JP5610179B2 - Anti-obesity agent and diabetes-improving agent - Google Patents

Anti-obesity agent and diabetes-improving agent Download PDF

Info

Publication number
JP5610179B2
JP5610179B2 JP2009051357A JP2009051357A JP5610179B2 JP 5610179 B2 JP5610179 B2 JP 5610179B2 JP 2009051357 A JP2009051357 A JP 2009051357A JP 2009051357 A JP2009051357 A JP 2009051357A JP 5610179 B2 JP5610179 B2 JP 5610179B2
Authority
JP
Japan
Prior art keywords
compound
observed
spectrum
diabetes
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009051357A
Other languages
Japanese (ja)
Other versions
JP2010202602A (en
Inventor
北中 進
進 北中
忠弘 矢作
忠弘 矢作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon University
Original Assignee
Nihon University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon University filed Critical Nihon University
Priority to JP2009051357A priority Critical patent/JP5610179B2/en
Priority to PCT/JP2010/001515 priority patent/WO2010100933A1/en
Publication of JP2010202602A publication Critical patent/JP2010202602A/en
Application granted granted Critical
Publication of JP5610179B2 publication Critical patent/JP5610179B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/22Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4
    • C07D311/26Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3
    • C07D311/28Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only
    • C07D311/30Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms directly attached in position 4 with aromatic rings attached in position 2 or 3 with aromatic rings attached in position 2 only not hydrogenated in the hetero ring, e.g. flavones
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/105Plant extracts, their artificial duplicates or their derivatives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/12Ketones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/192Carboxylic acids, e.g. valproic acid having aromatic groups, e.g. sulindac, 2-aryl-propionic acids, ethacrynic acid 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/194Carboxylic acids, e.g. valproic acid having two or more carboxyl groups, e.g. succinic, maleic or phthalic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/201Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having one or two double bonds, e.g. oleic, linoleic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/352Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline 
    • A61K31/3533,4-Dihydrobenzopyrans, e.g. chroman, catechin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/4985Pyrazines or piperazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7028Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
    • A61K31/7034Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
    • A61K31/704Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7042Compounds having saccharide radicals and heterocyclic rings
    • A61K31/7048Compounds having saccharide radicals and heterocyclic rings having oxygen as a ring hetero atom, e.g. leucoglucosan, hesperidin, erythromycin, nystatin, digitoxin or digoxin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K36/00Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
    • A61K36/18Magnoliophyta (angiosperms)
    • A61K36/185Magnoliopsida (dicotyledons)
    • A61K36/48Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • C07H17/06Benzopyran radicals
    • C07H17/065Benzo[b]pyrans
    • C07H17/07Benzo[b]pyran-4-ones
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/90Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in food processing or handling, e.g. food conservation

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Obesity (AREA)
  • Hematology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Mycology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Endocrinology (AREA)
  • Alternative & Traditional Medicine (AREA)
  • Biochemistry (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Emergency Medicine (AREA)
  • Genetics & Genomics (AREA)
  • Medical Informatics (AREA)
  • Microbiology (AREA)
  • Child & Adolescent Psychology (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Saccharide Compounds (AREA)
  • Pyrane Compounds (AREA)

Description

本発明は抗肥満剤及び糖尿病改善剤に係わり、詳しくは、マメ科植物、特に、ネムノキの花部(合歓花)の抽出物を含有する抗肥満剤及び糖尿病改善剤に関するものである。   The present invention relates to an anti-obesity agent and an anti-diabetic agent, and more particularly to an anti-obesity agent and an anti-diabetes agent containing an extract of a legume plant, in particular, a flower part of Nemnoki (Nejuhana).

近年、高カロリー食の過剰摂取により、肥満者が増加してきている。肥満は、生活習慣病や糖尿病などを惹き起す原因として注目されており、特に、内臓肥満を中心として、糖尿病、高血圧、高脂血症などが集積した病態であるメタボリックシンドロームが着目されている。   In recent years, obesity has increased due to excessive intake of high-calorie foods. Obesity is attracting attention as a cause of lifestyle-related diseases and diabetes. In particular, metabolic syndrome, which is a pathological condition in which diabetes, hypertension, hyperlipidemia and the like are accumulated, is focused on visceral obesity.

日本の厚生労働省の「2007年国民健康・栄養調査」によると、糖尿病が強く疑われる人は約890万人。糖尿病の可能性が否定できない人は約1320万人、合わせて約2210万人が存在すると推定された。40〜74歳でみると、男性の2人に1人、女性の5人に1人が、メタボリックシンドロームが強く疑われる者又は予備群と考えられている。 According to the 2007 National Health and Nutrition Survey by the Ministry of Health, Labor and Welfare in Japan, about 8.9 million people are strongly suspected of having diabetes. It is estimated that there are about 13.2 million people who cannot deny the possibility of diabetes, and about 22.1 million people in total. At age 40-74, one in two men and one in five women are considered highly suspected or a reserve group of metabolic syndrome.

肥満者では脂肪細胞の肥大化が認められ、肥大した脂肪細胞には、中性脂肪(トリグリセライド:TG)が蓄積され、腫瘍壊死因子α(TNF-α)、インターロイキン−6(IL-6)に代表される炎症性アディポサイトカインの分泌の増加とアディポネクチンのような抗炎症性アディポサイトカインの産生が減少している事が認められ、インスリン抵抗性が惹起されると言われている。 In obese people, fat cells are enlarged, and neutral fat (triglyceride: TG) accumulates in the enlarged fat cells, and tumor necrosis factor α (TNF-α), interleukin-6 (IL-6) It is said that the increase in secretion of inflammatory adipocytokines represented by the above and the production of anti-inflammatory adipocytokines such as adiponectin are decreased and insulin resistance is induced.

また、肥満状態では脂肪組織にマクロファージが浸潤し、それにより脂肪組織に一酸化窒素(NO)、腫瘍壊死因子α(TNF-α)、単球走化性タンパク質-1( MCP-1)などのサイトカイン、ケモカインが生成され慢性的な生体炎症反応が生じ、インスリン抵抗性の発症や増悪を起こすことが報告されている。 In obesity, macrophages infiltrate adipose tissue, which causes nitric oxide (NO), tumor necrosis factor α (TNF-α), monocyte chemotactic protein-1 (MCP-1), etc. It has been reported that cytokines and chemokines are generated and a chronic bioinflammatory reaction occurs, leading to the onset and exacerbation of insulin resistance.

そこで、肥満や糖尿病、高血圧を抑制するための対策としては、脂肪細胞の分化を抑え脂肪細胞の増加を抑制し、必要以上のトリグリセライドの蓄積を抑制する必要がある。さらに、マクロファージの活性化を抑制して、TNF-αなどの炎症性サイトカインの分泌を抑える必要もある。 Therefore, as a measure for suppressing obesity, diabetes, and hypertension, it is necessary to suppress adipocyte differentiation and suppress an increase in fat cells, and to suppress accumulation of triglyceride more than necessary. Furthermore, it is also necessary to suppress the secretion of inflammatory cytokines such as TNF-α by suppressing the activation of macrophages.

天然物由来のresveratrol、quercetin、vitisin A、xanthohumol、isoxanthohumol、capsaicinなどの化合物は脂肪細胞の分化と中性脂肪の蓄積を抑制することが報告されている。また、phloretin、retrofractaminde A、narigenin、hesperetin、catechin、6-gingerol、curcumin、capsaicinなどの化合物は脂肪細胞からのアディポネクチンの分泌を増加することが報告されている。一方、curcumin、resveratrolなどの化合物は脂肪細胞からのTNF-αの分泌を下降することが知られている。 It has been reported that compounds such as resveratrol, quercetin, vitisin A, xanthohumol, isoxanthohumol, capsaicin derived from natural products suppress adipocyte differentiation and accumulation of triglycerides. In addition, it has been reported that compounds such as phloretin, retrofractaminde A, narigenin, hesperetin, catechin, 6-gingerol, curcumin and capsaicin increase the secretion of adiponectin from adipocytes. On the other hand, compounds such as curcumin and resveratrol are known to decrease TNF-α secretion from adipocytes.

特開2002−138044号公報には、アカネ、アスナロ、アマチャ、オオバナサルスベリ、ガイヨウ、ハクカユマトウ、ハスナゲ、ヒキオコシ、ホウキギから選ばれる1種以上の植物抽出物を含有して、前駆脂肪細胞の分化誘導を阻害する薬剤、化粧料組成物又は飲食品が開示されている。 Japanese Patent Application Laid-Open No. 2002-138044 contains at least one plant extract selected from Akane, Asunaro, Achacha, Greater Crested Beetle, Gaiyou, Hakukayumatou, Lotus, Kakikoshi and Houkigi, and induces differentiation of preadipocytes. Disinfecting drugs, cosmetic compositions or food and beverage products are disclosed.

さらに、特開2007−269757号公報には、副作用がなく優れた前駆脂肪細胞分化誘導阻害作用を有する脂肪細胞分化阻害剤が開示されている。   Furthermore, JP 2007-269757 A discloses an adipocyte differentiation inhibitor having an excellent inhibitory effect on induction of preadipocyte differentiation without side effects.

特開2002−138044号公報JP 2002-138044 A 特開2007−269757号公報JP 2007-269757 A

ネムノキ(Albizzia julibrissin Durazz.)はマメ科(Leguminosae)の植物であって、イラン・インドから東南アジア中国を経て日本の東北地方北部まで分布する。ネムノキは、山野、雑木林や川原に自生している落葉高木である。高さは10 m以上に達し、葉は2回偶数羽状複葉で互生、長さ9〜23 cmである。花は淡紅色の頭状花序で開花期は6〜8月である。開花初期の花を陽乾させたものを生薬名で合歓花という。 Nemnoki (Albizzia julibrissin Durazz.) Is a plant of the leguminous family (Leguminosae), which is distributed from Iran, India, Southeast Asia, China, to the northeastern region of Japan. Nemunoki is a deciduous tree that grows naturally in the mountains, thick forests and river fields. The height reaches more than 10 m, and the leaves are even-numbered bilobed twice, and are 9-23 cm long. The flowers are pale red inflorescences and the flowering period is from June to August. A flower that has been dried in the early stages of flowering is known as a joy flower under the name of herbal medicine.

民間では不眠、抗鬱、鎮痛、鎮静、利尿に煎じて服用する。また、中国最古の薬物書である神農本草経では合歓の名で中品として収載されている。
合歓花の成分として、QuercetinやQuercitrinなどのFlavonoidを含有しているものの、前駆脂肪細胞から脂肪細胞への分化作用を持つことは知られていない。
本発明者は、ネムノキに着目して、抗肥満作用、及び糖尿病改選作用を持つ、新規な成分を得ることを、本発明の目的としたものである。
In the private sector, infused with insomnia, antidepressant, analgesia, sedation, diuresis. In addition, it is listed as a moderate item in the name of Neon in Shenong Hongsheng, the oldest drug book in China.
Although it contains Flavonoids such as Quercetin and Quercitrin as components of the joyous flowers, it is not known to have a differentiation action from preadipocytes to adipocytes.
The inventor of the present invention aims to obtain a novel ingredient having anti-obesity action and diabetes refining action, paying attention to Nemunoki.

前記目的を達成するために、本発明は、ネムノキの花部、特に、合歓花の抽出物を含有する抗肥満剤及び糖尿病改善剤であることを特徴とするものである。   In order to achieve the above-mentioned object, the present invention is characterized by being an anti-obesity agent and an anti-diabetic agent containing an extract of a flower of anemone tree, in particular, a pleasant flower.

ネムノキの花部の抽出物、その画分および単離された化合物は、前駆脂肪細胞から脂肪細胞への分化を抑制すると共に、中性脂肪(トリグリセライド:TG)の蓄積を抑え、肥満を改善させる。また、肥満を解消することにより、インスリン抵抗性を有する糖尿病を改善させる。 An extract of the flower part of anemone, its fractions and isolated compounds suppress the differentiation of preadipocytes into adipocytes, suppress the accumulation of triglycerides (TG), and improve obesity . It also improves diabetes with insulin resistance by eliminating obesity.

本発明によれば、ネムノキの花部の天然成分からなる新規な抗肥満剤及び糖尿病改善剤を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the novel antiobesity agent and diabetes improvement agent which consist of a natural component of the flower part of a Nemnoki can be provided.

合歓花の抽出物に属する化合物(複数)の構造式を示した一覧図である。It is the list figure which showed the structural formula of the compound (plurality) which belongs to the extract of a joy flower. 合歓花の抽出物の各画分の、3T3−L1前駆脂肪細胞の分化および中性脂肪蓄積を抑制作用を示す表である。It is a table | surface which shows the effect | action which suppresses the differentiation of 3T3-L1 preadipocyte and the accumulation of triglyceride of each fraction of the extract of a joy flower. 化合物1-4の1H-NNRスペクトルデータを示す表である。3 is a table showing 1H-NNR spectrum data of Compound 1-4. 化合物1-4の13C-NNRスペクトルデータを示す表である。6 is a table showing 13C-NNR spectrum data of Compound 1-4. 化合物1-4の性状を示した図である。FIG. 5 is a view showing the properties of compound 1-4. 化合物2の部分構造を示す構造式である。。2 is a structural formula showing a partial structure of Compound 2. . 合歓花の抽出部より単離された各化合物についてのTG蓄積抑制試験とGPDH活性試験の結果を示す表である。It is a table | surface which shows the result of the TG accumulation | storage suppression test and the GPDH activity test about each compound isolated from the extraction part of the joy flower.

本発明者は、合歓花を抽出し、成分の単離と構造決定を行い、10種類のFlavonol及びその配糖体 (化合物1-10)、5種のFlavone (化合物11-15)、1種のFlavanonol (化合物16)、1種のCalcone (化合物17)、2種のterpenoid (化合物18-19)、3,3'-Dithiodipropanoic acid (化合物20)、indole誘導体 (化合物21)、Alloxazine誘導体 (化合物22) 及びphenylpropanoid (化合物23)を得た。そのうち化合物1-4は新規化合部であり、化合物20は天然から初めて単離された化合物である。図1に化合物1〜23の構造式を示す。 The present inventor extracted the joyous flowers, isolated the components and determined the structure, 10 kinds of Flavonol and its glycoside (compound 1-10), 5 kinds of Flavone (compound 11-15), 1 kind Flavanonol (Compound 16), 1 Calcone (Compound 17), 2 terpenoids (Compound 18-19), 3,3'-Dithiodipropanoic acid (Compound 20), indole derivative (Compound 21), Alloxazine derivative (Compound) 22) and phenylpropanoid (Compound 23) were obtained. Of these, compound 1-4 is a novel compound, and compound 20 is the first compound isolated from nature. FIG. 1 shows the structural formulas of Compounds 1 to 23.

化合物1は、3''-(E)-p-Coumaroylquercitrinであり、
化合物2は3''-(E)-(3'''-Methoxycaffeoyl)quercitrinであり、
化合物3は、2''-(E)-Cinnamoylquercitrinであり、
化合物4は、3''-(E)-Cinnamoylquercitrinであり、
化合物5はQuercetinであり、
化合物6は、Isorhamnetinであり、
化合物7はRhamnetinであり、
化合物8はQuercitrinであり、
化合物9はKaempferolであり、
化合物10はAfzeleinであり、
化合物11はChrysoeriolであり、
化合物12はApigeninであり、
化合物13はTricinであり、
化合物14はLuteolinであり、
化合物15はAmentoflavoneであり、
化合物16はTaxifolinであり、
化合物17はIsoliquiritigeninであり、
化合物18は、α-Spinasterol-3-O-β-D-glucopyranosideであり、
化合物19は、(6S)-Menthiafolic acid であり、
化合物20は3,3'-Dithiodipropanoic acidであり、
化合物21はIndole-3-carboxylic acidであり、
化合物22は7,8-Dimethylalloxazineであり、そして、
化合物23は(E)-p-Coumaric acidである。
Compound 1 is 3 ''-(E) -p-Coumaroylquercitrin,
Compound 2 is 3 ″-(E)-(3 ′ ″-Methoxycaffeoyl) quercitrin,
Compound 3 is 2 ''-(E) -Cinnamoylquercitrin
Compound 4 is 3 ''-(E) -Cinnamoylquercitrin
Compound 5 is Quercetin,
Compound 6 is Isorhamnetin,
Compound 7 is Rhamnetin,
Compound 8 is Quercitrin
Compound 9 is Kaempferol,
Compound 10 is Afzelein,
Compound 11 is Chrysoeriol,
Compound 12 is Apigenin,
Compound 13 is Tricin,
Compound 14 is Luteolin,
Compound 15 is Amentoflavone,
Compound 16 is Taxifolin,
Compound 17 is Isoliquiritigenin,
Compound 18 is α-Spinasterol-3-O-β-D-glucopyranoside,
Compound 19 is (6S) -Menthiafolic acid,
Compound 20 is 3,3'-Dithiodipropanoic acid,
Compound 21 is Indole-3-carboxylic acid,
Compound 22 is 7,8-Dimethylalloxazine and
Compound 23 is (E) -p-Coumaric acid.

さらに、これらの化合物について、3T3−L1前駆脂肪細胞の分化および中性脂肪蓄積を抑制作用について検討した。 Furthermore, the inhibitory effect of these compounds on 3T3-L1 preadipocyte differentiation and neutral fat accumulation was examined.

以下、実施例を挙げて、本発明を更に詳細に説明する。本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these examples.

ネムノキ (Albizzia julibrissin Durazz.) の花部15 kgを80 %エタノールで抽出し、抽出物を濃縮、乾固しエキス (3.5 kg) を得た。このエキスを水に懸濁し、n-ヘキサン、クロロホルム、酢酸エチル、n-ブタノールで順次分配抽出した。それぞれの画分についてTG産生抑制試験を行い、サンプル濃度30μg/mlにおいて、ヘキサン溶出画分 (55.5 %)、クロロホルム溶出画分 (58.6 %)、酢酸エチル溶出画分 (70.9 %)、n-ブタノール画分 (82.1 %, Cytotoxicity)、水画分 (91.3 %)のTG蓄積抑制が認められた。さらに、それぞれの画分について、GPDH活性試験を行った。これらの試験結果を図2に示す。TG蓄積抑制、GPDH活性の試験の方法については、後述する。 A 15 kg flower portion of the tree (Albizzia julibrissin Durazz.) Was extracted with 80% ethanol, and the extract was concentrated and dried to obtain an extract (3.5 kg). This extract was suspended in water and partitioned and extracted sequentially with n-hexane, chloroform, ethyl acetate, and n-butanol. Each fraction was subjected to a TG production suppression test, and at a sample concentration of 30 μg / ml, the hexane elution fraction (55.5%), chloroform elution fraction (58.6%), ethyl acetate elution fraction (70.9%), n-butanol Suppression of TG accumulation was observed in the fraction (82.1%, Cytotoxicity) and the water fraction (91.3%). Furthermore, the GPDH activity test was performed about each fraction. The test results are shown in FIG. Methods for testing TG accumulation inhibition and GPDH activity will be described later.

1 )酢酸エチル溶出画分の分離
酢酸エチル溶出画分 (165.5 g) をSilica gelカラム (12.5 φ×21 cm) に付し、CHCl3:MeOH = 100:0〜0:100で溶出し、AJE-A〜Bに分画した。この際、析出してきた沈殿物をろ取し、再結晶することにより、化合物18 (423.8 mg) を得た (Fig.2) 。
1) Separation of ethyl acetate elution fraction The ethyl acetate elution fraction (165.5 g) was applied to a Silica gel column (12.5 φ × 21 cm) and eluted with CHCl3: MeOH = 100: 0 to 0: 100. Fractions were divided into A to B. At this time, the precipitated precipitate was collected by filtration and recrystallized to obtain Compound 18 (423.8 mg) (Fig. 2).

AJE-BをSilica gelカラム (4.5 φ×16 cm) に付しHexane:EtOAc = 100:0〜0:100で溶出し、AJE-B1〜11に分画した。AJE-B2から結晶が析出したため、これをろ取し、再結晶することにより化合物20 (230 mg) を得た (Fig.3) 。   AJE-B was applied to a Silica gel column (4.5 φ × 16 cm) and eluted with Hexane: EtOAc = 100: 0 to 0: 100, and fractionated into AJE-B1 to 11. Crystals precipitated from AJE-B2, and were collected by filtration and recrystallized to obtain Compound 20 (230 mg) (Fig. 3).

TLCによりスポットが似ていたため、AJE-B4とB5を一緒にして、ODSカラム (2.7φ×18 cm) に付し、H2O:MeOH=100:0〜0:100で溶出し、AJE-B4+5a〜iに分画した (Fig.3) 。このとき、B4+5eに沈殿物が析出したため、これをろ取し再結晶したところ、化合物22(10.5mg)を得た (Fig.6) 。   Since the spots were similar by TLC, AJE-B4 and B5 were combined, applied to an ODS column (2.7φ × 18 cm), and eluted with H2O: MeOH = 100: 0 to 0: 100. AJE-B4 + Fractions into 5a ~ i (Fig.3). At this time, a precipitate was deposited on B4 + 5e. This was collected by filtration and recrystallized to obtain Compound 22 (10.5 mg) (Fig. 6).

AJE-B4+5cをSephadex LH-20カラムに付し、CHCl3:MeOH = 50:50で溶出し、B4+5c-1〜6に分画した (Fig.6) 。さらにB4+5c-3をHPLC (COSMOSIL Cholester 10φ×250 mm、0.1 %TFA:MeOH=50:50) にかけ、B4+5c-3a〜cを得た。さらにB4+5c-3bをHPLC (Shodex GF310 HQ 4.6φ×250 mm、CHCl3:MeOH =95:5) にかけ、化合物23 (1.8 mg、保持時間22m00s)を得た (Fig.7) 。   AJE-B4 + 5c was applied to a Sephadex LH-20 column, eluted with CHCl3: MeOH = 50: 50, and fractionated into B4 + 5c-1 to 6 (Fig. 6). Further, B4 + 5c-3 was subjected to HPLC (COSMOSIL Cholester 10φ × 250 mm, 0.1% TFA: MeOH = 50: 50) to obtain B4 + 5c-3a to c. Further, B4 + 5c-3b was subjected to HPLC (Shodex GF310 HQ 4.6φ × 250 mm, CHCl 3: MeOH = 95: 5) to obtain Compound 23 (1.8 mg, retention time 22 m00s) (FIG. 7).

AJE-B4+5c-5をHPLC (COSMOSIL πNAP 10φ×250 mm、0.1 %TFA:MeOH=50:50) にかけ、化合物21 (4.4 mg、保持時間16m48s) を得た (Fig.6) 。   AJE-B4 + 5c-5 was subjected to HPLC (COSMOSIL πNAP 10φ × 250 mm, 0.1% TFA: MeOH = 50: 50) to obtain compound 21 (4.4 mg, retention time 16 m48s) (FIG. 6).

AJE-B4+5hをSephadex LH-20カラムに付し、H2O:MeOH = 40:60で溶出し、AJE-B4+5h-1〜6に分画し、そのうちB4+5h-6から化合物9が得られた(Fig.4)。   AJE-B4 + 5h was applied to a Sephadex LH-20 column, eluted with H2O: MeOH = 40: 60, and fractionated into AJE-B4 + 5h-1 to 6, of which B9 + 5h-6 Obtained (Fig.4).

AJE-B4+5h-3をHPLC (COSMOSIL Cholester 10φ×250 mm、0.1 %TFA:MeOH=63:37) にかけ、化合物11 (2.6 mg、保持時間30 m00s)、12 (1.4 mg、保持時間32m12s)、13 (3.2 mg、保持時間34m06s) を得た。   AJE-B4 + 5h-3 was subjected to HPLC (COSMOSIL Cholester 10φ × 250 mm, 0.1% TFA: MeOH = 63: 37), compound 11 (2.6 mg, retention time 30 m00s), 12 (1.4 mg, retention time 32 m12s) 13 (3.2 mg, retention time 34 m06 s) was obtained.

AJE-CをSilica gel カラム (8φ×16 cm) に付し、Hexane:EtOAc = 100:0〜0:100で溶出し、C1〜5を得た (Fig.8) 。   AJE-C was applied to a Silica gel column (8φ × 16 cm) and eluted with Hexane: EtOAc = 100: 0 to 0: 100 to obtain C1 to 5 (Fig. 8).

AJE-C2をHPLC (COSMOSIL 5C18-MS-II 10φ×250 mm、H2O:CH3CN = 70:30) にかけ、C2aとC2bに分画した。このうちC2bは化合物5 (64 mg、保持時間13m48s) であった (Fig.8) 。また、C2aをHPLC (COSMOSIL 5C18-MS-II 10φ×250 mm、H2O:CH3CN = 82:18) で精製し、化合物16 (2.7 mg、保持時間19m12s)を得た (Fig.8) 。   AJE-C2 was subjected to HPLC (COSMOSIL 5C18-MS-II 10φ × 250 mm, H2O: CH3CN = 70: 30) and fractionated into C2a and C2b. Of these, C2b was Compound 5 (64 mg, retention time 13m48s) (Fig.8). C2a was purified by HPLC (COSMOSIL 5C18-MS-II 10φ × 250 mm, H 2 O: CH 3 CN = 82: 18) to obtain Compound 16 (2.7 mg, retention time 19 m 12 s) (FIG. 8).

AJE-C3をODSカラム (2.7φ×15cm) に付せ、H2O:MeOH=100:0〜0:100で溶出し、AJE-C3a〜hに分画した。このうちC3dをHPLC (COSMOSIL πNAP 10φ×250 mm、0.1 %TFA:MeOH=50:50) にかけ、化合物1 (18.6 mg、保持時間13m12s) 及び2 (19.5 mg、保持時間16m10s) を得た (Fig.9) 。   AJE-C3 was applied to an ODS column (2.7φ × 15 cm), eluted with H 2 O: MeOH = 100: 0 to 0: 100, and fractionated into AJE-C3a to h. Among these, C3d was subjected to HPLC (COSMOSIL πNAP 10φ × 250 mm, 0.1% TFA: MeOH = 50: 50) to obtain compounds 1 (18.6 mg, retention time 13 m12s) and 2 (19.5 mg, retention time 16 m10s) (Fig. .9)

AJE-C3eをHPLC (COSMOSIL Cholester 10φ×250 mm、0.1 %TFA:CH3CN=60:40) にかけ、C3e-1〜5に分画した。さらにC3e-4をHPLC (COSMOSIL πNAP 10φ×250 mm、0.1 %TFA:MeOH=32:68) でC3e-4a〜4cに分画し、そのうち4cは化合物15 (3.3 mg、保持時間22m48s) として得られた (Fig.10)。   AJE-C3e was subjected to HPLC (COSMOSIL Cholester 10φ × 250 mm, 0.1% TFA: CH3CN = 60: 40) and fractionated into C3e-1 to 5. Further, C3e-4 was fractionated into C3e-4a to 4c by HPLC (COSMOSIL πNAP 10φ × 250 mm, 0.1% TFA: MeOH = 32: 68), 4c of which was obtained as compound 15 (3.3 mg, retention time 22m48s). (Fig.10).

AJE-C3e-5をHPLC (COSMOSIL πNAP 10φ×250 mm、0.1 %TFA:MeOH=40:60) にかけ、化合物3 (4.5 mg、保持時間13m50s) 及び4 (3.3 mg、保持時間17m24s) を得た (Fig.11) 。   AJE-C3e-5 was subjected to HPLC (COSMOSIL πNAP 10φ × 250 mm, 0.1% TFA: MeOH = 40: 60) to obtain compounds 3 (4.5 mg, retention time 13 m50s) and 4 (3.3 mg, retention time 17 m24s). (Fig.11)

AJE-D (250 mg/162.9 g) をHPLC (COSMOSIL πNAP 10φ×250 mm、0.1 %TFA:MeOH=40:60)にかけ、化合物8 (129 mg、保持時間9m00s) 及び10 (6.6 mg、保持時間13m48s) を得た (Fig.11) 。 AJE-D (250 mg / 162.9 g) was subjected to HPLC (COSMOSIL πNAP 10φ × 250 mm, 0.1% TFA: MeOH = 40: 60), and compound 8 (129 mg, retention time 9m00s) and 10 (6.6 mg, retention time) 13m48s) was obtained (Fig.11).

2 )クロロホルム溶出画分の分離
AJCをSilica gelカラム (12φ×20 cm) に付し、Hexane:EtOAc = 100:0〜0:100で溶出し、AJC-A〜Oに分画した。そのうちAJC-GをSilica gelカラム (3.5φ×20 cm) に付し、CHCl3:MeOH = 100:0〜0:100で溶出しAJC-G1〜5に分画した (Fig.12) 。さらにAJC-G3をHPLC (COSMOSIL 5C18-MS-II 10φ×250 mm、H2O:MeOH = 57:43) をかけ、化合物19 (342 mg、保持時間13m00s) を得た (Fig.13) 。
2) Separation of the fraction eluted with chloroform
AJC was applied to a Silica gel column (12φ × 20 cm), eluted with Hexane: EtOAc = 100: 0 to 0: 100, and fractionated into AJC-A to O. Among them, AJC-G was applied to a Silica gel column (3.5φ × 20 cm) and eluted with CHCl 3: MeOH = 100: 0 to 0: 100 and fractionated into AJC-G 1 to 5 (FIG. 12). Further, AJC-G3 was subjected to HPLC (COSMOSIL 5C18-MS-II 10φ × 250 mm, H 2 O: MeOH = 57: 43) to obtain Compound 19 (342 mg, retention time 13 m00s) (FIG. 13).

次に、化合物1-4の構造解析の結果について説明する。
化合物1(3''-(E)-p-Coumaroylquercitrin)
化合物1は黄色粉末で得られ、[α]25D -146°を示し、Negative FAB-MSからm/z 593 [M-H]-、HR-FAB-MSではm/z 593.1301 (calcd. 593.1294) に疑似分子イオンピークを示すことから、分子式C30H26O13が推定された。IRでは3378 cm-1に水酸基に基づく強い吸収、1654 cm-1にカルボニル基、1603 cm-1に共役二重結合に基づく吸収が観測された。UVスペクトルでは267 nmと315 nmに極大吸収が観測され、flavonoid誘導体が推定された(図5)。
Next, the results of the structural analysis of compound 1-4 will be described.
Compound 1 (3 ''-(E) -p-Coumaroylquercitrin)
Compound 1 is obtained as a yellow powder and exhibits [α] 25D -146 °. From Negative FAB-MS, m / z 593 [MH]-and HR-FAB-MS are simulated at m / z 593.1301 (calcd. 593.1294). The molecular formula C30H26O13 was estimated from the molecular ion peak. In IR, strong absorption based on a hydroxyl group was observed at 3378 cm-1, a carbonyl group at 1654 cm-1, and an absorption based on a conjugated double bond at 1603 cm-1. In the UV spectrum, maximum absorption was observed at 267 nm and 315 nm, and a flavonoid derivative was estimated (FIG. 5).

1H-NMRスペクトルでは、メタカップリングするプロトンシグナル [δH 6.23 (d, J = 2.0 Hz)、6.42 (d, J = 2.0 Hz)] 、ABXタイプに分裂するプロトンシグナル [δH6.89 (d, J = 8.3 Hz)、7.31 (d, J = 2.1 Hz) 及び7.33 (dd, J = 8.3, 2.1 Hz)]、A2B2タイプのプロトンシグナル [δH6.82 (d, J = 8.6 Hz)、7.50 (d, J = 8.6 Hz)] 及び、トランス二重結合を有するオレフィンプロトン [δH6.42 (d, J = 15.8 Hz)、7.62 (d, J = 15.8 Hz) ] が観測された。さらに、δH12.6にキレート水酸基、δH5.23には糖のアノメリックプロトンと思われるシグナルが観測された (図3) 。   In 1H-NMR spectrum, proton signal to metacouple [δH 6.23 (d, J = 2.0 Hz), 6.42 (d, J = 2.0 Hz)], proton signal to split into ABX type [δH6.89 (d, J = 8.3 Hz), 7.31 (d, J = 2.1 Hz) and 7.33 (dd, J = 8.3, 2.1 Hz)], A2B2 type proton signal [δH6.82 (d, J = 8.6 Hz), 7.50 (d, J = 8.6 Hz)] and olefinic protons [δH6.42 (d, J = 15.8 Hz), 7.62 (d, J = 15.8 Hz)] having a trans double bond were observed. Furthermore, a signal that appears to be a chelate hydroxyl group at δH12.6 and a sugar anomeric proton at δH5.23 was observed (FIG. 3).

13C-NMRスペクトル及びDEPTスペクトルでは、11個の4級炭素 (δC: 104.6, 121.2, 125.7, 134.9, 145.8, 149.0, 156.9, 157.8, 160.2, 161.7, 164.7)、16個のメチン (δC: 68.2, 68.7, 71.3, 74.2, 94.2, 99.2, 102.5, 115.2, 115.6, 116.3×3, 121.8, 130.7×2, 145.0, )、1個のメチル (δC: 17.6)、2つのカルボニル基 (δC: 166.9, 178.2) の存在が示された (図4) 。   In the 13C-NMR spectrum and DEPT spectrum, 11 quaternary carbons (δC: 104.6, 121.2, 125.7, 134.9, 145.8, 149.0, 156.9, 157.8, 160.2, 161.7, 164.7), 16 methines (δC: 68.2, 68.7, 71.3, 74.2, 94.2, 99.2, 102.5, 115.2, 115.6, 116.3 × 3, 121.8, 130.7 × 2, 145.0,), 1 methyl (δC: 17.6), 2 carbonyl groups (δC: 166.9, 178.2 ) (Fig. 4).

更に、HMQCスペクトルを解析して、化合物1の部分構造を推定した。化合物1を酸加水分解すると、Quercetin及びRhamnoseが検出された。1H-1H COSY及びHMQCスペクトルにより、糖をα-Rhamnoseと推定した。   Furthermore, the partial structure of Compound 1 was estimated by analyzing the HMQC spectrum. Quercetin and Rhamnose were detected by acid hydrolysis of compound 1. The sugar was estimated to be α-Rhamnose by 1H-1H COZY and HMQC spectra.

HMBCスペクトルにより、α-Rhamnoseの3''位に(E)-p-Coumaric acidが結合している事が推定された。以上により、化合物1を3''-(E)-p-Coumaroylquercitrin)と決定した。   From the HMBC spectrum, it was estimated that (E) -p-Coumaric acid was bound to the 3 ″ position of α-Rhamnose. Thus, Compound 1 was determined to be 3 ″-(E) -p-Coumaroylquercitrin).

化合物2(3''-(E)-(3'''-Methoxycaffeoyl)quercitrin)
化合物2は黄色粉末で得られ、 [α]25D -158°を示し、Negative FAB-MSからm/z 623 [M-H]-、HR-FAB-MSではm/z 623.1398 (calcd. 623.1399) に疑似分子イオンピーク示すことから、分子式C31H27O14が推定された。IRでは3422 cm-1に水酸基に基づく強い吸収、1653 cm-1カルボニル基、1603 cm-1に共役二重結合に基づく吸収が観測された。UVスペクトルでは267 nmと333 nmに極大吸収が観測され、flavonoid誘導体が推定された(図5)。
Compound 2 (3 ''-(E)-(3 '''-Methoxycaffeoyl) quercitrin)
Compound 2 is obtained as a yellow powder, shows [α] 25D -158 °, and is simulated by m / z 623 [MH]-from Negative FAB-MS and m / z 623.1398 (calcd. 623.1399) from HR-FAB-MS. The molecular formula C31H27O14 was estimated from the molecular ion peak. In IR, strong absorption based on hydroxyl groups was observed at 3422 cm-1, absorption based on conjugated double bonds at 1653 cm-1 carbonyl groups, and 1603 cm-1. In the UV spectrum, maximum absorption was observed at 267 nm and 333 nm, and a flavonoid derivative was estimated (FIG. 5).

1H-NMRスペクトルでは、メタカップリングするプロトンシグナル [δH6.24 (d, J = 2.0 Hz)、6.45 (br)] 、ABXタイプに分裂するプロトンシグナル [δH6.90 (d, J = 8.8 Hz)、7.32 (br)及び7.33 (br) と、6.83 (d, J = 8.0 Hz)、7.13 (dd, J=8.0, 2.0 Hz) 及び7.32 (br)] 及び、トランス二重結合を有するオレフィンプロトン [δH6.50 (d, J = 16.0 Hz)、7.61 (d, J = 16.0 Hz)] が観測された。さらに、δH3.83 (s) にメトキシル基に基づくプロトンシグナル、δH12.4にキレート水酸基、δH5.22 (d, J = 1.5 Hz) に糖のアノメリックプロトンと思われるシグナルが観測された (図3) 。   In 1H-NMR spectrum, proton signal metacoupling [δH6.24 (d, J = 2.0 Hz), 6.45 (br)], proton signal splitting into ABX type [δH6.90 (d, J = 8.8 Hz) , 7.32 (br) and 7.33 (br), 6.83 (d, J = 8.0 Hz), 7.13 (dd, J = 8.0, 2.0 Hz) and 7.32 (br)] and olefinic protons with trans double bonds [ δH6.50 (d, J = 16.0 Hz), 7.61 (d, J = 16.0 Hz)] was observed. Furthermore, a proton signal based on the methoxyl group was observed at δH3.83 (s), a chelate hydroxyl group at δH12.4, and a signal that was considered to be an anomeric proton of the sugar at δH5.22 (d, J = 1.5 Hz) (Fig. 3).

13C-NMRスペクトル及びDEPTスペクトルから、12個の4級炭素 (δC: 104.5, 121.2, 126.2, 135.0, 145.8, 148.5, 149.1, 149.8, 156.9, 157.8, 161.7, 164.8)、15個のメチン (δC: 68.2, 68.8, 71.3, 74.2, 94.2, 99.3, 102.6, 111.5, 115.6, 116.0×2, 116.1, 121.8, 123.6, 145.4)、1個のメチル (δC: 17.9)、1個のメトキシル基 (δC: 56.2)、2個のカルボニル基 (δC: 166.9, 178.2) が観測された (図4)。   From 13C-NMR spectrum and DEPT spectrum, 12 quaternary carbons (δC: 104.5, 121.2, 126.2, 135.0, 145.8, 148.5, 149.1, 149.8, 156.9, 157.8, 161.7, 164.8), 15 methines (δC: 68.2, 68.8, 71.3, 74.2, 94.2, 99.3, 102.6, 111.5, 115.6, 116.0 × 2, 116.1, 121.8, 123.6, 145.4), 1 methyl (δC: 17.9), 1 methoxyl group (δC: 56.2 ) And two carbonyl groups (δC: 166.9, 178.2) were observed (FIG. 4).

更に、HMQCスペクトルを解析して、化合物2の部分構造を推定した。また、1H-NMR及び13C-NMRのスペクトルデータを化合物1と比較すると非常に類似していることから、化合物2は1と同じQuercitrin誘導体であると推定した。よって、部分構造はQuercetinに由来するものであるということが推定される。     Further, the partial structure of Compound 2 was estimated by analyzing the HMQC spectrum. In addition, since the spectrum data of 1H-NMR and 13C-NMR were very similar when compared with compound 1, it was estimated that compound 2 was the same Quercitrin derivative as 1. Therefore, it is presumed that the partial structure is derived from Quercetin.

1H-1H COSY及びHMQCスペクトルにより、アノメリックプロトンシグナルδH5.23 (d, J = 1.5) から連接性を辿り、Fig. 26.のように糖部分のプロトン及びカーボンシグナルの帰属を行った。また、1JCHが176.2 Hzを示すことから1位の水素をα位と決定した。これより構成糖はα- Rhamnoseであると推定した。   From 1H-1H COZY and HMQC spectra, the continuity was traced from the anomeric proton signal δH5.23 (d, J = 1.5), and the proton and carbon signals of the sugar moiety were assigned as shown in Fig. 26. In addition, since 1JCH shows 176.2 Hz, the hydrogen at the 1-position was determined to be the α-position. From this, the constituent sugar was estimated to be α-Rhamnose.

HMBCスペクトルにより、δH7.61 (H-7''') からδC111.5 (C-2''')、123.6 (C-6''') にロングレンジ相関が認められた。またδH3.83 (OMe) 及びδH6.83 (H-5''')、7.32 (H-2''') からδC148.5 (C-3''') にロングレンジ相関が観測された。さらにδC166.9 (C-9''') にδH7.61 (H-7''')、6.50 (H-8''') のオレフィンプロトンからロングレンジ相関が観測された。また、δH6.50 (H-8''')、6.83 (H-5''') の水素からδC126.2 (C-1''')の炭素にロングレンジ相関が観測された。以上を踏まえ、HMBCの相関から推測すると、図6のような部分構造が考えられた。   From the HMBC spectrum, long range correlations were observed from δH7.61 (H-7 '' ') to δC111.5 (C-2' '') and 123.6 (C-6 '' '). Long range correlations were observed from δH3.83 (OMe) and δH6.83 (H-5 '' ') and 7.32 (H-2' '') to δC148.5 (C-3 '' '). Furthermore, long range correlations were observed from olefin protons at δH7.61 (H-7 '' ') and 6.50 (H-8' '') at δC166.9 (C-9 '' '). Long range correlations were observed from hydrogen at δH6.50 (H-8 '' ') and 6.83 (H-5' '') to carbon at δC126.2 (C-1 '' '). Based on the above, the partial structure as shown in FIG.

α-Rhamonoseの結合位置を決定するためHMBCスペクトルを解析した結果、δH5.22 (H-1') からδC135.0 (C-3) にロングレンジ相関が認められたことから、α-RhamonoseがQuercetinの3位に結合していることが明らかとなった。さらに、図6の構造の結合位置を決定するためにHMBCスペクトルを解析した結果、δH4.95 (H-3''') とδC166.9 (C-9''')にロングレンジ相関が認められたことから、α-Rhamnoseの3''位に図6.の構造が結合している事が明らかとなった。
以上の結果より、化合物2は3''-(E)-(3'''-Methoxycaffeoyl)quercitrinと決定した。
As a result of analyzing the HMBC spectrum to determine the binding position of α-Rhamonose, a long range correlation was observed from δH5.22 (H-1 ') to δC135.0 (C-3). It was revealed that it was linked to the third position of Quercetin. Furthermore, as a result of analyzing the HMBC spectrum in order to determine the bonding position of the structure of FIG. 6, long range correlation was observed in δH4.95 (H-3 ''') and δC166.9 (C-9'''). As a result, it became clear that the structure of Fig. 6 was bonded to the 3 "position of α-Rhamnose.
Based on the above results, Compound 2 was determined to be 3 ″-(E)-(3 ′ ″-Methoxycaffeoyl) quercitrin.

化合物3(2''-(E)-Cinnamoylquercitrin)
化合物3は黄色粉末で得られ、 [α]25D -143° を示し、Negative FAB-MSからm/z 577 [M-H]-、HR-FAB-MSではm/z 577.1350 (calcd. 577.1345) に疑似分子イオンピーク示すことから、分子式C30H26O12が推定された。IRでは3418 cm-1に水酸基に基づく強い吸収、1652 cm-1にカルボニル基、1606 cm-1に共役二重結合に基づく吸収が観測された。UVスペクトルでは267 nmと333 nmに極大吸収が観測され、flavonoid誘導体が推定された(図5参照)。
Compound 3 (2 ''-(E) -Cinnamoylquercitrin)
Compound 3 is obtained as a yellow powder and exhibits [α] 25D -143 °. From Negative FAB-MS, m / z 577 [MH]-and HR-FAB-MS are simulated at m / z 577.1350 (calcd. 577.1345). The molecular formula C30H26O12 was estimated from the molecular ion peak. In IR, a strong absorption based on a hydroxyl group was observed at 3418 cm-1, a carbonyl group at 1652 cm-1, and an absorption based on a conjugated double bond at 1606 cm-1. In the UV spectrum, maximum absorption was observed at 267 nm and 333 nm, and a flavonoid derivative was estimated (see FIG. 5).

1H-NMRスペクトルでは、メタカップリングするプロトンシグナル [δH 6.22 (d, J = 2.0 Hz)、6.42 (d, J = 2.0 Hz)] 、ABXタイプに分裂するプロトンシグナル [δH6.90 (d, J = 8.3 Hz)、7.30 (dd, J = 8.3, 2.3 Hz) 及び7.35 (d, J = 2.3 Hz)]及び、δH7.43, 7.74に5H分のプロトンシグナルが存在することから一置換ベンゼンの存在が推定された。さらにトランス二重結合を有するオレフィンプロトン [δH6.64 (d, J = 16.0 Hz)、7.67 (d, J = 16.0 Hz)] 及び、δH5.51 (d, J = 1.5 Hz) に糖のアノメリックプロトンと思われるシグナルが観測された (図3参照)) 。   In 1H-NMR spectrum, proton signal to metacouple [δH 6.22 (d, J = 2.0 Hz), 6.42 (d, J = 2.0 Hz)], proton signal to split into ABX type [δH6.90 (d, J = 8.3 Hz), 7.30 (dd, J = 8.3, 2.3 Hz) and 7.35 (d, J = 2.3 Hz)] and the presence of mono-substituted benzene due to the presence of 5H proton signals at δH7.43 and 7.74 Was estimated. In addition, olefinic protons with trans double bonds [δH6.64 (d, J = 16.0 Hz), 7.67 (d, J = 16.0 Hz)] and δH5.51 (d, J = 1.5 Hz) and sugar anomeric A signal that seems to be a proton was observed (see FIG. 3)).

13C-NMRスペクトル及びDEPTスペクトルでは、10個の4級炭素 (δC: 104.2, 120.7, 133.5, 134.1, 145.5, 148.8, 156.6, 157.5, 161.4, 164.5)、17個のメチン (δC: 68.7, 70.9, 71.6, 72.0, 93.9, 98.5, 98.9, 116.0, 116.1, 118.1 121.8, 128.6×2, 129.1×2, 130.7, 145.3)、1個のメチル (δC: 17.6)、2個のカルボニル基 (δC: 165.6, 178.2) が観測された (図4参照)。
さらに、13C-NMRスペクトル、DEPTスペクトル、HMQCスペクトル、及び、HMBCスペクトルの結果を利用して、化合物3の構造を解析した。
In the 13C-NMR spectrum and DEPT spectrum, 10 quaternary carbons (δC: 104.2, 120.7, 133.5, 134.1, 145.5, 148.8, 156.6, 157.5, 161.4, 164.5), 17 methines (δC: 68.7, 70.9, 71.6, 72.0, 93.9, 98.5, 98.9, 116.0, 116.1, 118.1 121.8, 128.6 × 2, 129.1 × 2, 130.7, 145.3), 1 methyl (δC: 17.6), 2 carbonyl groups (δC: 165.6, 178.2) was observed (see Fig. 4).
Further, the structure of Compound 3 was analyzed using the results of 13C-NMR spectrum, DEPT spectrum, HMQC spectrum, and HMBC spectrum.

化合物4(3''-(E)-Cinnamoylquercitrin)
化合物4は黄色粉末で得られ、 [α]25D -125° を示し、Positive FAB-MSからm/z 579 [M+H]+、HR-FAB-MSではm/z 579.1496 (calcd. 579.1501) に疑似分子イオンピークを示すことから、分子式C30H26O12が推定された。IRでは3422 cm-1に水酸基に基づく強い吸収、1653cm-1にカルボニル基、1607cm-1に共役二重結合に基づく吸収が観測された。UVスペクトルでは270 nmと340 nmに極大吸収が観測されたことから、flavonoid誘導体が推定された(図5)。
Compound 4 (3 ''-(E) -Cinnamoylquercitrin)
Compound 4 is obtained as a yellow powder and exhibits [α] 25D -125 °, from Positive FAB-MS m / z 579 [M + H] +, HR-FAB-MS m / z 579.1496 (calcd. 579.1501) The molecular formula C30H26O12 was estimated from quasi-molecular ion peak. In IR, strong absorption based on hydroxyl groups was observed at 3422 cm-1, carbonyl groups at 1653 cm-1, and absorption based on conjugated double bonds at 1607 cm-1. In the UV spectrum, maximum absorption was observed at 270 nm and 340 nm, and the flavonoid derivative was estimated (FIG. 5).

1H-NMRスペクトルでは、メタカップリングするプロトンシグナル [δH 6.22 (d, J = 2.0 Hz)、6.41 (d, J = 2.0 Hz)] 、ABXタイプに分裂するプロトンシグナル [δH6.90 (d, J = 8.3 Hz)、7.30 (dd, J = 8.3, 2.0 Hz) 及び7.32 (d, J = 2.0 Hz)] 及び、δH7.44 7.74に5H分のプロトンシグナルが存在することから、一置換ベンゼンの存在が推定された。さらにトランス二重結合を有するオレフィンプロトン [δH6.67 (d, J = 16.0 Hz)、7.72 (d, J = 16.0 Hz)] 及び、δH5.24 (d, J = 1.5 Hz) に糖のアノメリックプロトンと思われるシグナルが観測された (図3) 。   In 1H-NMR spectrum, proton signal to metacouple [δH 6.22 (d, J = 2.0 Hz), 6.41 (d, J = 2.0 Hz)], proton signal to split into ABX type [δH6.90 (d, J = 8.3 Hz), 7.30 (dd, J = 8.3, 2.0 Hz) and 7.32 (d, J = 2.0 Hz)] and δH7.44 7.74, because there is a proton signal for 5H, the presence of mono-substituted benzene Was estimated. In addition, olefinic protons with trans double bonds [δH6.67 (d, J = 16.0 Hz), 7.72 (d, J = 16.0 Hz)] and δH5.24 (d, J = 1.5 Hz) and sugar anomeric A signal that seems to be a proton was observed (Fig. 3).

13C-NMRスペクトル及びDEPTスペクトルでは、10個の4級炭素 (δC: 104.3, 120.8, 134.3, 134.6, 145.5, 148.7, 156.7, 157.5, 161.5, 164.4)、17個のメチン (δC: 68.4, 67.8, 70.9, 74.2, 93.8, 98.9, 102.1, 115.6×2, 118.8 121.5, 128.5×2, 129.2×2, 130.6, 144.5)、1個のメチル (δC: 17.6)、2個のカルボニル基 (δC: 166.2, 177.8)が観測された (図4)
さらに、13C-NMRスペクトル、DEPTスペクトル、HMQCスペクトル、及び、HMBCスペクトルの結果を利用して、化合物4の構造を解析した。
In the 13C-NMR spectrum and DEPT spectrum, 10 quaternary carbons (δC: 104.3, 120.8, 134.3, 134.6, 145.5, 148.7, 156.7, 157.5, 161.5, 164.4), 17 methines (δC: 68.4, 67.8, 70.9, 74.2, 93.8, 98.9, 102.1, 115.6 × 2, 118.8 121.5, 128.5 × 2, 129.2 × 2, 130.6, 144.5), 1 methyl (δC: 17.6), 2 carbonyl groups (δC: 166.2, 177.8) was observed (Fig. 4)
Furthermore, the structure of Compound 4 was analyzed using the results of 13C-NMR spectrum, DEPT spectrum, HMQC spectrum, and HMBC spectrum.

トリグリセライド(TG)蓄積抑制試験とグリセロール3リン酸脱水素酵素(GPDH)活性試験
1)3T3-L1前駆脂肪細胞から脂肪細胞への分化誘導及び促進試験
3T3-L1前駆脂肪細胞は、5% CO2下37℃で培養した。脂肪細胞分化抑制試験には対数増殖期の細胞を1.0×105 cells/ mLに調製し使用した。基本培地(10% FCSを含むDMEM培地)で2日間培養後(Day 0)、3-イソブチル-1-メチルキサンチン(IBMX, 500 μM)、デキサメタゾン(DEX, 1 μM)及びインスリン(10 μg/mL)を含有する分化誘導培地(10% FBSを含むDMEM培地)に試験薬物を添加し、3日間培養した(Day 3)。さらに、インスリン(10 μg/mL)を含有する分化維持培地に試験薬物を添加し、2日おきに同じ培地で交換し8日間培養した(Day 8)。分化した細胞の上清はチュープに回収し、脂肪細胞はリン酸緩衝生理食塩水(PBS(−))で2回洗浄した。1 mM EDTAを含むトリス−塩酸緩衝液25 mM Tri buffer ( pH 7.5) 500μlを加え、細胞を剥離し、1.5mlプラスチックチューブに回収した。氷水で冷やしながら、超音波処理により細胞膜を破壊後、4℃、15,000rpm、2分間遠心分離を行った。
Triglyceride (TG) accumulation inhibition test and glycerol triphosphate dehydrogenase (GPDH) activity test
1) Differentiation induction and promotion test from 3T3-L1 preadipocytes to adipocytes
3T3-L1 preadipocytes were cultured at 37 ° C. with 5% CO 2. For the adipocyte differentiation inhibition test, cells in the logarithmic growth phase were prepared at 1.0 × 10 5 cells / mL and used. After culturing in basic medium (DMEM medium containing 10% FCS) for 2 days (Day 0), 3-isobutyl-1-methylxanthine (IBMX, 500 μM), dexamethasone (DEX, 1 μM) and insulin (10 μg / mL) ) -Containing differentiation induction medium (DMEM medium containing 10% FBS) and cultured for 3 days (Day 3). Furthermore, the test drug was added to a differentiation maintenance medium containing insulin (10 μg / mL), and the culture medium was replaced with the same medium every two days and cultured for 8 days (Day 8). The supernatant of the differentiated cells was collected in a tube, and the adipocytes were washed twice with phosphate buffered saline (PBS (−)). 500 μl of 25 mM Tri buffer (pH 7.5) containing Tris-HCl buffer containing 1 mM EDTA was added, the cells were detached, and collected in a 1.5 ml plastic tube. While cooling with ice water, the cell membrane was disrupted by sonication, and then centrifuged at 4 ° C., 15,000 rpm for 2 minutes.

2)トリグリセライド(TG)含量の測定
細胞ホモジネートの一部分を取って、細胞内に蓄積されたトリグリセライド(TG)はラボアッセイトリグリセライド(和光純薬)を用いて定量した。
各サンプルの細胞ホモジネートにトリグリセライド発色試薬を添加してよく混合し、37℃で5分間加温した。ブランクを対照として、波長595 nmにおける検体及び基準液の吸光度を測定した。次式により抑制率を算出した。
2) Measurement of triglyceride (TG) content A portion of the cell homogenate was taken, and triglyceride (TG) accumulated in the cells was quantified using a lab assay triglyceride (Wako Pure Chemical Industries).
Triglyceride coloring reagent was added to the cell homogenate of each sample, mixed well, and heated at 37 ° C. for 5 minutes. Using the blank as a control, the absorbance of the sample and the reference solution at a wavelength of 595 nm was measured. The inhibition rate was calculated by the following formula.

抑制率 (%) = {(Y - X) / Y}× 100
X:試料を添加した際の1wellあたりのTG量を1wellあたりのDNA量で除したもの
Y:DMSOを添加した際の1wellあたりのTG量を1wellあたりのDNA量で除したもの。
3)グリセロール3リン酸脱水素酵素(GPDH)活性
細胞ホモジネートの一部分を取って、GPDHはGPDH活性測定キット(Primary Cell Co., Ltd.)を用いた。
Suppression rate (%) = {(Y-X) / Y} x 100
X: The amount of TG per well when the sample is added divided by the amount of DNA per well
Y: The amount of TG per well when DMSO is added divided by the amount of DNA per well.
3) A portion of glycerol 3-phosphate dehydrogenase (GPDH) active cell homogenate was taken and GPDH was used with a GPDH activity measurement kit (Primary Cell Co., Ltd.).

反応基質溶液を分光光度計用セルに入れ、セル内に検体を加え、波長340nmにおける吸光度の減少を経時測定し、1分間当りの吸光度の変化量(ΔO.D.)を求めた。 The reaction substrate solution was placed in a spectrophotometer cell, a sample was added to the cell, and the decrease in absorbance at a wavelength of 340 nm was measured over time to determine the amount of change in absorbance per minute (ΔO.D.).

活性値の計算:
検体1ml当りのGPDHが1分間に1μMのNADHを消費する活性を1Uとし、GPDH活性を次式で求めた(光路長が1cmの場合)。
Calculation of activity values:
The GPDH per 1 ml of the sample consumed 1 μM NADH per minute as 1 U, and the GPDH activity was calculated by the following formula (when the optical path length was 1 cm).

GPDH活性(U/ml)=ΔO.D.×0.482
ΔO.D.:1分間当たりの波長340nmにおける吸光度の変化量
抑制率 (%) = {(Y - X) / Y}× 100
X:試料を添加した際の1wellあたりのGPDH活性を1wellあたりのDNA量で除したもの
Y:DMSOを添加した際の1wellあたりのGPDH活性を1wellあたりのDNA量で除したもの。
GPDH activity (U / ml) = ΔO.D. × 0.482
ΔO.D .: Change in absorbance at a wavelength of 340 nm per minute
Suppression rate (%) = {(Y-X) / Y} x 100
X: GPDH activity per well when the sample is added divided by the amount of DNA per well
Y: GPDH activity per well when DMSO is added divided by the amount of DNA per well.

4)DNAの定量
細胞ホモジネートの一部分を取って、細胞内のDNAの量はDNA活性測定キット(Primary Cell Co. Ltd.)を用いて定量した。この結果、合歓花の抽出液、さらに、各画分について、TG蓄積抑制試験とGPDH活性試験を行ったところ、図2に示す通り、水画分及び酢酸エチル画分に強い効果が認められた。結果は、±SD(n=3)法で示されている。サンプルの濃度は30 μg/mlである。
4) Quantification of DNA A portion of the cell homogenate was taken, and the amount of intracellular DNA was quantified using a DNA activity measurement kit (Primary Cell Co. Ltd.). As a result, when a TG accumulation suppression test and a GPDH activity test were performed on the extract of Heiseihana and each fraction, a strong effect was recognized on the water fraction and the ethyl acetate fraction as shown in FIG. . The results are shown by the ± SD (n = 3) method. The sample concentration is 30 μg / ml.

さらに、合歓花より得られた化合物についてTG蓄積抑制試験とGPDH活性試験を行った。その結果を図7に示す。サンプルの濃度は、30μM である。ポジティブコントロールとして用いた脂肪細胞の分化及びTG蓄積抑制効果が知られているquercetin (5)と比較すると、全てのフラボノイドに、化合物5と同程度、もしくは強いTG蓄積及びGPDH活性の抑制が認められた。特に化合物2と化合物7に強い活性が認められた。 Furthermore, a TG accumulation suppression test and a GPDH activity test were performed on the compounds obtained from Heiseihana. The result is shown in FIG. The sample concentration is 30 μM. Compared with quercetin (5), which is known to have an adipocyte differentiation and TG accumulation inhibitory effect used as a positive control, all flavonoids showed similar or strong inhibition of TG accumulation and GPDH activity as compound 5. It was. In particular, strong activity was observed for Compound 2 and Compound 7.

以上説明したように、ネムノキの花部の抽出液の画分及び有効成分は、TG蓄積抑制作用と、GPDH活性の抑制作用によって、前記脂肪細胞を脂肪細胞に分化するのを抑制するとともに、脂肪細胞へのTGの蓄積を抑制することによって、抗肥満作用と、糖尿病改善効果を達成する。   As explained above, the fraction and active ingredient of the extract of the flower part of Nemnoki suppress the differentiation of the adipocytes into adipocytes by the TG accumulation inhibitory action and the GPDH activity inhibitory action, and the fat By inhibiting the accumulation of TG in cells, it achieves anti-obesity action and diabetes improvement effect.

本発明の有効成分を人間又は動物に対して適用するには、内服、注射、外用など公知の全ての剤型を用いることができる。本発明の有効成分は、薬剤、健康食品、外用剤として利用することができる。
In order to apply the active ingredient of the present invention to humans or animals, all known dosage forms such as internal use, injection, and external use can be used. The active ingredient of the present invention can be used as a drug, health food, and external preparation.

Claims (2)

ネムノキの合歓花の抽出物である、3''-(E)-(3'''-Methoxycaffeoyl)quercitrin又はRhamnetinを有効成分として含有することを特徴とする抗肥満剤又は糖尿病改善剤 An anti-obesity agent or a diabetes-improving agent characterized by containing 3 ″-(E)-(3 ′ ″-Methoxycaffeoyl) quercitrin or Rhamnetin as an active ingredient , which is an extract of Nemunoki. 前記抽出物が、前記花部の酢酸エチル又は水の画分に属する、請求項1記載の抗肥満剤又は糖尿病改善剤 The anti-obesity agent or diabetes improving agent according to claim 1, wherein the extract belongs to a fraction of ethyl acetate or water in the flower part .
JP2009051357A 2009-03-04 2009-03-04 Anti-obesity agent and diabetes-improving agent Expired - Fee Related JP5610179B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009051357A JP5610179B2 (en) 2009-03-04 2009-03-04 Anti-obesity agent and diabetes-improving agent
PCT/JP2010/001515 WO2010100933A1 (en) 2009-03-04 2010-03-04 Anti-obesity agent and diabetes-ameliorating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009051357A JP5610179B2 (en) 2009-03-04 2009-03-04 Anti-obesity agent and diabetes-improving agent

Publications (2)

Publication Number Publication Date
JP2010202602A JP2010202602A (en) 2010-09-16
JP5610179B2 true JP5610179B2 (en) 2014-10-22

Family

ID=42709499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009051357A Expired - Fee Related JP5610179B2 (en) 2009-03-04 2009-03-04 Anti-obesity agent and diabetes-improving agent

Country Status (2)

Country Link
JP (1) JP5610179B2 (en)
WO (1) WO2010100933A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5797372B2 (en) * 2009-03-31 2015-10-21 丸善製薬株式会社 Platelet aggregation inhibitor, stem cell growth factor (SCF) mRNA expression inhibitor, matrix metalloproteinase-1 (MMP-1) activity inhibitor, and matrix metalloproteinase-14 (MMP-14) activity inhibitor
KR101740116B1 (en) * 2014-04-07 2017-05-25 경희대학교 산학협력단 Novel Composition comprising 5,6-dihydroergosterol glycoside derivatives
JP6528238B2 (en) * 2015-07-09 2019-06-12 学校法人日本大学 Inhibitor of cell death due to endoplasmic reticulum stress, endoplasmic reticulum stress control agent, and prophylactic / therapeutic agent containing the control agent as an active ingredient
CN109890376A (en) * 2016-10-27 2019-06-14 三得利控股株式会社 Composition is used in PGC-1 α activation
CN106883278A (en) * 2017-03-21 2017-06-23 广东药科大学 A kind of 3,5,7 trihydroxy 2 (4 hydroxy phenyl) ketone derivatives of chromene 4
CN110872267B (en) * 2018-08-30 2022-07-08 复旦大学 Compound extracted from paper mulberry and application of compound in preparation of protein tyrosine phosphatase 1B inhibitor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515556B2 (en) * 1999-05-31 2010-08-04 日本製粉株式会社 Fat accumulation inhibitor, anti-obesity agent, food additive, food and pet food
KR100795822B1 (en) * 2006-03-24 2008-01-17 남종현 Natural plant extract composition for prevention and recovery of hyperlipidemia and stroke, natural tee including the same as effective components and the preparation method thereof

Also Published As

Publication number Publication date
WO2010100933A1 (en) 2010-09-10
JP2010202602A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
Kim et al. Anti-oxidative and inhibitory activities on nitric oxide (NO) and prostaglandin E 2 (COX-2) production of flavonoids from seeds of Prunus tomentosa Thunberg
JP5610179B2 (en) Anti-obesity agent and diabetes-improving agent
Yahagi et al. Flavonol acylglycosides from flower of Albizia julibrissin and their inhibitory effects on lipid accumulation in 3T3-L1 cells
Li et al. Study on chemical composition, anti-inflammatory and anti-microbial activities of extracts from Chinese pear fruit (Pyrus bretschneideri Rehd.)
Kuo et al. Chemical constituents from Lobelia chinensis and their anti-virus and anti-inflammatory bioactivities
Lystvan et al. Study on betalains in Celosia cristata Linn. callus culture and identification of new malonylated amaranthins
Emam et al. Isolation and structure elucidation of antioxidant compounds from leaves of Laurus nobilis and Emex spinosus
Kamiya et al. Chemical constituents of Baeckea frutescens leaves inhibit copper-induced low-density lipoprotein oxidation
Inngjerdingen et al. A comparison of bioactive aqueous extracts and polysaccharide fractions from roots of wild and cultivated Cochlospermum tinctorium A. Rich
Kim et al. Polyphenols suppress and modulate inflammation: possible roles in health and disease
Shaheen et al. Chemical constituents of Marrubium vulgare as potential inhibitors of nitric oxide and respiratory burst
JP2023027253A (en) Novel ellagitannin and agent for oral application
Seo et al. Chemical constituents from the aerial parts of Elsholtzia ciliata and their protective activities on glutamate-induced HT22 cell death
KR20170062563A (en) Method of increasing antioxidant and anti-inflammatory activity of Cassiae semen and the fermented extract having increased activity by that
JP2010043061A (en) Anti-helicobacter pylori agent
JP2010202558A (en) Antiobestic agent and diabetes-ameliorating agent
Hussein et al. Immunomodulatory and anti-inflammatory activities of the defatted alcoholic extract and mucilage of Hibiscus sabdariffa L. leaves, and their chemical characterization
Iannuzzi et al. Cornus sanguinea fruits: A source of antioxidant and antisenescence compounds acting on aged human dermal and gingival fibroblasts
Meyre-Silva et al. Phytochemical and pharmacological analysis of Bauhinia microstachya (Raddi) Macbr.(Leguminosae)
KR101453609B1 (en) Novel Hemiterpene Glucoside Compounds Isolated from the Leaves of Spiraea prunifolia and Anti-Oxidative and Anti-Inflammatory Use Thereof
WO2012144711A2 (en) Composition containing caryopteris incana extracts or a compound isolated therefrom for preventing and treating hepatotoxicity
KR20110035127A (en) Anti-inflammatory composition containing phlorotannins from ecklonia stolonifera and ecklonia cava extract as a effective component
Sun et al. NF-${\kappa} B $ Inhibitory Activities of Phenolic and Lignan Components from the Stems of Acanthopanax divaricatus var. albeofructus
DʼAngiolo et al. Chemical constituents of ulmus minor subsp. minor fruits used in the italian phytoalimurgic tradition and their Anti-inflammatory activity evaluation
Ko et al. Anti‐Inflammatory Constituents from the Branches of Pourthiaea villosa (Thunb.) Decne

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120302

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140820

R150 Certificate of patent or registration of utility model

Ref document number: 5610179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees