JP5610912B2 - Laser processing apparatus and laser processing method - Google Patents

Laser processing apparatus and laser processing method Download PDF

Info

Publication number
JP5610912B2
JP5610912B2 JP2010181874A JP2010181874A JP5610912B2 JP 5610912 B2 JP5610912 B2 JP 5610912B2 JP 2010181874 A JP2010181874 A JP 2010181874A JP 2010181874 A JP2010181874 A JP 2010181874A JP 5610912 B2 JP5610912 B2 JP 5610912B2
Authority
JP
Japan
Prior art keywords
laser
power generation
generation layer
transparent conductive
conductive film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010181874A
Other languages
Japanese (ja)
Other versions
JP2012043865A (en
Inventor
友一 酒川
友一 酒川
伸一 中芝
伸一 中芝
正博 石川
正博 石川
松本 潤一
潤一 松本
克俊 長崎
克俊 長崎
勇輝 前田
勇輝 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kataoka Corp
Original Assignee
Kataoka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kataoka Corp filed Critical Kataoka Corp
Priority to JP2010181874A priority Critical patent/JP5610912B2/en
Publication of JP2012043865A publication Critical patent/JP2012043865A/en
Application granted granted Critical
Publication of JP5610912B2 publication Critical patent/JP5610912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Laser Beam Processing (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、薄膜太陽電池の製造過程におけるLED(Laser Edge Deletion)の方法、及びそのための加工装置に関する。   The present invention relates to a method of LED (Laser Edge Deletion) in a manufacturing process of a thin film solar cell, and a processing apparatus therefor.

今日主流となっている薄膜太陽電池は、基板に透明性導電膜、シリコン系発電層(吸収層)及び裏面電極膜を製膜、積層して作製される。図2に示すように、これら積層膜7、8、9は、裏面側からラミネートフィルム11が貼着されることで密封されるが、そのラミネート工程に先んじて、基板10の外周縁部に位置する積層膜7、8、9を除去する必要がある(例えば、下記特許文献を参照)。   Thin-film solar cells, which are the mainstream today, are produced by depositing a transparent conductive film, a silicon-based power generation layer (absorption layer), and a back electrode film on a substrate. As shown in FIG. 2, these laminated films 7, 8, and 9 are sealed by laminating a laminate film 11 from the back side, but are positioned on the outer peripheral edge of the substrate 10 prior to the laminating process. It is necessary to remove the laminated films 7, 8, and 9 (for example, refer to the following patent document).

レーザスクライブによって行うこの積層膜の除去処理が、LEDである。LEDでは、通常、Nd:YAG、Nd:YVO4、Yb:Glass、Yb:YAGといった固体レーザを使用する。この種の固体レーザ光は、波長が1030nmないし1100nmの範疇にあり、透明性導電膜として用いられるTCO(Transparent Conductive Oxide)膜を除去するのに向いている。 The removal process of this laminated film performed by laser scribing is an LED. In the LED, normally, solid-state lasers such as Nd: YAG, Nd: YVO 4 , Yb: Glass, and Yb: YAG are used. This type of solid-state laser light has a wavelength in the range of 1030 nm to 1100 nm, and is suitable for removing a TCO (Transparent Conductive Oxide) film used as a transparent conductive film.

だが、一方で、発電層であるシリコン膜を除去するのには向いていない。アモルファスシリコン(a−Si)の吸収波長帯は300nmないし700nm、微結晶シリコン(μc−Si)の吸収波長帯は500nmないし900nmであり、何れも上記の固体レーザ光を吸収し難いためである。   However, on the other hand, it is not suitable for removing the silicon film that is the power generation layer. This is because the absorption wavelength band of amorphous silicon (a-Si) is 300 nm to 700 nm, and the absorption wavelength band of microcrystalline silicon (μc-Si) is 500 nm to 900 nm, both of which hardly absorb the solid laser light.

それ故、積層膜を十分に除去しきれず、仕上がりにおいて外観を明らかに乱すことがあった。   Therefore, the laminated film cannot be removed sufficiently, and the appearance may be clearly disturbed in the finish.

積層膜の除去を確実ならしめるべく、固体レーザの出力を大幅に高めることも考えられるものの、コストの騰貴を招くことから、決して好ましいとは言えない。   Although it is conceivable to significantly increase the output of the solid-state laser in order to ensure the removal of the laminated film, it is not preferable because it increases the cost.

特開2010−074071号公報JP 2010-074071 A

本発明は、薄膜太陽電池のLEDにおいて、積層膜を確実に除去して仕上がりを美麗にすることを主たる目的とする。   The main object of the present invention is to reliably remove the laminated film and make the finish beautiful in an LED of a thin film solar cell.

本発明では、透明性導電膜、アモルファスシリコン及び結晶シリコン(単結晶シリコン、多結晶シリコン、微結晶シリコンを包括する概念である)を含む発電層、裏面電極膜を積層した多重積層型の薄膜太陽電池に対し、その透明性導電膜、発電層、裏面電極膜を除去する加工を施すLEDにおいて、透明性導電膜が吸収する波長帯に属する第一のレーザ光を透明性導電膜に照射することで透明性導電膜を除去するとともに、発電層が吸収する波長帯に属し前記第一のレーザ光よりも波長の短い第二のレーザ光を発電層に照射することで発電層及び裏面電極膜を除去することとした。前記第二のレーザ光は、透明性導電膜、発電層及び裏面電極膜を除去すべき領域の巾である加工巾に適した投影寸法に成形した上で照射する一方、前記第一のレーザ光は、前記加工巾よりも投影形状を細径に絞った上、レーザ光軸を振り動かすことのできるガルバノスキャナを介して前記加工巾の領域を走査するように照射する。 In the present invention, a multi-layered thin-film solar in which a power generation layer including a transparent conductive film, amorphous silicon, and crystalline silicon (a concept encompassing single crystal silicon, polycrystalline silicon, and microcrystalline silicon) and a back electrode film are stacked. Irradiating a transparent conductive film with a first laser beam belonging to a wavelength band that is absorbed by the transparent conductive film in an LED that processes the battery to remove the transparent conductive film, the power generation layer, and the back electrode film The power generation layer and the back electrode film are removed by irradiating the power generation layer with a second laser light having a wavelength shorter than that of the first laser light belonging to the wavelength band absorbed by the power generation layer. It was decided to remove. The second laser beam is irradiated after being formed into a projection size suitable for a processing width which is a width of a region where the transparent conductive film, the power generation layer and the back electrode film are to be removed, while the first laser beam is irradiated. Irradiates the region of the processing width through a galvano scanner capable of swinging and moving the laser optical axis after narrowing the projection shape to be narrower than the processing width.

本発明に係るLEDを実施するためのレーザ加工装置は、透明性導電膜が吸収する波長帯に属し透明性導電膜を除去できる第一のレーザ光を出力するレーザ光源、及び発電層が吸収する波長帯に属し発電層を除去できる前記第一のレーザ光よりも波長の短い第二のレーザ光を出力するレーザ光源と、前記薄膜太陽電池を支持する支持体と、前記第一のレーザ光及び前記第二のレーザ光をそれぞれ導いて前記支持体に支持させた薄膜太陽電池に向けて照射させる光学系とを具備するものとする。   The laser processing apparatus for carrying out the LED according to the present invention includes a laser light source that outputs a first laser beam that belongs to a wavelength band that is absorbed by the transparent conductive film and that can remove the transparent conductive film, and a power generation layer absorbs the laser light source. A laser light source that outputs a second laser light having a shorter wavelength than the first laser light that belongs to the wavelength band and can remove the power generation layer, a support that supports the thin-film solar cell, the first laser light, and An optical system for guiding the second laser beam and irradiating the thin film solar cell supported by the support.

前記第一のレーザ光は、透明性導電膜の除去を重視した、980nm以上の波長のレーザ光とすることが望ましい。   The first laser beam is preferably a laser beam having a wavelength of 980 nm or more, with emphasis on the removal of the transparent conductive film.

前記第二のレーザ光は、発電層の除去を重視した、900nm以下の波長のレーザ光とすることが望ましい。このとき、前記第二のレーザ光として、結晶シリコンが吸収する波長帯に属するレーザ光を採用し、これを結晶シリコンに照射することで、アモルファスシリコン諸共発電層を除去するようにしてもよい。   The second laser beam is preferably a laser beam having a wavelength of 900 nm or less, with emphasis on removal of the power generation layer. At this time, a laser beam belonging to a wavelength band absorbed by crystalline silicon may be adopted as the second laser beam, and the amorphous silicon co-generation layer may be removed by irradiating the crystalline silicon with this.

前記薄膜太陽電池が、透明性基板に透明性導電膜、発電層、裏面電極膜をこの順に積層したものである場合には、前記第二のレーザ光を前記透明性基板側から当該透明性基板及び透明性導電膜を透過させて発電層に照射し、かつ前記第一のレーザ光を透明性基板側から当該透明性基板を透過させて透明性導電膜に照射することができる。   When the thin-film solar cell is formed by laminating a transparent conductive film, a power generation layer, and a back electrode film in this order on a transparent substrate, the second laser beam is transmitted from the transparent substrate side to the transparent substrate. And transmitting the transparent conductive film to irradiate the power generation layer, and transmitting the first laser light from the transparent substrate side through the transparent substrate to irradiate the transparent conductive film.

先に前記第二のレーザ光を発電層に照射して発電層及び裏面電極膜を除去し、その後に前記第一のレーザ光を発電層及び裏面電極膜を除去した箇所の透明性導電膜に照射して透明性導電膜を除去するようにすれば、発電層及び裏面電極膜、並びに透明性導電膜を十分に除去して残渣の少ない加工を実現することができる。   First, the power generation layer is irradiated with the second laser light to remove the power generation layer and the back electrode film, and then the first laser light is applied to the transparent conductive film where the power generation layer and the back electrode film are removed. If the transparent conductive film is removed by irradiation, the power generation layer, the back electrode film, and the transparent conductive film can be sufficiently removed to realize processing with little residue.

本発明によれば、薄膜太陽電池のLEDにおいて、積層膜を確実に除去して仕上がりを美麗にすることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, in LED of a thin film solar cell, it becomes possible to remove a laminated film reliably and to make a finish beautiful.

本発明の一実施形態のレーザ加工装置の概略構成を示す斜視図。The perspective view which shows schematic structure of the laser processing apparatus of one Embodiment of this invention. 同レーザ加工装置による加工の対象となる薄膜太陽電池を示す斜視図。The perspective view which shows the thin film solar cell used as the object of the process by the laser processing apparatus. 同レーザ加工装置による加工の対象となる薄膜太陽電池を示す側断面図。The sectional side view which shows the thin film solar cell used as the object of the process by the laser processing apparatus. 本発明の変形例の概略構成を示す斜視図。The perspective view which shows schematic structure of the modification of this invention. 本発明に関連した参考例の概略構成を示す斜視図。The perspective view which shows schematic structure of the reference example relevant to this invention.

本発明の一実施形態を、図面を参照して説明する。本実施形態のレーザ加工装置は、基板10に透明性導電膜7、発電層8、裏面電極膜9を積層した多重積層型の薄膜太陽電池に対して、その基板10の外周縁部に位置する、換言すれば基板10の四辺に臨む帯状の領域にある積層膜7、8、9を除去するLEDを実施するものである。   An embodiment of the present invention will be described with reference to the drawings. The laser processing apparatus of this embodiment is located at the outer peripheral edge of a substrate 10 with respect to a multi-layered thin film solar cell in which a transparent conductive film 7, a power generation layer 8, and a back electrode film 9 are stacked on a substrate 10. In other words, the LED for removing the laminated films 7, 8, 9 in the band-like region facing the four sides of the substrate 10 is implemented.

図3に、多重積層型薄膜太陽電池の構造を例示している。この薄膜太陽電池は、透明性基板10たるガラス基板10に、透明性導電膜たるTCO膜7、発電層8たるアモルファスシリコン(p型a−Si、真性a−Si、n型a−Si)81及び微結晶シリコン(p型μc−Si、真性μc−Si、n型μc−Si)82、並びに裏面電極膜たるメタル膜9をこの順に製膜、積層してなる。   FIG. 3 illustrates the structure of a multi-layered thin film solar cell. This thin-film solar cell includes a glass substrate 10 as a transparent substrate 10, a TCO film 7 as a transparent conductive film, and amorphous silicon (p-type a-Si, intrinsic a-Si, n-type a-Si) 81 as a power generation layer 8. And a microcrystalline silicon (p-type μc-Si, intrinsic μc-Si, n-type μc-Si) 82 and a metal film 9 as a back electrode film are formed and laminated in this order.

図1に示すように、本実施形態のレーザ加工装置は、第一のレーザ光を出力するレーザ光源1及び第二のレーザ光を出力するレーザ光源3と、薄膜太陽電池を支持する支持体5と、第一のレーザ光及び第二のレーザ光をそれぞれ導いて支持体5に支持させた薄膜太陽電池に向けて照射させる光学系2、4とを具備する。因みに、支持体5に支持させた基板10の搬送方向、または加工ノズル21、41の基板10に対する移動の方向を、図中白抜き矢印にて示している。   As shown in FIG. 1, the laser processing apparatus of this embodiment includes a laser light source 1 that outputs a first laser beam, a laser light source 3 that outputs a second laser beam, and a support 5 that supports a thin-film solar cell. And optical systems 2 and 4 for directing the first laser beam and the second laser beam to irradiate the thin film solar cell supported by the support 5. Incidentally, the conveyance direction of the substrate 10 supported by the support 5 or the movement direction of the processing nozzles 21 and 41 with respect to the substrate 10 is indicated by white arrows in the figure.

第一のレーザ光は、980nm以上の波長帯に属し、TCO膜7を除去できるものとする。その光源1としては、Nd:YAG(波長1064nm)、Nd:YVO4(波長1064nm)、Yb:Glass(波長1030ないし1100nm)、Yb:YAG(波長1030nm)等の固体レーザ(ディスクレーザやファイバレーザであることがある)を挙げることができる。これらの固体レーザ光源1は、市場に多く流通しており、また、TCO膜7のスクライブのために必要十分な程度の高出力を確保することが容易である。 The first laser light belongs to a wavelength band of 980 nm or more and can remove the TCO film 7. The light source 1 is a solid-state laser (disk laser or fiber laser) such as Nd: YAG (wavelength 1064 nm), Nd: YVO 4 (wavelength 1064 nm), Yb: Glass (wavelength 1030 to 1100 nm), Yb: YAG (wavelength 1030 nm). May be included). Many of these solid-state laser light sources 1 are distributed in the market, and it is easy to ensure a high output necessary and sufficient for scribing the TCO film 7.

翻って、第二のレーザ光は、第一のレーザ光よりも短い900nm以下の波長帯に属し、アモルファスシリコン81及び微結晶シリコン82を含むシリコン膜の発電層8を除去できるものとする。その光源3としては、各種の半導体レーザ(ダイオードレーザ)、または、上に述べた波長1000nm以上の固体レーザの第二高調波等を挙げることができる。本実施形態では、第二のレーザ光として、波長800nmの半導体レーザを採用している。因みに、第一のレーザ光となる固体レーザの励起光源を、第二のレーザ光の光源3としても用いることを妨げない。   In turn, the second laser light belongs to a wavelength band of 900 nm or less shorter than the first laser light, and the power generation layer 8 of the silicon film including the amorphous silicon 81 and the microcrystalline silicon 82 can be removed. Examples of the light source 3 include various semiconductor lasers (diode lasers) or the second harmonics of the above-described solid-state laser having a wavelength of 1000 nm or more. In the present embodiment, a semiconductor laser having a wavelength of 800 nm is employed as the second laser light. Incidentally, it does not prevent the excitation light source of the solid-state laser that becomes the first laser light from being used as the light source 3 of the second laser light.

光学系2、4は、レーザ光を加工対象となる基板10の薄膜7、8、9に向けて出射する加工ノズル21、41と、レーザ光源1、3が出力するレーザ光を加工ノズル21、41まで導く各種光学要素(光ファイバ、ミラー、レンズ等)22、42とを包含する。本実施形態では、第一のレーザ光を出射する加工ノズル21と第二のレーザ光を出射する加工ノズル42とを別体とし、さらに、第一のレーザ光の照射位置と第二のレーザ光の照射位置とを離間させている。   The optical systems 2 and 4 are provided with processing nozzles 21 and 41 for emitting laser light toward the thin films 7, 8 and 9 of the substrate 10 to be processed, and laser light output by the laser light sources 1 and 3, And various optical elements (optical fibers, mirrors, lenses, etc.) 22 and 42 leading to 41. In the present embodiment, the processing nozzle 21 that emits the first laser light and the processing nozzle 42 that emits the second laser light are separated, and the irradiation position of the first laser light and the second laser light are further separated. Is spaced apart from the irradiation position.

加工ノズル21は、投影形状を細径に絞ってパワー密度を上げた近赤外レーザ光を以てTCO膜7を除去する都合上、レーザ光軸を振り動かすことのできるガルバノスキャナを付設し、基板10の外周縁部のTCO膜7を帯状に除去できるようにしている。   The processing nozzle 21 is provided with a galvano scanner capable of swinging the laser optical axis for the purpose of removing the TCO film 7 with near-infrared laser light whose power density is increased by reducing the projection shape to a small diameter. The TCO film 7 at the outer peripheral edge can be removed in a strip shape.

加工ノズル41は、投影形状が細長い方形(1cm×150μm程度)状をなす半導体レーザ光を出射する。このレーザ光を、種々のレンズやミラー等の光学要素を用いて基板10の外周縁部の加工巾(発電層8のシリコン膜を除去する巾)に適した投影寸法に成形した上で、発電層8に照射する。加工ノズル41の側では、ガルバノスキャナは必要ではない。   The processing nozzle 41 emits a semiconductor laser beam whose projection shape is an elongated square (about 1 cm × 150 μm). The laser light is shaped into a projection size suitable for the processing width of the outer peripheral edge of the substrate 10 (width for removing the silicon film of the power generation layer 8) using optical elements such as various lenses and mirrors. Layer 8 is irradiated. On the processing nozzle 41 side, a galvano scanner is not necessary.

光学系22、42は、典型的には、レーザ光源1、3と加工ノズル21、41とを接続する光ファイバである。無論、レーザ光源1、3から加工ノズル21、41へと至る光路上にどのような光学要素を配するかは任意であり、一意には限定されない。   The optical systems 22 and 42 are typically optical fibers that connect the laser light sources 1 and 3 and the processing nozzles 21 and 41. Of course, what optical elements are arranged on the optical path from the laser light sources 1 and 3 to the processing nozzles 21 and 41 is arbitrary, and is not limited uniquely.

LED処理の際には、基板10を加工ノズル21、41に対して相対的に変位させる。そのために、例えば、支持体5として、基板10を平面的に(X−Y両方向に)移動させることのできるX−Yステージを採用する。但し、X−Yステージ以外の態様の可動機構を支持体5に実装してもよいし、支持体5を不動としてその替わりに加工ノズル21、41を支持体5に対して移動させるようにしても構わない。   During the LED processing, the substrate 10 is displaced relative to the processing nozzles 21 and 41. For this purpose, for example, an XY stage capable of moving the substrate 10 in a plane (in both X and Y directions) is adopted as the support 5. However, a movable mechanism other than the XY stage may be mounted on the support 5, or the support 5 is fixed and the machining nozzles 21 and 41 are moved relative to the support 5 instead. It doesn't matter.

図1に示しているように、各加工ノズル21、41はそれぞれ、積層膜7、8、9を製膜した面を上に向けた状態で支持させた基板10の下方から、上向きにレーザ光を発射する。但し、これとは逆に、積層膜7、8、9を製膜した面を下に向けた状態で基板10を支持し、かつ各加工ノズル21、41を基板10の上方に配設して、下向きにレーザ光を発射する態様をとることも考えられる。   As shown in FIG. 1, each processing nozzle 21, 41 has a laser beam upward from below the substrate 10 that is supported with the surface on which the laminated films 7, 8, 9 are formed facing upward. Fire. However, conversely, the substrate 10 is supported with the surface on which the laminated films 7, 8, 9 are formed facing down, and the processing nozzles 21, 41 are disposed above the substrate 10. It is also conceivable to take a mode in which laser light is emitted downward.

加工ノズル41から出射した第二のレーザ光は、ガラス基板10及びTCO膜7を透過して、発電層8に照射される。特に、本実施形態では、アモルファスシリコン81の上に微結晶シリコン82を積層した多重積層型太陽電池を加工対象としており、この第二のレーザ光の焦点を、微結晶シリコン82の層に近づけるようにしている。微結晶シリコン82の吸収帯は500nmから900nm、アモルファスシリコン81の吸収帯は300nmから700nmであり、第二のレーザ光の波長はアモルファスシリコン81の吸収帯にはない。しかしながら、第二のレーザ光を微結晶シリコン82に吸収させることで、熱現象により、アモルファスシリコン81、微結晶シリコン82及びメタル膜9を諸共に吹き飛ばして除去することが可能である。   The second laser light emitted from the processing nozzle 41 passes through the glass substrate 10 and the TCO film 7 and is applied to the power generation layer 8. In particular, in the present embodiment, a multi-layered solar cell in which microcrystalline silicon 82 is stacked on amorphous silicon 81 is a processing target, and the focal point of the second laser light is brought close to the layer of microcrystalline silicon 82. I have to. The absorption band of microcrystalline silicon 82 is 500 nm to 900 nm, the absorption band of amorphous silicon 81 is 300 nm to 700 nm, and the wavelength of the second laser beam is not in the absorption band of amorphous silicon 81. However, by absorbing the second laser light into the microcrystalline silicon 82, the amorphous silicon 81, the microcrystalline silicon 82, and the metal film 9 can be blown off and removed by a thermal phenomenon.

本実施形態によれば、透明性導電膜7が吸収する波長帯に属し透明性導電膜7を除去できる第一のレーザ光を出力するレーザ光源1、及び発電層8が吸収する波長帯に属し発電層8を除去できる前記第一のレーザ光よりも波長の短い第二のレーザ光を出力するレーザ光源2と、前記薄膜太陽電池を支持する支持体5と、前記第一のレーザ光及び前記第二のレーザ光をそれぞれ導いて前記支持体5に支持させた薄膜太陽電池に向けて照射させる光学系2、4とを具備するレーザ加工装置を構成し、発電層8に第二のレーザ光を照射してこれを除去し、透明性導電膜7に第一のレーザ光を照射してこれを除去することとしたため、積層膜7、8、9に固体レーザ光を照射する従来の手法と比較して積層膜7、8、9を十分に除去でき、仕上がりが美麗となる。さらには、従来の手法と比較してタクトアップを実現することが可能であり、消費電力の削減にも奏効する。   According to the present embodiment, the laser light source 1 that outputs the first laser light that belongs to the wavelength band that the transparent conductive film 7 absorbs and can remove the transparent conductive film 7, and the wavelength band that the power generation layer 8 absorbs. A laser light source 2 that outputs a second laser beam having a shorter wavelength than the first laser beam capable of removing the power generation layer 8, a support 5 that supports the thin-film solar cell, the first laser beam, and the A laser processing apparatus including optical systems 2 and 4 for guiding the second laser light and irradiating the thin film solar cell supported by the support 5 is configured, and the second laser light is applied to the power generation layer 8. This is removed by irradiating the transparent conductive film 7 with the first laser beam, so that the layered film 7, 8, 9 is irradiated with the solid laser beam. Compared to the laminated film 7, 8, 9 can be removed sufficiently, the finish is The Li. Furthermore, tact-up can be realized as compared with the conventional method, and it is effective in reducing power consumption.

前記第一のレーザ光が980nm以上の波長のレーザ光であることから、高出力化が容易であり、透明性導電膜7を効果的に除去することができる。また、このような第一のレーザ光は、発電層8に悪影響を及ぼしにくい。   Since the first laser beam is a laser beam having a wavelength of 980 nm or more, it is easy to increase the output, and the transparent conductive film 7 can be effectively removed. Further, such first laser light is unlikely to adversely affect the power generation layer 8.

前記第二のレーザ光が900nm以下の波長のレーザ光であることから、発電層8及び裏面電極膜9を効果的に除去することができる。   Since the second laser beam is a laser beam having a wavelength of 900 nm or less, the power generation layer 8 and the back electrode film 9 can be effectively removed.

前記第二のレーザ光が、結晶シリコン82が吸収する波長帯に属するレーザ光であることから、アモルファスシリコン81がよく吸収する波長帯のレーザ(グリーンレーザ等)を用いる場合よりもコスト面で有利となる。   Since the second laser beam is a laser beam belonging to a wavelength band that is absorbed by the crystalline silicon 82, it is more advantageous in terms of cost than using a laser (such as a green laser) having a wavelength band that is absorbed well by the amorphous silicon 81. It becomes.

前記薄膜太陽電池が、透明性基板10に透明性導電膜7、発電層8、裏面電極膜9をこの順に積層したものであり、前記光学系2、4が、前記第二のレーザ光を前記透明性基板10側から当該透明性基板10及び透明性導電膜7を透過させて発電層8に照射し、かつ前記第一のレーザ光を透明性基板10側から当該透明性基板10を透過させて透明性導電膜7に照射するものであるため、基板10上の残渣や再付着物を減少させることができる。   The thin-film solar cell is formed by laminating a transparent conductive film 7, a power generation layer 8, and a back electrode film 9 in this order on a transparent substrate 10, and the optical systems 2 and 4 transmit the second laser beam to the second laser beam. The transparent substrate 10 and the transparent conductive film 7 are transmitted from the transparent substrate 10 side to irradiate the power generation layer 8, and the first laser light is transmitted from the transparent substrate 10 side through the transparent substrate 10. Since the transparent conductive film 7 is irradiated, residues and redeposits on the substrate 10 can be reduced.

前記光学系2、4が、先に前記第二のレーザ光を発電層8に照射して発電層8及び裏面電極膜9を除去し、その後に前記第一のレーザ光を発電層8及び裏面電極膜9を除去した箇所の透明性導電膜7に照射して透明性導電膜7を除去するものであるため、発電層8を除去して露出させた透明性導電膜7のみに第一のレーザ光を照射して、これを余さず確実に除くことが可能となっている。   The optical systems 2 and 4 first irradiate the power generation layer 8 with the second laser light to remove the power generation layer 8 and the back electrode film 9, and then apply the first laser light to the power generation layer 8 and the back surface. Since the transparent conductive film 7 is removed by irradiating the transparent conductive film 7 where the electrode film 9 has been removed, only the first transparent conductive film 7 exposed by removing the power generation layer 8 is exposed. It is possible to remove the laser beam without fail without irradiating it with laser light.

なお、本発明は以上に詳述した実施形態に限られるものではない。上記実施形態では、第一のレーザ光と第二のレーザ光とを別々の加工ノズル21、41から出射するとともに、基板10上の別々の照射位置に照射していた。即ち、第一のレーザ光を、基板10における、既に第二のレーザ光の照射を受けて発電層8及びメタル膜9が除去された領域に照射していた。これに対し、図4に示すように、第一のレーザ光の基板10に対する照射位置と、第二のレーザ光の基板10に対する照射位置とを重ね合わせてもよい。   The present invention is not limited to the embodiment described in detail above. In the above-described embodiment, the first laser light and the second laser light are emitted from the separate processing nozzles 21 and 41 and are irradiated to different irradiation positions on the substrate 10. In other words, the first laser beam is irradiated on the region of the substrate 10 where the power generation layer 8 and the metal film 9 have already been removed by the irradiation of the second laser beam. On the other hand, as shown in FIG. 4, the irradiation position of the first laser beam on the substrate 10 and the irradiation position of the second laser beam on the substrate 10 may be overlapped.

あるいは、図5に示すように、第一のレーザ光を導く光学系6と、第二のレーザ光を導く光学系とを一部共通化することも考えられる。即ち、加工ノズル61を単一とし、レーザ光源1、2から当該加工ノズル61までの光路上で(加工ノズル61に接続している同一の光ファイバ62に入射させる等して)第一のレーザ光と第二のレーザ光とを重畳してもよい。これにより、第一のレーザ光の基板10に対する照射位置と、第二のレーザ光の基板10に対する照射位置とが必然的に重なり合う。加工ノズル61には、やはりガルバノスキャナを付設し、重畳したレーザ光が基板10上の積層膜7、8、9を除去すべき帯状の領域を走査できるようにする。   Alternatively, as shown in FIG. 5, it may be possible to partially share the optical system 6 that guides the first laser beam and the optical system that guides the second laser beam. That is, a single processing nozzle 61 is used, and the first laser is incident on the optical path from the laser light sources 1 and 2 to the processing nozzle 61 (by entering the same optical fiber 62 connected to the processing nozzle 61). The light and the second laser light may be superimposed. Thereby, the irradiation position of the first laser beam on the substrate 10 and the irradiation position of the second laser beam on the substrate 10 inevitably overlap each other. The processing nozzle 61 is also provided with a galvano scanner so that the overlapped laser light can scan a band-like region where the laminated films 7, 8, and 9 on the substrate 10 are to be removed.

その他各部の具体的構成は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   Other specific configurations of each part can be variously modified without departing from the spirit of the present invention.

本発明は、太陽電池パネルの製造工程における、薄膜のレーザスクライブまたはアブレーションを実施する加工装置として利用することができる。   The present invention can be used as a processing apparatus for performing laser scribing or ablation of a thin film in a manufacturing process of a solar cell panel.

1…第一のレーザ光源
2、4、6…光学系
3…第二のレーザ光源
5…支持体
7…透明導電膜
8…発電層
9…裏面電極膜
10…基板
DESCRIPTION OF SYMBOLS 1 ... First laser light source 2, 4, 6 ... Optical system 3 ... Second laser light source 5 ... Support 7 ... Transparent conductive film 8 ... Power generation layer 9 ... Back electrode film 10 ... Substrate

Claims (7)

透明性導電膜、アモルファスシリコン及び結晶シリコンを含む発電層、裏面電極膜を積層した多重積層型の薄膜太陽電池に対し、その透明性導電膜、発電層、裏面電極膜を除去する加工を施すためのレーザ加工装置であって、
透明性導電膜が吸収する波長帯に属し透明性導電膜を除去できる第一のレーザ光を出力するレーザ光源、及び発電層が吸収する波長帯に属し発電層を除去できる前記第一のレーザ光よりも波長の短い第二のレーザ光を出力するレーザ光源と、
前記薄膜太陽電池を支持する支持体と、
前記第一のレーザ光及び前記第二のレーザ光をそれぞれ導いて前記支持体に支持させた薄膜太陽電池に向けて照射させる光学系とを具備し、
前記第二のレーザ光は、透明性導電膜、発電層及び裏面電極膜を除去すべき領域の巾である加工巾に適した投影寸法に成形した上で照射する一方、
前記第一のレーザ光は、前記加工巾よりも投影形状を細径に絞った上、レーザ光軸を振り動かすことのできるガルバノスキャナを介して前記加工巾の領域を走査するように照射するレーザ加工装置。
To remove the transparent conductive film, power generation layer, and back electrode film from a multi-layered thin film solar cell in which a transparent conductive film, a power generation layer containing amorphous silicon and crystalline silicon, and a back electrode film are stacked The laser processing apparatus of
A laser light source that outputs a first laser beam that belongs to a wavelength band that is absorbed by the transparent conductive film and that can remove the transparent conductive film, and a first laser beam that belongs to the wavelength band that is absorbed by the power generation layer and can remove the power generation layer A laser light source that outputs a second laser beam having a shorter wavelength than
A support for supporting the thin film solar cell;
An optical system for directing the first laser beam and the second laser beam to irradiate the thin film solar cell supported by the support , and
While the second laser beam is irradiated after being formed into a projection size suitable for a processing width which is a width of a region where the transparent conductive film, the power generation layer and the back electrode film should be removed,
The first laser beam is irradiated so as to scan the region of the processing width through a galvano scanner capable of swinging and moving the laser optical axis after narrowing the projection shape to be narrower than the processing width. Processing equipment.
前記第一のレーザ光は、980nm以上の波長のレーザ光である請求項1記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the first laser beam is a laser beam having a wavelength of 980 nm or more. 前記第二のレーザ光は、900nm以下の波長のレーザ光である請求項1または2記載のレーザ加工装置。 The laser processing apparatus according to claim 1, wherein the second laser light is a laser light having a wavelength of 900 nm or less. 前記第二のレーザ光は、結晶シリコンが吸収する波長帯に属するレーザ光である請求項3記載のレーザ加工装置。 The laser processing apparatus according to claim 3, wherein the second laser beam is a laser beam belonging to a wavelength band absorbed by crystalline silicon. 前記薄膜太陽電池は、透明性基板に透明性導電膜、発電層、裏面電極膜をこの順に積層したものであり、
前記光学系は、前記第二のレーザ光を前記透明性基板側から当該透明性基板及び透明性導電膜を透過させて発電層に照射し、かつ前記第一のレーザ光を透明性基板側から当該透明性基板を透過させて透明性導電膜に照射する請求項1、2、3または4記載のレーザ加工装置。
The thin film solar cell is obtained by laminating a transparent conductive film, a power generation layer, and a back electrode film in this order on a transparent substrate,
The optical system transmits the second laser light from the transparent substrate side through the transparent substrate and the transparent conductive film and irradiates the power generation layer, and the first laser light from the transparent substrate side. The laser processing apparatus according to claim 1, wherein the transparent conductive film is irradiated through the transparent substrate.
前記光学系は、先に前記第二のレーザ光を発電層に照射して発電層及び裏面電極膜を除去し、その後に前記第一のレーザ光を発電層及び裏面電極膜を除去した箇所の透明性導電膜に照射して透明性導電膜を除去する請求項1、2、3、4または5記載のレーザ加工装置。 The optical system first irradiates the power generation layer with the second laser light to remove the power generation layer and the back electrode film, and then removes the power generation layer and the back electrode film from the first laser light. The laser processing apparatus according to claim 1, wherein the transparent conductive film is removed by irradiating the transparent conductive film. 透明性導電膜、アモルファスシリコン及び結晶シリコンを含む発電層、裏面電極膜を積層した多重積層型の薄膜太陽電池に対し、その透明性導電膜、発電層、裏面電極膜を除去する加工を施すレーザ加工方法であって、
透明性導電膜が吸収する波長帯に属する第一のレーザ光を透明性導電膜に照射することで透明性導電膜を除去するとともに、
発電層が吸収する波長帯に属し前記第一のレーザ光よりも波長の短い第二のレーザ光を発電層に照射することで発電層及び裏面電極膜を除去するものであり、
前記第二のレーザ光は、透明性導電膜、発電層及び裏面電極膜を除去すべき領域の巾である加工巾に適した投影寸法に成形した上で照射する一方、
前記第一のレーザ光は、前記加工巾よりも投影形状を細径に絞った上、レーザ光軸を振り動かすことのできるガルバノスキャナを介して前記加工巾の領域を走査するように照射することを特徴とするレーザ加工方法。
A laser that performs processing to remove a transparent conductive film, a power generation layer, and a back electrode film on a multi-layer thin film solar cell in which a transparent conductive film, a power generation layer containing amorphous silicon and crystalline silicon, and a back electrode film are stacked A processing method,
While removing the transparent conductive film by irradiating the transparent conductive film with the first laser beam belonging to the wavelength band absorbed by the transparent conductive film,
The power generation layer and the back electrode film are removed by irradiating the power generation layer with a second laser light having a wavelength shorter than that of the first laser light belonging to the wavelength band absorbed by the power generation layer,
While the second laser beam is irradiated after being formed into a projection size suitable for a processing width which is a width of a region where the transparent conductive film, the power generation layer and the back electrode film should be removed,
The first laser beam is irradiated so as to scan the region of the processing width through a galvano scanner capable of swinging the laser optical axis after narrowing the projection shape to be narrower than the processing width. A laser processing method characterized by the above.
JP2010181874A 2010-08-16 2010-08-16 Laser processing apparatus and laser processing method Active JP5610912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010181874A JP5610912B2 (en) 2010-08-16 2010-08-16 Laser processing apparatus and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010181874A JP5610912B2 (en) 2010-08-16 2010-08-16 Laser processing apparatus and laser processing method

Publications (2)

Publication Number Publication Date
JP2012043865A JP2012043865A (en) 2012-03-01
JP5610912B2 true JP5610912B2 (en) 2014-10-22

Family

ID=45899866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010181874A Active JP5610912B2 (en) 2010-08-16 2010-08-16 Laser processing apparatus and laser processing method

Country Status (1)

Country Link
JP (1) JP5610912B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106346146B (en) * 2016-11-04 2018-01-19 中国航空工业集团公司北京航空材料研究院 A kind of high-energy short-pulse laser processing for removing Ceramic Coating on Metal Surface

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5039577B2 (en) * 2008-01-15 2012-10-03 三菱重工業株式会社 Solar cell module
JP2010172959A (en) * 2009-02-02 2010-08-12 Sharp Corp Film removing apparatus and method of manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2012043865A (en) 2012-03-01

Similar Documents

Publication Publication Date Title
JP6250540B2 (en) Thin film structures and devices with integrated light and heat shielding layers for laser patterning
US8692153B2 (en) Method for manufacturing photoelectric-conversion-device, device for photoelectric-conversion-device manufacturing device, and photoelectric conversion device
JP2011056514A (en) Method of manufacturing photoelectric conversion element
US8822255B2 (en) Method of manufacturing a solar cell module and apparatus of manufacturing a solar cell module
JP4648105B2 (en) Solar cell module and method for manufacturing solar cell module
KR20100015811A (en) Method and apparatus for the laser scribing of ultra lightweight semiconductor devices
US20120164782A1 (en) Method and device for producing a photovoltaic thin-film module
JP2015506586A (en) Method and structure for using discontinuous laser scribe lines
JP2009177186A (en) Production method of photovoltaic module
EP2614525A2 (en) Chalcopyrite-type semiconductor photovoltaic device
CN102689092A (en) Solar wafer precision machining method and device using double laser beams
US20120015471A1 (en) Multiple-path laser edge delete process for thin-film solar modules
JP2010105012A (en) Laser beam machining apparatus
KR102550177B1 (en) Method of window opening for 3d transparent solar cell
JP2014120643A (en) Method and apparatus for manufacturing semiconductor device
JP5521055B2 (en) Thin-film solar cell module manufacturing equipment
JP2011088799A (en) Method of manufacturing semiconductor device and laser machining device
CN215658436U (en) Solar cell film edge cleaning light path system
JP5610912B2 (en) Laser processing apparatus and laser processing method
JP2010087041A (en) Method of removing thin film by laser beam, and method of manufacturing thin-film solar cell panel
KR20120012001A (en) Device and method for machining multi-layer substrate using laser beams having plural wavelength
JP5611455B2 (en) Laser processing apparatus and method
CN209886907U (en) Battery laser edge-etching system
JP2009239281A (en) Method for patterning front-side electrode layer made of zinc oxide of photovoltaic module
KR101128909B1 (en) Device and method for machining multi-layer substrate using laser beams having plural wavelength

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140902

R150 Certificate of patent or registration of utility model

Ref document number: 5610912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250