 20 of the contactless power transmission device 1 of FIG. A secondary resonance capacitor 27 is provided in series. Other than this, the circuit configuration is the same as in FIG. 1, and the same members are denoted by the same reference numerals. In the circuit configuration of FIG. 4, the resonant capacitors are provided in series on the primary side and in series on the secondary side, and are hereinafter referred to as “SS resonant circuit”. In this SS resonance circuit, the primary side circuit unit 10 has the same configuration as that of the first embodiment, and the secondary side circuit unit 20 has the same configuration of the power receiving coil 22 and the load 24 as those of the first embodiment. The respective values were set so that the self-inductance L 2 and the capacitance C S2 of the secondary resonance capacitor 27 satisfy the following expression (6).

Figure 0005612956
Figure 0005612956

(比較例2)
比較例1において、送電コイル12及び受電コイル22の平均一辺長さを10cmに変更した以外は、比較例1と同一構成とした。
(Comparative Example 2)
In the comparative example 1, it was set as the same structure as the comparative example 1 except having changed the average one side length of the power transmission coil 12 and the receiving coil 22 into 10 cm.

(比較例3)
図5に示す非接触電力伝送装置5は、図1の非接触電力伝送装置1の一次側回路ユニット10が備える一次側共振キャパシタ13に代えて、交流電源11と並列に接続された一次側共振キャパシタ17を備え、且つ、図1の非接触電力伝送装置1の二次側回路ユニット20が備える二次側共振キャパシタ23に代えて、受電コイル22と負荷24との間に直列に挿入された二次側共振キャパシタ27を備えている。これ以外は図1と同様の回路構成であり、同一部材には同一符号を付して示す。なお、図5の回路構成では、共振キャパシタを一次側に並列、二次側に直列に設けており、以下、「PS共振回路」という。このPS共振回路において、一次側回路ユニット10について、交流電源11及び送電コイル12は実施例1と同一構成とし、送電コイル12の自己インダクタンスL2と一次側共振キャパシタ17の静電容量CP1とが、次の式(7)を満たすようにそれぞれの値を設定し、また、二次側回路ユニット20について、受電コイル22及び負荷24は実施例1と同一構成とし、受電コイル22の自己インダクタンスL2と二次側共振キャパシタ27の静電容量CS2とが、上記式(6)を満たすようにそれぞれの値を設定した。
(Comparative Example 3)
A contactless power transmission device 5 shown in FIG. 5 is replaced with a primary side resonance capacitor 13 provided in the primary side circuit unit 10 of the contactless power transmission device 1 of FIG. In place of the secondary side resonance capacitor 23 provided with the capacitor 17 and included in the secondary side circuit unit 20 of the non-contact power transmission device 1 of FIG. 1, it is inserted in series between the power receiving coil 22 and the load 24. A secondary resonance capacitor 27 is provided. Other than this, the circuit configuration is the same as in FIG. 1, and the same members are denoted by the same reference numerals. In the circuit configuration of FIG. 5, the resonant capacitor is provided in parallel on the primary side and in series on the secondary side, and is hereinafter referred to as “PS resonant circuit”. In this PS resonance circuit, the AC power supply 11 and the power transmission coil 12 of the primary side circuit unit 10 have the same configuration as in the first embodiment, and the self-inductance L 2 of the power transmission coil 12 and the capacitance C P1 of the primary side resonance capacitor 17 However, the respective values are set so as to satisfy the following formula (7), and the power receiving coil 22 and the load 24 of the secondary side circuit unit 20 have the same configuration as that of the first embodiment, and the self inductance of the power receiving coil 22 is set. The respective values were set so that L 2 and the capacitance C S2 of the secondary resonance capacitor 27 satisfy the above formula (6).

Figure 0005612956
Figure 0005612956

(比較例4)
比較例3において、送電コイル12及び受電コイル22の平均一辺長さを10cmに変更した以外は、比較例3と同一構成とした。
(Comparative Example 4)
In the comparative example 3, it was set as the same structure as the comparative example 3 except having changed the average one side length of the power transmission coil 12 and the receiving coil 22 into 10 cm.

上述した実施例1、2、比較例1〜4について、一次側回路ユニット10及び二次側回路ユニット20のそれぞれに電力計を接続して、送電コイル12と受電コイル22とを同心で密に重ねた状態(つまり、間隔0)から徐々に間隔(即ち、伝送距離)を広げていったときの各回路ユニットにおける電力を測定し、これら測定した電力の比率から電力伝送効率を算出した。この結果を図6に示す。   About Example 1, 2 mentioned above, and Comparative Examples 1-4, a wattmeter is connected to each of the primary side circuit unit 10 and the secondary side circuit unit 20, and the power transmission coil 12 and the receiving coil 22 are concentrically and densely. The power in each circuit unit when the interval (ie, transmission distance) was gradually increased from the overlapped state (ie, interval 0) was measured, and the power transmission efficiency was calculated from the ratio of the measured power. The result is shown in FIG.

図6に示すグラフから、二次側回路ユニット20において受電コイル22に並列に二次側共振キャパシタ23を接続したSP共振回路の方が、受電コイル22に直列に二次側共振キャパシタを接続したSS共振回路及びPS共振回路より電力伝送効率が高いことが判明した(実施例1、2、比較例1〜4)。また、比較例1と比較例3、及び、比較例2と比較例4、のグラフがそれぞれ重なっていることから、一次側回路ユニット10については、一次側共振キャパシタを直列又は並列のいずれの接続で設けても、電力伝送効率に変化はなかった(比較例1〜4)。また、各コイルの一辺長さが大きい方が、各コイルの間隔が広がった場合でも、電力伝送効率を高く維持できることが判明した(実施例1、2)。これら結果から、本発明の効果を確認することができた。   From the graph shown in FIG. 6, the SP resonance circuit in which the secondary side resonance capacitor 23 is connected in parallel to the power receiving coil 22 in the secondary side circuit unit 20 has the secondary side resonance capacitor connected in series to the power receiving coil 22. It was found that the power transmission efficiency was higher than that of the SS resonance circuit and the PS resonance circuit (Examples 1 and 2 and Comparative Examples 1 to 4). In addition, since the graphs of Comparative Example 1 and Comparative Example 3 and Comparative Example 2 and Comparative Example 4 are respectively overlapped, for the primary side circuit unit 10, the primary side resonance capacitor is connected either in series or in parallel. Even if it provided, power transmission efficiency did not change (Comparative Examples 1 to 4). It was also found that the power transmission efficiency can be maintained high when the one side length of each coil is large even when the interval between the coils is widened (Examples 1 and 2). From these results, the effect of the present invention could be confirmed.

(検証2)
また、本発明者は、送電コイル12と受電コイル22との巻き数と電力伝送効率との関係について検証を行った。
(Verification 2)
In addition, the inventor has verified the relationship between the number of turns of the power transmission coil 12 and the power reception coil 22 and the power transmission efficiency.

上述した非接触電力伝送装置1において送電コイル12と受電コイル22とのそれぞれの巻き数が異なる構成において、各コイル間の間隔(即ち、伝送距離)を変化させて電力伝送効率を測定した結果を図7に示す。   In the contactless power transmission device 1 described above, in a configuration in which the number of turns of the power transmission coil 12 and the power reception coil 22 is different, the result of measuring the power transmission efficiency by changing the interval between the coils (that is, the transmission distance) is shown. As shown in FIG.

図7のグラフのP1は、送電コイル12の巻き数N1を10回、受電コイル22の巻き数N2を3回、負荷24のインピーダンスを50Ωとしたときを示し、P2は、送電コイル12の巻き数N1を3回、受電コイル22の巻き数N2を3回、負荷24のインピーダンスを50Ωとしたときを示し、P3は、送電コイル12の巻き数N1を15回、受電コイル22の巻き数N2を3回、負荷24のインピーダンスを50Ωとしたときを示し、P4は、送電コイル12の巻き数N1を10回、受電コイル22の巻き数N2を10回、負荷24のインピーダンスを350Ωとしたときを示す。各構成において、送電コイル12及び受電コイル22の平均一辺長さは50cmとした。 P1 in the graph of FIG. 7, the number of turns N 1 to 10 times of the transmitting coil 12, the number of turns N 2 three times of the power receiving coil 22, indicates when the impedance of the load 24 was 50 [Omega, P2 is the power transmission coil 12 The number of turns N 1 of the power receiving coil 22 is 3 times, the number of turns N 2 of the power receiving coil 22 is 3 times, and the impedance of the load 24 is 50Ω. P3 is the number of turns N 1 of the power transmitting coil 12 15 times. 22 shows the case where the number of turns N 2 is 3 times and the impedance of the load 24 is 50Ω. P4 is the number of turns N 1 of the power transmission coil 12 is 10 times and the number of turns N 2 of the power receiving coil 22 is 10 times. The case where the impedance of 24 is set to 350Ω is shown. In each configuration, the average side length of the power transmission coil 12 and the power reception coil 22 was 50 cm.

図7のグラフより、受電コイル22の巻き数N2が同じであれば、送電コイル12の巻き数N1が多いほど電力伝送効率を高めることができることが判明した(P1〜P3)。また、負荷24のインピーダンスZ0が高い場合でも、送電コイル12及び受電コイル22のそれぞれの巻き数を多くすることで電力伝送効率を高めることができることが判明した(P2、P4)。 From the graph of FIG. 7, if the number of turns N 2 are the same on the receiving coil 22, it has been found that can be the more number of turns N1 of the power transmission coil 12 increases the power transmission efficiency (P1 to P3). Further, it has been found that even when the impedance Z 0 of the load 24 is high, the power transmission efficiency can be increased by increasing the number of turns of each of the power transmission coil 12 and the power reception coil 22 (P2, P4).

なお、前述した実施形態は本発明の代表的な形態を示したに過ぎず、本発明は、実施形態に限定されるものではない。即ち、本発明の骨子を逸脱しない範囲で種々変形して実施することができる。   In addition, embodiment mentioned above only showed the typical form of this invention, and this invention is not limited to embodiment. That is, various modifications can be made without departing from the scope of the present invention.

1、2 非接触電力伝送装置
10 一次側回路ユニット
11 交流電源
12 送電コイル
13 一次側共振キャパシタ
20 二次側回路ユニット
22 受電コイル
23 二次側共振キャパシタ(キャパシタ)
24 負荷
DESCRIPTION OF SYMBOLS 1, 2 Non-contact electric power transmission apparatus 10 Primary side circuit unit 11 AC power supply 12 Power transmission coil 13 Primary side resonance capacitor 20 Secondary side circuit unit 22 Power receiving coil 23 Secondary side resonance capacitor (capacitor)
24 Load

Claims (2)

交流電源による電力を電磁誘導作用によって送信する送電コイルを有する一次側回路ユニットと、前記送電コイルから送信された前記電力を受信する受電コイルと該受電コイルに直列接続された負荷とを有する二次側回路ユニットと、を有する非接触電力伝送装置において、
前記二次側回路ユニットが、前記受電コイルに並列に存在する静電容量CP2を有し、
前記静電容量C P2 が、前記受電コイルの寄生静電容量によるものであり、そして、
前記静電容量CP2が、以下の式を満たすことを特徴とする非接触電力伝送装置。
P2=(Z0±√(Z0 2−4ω22 2))/2ω202
但し、Z0≧2ωL2、ω=2πf、Z0は前記負荷のインピーダンス[Ω]、ωは角速度[rad/秒]、L2は前記受電コイルの自己インダクタンス[H]、fは前記交流電源の周波数[Hz]である。
A secondary circuit unit having a primary circuit unit having a power transmission coil for transmitting power from an AC power supply by electromagnetic induction, a power reception coil for receiving the power transmitted from the power transmission coil, and a load connected in series to the power reception coil In a non-contact power transmission device having a side circuit unit,
The secondary side circuit unit has a capacitance C P2 that exists in parallel with the power receiving coil,
The capacitance C P2 is due to the parasitic capacitance of the receiving coil; and
The non-contact power transmission device, wherein the capacitance C P2 satisfies the following formula.
C P2 = (Z 0 ± √ (Z 0 2 -4ω 2 L 2 2 )) / 2ω 2 Z 0 L 2
However, Z 0 ≧ 2ωL 2 , ω = 2πf, Z 0 is the impedance [Ω] of the load, ω is the angular velocity [rad / sec], L 2 is the self-inductance [H] of the power receiving coil, and f is the AC power source. [Hz].
前記送電コイルの巻き数と前記受電コイルの巻き数との巻き数比nが、以下の式を満たすことを特徴とする請求項1に記載の非接触電力伝送装置。
n=N1/N2≧1
但し、N1が前記送電コイルの巻き数[回]、N2が前記受電コイルの巻き数[回]である。
The contactless power transmission device according to claim 1, wherein a winding ratio n between the number of turns of the power transmission coil and the number of turns of the power receiving coil satisfies the following expression.
n = N 1 / N 2 ≧ 1
N 1 is the number of turns of the power transmission coil [times], and N 2 is the number of turns of the power receiving coil [ times].
JP2010175261A 2010-08-04 2010-08-04 Non-contact power transmission device Expired - Fee Related JP5612956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010175261A JP5612956B2 (en) 2010-08-04 2010-08-04 Non-contact power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010175261A JP5612956B2 (en) 2010-08-04 2010-08-04 Non-contact power transmission device

Publications (2)

Publication Number Publication Date
JP2012039692A JP2012039692A (en) 2012-02-23
JP5612956B2 true JP5612956B2 (en) 2014-10-22

Family

ID=45851071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010175261A Expired - Fee Related JP5612956B2 (en) 2010-08-04 2010-08-04 Non-contact power transmission device

Country Status (1)

Country Link
JP (1) JP5612956B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183701A1 (en) * 2012-06-08 2013-12-12 株式会社 豊田自動織機 Power receiving apparatus, power transmitting apparatus, and non-contact power transmitting device
CN106961164A (en) * 2012-10-11 2017-07-18 株式会社村田制作所 Wireless power supply
CN104701998B (en) 2015-03-27 2020-08-18 南京矽力微电子技术有限公司 Resonance type non-contact power supply device, electric energy receiving end and control method
JP6390808B1 (en) * 2017-05-19 2018-09-19 オムロン株式会社 Non-contact power feeding device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0451505A (en) * 1990-06-19 1992-02-20 Ko Nanbu Connector
SG54559A1 (en) * 1996-09-13 1998-11-16 Hitachi Ltd Power transmission system ic card and information communication system using ic card
JP2004072832A (en) * 2002-08-02 2004-03-04 Hitachi Kiden Kogyo Ltd Non-contact power feeding method
JP2004166384A (en) * 2002-11-12 2004-06-10 Sharp Corp Non-contact power feeding system, electromagnetic coupling characteristic adjustment method therein and power feeder
DE112006002299T5 (en) * 2005-09-01 2008-06-26 National University Corporation Saitama University Contact-free power supply device
JP2009278837A (en) * 2008-05-18 2009-11-26 Hideo Kikuchi Induced-power transmission system
JP5351499B2 (en) * 2008-11-28 2013-11-27 長野日本無線株式会社 Contactless power transmission system
JP5580333B2 (en) * 2009-11-18 2014-08-27 株式会社東芝 Wireless power transmission device

Also Published As

Publication number Publication date
JP2012039692A (en) 2012-02-23

Similar Documents

Publication Publication Date Title
JP6323312B2 (en) Contactless power supply system
JP5691458B2 (en) Non-contact power feeding apparatus and non-contact power feeding method
JP5405694B1 (en) Power transmission device, electronic device and wireless power transmission system
JP6261978B2 (en) Detection device, power transmission device, power supply system, and detection method
WO2014038148A1 (en) Contactless power supply system and contactless extension plug
JP2012143117A (en) Non-contact power transmission device
JP5862844B2 (en) Wireless power transmission system
US20210046832A1 (en) Inductive coupling gap compensation
JP2013055835A (en) Power feed unit, electronic appliance, and power feed system
JP5612956B2 (en) Non-contact power transmission device
JP6305728B2 (en) Coil unit and power transmission system
US20150188364A1 (en) Wireless power receiving apparatus and wireless power transmitting apparatus
JP2014176122A (en) Magnetic resonance-type wireless power-feeding system
US20200336011A1 (en) Resonant circuit for transmitting electric energy
JP6819951B2 (en) Wireless power transfer system
WO2020189351A1 (en) Non-contact power feeding device
JP2015156741A (en) Power transmission system, power receiver, and power transmitter
KR101822213B1 (en) Apparatus for transmitting wireless power, apparatus for receiving wireless power, system for transmitting wireless power and method for transmitting wireless power
KR101369157B1 (en) Wireless power transfer apparatus by using magnetic induction
US20200313461A1 (en) Resonant circuit for transmitting electric energy without a power amplifier
CN110890796A (en) Wireless electric energy transmission method and system insensitive to transmission distance
JP2012039691A (en) Noncontact power transmission apparatus and power reception coil used for the same
JP6365108B2 (en) Coil unit
JP2014017893A (en) Non-contact power transmission device
CN113890206B (en) Induction type WPT (Windows presentation technology) bilateral LCLC (liquid Crystal display) topology for shielding peripheral magnetic field and parameter design method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140905

R150 Certificate of patent or registration of utility model

Ref document number: 5612956

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees