JP5610460B2 - Nanoparticle dispersible in water and method for producing nanoparticle dispersion - Google Patents

Nanoparticle dispersible in water and method for producing nanoparticle dispersion Download PDF

Info

Publication number
JP5610460B2
JP5610460B2 JP2009184487A JP2009184487A JP5610460B2 JP 5610460 B2 JP5610460 B2 JP 5610460B2 JP 2009184487 A JP2009184487 A JP 2009184487A JP 2009184487 A JP2009184487 A JP 2009184487A JP 5610460 B2 JP5610460 B2 JP 5610460B2
Authority
JP
Japan
Prior art keywords
nanoparticles
water
formula
nanoparticle
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009184487A
Other languages
Japanese (ja)
Other versions
JP2011036760A (en
Inventor
将 青柳
将 青柳
浅川 真澄
真澄 浅川
湯田坂 雅子
雅子 湯田坂
清水 敏美
敏美 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009184487A priority Critical patent/JP5610460B2/en
Publication of JP2011036760A publication Critical patent/JP2011036760A/en
Application granted granted Critical
Publication of JP5610460B2 publication Critical patent/JP5610460B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、水分散可能なナノ粒子、その水性分散液、及びその製造方法に関する。   The present invention relates to water-dispersible nanoparticles, an aqueous dispersion thereof, and a production method thereof.

ナノサイズの炭素材料、金属、金属酸化物、金属硫化物などは、その微細な内部構造に基づく、サイズ特異的な蛍光などの特殊な機能の発現が知られている。また、光の波長より小さな粒径を持つ粒子を分散したものは透明になる。このような特徴を有するナノ粒子の水分散液は、インク、化粧品、医療分野をはじめ幅広い分野での応用が期待されている。   Nano-sized carbon materials, metals, metal oxides, metal sulfides, and the like are known to exhibit special functions such as size-specific fluorescence based on their fine internal structure. In addition, a dispersion in which particles having a particle size smaller than the wavelength of light are dispersed becomes transparent. An aqueous dispersion of nanoparticles having such characteristics is expected to be applied in a wide range of fields including ink, cosmetics, and medical fields.

ナノ粒子の水分散液の調製法は、安定剤、分散剤共存下で原料物質溶液から化学反応によりナノ粒子を発生させる方法が良く知られている。また、事前に調製したナノ粒子を何らかの手法で水分散させる方法もある。
特に後者の手法でナノ粒子の水分散液を作成ためには、通常は高度に凝集して二次粒子となっているナノ粒子を、ビーズミル、超音波ホモジナイザー、アルティマイザーなどの機器を用いて解砕し、その後、ナノ粒子表面を改質して水への親和性を向上させるという二つの技術要素が必要である。
As a method for preparing an aqueous dispersion of nanoparticles, a method of generating nanoparticles by a chemical reaction from a raw material solution in the presence of a stabilizer and a dispersant is well known. There is also a method in which nanoparticles prepared in advance are dispersed in water by some technique.
In particular, in order to create an aqueous dispersion of nanoparticles using the latter method, nanoparticles that are usually highly agglomerated and formed into secondary particles are dissolved using a device such as a bead mill, an ultrasonic homogenizer, or an optimizer. Two technical elements are needed: crushing and then modifying the nanoparticle surface to improve its affinity for water.

このナノ粒子表面の改質については、粒子の化学組成によっていくつかの手法がある。
たとえば、カーボンナノチューブやカーボンナノホーンをはじめとする元来疎水性である炭素材料ナノ粒子については、化学反応により、その表面に親水性官能基であるカルボキシル基などを直接発現させる方法がある(特許文献1)。また、界面活性剤を水分散コーティング剤としてコーティングすることによって水分散させることも可能である(特許文献2)。
一方、シリカ、酸化チタンなどの金属を組成に含む無機ナノ粒子の場合、金属と結合可能な官能基と親水性の両方を有する分散剤を用いる方法や(特許文献3)、はじめにナノ粒子表面を疎水処理した後に、高分子の非イオン性界面活性剤でコーティングする方法がある(特許文献4)。
There are several methods for modifying the nanoparticle surface depending on the chemical composition of the particles.
For example, for carbon material nanoparticles that are inherently hydrophobic, such as carbon nanotubes and carbon nanohorns, there is a method in which a carboxyl group, which is a hydrophilic functional group, is directly expressed on the surface by a chemical reaction (Patent Literature). 1). Moreover, it is also possible to carry out water dispersion by coating surfactant as a water dispersion coating agent (patent document 2).
On the other hand, in the case of inorganic nanoparticles containing a metal such as silica or titanium oxide, a method using a dispersant having both a functional group capable of binding to a metal and a hydrophilic property (Patent Document 3), There is a method of coating with a polymeric nonionic surfactant after hydrophobic treatment (Patent Document 4).

特開2003−95624号公報JP 2003-95624 A 特開2008−230935号公報JP 2008-230935 A 特開2007−25445号公報JP 2007-25445 A 特開平7−247119号公報JP-A-7-247119

しかしながら、高分子の非イオン性界面活性剤を、水分散コーティング剤として用いる場合、前処理としてナノ粒子表面に低分子を用いて有機溶媒中で疎水処理を行なうなど、多数かつ煩雑な工程を必要とする。
一方、低分子量の水分散コーティング剤を用いて作成したナノ粒子分散液は、乾燥すると、ナノ粒子が凝集、溶着を起こす。凝集、溶着したナノ粒子は水への再分散が困難であるか、あるいは当初の分散状態と異なった状態になることがある。
ナノ粒子の輸送、保管を考えると、乾燥固体の方が重量、容量の点で有利であるが、以上の背景から、水分散コーティング剤を用いて作成したナノ粒子は乾燥させず、分散液の状態で取り扱う必要があった。
また、現存の水分散コーティング剤は、粒子表面に対して個別に設計され、さらにそのコーティング法もコアとなる粒子ごとに異なり、汎用性が高くないという問題もある。
However, when polymer nonionic surfactants are used as water-dispersed coating agents, a number of complicated steps are required, such as hydrophobic treatment in an organic solvent using low molecules on the nanoparticle surface as a pretreatment. And
On the other hand, when a nanoparticle dispersion prepared using a low molecular weight water-dispersed coating agent is dried, the nanoparticles aggregate and weld. Agglomerated and welded nanoparticles may be difficult to redisperse in water or may be in a different state from the original dispersed state.
Considering the transportation and storage of nanoparticles, dry solids are more advantageous in terms of weight and volume, but from the above background, nanoparticles made using water-dispersed coating agents are not dried and It was necessary to handle in a state.
In addition, existing water-dispersed coating agents are individually designed with respect to the particle surface, and the coating method differs depending on the core particles, and there is a problem that versatility is not high.

本発明は、このような事情を鑑みてなされたものであって、水分散液から乾燥しても、凝集、溶着を起こさず、水に再分散が可能で、水分散性の良好な微粒子を得ることを目的とするものである。また、本発明の別の目的は、種々のコア粒子をもつ水分散性ナノ粒子を、安価、かつ汎用性の高い低分子コーティング剤を用いて、簡便に製造することにある。   The present invention has been made in view of such circumstances, and fine particles having good water dispersibility can be obtained by redispersing in water without causing aggregation and welding even when dried from an aqueous dispersion. It is intended to obtain. Another object of the present invention is to easily produce water-dispersible nanoparticles having various core particles using a low-molecular coating agent that is inexpensive and highly versatile.

ナノ粒子の分散液を乾燥するとナノ粒子同士の凝集、溶着を起こすのは、この低分子量の水分散コーティング剤が、室温付近で液晶もしくは溶解状態であるものが多く、例えば、ドデシル硫酸ナトリウムは室温では水に溶解状態であり、そのために、乾燥の際に容易に分散剤同士の融合が起きるためであると考えられる。
水分散コーティング剤として用いる低分子両親媒性化合物は、親水基A、疎水基Bの両方を分子内に持ち、一般式A−Bで表される化合物であるが、本発明者等がこの問題を解決すべく検討した結果、乾燥による凝集、溶着を抑制するためには、該両親媒性化合物として、コーティング状態で溶解せず、ゲル−液晶相転移温度が室温より高く、水の沸点より低いものを用い、凝集したナノ粒子に、該両親媒性化合物及び水を加えた後、その相転移温度以上に加熱しながら解砕・混合することにより、ナノ粒子表面に安定な結晶性の両親媒性化合物からなる皮膜を形成することができることを見いだした。
When the nanoparticle dispersion is dried, the nanoparticles are agglomerated and welded with each other. This low molecular weight water-dispersed coating agent is often in a liquid crystal or dissolved state near room temperature.For example, sodium dodecyl sulfate is used at room temperature. In this case, it is considered that it is in a dissolved state in water, and therefore, the fusion of the dispersants easily occurs during drying.
The low molecular weight amphiphilic compound used as the water-dispersible coating agent is a compound having both a hydrophilic group A and a hydrophobic group B in the molecule and represented by the general formula AB. As a result of studying to solve the problem, in order to suppress aggregation and welding due to drying, the amphiphilic compound does not dissolve in the coating state, and the gel-liquid crystal phase transition temperature is higher than room temperature and lower than the boiling point of water. After adding the amphiphilic compound and water to the agglomerated nanoparticles, and crushing and mixing while heating above the phase transition temperature, the crystalline amphiphile stable on the nanoparticle surface It has been found that a film made of a functional compound can be formed.

さらに、本発明者らが検討したところ、このような特徴を持つ水分散コーティング剤の分子構造として、Aの親水部は、単糖や複糖もしくは、オリゴペプチド、PEOなどで、好ましくは単糖もしくはアミノ酸3個以下のペプチドで、より好ましくは単糖ではグルコース、アミノ酸はグリシンであり、また、Bの疎水部については飽和、不飽和のアルキルまたは芳香族やその他の元素を含んでも良いが、好ましくは炭素鎖が10から24の飽和もしくは不飽和の脂肪族であることが判明した。   Furthermore, as a molecular structure of the water-dispersed coating agent having such characteristics, the present inventors have studied that the hydrophilic part of A is a monosaccharide, a disaccharide, an oligopeptide, PEO or the like, preferably a monosaccharide. Alternatively, it is a peptide of 3 amino acids or less, more preferably glucose for monosaccharides, and glycine for amino acids, and the hydrophobic part of B may contain saturated or unsaturated alkyl or aromatic or other elements, Preferably, the carbon chain has been found to be 10 to 24 saturated or unsaturated aliphatic.

本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]ナノ粒子の表面が、ゲル−液晶相転移温度が室温より高く、かつ水の沸点より低い両親媒性化合物からなる結晶性物質で被覆されてなる易分散性ナノ粒子であって、前記両親媒性化合物が、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、R は炭素数が10〜24の不飽和炭化水素基を表す。)
で表わされるN−グリコシド型糖脂質、
下記一般式(2)
CO(NH−CHR −CO) OH (2)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、又は
下記一般式(3)
H(NH−CHR −CO) NHR (3)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、
のいずれかであることを特徴とする易分散性ナノ粒子
]上記[1]易分散性ナノ粒子が、水中に分散されてなるナノ粒子水分散液。
]ナノ粒子を、その表面を被覆することにより水中に分散させるための分散剤であって、
ゲル−液晶相転移温度が室温より高く、かつ水の沸点より低い両親媒性化合物からなる結晶性物質を有効成分とし、前記両親媒性化合物が、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、R は炭素数が10〜24の不飽和炭化水素基を表す。)
で表わされるN−グリコシド型糖脂質、
下記一般式(2)
CO(NH−CHR −CO) OH (2)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表されるペプチド脂質、又は
下記一般式(3)
H(NH−CHR −CO) NHR (3)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、
のいずれかであることを特徴とするナノ粒子用分散剤。
]ナノ粒子に、上記[ナノ粒子用分散剤及び水を加えた後、前記相転移温度以上に加熱しながら攪拌混合することを特徴とするナノ粒子の分散液の製造方法。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] The easily dispersible nanoparticles in which the surface of the nanoparticles is coated with a crystalline substance composed of an amphiphilic compound having a gel-liquid crystal phase transition temperature higher than room temperature and lower than the boiling point of water , Amphiphilic compounds
The following general formula (1)
G-NHCO-R 1 (1)
(In the formula, G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 24 carbon atoms.)
N-glycoside type glycolipid represented by
The following general formula (2)
R 2 CO (NH-CHR 3 -CO) m OH (2)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by:
The following general formula (3)
H (NH—CHR 3 —CO) m NHR 2 (3)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by
An easily dispersible nanoparticle characterized by being one of the following .
[ 2 ] A nanoparticle aqueous dispersion in which the easily dispersible nanoparticles of [1] are dispersed in water.
[ 3 ] A dispersant for dispersing nanoparticles in water by coating the surface thereof ,
A crystalline substance composed of an amphiphilic compound having a gel-liquid crystal phase transition temperature higher than room temperature and lower than the boiling point of water is an active ingredient, and the amphiphilic compound is:
The following general formula (1)
G-NHCO-R 1 (1)
(In the formula, G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 24 carbon atoms.)
N-glycoside type glycolipid represented by
The following general formula (2)
R 2 CO (NH-CHR 3 -CO) m OH (2)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by:
The following general formula (3)
H (NH—CHR 3 —CO) m NHR 2 (3)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by
Dispersants for nanoparticles characterized by either der Rukoto of.
[ 4 ] A method for producing a dispersion of nanoparticles, comprising adding the nanoparticle dispersant for water of [ 3 ] and water to the nanoparticles, followed by stirring and mixing while heating at or above the phase transition temperature.

本発明の易分散性ナノ粒子は、コアとして炭素材料としてカーボンナノホーン、金属を組成に含む材料として酸化亜鉛(ZnO)、マグネタイト(Fe)、二酸化チタンと広範で汎用性が高い。また、カーボンナノホーンについては20g/Lと極めて高濃度でカーボンナノホーンを分散することができる。動的光散乱測定では、いずれのナノ粒子の場合も、本発明の操作前と操作後では粒径が減少しており、二次粒子の解砕と、コーティングによる水分散性の向上が一つの工程で、かつ短時間で達成される。これまでのコーティングよるナノ粒子水分散液の作成は途中に有機溶媒の使用を含む多段階の操作が必要なものも多かったのに対して、本発明によれば、1工程で、かつ使用する媒体が水のみであるためコスト的にも有利である。また、本発明により作成された易分散性ナノ粒子は、乾燥して、再分散できるため、保存、輸送時には省スペース、軽量化が可能となり、大きなアドバンテージが期待できる。 The easily dispersible nanoparticles of the present invention have a wide range and high versatility such as carbon nanohorn as a carbon material as a core, zinc oxide (ZnO), magnetite (Fe 3 O 4 ), and titanium dioxide as materials containing a metal in the composition. Further, carbon nanohorns can be dispersed at an extremely high concentration of 20 g / L. In the dynamic light scattering measurement, in any nanoparticle, the particle size is reduced before and after the operation of the present invention, and the secondary particle crushing and the improvement of water dispersibility by coating are one of the reasons. It is achieved in a short time in the process. The preparation of aqueous nanoparticle dispersions by conventional coatings often requires multi-step operations including the use of organic solvents, but according to the present invention, it is used in one step. Since the medium is only water, it is advantageous in terms of cost. In addition, since the easily dispersible nanoparticles prepared according to the present invention can be dried and redispersed, it is possible to save space and weight during storage and transportation, and a great advantage can be expected.

本発明の概念図Conceptual diagram of the present invention 実施例3で得られたナノ粒子の水分散液の光学顕微鏡像(左側:明視野、右側:蛍光)Optical microscopic image of aqueous dispersion of nanoparticles obtained in Example 3 (left side: bright field, right side: fluorescence) 実施例3で得られたナノ粒子水分散液を凍結乾燥した試料の透過型電子顕微鏡像Transmission electron microscope image of a sample obtained by freeze-drying the nanoparticle aqueous dispersion obtained in Example 3 実施例4で得られたナノ粒子水分散液を凍結乾燥した試料の走査型電子顕微鏡像Scanning electron microscope image of a sample obtained by freeze-drying the aqueous nanoparticle dispersion obtained in Example 4 実施例5で得られたナノ粒子水分散液を凍結乾燥した試料の走査型電子顕微鏡像Scanning electron microscope image of a sample obtained by freeze-drying the aqueous nanoparticle dispersion obtained in Example 5

図1は、本発明を説明するための概念図である。
図に示すように、本発明のナノ粒子は、結晶性両親媒性化合物で被覆されて、水分散可能とされていることを特徴とする。
本発明において、水分散コーティング剤として用いる両親媒性化合物は、親水基Aと疎水基Bの両方を分子内に持ち、一般式A−Bで表される化合物である。分散液から乾燥したナノ粒子が凝集、溶着を起こすのは、この化合物が、媒体中、室温で液晶もしくは溶解状態だからである。本発明においては、乾燥による凝集、溶着を抑制するため、該両親媒性化合物として、コーティング状態で溶解せず、ゲル−液晶相転移温度が室温より高く、かつ水の沸点より低いものを用いる。
FIG. 1 is a conceptual diagram for explaining the present invention.
As shown in the figure, the nanoparticles of the present invention are characterized in that they are coated with a crystalline amphiphilic compound and are water dispersible.
In the present invention, the amphiphilic compound used as a water-dispersed coating agent is a compound having both a hydrophilic group A and a hydrophobic group B in the molecule and represented by the general formula AB. The nanoparticles dried from the dispersion cause aggregation and welding because this compound is liquid crystal or dissolved in the medium at room temperature. In the present invention, in order to suppress aggregation and welding due to drying, an amphiphilic compound that does not dissolve in a coating state and has a gel-liquid crystal phase transition temperature higher than room temperature and lower than the boiling point of water is used.

このような該両親媒性化合物の親水基Aは、単糖や複糖もしくは、オリゴペプチド、PEOなどで、好ましくは、単糖もしくはアミノ酸3個以下のペプチドで、より好ましくは、単糖ではグルコース、アミノ酸はグリシンである。
また、疎水基Bは、飽和、不飽和のアルキルまたは芳香族やその他の元素を含んでも良いが、好ましくは炭素鎖が10から24の飽和もしくは不飽和の脂肪族である。また直鎖型だけでなく分岐していても良いが、一般的にはアルキル鎖は炭素数が多く、かつ直鎖型で相転移点が高くなる傾向がある。
The hydrophilic group A of the amphiphilic compound is a monosaccharide, a disaccharide, an oligopeptide, PEO, or the like, preferably a monosaccharide or a peptide having 3 or less amino acids, and more preferably a monosaccharide is glucose. The amino acid is glycine.
The hydrophobic group B may contain saturated or unsaturated alkyl or aromatic or other elements, but is preferably saturated or unsaturated aliphatic having 10 to 24 carbon chains. In addition to the straight chain type, it may be branched, but in general, the alkyl chain has a large number of carbon atoms and tends to have a high phase transition point in the straight chain type.

また、分子構造内にアミドなど分子間相互作用を引き起こす官能基を有し、これが隣接する両親媒性化合物と水素結合などを介して安定な結晶性の分子膜を形成するものがよく、具体的には、特開2008−30185号公報、特開2008−31152号公報等において、有機ナノチューブの原料として用いられるところの、下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、Rは炭素数が10〜24の不飽和炭化水素基を表す。)
で表わされるN−グリコシド型糖脂質、又は下記一般式(2)
CO(NH−CHR−CO)OH (2)
(式中、Rは炭素数10〜24の炭化水素基、Rはアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、又は下記一般式(3)
H(NH−CHR−CO)NHR (3)
(式中、Rは炭素数10〜24の炭化水素基、Rはアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質があげられ、好ましく用いられる。
In addition, a functional group that causes an intermolecular interaction such as an amide in the molecular structure, and this forms a stable crystalline molecular film with an adjacent amphiphilic compound through a hydrogen bond, etc. The following general formula (1), which is used as a raw material for organic nanotubes in Japanese Patent Application Laid-Open Nos. 2008-30185 and 2008-31152, etc.
G-NHCO-R 1 (1)
(In the formula, G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 24 carbon atoms.)
N-glycoside type glycolipid represented by the following general formula (2)
R 2 CO (NH-CHR 3 -CO) m OH (2)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
Or a peptide lipid represented by the following general formula (3)
H (NH—CHR 3 —CO) m NHR 2 (3)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
And are preferably used.

本発明者らは、上記の特許公開公報に記載されているように、上記のN−グリコシド型糖脂質又はペプチド脂質を、有機溶媒中で自己集合させることによって、無水有機ナノチューブを簡便かつ大量に製造できることを見いだしたが、その後の検討の結果、これらのN−グリコシド型糖脂質又はペプチド脂質は、両親媒性化合物であって、かつ、ゲル−液晶相転移温度が室温より高く、かつ水の沸点より低いものであるため、ナノ微粒子の水分散剤として有用であることが判明したものである。   As described in the above-mentioned patent publications, the present inventors self-assemble the N-glycoside type glycolipid or peptide lipid in an organic solvent, thereby easily and in large quantities of anhydrous organic nanotubes. As a result of subsequent studies, these N-glycoside type glycolipids or peptide lipids are amphiphilic compounds and have a gel-liquid crystal phase transition temperature higher than room temperature and water. Since it is lower than the boiling point, it has been found to be useful as a water dispersion agent for nanoparticles.

本発明において用いられる両親媒性化合物は、上述の特徴を有する2種類以上を併用しても良く、両親媒性化合物に混合して分子膜を形成するその他の化合物が共存しても良い。   Two or more types of the amphiphilic compounds used in the present invention may be used in combination, or other compounds that form a molecular film by mixing with the amphiphilic compounds may coexist.

一方、本発明において、コアとなる粒子は、水の沸点や、コーティングする両親媒性化合物の相転移温度の条件で溶融、分解しないものであれば良い。好ましくはカーボンナノホーンなどの炭素を主たる組成に持つナノ粒子、またはマグネタイト、酸化亜鉛、酸化チタン、酸化カルシウム、シリカなどの金属酸化物、硫化カドミウムなど金属カルコゲン化物、硫酸バリウムなどの塩などである。   On the other hand, in the present invention, the core particles may be any particles that do not melt or decompose under the conditions of the boiling point of water and the phase transition temperature of the amphiphilic compound to be coated. Preferred are nanoparticles having a main composition of carbon such as carbon nanohorn, metal oxides such as magnetite, zinc oxide, titanium oxide, calcium oxide and silica, metal chalcogenides such as cadmium sulfide, and salts such as barium sulfate.

コアとなるナノ粒子は凝集して二次粒子を作っていることが多いが、本発明のナノ粒子の製造方法は、凝集している二次粒子の解砕と、両親媒性化合物の相点移転以上での加熱を同時に行なうことを特徴とするものである。
すなわち、加熱により、その相転移温度より高温となり、液晶状態となった両親媒性化合物が、解砕されたナノ粒子をコアとしてコーティングされ、その後、冷却により、両親媒性化合物が、その親水基を外表面側に配向した安定な結晶性の皮膜を形成し、水分散性ナノ粒子ができる。
In many cases, core nanoparticles are aggregated to form secondary particles. However, the method for producing nanoparticles of the present invention is based on the crushing of aggregated secondary particles and the phase of amphiphilic compounds. It is characterized in that heating beyond the transfer is performed at the same time.
That is, by heating, the amphiphilic compound that is higher in temperature than its phase transition temperature and in a liquid crystal state is coated with the crushed nanoparticles as a core, and then cooled to convert the amphiphilic compound to its hydrophilic group. Is formed on the outer surface side to form a stable crystalline film, thereby forming water-dispersible nanoparticles.

この二つのプロセスを同時に行なう手段としてはアルティマイザー、超音波ホモジナイザー、ボールミルなどが挙げられるが、より好ましくはアルティマイザー、超音波ホモジナイザーである。
アルティマイザーの場合、チャンバー内で発生する熱により処理液温度が水分散コーティング剤の相転移温度より高温となり、液晶状態となった水分散コーティング剤が解砕されたナノ粒子をコアとしてコーティングする。
また、超音波ホモジナイザーの場合、超音波照射による発熱が十分でないときには処理液温が水分散コーティング剤の相転移点より高くなるように外部からの加熱し、液晶状態となった水分散コーティング剤が超音波により解砕されたナノ粒子をコアとしてコーティングする。
本発明において、コアとなる粒子と両親媒性化合物の重量比は1:0.1〜1:10の間である。
Examples of means for simultaneously performing these two processes include an optimizer, an ultrasonic homogenizer, and a ball mill. More preferred are an optimizer and an ultrasonic homogenizer.
In the case of the optimizer, the heat generated in the chamber causes the treatment liquid temperature to be higher than the phase transition temperature of the water-dispersed coating agent, and the nanoparticles dispersed in the liquid-dispersed water-dispersed coating agent are coated as a core.
In addition, in the case of an ultrasonic homogenizer, when heat generation due to ultrasonic irradiation is not sufficient, the water dispersion coating agent in a liquid crystal state is heated from the outside so that the treatment liquid temperature becomes higher than the phase transition point of the water dispersion coating agent. The nanoparticles crushed by ultrasonic waves are coated as a core.
In the present invention, the weight ratio between the core particles and the amphiphilic compound is between 1: 0.1 and 1:10.

以下、本発明を実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。
〈使用した分散剤〉
本実施例では、両親媒性化合物として、1−アミノグルコピラノシドとオレイン酸がアミド結合により連結した次式で表される化合物(両親媒性化合物1とする。)
及び、グリシルグリシンとミリスチン酸がアミド結合により連結した次式で表される化合物(両親媒性化合物2とする。)
を用いた。
なお、両親媒性化合物1及び両親媒性化合物2は、水中でのゲル−液晶相転移温度が、それぞれ68℃及び54℃で、いずれも室温で安定な結晶状態である。
を用いた。
また、比較例として、市販のTween80(非イオン性界面活性剤)及びドデシル硫酸ナトリウム(SDS、アニオン性界面活性剤)を用いた。
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to this Example.
<Dispersant used>
In this example, as an amphiphilic compound, a compound represented by the following formula in which 1-aminoglucopyranoside and oleic acid are linked by an amide bond (referred to as amphiphilic compound 1).
And a compound represented by the following formula in which glycylglycine and myristic acid are linked by an amide bond (referred to as amphiphilic compound 2).
Was used.
In addition, the amphiphilic compound 1 and the amphiphilic compound 2 have a gel-liquid crystal phase transition temperature in water of 68 ° C. and 54 ° C., respectively, and both are stable crystalline states at room temperature.
Was used.
As a comparative example, commercially available Tween 80 (nonionic surfactant) and sodium dodecyl sulfate (SDS, anionic surfactant) were used.

(実施例1:アルティマイザーを用いた、カーボンナノホーンをコアとするナノ粒子の作成)
カーボンナノホーン(ダリア状に集合した集合体を一次粒子として、その径が約100nm)を1000mg、上記両親媒性化合物1を1000mg、はかり取り、蒸留水2Lを加えた。この混合物をホモジナイザーで30分撹拌した後、アルティマイザー(スギノマシンHJP25005)に投入し、圧力245MPaで100パスし、両親媒性化合物でコーティングされたナノ粒子の水分散液を得た。
動的光散乱ではパス数の増大ともに粒径の減少が観察され、100パスで一次粒径の粒子サイズとなった(80〜90nm)。このナノ粒子水分散液はその後1週間以上沈殿を生じず、安定な分散状態を保った。
さらにこのナノ粒子を凍結乾燥後、水に再分散したところ、若干粒径が上がるもの(90〜120nm)、ナノ粒子の良好な分散液が得られた。
(Example 1: Creation of nanoparticles using carbon nanohorn as a core using an optimizer)
1000 mg of carbon nanohorn (aggregate aggregated in dahlia as primary particles, the diameter is about 100 nm), 1000 mg of the amphiphilic compound 1 were weighed, and 2 L of distilled water was added. The mixture was stirred with a homogenizer for 30 minutes, and then charged into an optimizer (Sugino Machine HJP25005) and passed for 100 passes at a pressure of 245 MPa to obtain an aqueous dispersion of nanoparticles coated with an amphiphilic compound.
In dynamic light scattering, a decrease in particle size was observed with an increase in the number of passes, and the particle size of the primary particle size was reached in 100 passes (80 to 90 nm). This nanoparticle aqueous dispersion did not precipitate for more than one week thereafter, and maintained a stable dispersion state.
Furthermore, when these nanoparticles were lyophilized and then redispersed in water, a slightly increased particle size (90 to 120 nm) and a good dispersion of nanoparticles were obtained.

(比較例1:SDSによってコーティングされたカーボンナノホーンをコアとするナノ粒子の作成)
カーボンナノホーンを375mg、両親媒性化合物としてSDSを375mg、はかり取り、蒸留水750mLを加えた。この混合物をホモジナイザーで30分撹拌した後、アルティマイザーに投入し、圧力245MPaで100パスし、SDSでコーティングされたナノ粒子の水分散液を得た。
動的光散乱では1パス以降、数の増大による粒径の変化は観察されなかった。100パスで一次粒径の粒子サイズ(90〜100nm)となった。このナノ粒子水分散液はその後1週間以上沈殿を生じず、安定な分散状態を保った。
さらにこのナノ粒子を乾燥後、水に再分散したところ、濃縮による溶着は見られず、若干粒径が上がるもの(120〜130nm)、ナノ粒子の良好な分散液が得られた。
(Comparative Example 1: Production of nanoparticles having carbon nanohorn coated with SDS as a core)
375 mg of carbon nanohorn and 375 mg of SDS as an amphiphilic compound were weighed out and 750 mL of distilled water was added. The mixture was stirred with a homogenizer for 30 minutes, and then charged into an optimizer and passed through 100 passes at a pressure of 245 MPa to obtain an aqueous dispersion of nanoparticles coated with SDS.
In dynamic light scattering, no change in particle size due to an increase in number was observed after one pass. The particle size (90 to 100 nm) of the primary particle size was obtained after 100 passes. This nanoparticle aqueous dispersion did not precipitate for more than one week thereafter, and maintained a stable dispersion state.
Further, when the nanoparticles were dried and redispersed in water, no welding due to concentration was observed, and a slightly increased particle size (120 to 130 nm), a good dispersion of nanoparticles was obtained.

(実施例2:超音波ホモジナイザーを用いた、カーボンナノホーンをコアとするナノ粒子の作成)
カーボンナノホーンを6.3mg、上記両親媒性化合物1を6.3mg、量り取り、蒸留水50mLを加えた。この混合物をホモジナイザーで30分撹拌した後、液温が80℃を保つように加熱しながらプローブ式超音波発生装置による超音波照射をおこない(120W)、両親媒性化合物でコーティングされたナノ粒子の水分散液を得た。
動的光散乱では60分照射後に、一次粒径の粒子サイズ(90〜110nm)となり、その後の粒径変化は認められなかった。このナノ粒子水分散液はその後1週間以上沈殿を生じず、安定な分散状態を保った。
さらにこのナノ粒子を凍結乾燥後、水に再分散したところ、若干粒径が上がるもの(130〜150nm)、ナノ粒子の良好な分散液が得られた。
(Example 2: Preparation of nanoparticles having carbon nanohorn as a core using an ultrasonic homogenizer)
6.3 mg of carbon nanohorn and 6.3 mg of the amphiphilic compound 1 were weighed out and 50 mL of distilled water was added. The mixture was stirred for 30 minutes with a homogenizer, and then irradiated with ultrasonic waves using a probe-type ultrasonic generator (120 W) while heating so that the liquid temperature was kept at 80 ° C., and the nanoparticles coated with the amphiphilic compound An aqueous dispersion was obtained.
In dynamic light scattering, the particle size of the primary particle size (90 to 110 nm) was obtained after 60 minutes of irradiation, and no subsequent change in particle size was observed. This nanoparticle aqueous dispersion did not precipitate for more than one week thereafter, and maintained a stable dispersion state.
Furthermore, when these nanoparticles were freeze-dried and then redispersed in water, a slightly increased particle size (130 to 150 nm) and a good dispersion of nanoparticles were obtained.

(実施例3:カーボンナノホーンをコアとして蛍光を示すナノ粒子の作成)
カーボンナノホーンを100mg、下記の式(化3)で示される蛍光物質を30mg、上記両親媒性化合物1を100g、量り取り、蒸留水1Lを加えた。この混合物をホモジナイザーで30分撹拌した後、アルティマイザーに投入し、圧力245MPaで100パスし、両親媒性化合物でコーティングされたナノ粒子の水分散液を得た。
このナノ粒子の水分散液の光学顕微鏡観察において、明視野観察で粒子が観察された箇所について励起波長488nmで蛍光観察を行なうと、蛍光物質でおよび両親媒性化合物によってコーティングされたナノ粒子が蛍光を発していることが確認された(図2)。
また、このナノ粒子の水分散液を凍結乾燥した試料について透過型電子顕微鏡観察をおこなったところ、カーボンナノホーン1次粒子に相当するサイズ、形状の粒子が観測され、コーティングによって1次粒子のサイズ、形状が変化しないことが確認された(図3)。
(Example 3: Creation of nanoparticles exhibiting fluorescence using a carbon nanohorn as a core)
100 mg of carbon nanohorn, 30 mg of a fluorescent substance represented by the following formula (Chemical Formula 3), 100 g of the amphiphilic compound 1 were weighed out, and 1 L of distilled water was added. The mixture was stirred with a homogenizer for 30 minutes and then charged into an optimizer and passed for 100 passes at a pressure of 245 MPa to obtain an aqueous dispersion of nanoparticles coated with an amphiphilic compound.
In the optical microscopic observation of the aqueous dispersion of nanoparticles, when fluorescence observation is performed at an excitation wavelength of 488 nm at a location where the particles are observed by bright field observation, the nanoparticles coated with the fluorescent substance and the amphiphilic compound are fluorescent. (Fig. 2).
In addition, when a sample obtained by freeze-drying the aqueous dispersion of nanoparticles was observed with a transmission electron microscope, particles having a size and shape corresponding to the primary particles of carbon nanohorn were observed. It was confirmed that the shape did not change (FIG. 3).

(実施例4:マグネタイトをコアとするナノ粒子の作成)
マグネタイト(一次粒径20〜20nm)を250mg、上記両親媒化合物1を250mg、量り取り、蒸留水1Lを加えた。この混合物をホモジナイザーで30分撹拌した後、アルティマイザーに投入し、圧力245MPaで100パスし、両親媒性化合物でコーティングされたナノ粒子の水分散液を得た。動的光散乱ではパス数の増大ともに粒径の減少が観察され、25パスで一次粒径の粒子サイズ(25nm)となり、それ以上のパス数では逆に粒子サイズが増大した。このナノ粒子水分散液はその後1週間以上沈殿を生じず、安定な分散状態を保った。
このナノ粒子の水分散液を凍結乾燥した試料について透過型電子顕微鏡観察をおこなったところ、マグネタイト1次粒子に相当するサイズ、形状の粒子が観測され、コーティングによって1次粒子のサイズ、形状が変化しないことが確認された(図4)。
(Example 4: Creation of nanoparticles having magnetite as a core)
250 mg of magnetite (primary particle size 20 to 20 nm) and 250 mg of the amphiphilic compound 1 were weighed out and 1 L of distilled water was added. The mixture was stirred with a homogenizer for 30 minutes and then charged into an optimizer and passed for 100 passes at a pressure of 245 MPa to obtain an aqueous dispersion of nanoparticles coated with an amphiphilic compound. In dynamic light scattering, a decrease in particle size was observed with an increase in the number of passes, and the particle size of the primary particle size (25 nm) was obtained in 25 passes, and conversely the particle size was increased in more passes. This nanoparticle aqueous dispersion did not precipitate for more than one week thereafter, and maintained a stable dispersion state.
When a sample obtained by lyophilizing the aqueous dispersion of nanoparticles was observed with a transmission electron microscope, particles having a size and shape corresponding to magnetite primary particles were observed, and the size and shape of the primary particles were changed by coating. It was confirmed that it does not (FIG. 4).

(実施例5:酸化亜鉛をコアとするナノ粒子の作成)
酸化亜鉛(一次粒径50〜70nm)250mg、両親媒化合物50mgをはかりとり、蒸留水1Lを加えた。この混合物をホモジナイザーで30分撹拌した後、アルティマイザーに投入し、圧力245MPaで100パスし、両親媒性化合物でコーティングされたナノ粒子の水分散液を得た。動的光散乱ではパス数の増大ともに粒径の減少が観察され、50パスで一次粒径の粒子サイズ(50nm)となり、それ以上のパス数では逆に粒子サイズが増大した。このナノ粒子水分散液はその後1週間以上沈殿を生じず、安定な分散状態を保った。
このナノ粒子の水分散液を凍結乾燥した試料について透過型電子顕微鏡観察をおこなったところ、酸化亜鉛1次粒子に相当するサイズ、形状の粒子が観測され、コーティングによって1次粒子のサイズ、形状が変化しないことが確認された(図5)。
(Example 5: Preparation of nanoparticles having zinc oxide as a core)
Zinc oxide (primary particle size 50 to 70 nm) 250 mg and amphiphile compound 50 mg were weighed and 1 L of distilled water was added. The mixture was stirred with a homogenizer for 30 minutes and then charged into an optimizer and passed for 100 passes at a pressure of 245 MPa to obtain an aqueous dispersion of nanoparticles coated with an amphiphilic compound. In dynamic light scattering, a decrease in particle size was observed with an increase in the number of passes, the particle size of the primary particle size (50 nm) was reached at 50 passes, and the particle size was increased at higher passes. This nanoparticle aqueous dispersion did not precipitate for more than one week thereafter, and maintained a stable dispersion state.
When a sample obtained by freeze-drying the aqueous dispersion of nanoparticles was observed with a transmission electron microscope, particles having a size and shape corresponding to zinc oxide primary particles were observed, and the size and shape of the primary particles were determined by coating. It was confirmed that there was no change (FIG. 5).

(実施例6:超音波ホモジナイザーを用いて作成した酸化チタンをコアとするナノ粒子の作成)
石原産業製酸化チタンST−01(平均粒径5nm)、ST−21(平均粒径23nm)、ST−41(平均粒径154nm)を、それぞれ10mg、両親媒性化合物として、両親媒性化合物1、及び両親媒性化合物2、比較例として、Tween80、SDS)を10mg、量り取り、蒸留水40mLを加えた。この混合物をプローブ式超音波発生装置による超音波照射をおこなった(120W)。この際、液温が60℃C以上になるのを確認し、その後、室温まで放冷し、両親媒性化合物でコーティングされたナノ粒子の水分散液を得た。
動的光散乱ではSDSの場合を除き、超音波照射10分以後の大きな粒径変化は認められなかった。さらにこのナノ粒子を凍結乾燥後、水に再分散し、この分散液について動的光散乱による粒径測定を行なった。
以下に結果を示す。
(Example 6: Production of nanoparticles having titanium oxide as a core produced using an ultrasonic homogenizer)
Ishihara Sangyo Titanium Oxide ST-01 (average particle size 5 nm), ST-21 (average particle size 23 nm), ST-41 (average particle size 154 nm) 10 mg each as amphiphilic compound, amphiphilic compound 1 , And Amphiphilic Compound 2, as a comparative example, 10 mg of Tween 80, SDS) was weighed out and 40 mL of distilled water was added. This mixture was subjected to ultrasonic irradiation with a probe type ultrasonic generator (120 W). At this time, it was confirmed that the liquid temperature became 60 ° C. or higher, and then allowed to cool to room temperature to obtain an aqueous dispersion of nanoparticles coated with an amphiphilic compound.
In dynamic light scattering, except for SDS, no large particle size change was observed after 10 minutes of ultrasonic irradiation. Further, the nanoparticles were lyophilized and then redispersed in water, and the particle size of the dispersion was measured by dynamic light scattering.
The results are shown below.

上記の表から明らかなように、本発明の両親媒性化合物1及び2を用いた場合、ナノ微粒子は、2週間程度で沈殿するものの、振とうすると再び分散するのに対して、Tween80やSDSの沈殿物は大きな凝集体となっており、振とうしてもすぐに沈殿する。   As is apparent from the above table, when the amphiphilic compounds 1 and 2 of the present invention are used, the nanoparticle precipitates in about 2 weeks, but disperses again when shaken, whereas Tween80 and SDS The precipitate is a large agglomerate and immediately precipitates upon shaking.

炭素材料ナノ粒子はインク、DDS材料としての応用が期待されている一方、単体では極めて水分散性が悪い。本発明により、水に良く分散し、かつ乾燥、再分散可能にすることで、有機溶媒フリーなインク、またDDS材料としての応用研究が大いに進む可能性がある。また、金属酸化物や金属硫化物ナノ粒子は、量子ドット、DDS、磁気医療やバイオセンサ材料として有望であり、容易に水分散を可能にすることで材料光学、医療分野で大きくこれらの粒子の適用範囲を広げると期待できる。   While carbon material nanoparticles are expected to be used as inks and DDS materials, they are extremely poor in water dispersibility when used alone. By making the present invention well dispersed in water and drying and redispersing, application research as an organic solvent-free ink and a DDS material may greatly advance. In addition, metal oxide and metal sulfide nanoparticles are promising as quantum dots, DDS, magnetic medicine and biosensor materials, and can easily disperse in water, so that in the field of material optics and medicine, It can be expected to expand the application range.

Claims (4)

ナノ粒子の表面が、ゲル−液晶相転移温度が室温より高く、かつ水の沸点より低い両親媒性化合物からなる結晶性物質で被覆されてなる易分散性ナノ粒子であって、前記両親媒性化合物が、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、R は炭素数が10〜24の不飽和炭化水素基を表す。)
で表わされるN−グリコシド型糖脂質、
下記一般式(2)
CO(NH−CHR −CO) OH (2)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、又は
下記一般式(3)
H(NH−CHR −CO) NHR (3)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、
のいずれかであることを特徴とする易分散性ナノ粒子
The surface of the nanoparticles, gels - liquid crystal phase transition temperature is higher than room temperature, and a readily dispersible nanoparticles comprising coated with a crystalline material consisting of lower than the boiling point of water amphiphilic compound, the amphiphilic Compound is
The following general formula (1)
G-NHCO-R 1 (1)
(In the formula, G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 24 carbon atoms.)
N-glycoside type glycolipid represented by
The following general formula (2)
R 2 CO (NH-CHR 3 -CO) m OH (2)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by:
The following general formula (3)
H (NH—CHR 3 —CO) m NHR 2 (3)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by
An easily dispersible nanoparticle characterized by being one of the following .
請求項に記載の易分散性ナノ粒子が、水中に分散されてなるナノ粒子水分散液。 A nanoparticle aqueous dispersion in which the easily dispersible nanoparticles according to claim 1 are dispersed in water. ナノ粒子を、その表面を被覆することにより水中に分散させるための分散剤であって、
ゲル−液晶相転移温度が室温より高く、かつ水の沸点より低い両親媒性化合物からなる結晶性物質を有効成分とし、前記両親媒性化合物が、
下記一般式(1)
G−NHCO−R (1)
(式中、Gは糖のアノマー炭素原子に結合するヘミアセタール水酸基を除いた糖残基を表し、R は炭素数が10〜24の不飽和炭化水素基を表す。)
で表わされるN−グリコシド型糖脂質、
下記一般式(2)
CO(NH−CHR −CO) OH (2)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表されるペプチド脂質、又は
下記一般式(3)
H(NH−CHR −CO) NHR (3)
(式中、R は炭素数10〜24の炭化水素基、R はアミノ酸側鎖、mは1〜3の整数を表す。)
で表わされるペプチド脂質、
のいずれかであることを特徴とするナノ粒子用分散剤。
A dispersant for dispersing nanoparticles in water by coating their surfaces ,
A crystalline substance composed of an amphiphilic compound having a gel-liquid crystal phase transition temperature higher than room temperature and lower than the boiling point of water is an active ingredient, and the amphiphilic compound is:
The following general formula (1)
G-NHCO-R 1 (1)
(In the formula, G represents a sugar residue excluding the hemiacetal hydroxyl group bonded to the anomeric carbon atom of the sugar, and R 1 represents an unsaturated hydrocarbon group having 10 to 24 carbon atoms.)
N-glycoside type glycolipid represented by
The following general formula (2)
R 2 CO (NH-CHR 3 -CO) m OH (2)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by:
The following general formula (3)
H (NH—CHR 3 —CO) m NHR 2 (3)
(In the formula, R 2 represents a hydrocarbon group having 10 to 24 carbon atoms, R 3 represents an amino acid side chain, and m represents an integer of 1 to 3).
A peptide lipid represented by
Dispersants for nanoparticles characterized by either der Rukoto of.
ナノ粒子に、請求項に記載のナノ粒子用分散剤及び水を加えた後、前記相転移温度以上に加熱しながら攪拌混合することを特徴とするナノ粒子の分散液の製造方法。 A method for producing a dispersion of nanoparticles, comprising adding the nanoparticle dispersant according to claim 3 and water to the nanoparticles, and then stirring and mixing while heating to a temperature equal to or higher than the phase transition temperature.
JP2009184487A 2009-08-07 2009-08-07 Nanoparticle dispersible in water and method for producing nanoparticle dispersion Expired - Fee Related JP5610460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009184487A JP5610460B2 (en) 2009-08-07 2009-08-07 Nanoparticle dispersible in water and method for producing nanoparticle dispersion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009184487A JP5610460B2 (en) 2009-08-07 2009-08-07 Nanoparticle dispersible in water and method for producing nanoparticle dispersion

Publications (2)

Publication Number Publication Date
JP2011036760A JP2011036760A (en) 2011-02-24
JP5610460B2 true JP5610460B2 (en) 2014-10-22

Family

ID=43765108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009184487A Expired - Fee Related JP5610460B2 (en) 2009-08-07 2009-08-07 Nanoparticle dispersible in water and method for producing nanoparticle dispersion

Country Status (1)

Country Link
JP (1) JP5610460B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108635240B (en) 2012-06-25 2021-09-14 日产化学工业株式会社 Dispersion liquid and hydrogel forming method
WO2015005219A1 (en) * 2013-07-09 2015-01-15 日産化学工業株式会社 Dispersion liquid and method for forming hydrogel
CA2968493C (en) * 2014-11-21 2022-05-17 Japan Oil, Gas And Metals National Corporation Nanocomposite and method for producing same, and adsorbent and method for using same
US20190367739A1 (en) * 2017-01-17 2019-12-05 Kanagawa University Particulate composition, liquid composition, method for producing particulate composition, surface modifying agent, and method for improving water dispersibility

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3299258B2 (en) * 1989-12-30 2002-07-08 ライオン株式会社 Silicone emulsification method and silicone emulsion obtained thereby
JP5062736B2 (en) * 2006-06-14 2012-10-31 独立行政法人産業技術総合研究所 Hollow fiber organic nanotube and method for producing the same
JP5487480B2 (en) * 2008-02-25 2014-05-07 保土谷化学工業株式会社 Method for preparing aqueous emulsion using surface active organic compound as emulsifier

Also Published As

Publication number Publication date
JP2011036760A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
Haddad et al. A review on how the researchers prepare their nanofluids
Wu et al. Near-infrared emissive lanthanide hybridized carbon quantum dots for bioimaging applications
Lee et al. Surface modification of magnetic nanoparticles capped by oleic acids: Characterization and colloidal stability in polar solvents
Yi et al. Synthesis of hexagonal‐phase NaYF4: Yb, Er and NaYF4: Yb, Tm nanocrystals with efficient up‐conversion fluorescence
US8435472B2 (en) Method of preparing nano-structured material(s) and uses thereof
Khiew et al. Synthesis of NiS nanoparticles using a sugar-ester nonionic water-in-oil microemulsion
KR100846839B1 (en) Metal oxide hollow nanocapsule and a method for preparing the same
Deng et al. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size
Becerro et al. Bifunctional, monodisperse BiPO4-based nanostars: photocatalytic activity and luminescent applications
JP5610460B2 (en) Nanoparticle dispersible in water and method for producing nanoparticle dispersion
Sinkó et al. Liquid-phase syntheses of cobalt ferrite nanoparticles
JP2011524430A (en) Fullerene-silica nanoparticles with improved fluorescence characteristics, method for producing the same, and use thereof
Sun et al. Synthesis of micrometer to nanometer CaCO3 particles via mass restriction method in an emulsion liquid membrane process
Chaudhary et al. Glycols functionalized fluorescent Eu2O3 nanoparticles: Functionalization effect on the structural and optical properties
CN115040664B (en) Activated near infrared two-region fluorescent probe and preparation method and application thereof
Wang et al. Surface functionalization of metal and metal oxide nanoparticles for dispersion and tribological applications-a review
Xu et al. Supramolecular structures from structurally persistent and surface active carbon dots in water
JP2010013312A (en) Carbon nanotube dispersant, carbon nanotube dispersion, and method for producing the same
Marković et al. Surface chemical modification of fullerene by mechanochemical treatment
Pavithra et al. Viscosity and thermal conductivity of ZnO–water-based nanofluids stabilized by grafted SMA-g-MPEG comb-shaped copolymer for heat transfer applications
US20220176348A1 (en) Process for producing composite material
Safronikhin et al. Preparation and colloidal behaviour of surface-modified EuF3
Pilapong et al. Environmentally benign synthesis of Bi2S3 quantum dot using microwave-assisted approach
JP2011240214A (en) Water-dispersible fine particle, aqueous dispersion of the fine particle, and water-dispersed gel containing the fine particle, and method for producing them
Zi et al. Facile Synthesis of Yb 3+-and Er 3+-Codoped LiGdF 4 Colloidal Nanocrystals with High-Quality Upconversion Luminescence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140826

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140827

R150 Certificate of patent or registration of utility model

Ref document number: 5610460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees