JP5608876B2 - Reduction method of valuable metal raw materials - Google Patents

Reduction method of valuable metal raw materials Download PDF

Info

Publication number
JP5608876B2
JP5608876B2 JP2013127403A JP2013127403A JP5608876B2 JP 5608876 B2 JP5608876 B2 JP 5608876B2 JP 2013127403 A JP2013127403 A JP 2013127403A JP 2013127403 A JP2013127403 A JP 2013127403A JP 5608876 B2 JP5608876 B2 JP 5608876B2
Authority
JP
Japan
Prior art keywords
raw material
valuable metal
reducing
metal
impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013127403A
Other languages
Japanese (ja)
Other versions
JP2013224493A (en
Inventor
マティンデ エリアス
光兀 日野
秀和 轟
祐介 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Nippon Yakin Kogyo Co Ltd
Original Assignee
Tohoku University NUC
Nippon Yakin Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Nippon Yakin Kogyo Co Ltd filed Critical Tohoku University NUC
Priority to JP2013127403A priority Critical patent/JP5608876B2/en
Publication of JP2013224493A publication Critical patent/JP2013224493A/en
Application granted granted Critical
Publication of JP5608876B2 publication Critical patent/JP5608876B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • Y02P10/212

Description

廃棄物等に含まれる有価金属成分をリサイクルすることで永続的に地球資源を節約および有効利用する分野に係り、特に、Ni、Coといった有価金属原料を還元処理する技術に関する。   The present invention relates to the field of permanently saving and effectively using earth resources by recycling valuable metal components contained in wastes and the like, and more particularly to a technique for reducing valuable metal raw materials such as Ni and Co.

Ni、Coといった有価金属を含む酸化物、水酸化物から構成される原料には、これらの金属から成る合金の酸洗スラッジや触媒などがあるが、基本的に産業廃棄物である。従来、これらは、高価な有価金属を含有しているにもかかわらず、用途がなく有効に利用されているとは言い難かった。その主な理由は、当該廃棄物から有価金属成分を回収する際に、P、S、Zn、Na等の不純物元素が混入してしまい、その除去が非常に難しく、回収される有価金属の品質が低いということが挙げられていた。特にPは、Niとともに還元されて金属Ni相に移行し、Ni−P合金を生成してしまうため、これらの分離が困難であった。   Raw materials composed of oxides and hydroxides containing valuable metals such as Ni and Co include pickling sludge and catalysts of alloys composed of these metals, but are basically industrial waste. Conventionally, it has been difficult to say that these contain no use and are effectively used despite containing expensive valuable metals. The main reason is that when recovering valuable metal components from the waste, impurity elements such as P, S, Zn, and Na are mixed in, and it is very difficult to remove them. Was mentioned as low. In particular, P is reduced together with Ni and shifts to a metallic Ni phase to form a Ni—P alloy, so that it is difficult to separate them.

このような状況に対して、有価金属であるNiを含む産業廃棄物から、金属Niを濃縮して回収する方法が開示されている(例えば、特許文献1参照)。この方法では、NiOやNi(OH)としてNiを含む産業廃棄物原料を粉砕し、高温の還元性気流中で金属Niに還元し、粉体粒子中にて、金属Niを濃縮した部分とP等の不純物を含有する脈石部分とに分離させ、それらを粉砕および選別することによって金属Niの濃縮部分の回収を行っている。 For such a situation, a method for concentrating and recovering metallic Ni from industrial waste containing Ni, which is a valuable metal, has been disclosed (for example, see Patent Document 1). In this method, an industrial waste raw material containing Ni as NiO or Ni (OH) 2 is pulverized, reduced to metallic Ni in a high-temperature reducing air stream, and a portion in which metallic Ni is concentrated in powder particles; The concentrated portion of metallic Ni is recovered by separating it into a gangue portion containing impurities such as P, and crushing and sorting them.

しかしながら、上記の方法では、原料を還元性気流中に浮遊させるために、粒径50μm以下まで粉砕することが要求され、原料としては例えば液状の物等は使用することができず、対象が粉体原料に限られるという問題を有している。また、粒径が大きいほどNiへの還元反応が進行しにくく、95%の還元率を達成するためには原料を6μm以下にまで微粉砕しなければならないという問題を有している。   However, in the above method, in order to float the raw material in the reducing air flow, it is required to grind to a particle size of 50 μm or less. For example, a liquid material cannot be used as the raw material, and the target is powder. It has a problem that it is limited to body materials. Further, the larger the particle size, the more difficult the reduction reaction to Ni proceeds, and there is a problem that the raw material must be finely pulverized to 6 μm or less in order to achieve a reduction rate of 95%.

さらに、上記の方法では、1000℃を超える温度下で還元性ガスに加えて支燃性ガスを添加した弱還元性雰囲気中で反応を行っているため、不純物のPOがPに還元されてしまうことは抑制できるものの、NiOやNi(OH)のNiへの還元までもが不十分となってしまう。例えば実施例において100μmを超える粒子では、Niへの還元率が50%を下回るなど、有価金属成分が充分に還元及び回収されていない。このように、強還元性条件下におけるNi中へのPの混入、すなわちNi−P合金の生成を抑制するという課題は、依然として解決が求められている。 Furthermore, in the above method, because a reaction in a weakly reducing atmosphere in addition to the reducing gas was added combustion-supporting gas at a temperature exceeding 1000 ° C., PO X impurities is reduced to P Although it can be suppressed, the reduction of NiO or Ni (OH) 2 to Ni becomes insufficient. For example, particles having a particle size exceeding 100 μm in the examples do not sufficiently reduce and recover valuable metal components such that the reduction rate to Ni is less than 50%. Thus, the problem of suppressing the mixing of P into Ni under strongly reducing conditions, that is, the formation of a Ni—P alloy, still needs to be solved.

特開2006−176830号公報JP 2006-176830 A

このように、廃棄物等の有価金属原料において、強還元条件でNi等の有価金属をほぼ完全に還元し、かつ上述したような不純物元素、特にP、S、Zn、Naを除去することができれば、原料の有価金属成分を高純度でかつ効率良く回収することが可能となる。そこで、本発明の目的は、Ni、Coといった有価金属を含む酸化物、水酸化物から構成される原料に含まれるP、S、Zn、Naを除去し、効果的に有価金属を回収する還元方法を提案することにある。   In this way, in valuable metal raw materials such as waste, it is possible to almost completely reduce valuable metals such as Ni under strong reduction conditions, and to remove the impurity elements, particularly P, S, Zn, and Na as described above. If possible, the valuable metal component of the raw material can be recovered with high purity and efficiency. Accordingly, an object of the present invention is to reduce P, S, Zn, and Na contained in raw materials composed of oxides and hydroxides containing valuable metals such as Ni and Co, and effectively recover valuable metals. To propose a method.

本発明は、上記状況に鑑みてなされたものであり、本発明の有価金属原料の還元方法は、Ni、Coの少なくとも1種を4mass%以上含む酸化物および/または水酸化物で構成される有価金属原料の還元方法であって、原料は不純物としてP、S、Na、Zn、脈石を少なくとも含有し、この原料に炭素源を有価金属と結合している酸素のモル量と同一比率以上混合し、不活性ガス雰囲気にて500〜1000℃に加熱して還元しつつ、前記温度範囲にて、不純物のPをPOおよびPO のガス形態で、不純物のSを単体のS、SOおよびSO のガス形態にて、不純物のNaおよびZnを単体のNaおよびZn金属蒸気の形態にて揮発除去し、有価金属を回収することを特徴としている。

The present invention has been made in view of the above situation, and the method for reducing a valuable metal raw material according to the present invention is composed of an oxide and / or a hydroxide containing at least one of Ni and Co by 4 mass% or more. A method for reducing a valuable metal raw material, wherein the raw material contains at least P, S, Na, Zn, and gangue as impurities, and at least the same ratio as the molar amount of oxygen that binds the carbon source to the valuable metal in this raw material While being mixed and heated to 500 to 1000 ° C. in an inert gas atmosphere for reduction, in the temperature range, the impurity P is in the form of PO and PO 2 , and the impurity S is single S, SO, and It is characterized by recovering valuable metals by volatilizing and removing impurities Na and Zn in the form of simple Na and Zn metal vapor in the form of SO 2 gas .

また、本発明においては、原料と炭素源を混合し、圧縮成型体とし、その圧縮成型体の最大径は1mm〜30mmであることを好ましい態様としている。   Moreover, in this invention, it is set as the preferable aspect that a raw material and a carbon source are mixed and it is set as a compression molding body, and the maximum diameter of the compression molding body is 1 mm-30 mm.

本発明によれば、強還元性雰囲気にて還元を行っているので、有価金属成分の還元率が飛躍的に向上しており、かつ1000℃以下の温度で反応を行っているので、不純物の中でも特にP成分はPまで還元されず、酸化リンの形で揮発して、系外へ除去することができる。また、炭素源と混合することができる原料であれば粉体に限定されず、液状、ゲル状等、あらゆる性状の有価金属原料を利用することができる。   According to the present invention, since the reduction is performed in a strongly reducing atmosphere, the reduction rate of the valuable metal component is dramatically improved and the reaction is performed at a temperature of 1000 ° C. or less, so In particular, the P component is not reduced to P, but volatilizes in the form of phosphorus oxide and can be removed out of the system. In addition, the raw material can be mixed with the carbon source, and is not limited to powder, and valuable metal raw materials having all properties such as liquid and gel can be used.

Ni、Coといった有価金属原料を還元処理し、リサイクルすることで永続的に地球資源を節約する。この発明の還元方法により得られる有価金属は、不純物元素が少ないので、ステンレス鋼、Ni基合金、Fe−Ni系合金、Co含有合金の原料として使用可能である。   By reducing and recycling valuable metal raw materials such as Ni and Co, global resources can be saved permanently. Since valuable metals obtained by the reduction method of the present invention have few impurity elements, they can be used as raw materials for stainless steel, Ni-based alloys, Fe-Ni alloys, and Co-containing alloys.

まず、本発明者らは、Ni、Coの少なくとも1種を4mass%以上含む酸化物および/または水酸化物で構成される有価金属原料に着目して、化学分析を行ったところ、不純物としてP、S、Na、Zn、脈石の1種または2種以上を含有していることを見出した。ここで言う脈石とは、SiO、CaO、Al、MgOなどのいわゆるスラグ分である。例えば、このままステンレス鋼などの合金の原料に使用すると、電気炉で溶解した際に、通常、溶鋼中CやSiによって還元されて、P、S、Znが溶鋼に混入してしまうことがわかった。そのため、本原料は事前に前処理として、不純物を除去する工程とともに、有価金属の還元処理を行うべきとの結論に至った。 First, the inventors conducted a chemical analysis focusing on a valuable metal raw material composed of an oxide and / or hydroxide containing at least one of Ni and Co at 4 mass% or more. , S, Na, Zn, found to contain one or more of gangue. The gangue referred to here, it is a so-called slag content, such as SiO 2, CaO, Al 2 O 3, MgO. For example, when used as it is as a raw material for alloys such as stainless steel, it was found that when melted in an electric furnace, it is usually reduced by C or Si in the molten steel, and P, S, and Zn are mixed into the molten steel. . Therefore, it came to the conclusion that this raw material should carry out the reduction | restoration process of a valuable metal with the process of removing an impurity as a pretreatment in advance.

上記の結論に対して、本発明者らが鋭意研究を重ねたところ以下の知見を得た。
P、S、Zn、Naなどはある温度域で蒸気圧が高い酸化物種があり、炭素源を混合して昇温し還元処理する際に、ともに蒸発させれば、不純物除去とともに有価金属の還元処理も実現できると考えた。そこで、炭素源としてコークス粉と有価金属原料を種々の比率で混合して、φ5mm×20mm高さのペレットに圧粉成形し、室温〜1500℃に加熱した。揮発物質が特定できるように、実験には質量分析計を用いた。実験条件によっては、Arガスまたは窒素ガス雰囲気下で還元処理した。ある条件では、実験前に真空に引いてArガスまたは窒素ガスを置換した。このようにして得た還元後の試料を、SEMにより観察して、場合によってはEDSにより局所分析を行った。
In response to the above conclusions, the present inventors conducted extensive research and obtained the following findings.
P, S, Zn, Na, etc. are oxide species having a high vapor pressure in a certain temperature range. When the carbon source is mixed and heated to perform reduction treatment, if it is evaporated together, impurities are removed and the valuable metal is reduced. We thought that processing could be realized. Therefore, coke powder and valuable metal raw material as a carbon source were mixed at various ratios, compacted into pellets having a height of φ5 mm × 20 mm, and heated to room temperature to 1500 ° C. A mass spectrometer was used for the experiment so that volatile substances could be identified. Depending on the experimental conditions, reduction treatment was performed in an Ar gas or nitrogen gas atmosphere. Under certain conditions, a vacuum was drawn before the experiment to replace Ar gas or nitrogen gas. The reduced sample thus obtained was observed by SEM, and in some cases, local analysis was performed by EDS.

これらの実験を重ねることにより、以下の結果を得るに至った。
1)有価金属と結合している酸素のモル量と同一比率以上混合の炭素源を添加しないと、不純物が揮発しない。
2)500〜1000℃において、SはS、SO、SOの形態で揮発する。
3)500〜1000℃において、PはPO、POの形態で揮発する。
4)500〜1000℃において、NaはNaの形態で揮発する。
5)500〜1000℃において、Znは金属Znの形態で揮発する。
6)1000℃を超えると、Pは金属Pの形態で揮発する。
7)Ni、Coは、700℃程度で還元を開始し、1000℃を超えると50%以上還元する。
8)Feは1000℃を超えると還元を開始し、1200℃を超えると50%以上還元する。
9)Crが含まれる場合、Crは1200℃を超えると還元する。
10)Arガスまたは窒素ガス雰囲気下で還元処理する方が還元、不純物除去ともに好ましい。
11)事前に真空引きした方が、不純物の揮発に好ましい。
12)Ni、Coの金属相には、場合によりFe、Crを含有する。
13)金属相以外は、脈石成分(SiO、CaO、Al、MgOなどのいわゆるスラグ分)である。場合により、リン酸化合物も含まれる。
By repeating these experiments, the following results were obtained.
1) Impurities will not volatilize unless a carbon source mixed in the same proportion or more as the molar amount of oxygen bonded to valuable metals is added.
2) At 500 to 1000 ° C., S volatilizes in the form of S, SO, SO 2 .
3) At 500 to 1000 ° C., P volatilizes in the form of PO and PO 2 .
4) At 500-1000 ° C, Na volatilizes in the form of Na.
5) At 500-1000 ° C., Zn volatilizes in the form of metallic Zn.
6) Above 1000 ° C, P volatilizes in the form of metal P.
7) Ni and Co start to be reduced at about 700 ° C., and are reduced by 50% or more when the temperature exceeds 1000 ° C.
8) When Fe exceeds 1000 ° C., reduction starts, and when it exceeds 1200 ° C., it is reduced by 50% or more.
9) When Cr is contained, Cr is reduced when it exceeds 1200 ° C.
10) It is preferable to perform reduction treatment in an Ar gas or nitrogen gas atmosphere for both reduction and impurity removal.
11) Vacuuming in advance is preferable for impurity volatilization.
12) The Ni and Co metal phases optionally contain Fe and Cr.
13) other than the metal phase is a gangue component (SiO 2, CaO, called slag component such as Al 2 O 3, MgO). In some cases, a phosphate compound is also included.

本発明はこのように実験を重ねて成されたものである。すなわち、本発明は、Ni、Coの少なくとも1種を4mass%以上含む酸化物および/または水酸化物で構成される有価金属原料の還元方法であって、この原料は不純物としてP、S、Na、Zn、脈石の1種または2種以上を含有し、この原料に炭素源を有価金属と結合している酸素のモル量と同一比率以上混合し、Arまたは窒素ガスなどの不活性ガス雰囲気にて500〜1000℃に加熱して還元し、有価金属を回収することを特徴とする有価金属原料の還元方法である。   The present invention has been made through such experiments. That is, the present invention is a method for reducing a valuable metal raw material composed of an oxide and / or hydroxide containing 4 mass% or more of at least one of Ni and Co, wherein the raw material is P, S, Na as impurities. , Zn, or one or more of gangue, and a carbon source is mixed with this raw material in an amount equal to or higher than the molar amount of oxygen bonded to the valuable metal, and an inert gas atmosphere such as Ar or nitrogen gas And reducing the valuable metal by heating to 500-1000 ° C. and recovering the valuable metal.

以下に本発明の還元方法を実施するにあたり、最良の形態を説明する。
まず、本発明が対象とする原料は、Ni、Coの少なくとも1種を4mass%以上含む酸化物および/または水酸化物で構成される有価金属原料であるが、4mass%以上を対象とした理由は、含有量が4mass%未満では、NiおよびCoの回収量に対する処理費用の方が高くなってしまうためである。
The best mode for carrying out the reduction method of the present invention will be described below.
First, the raw material targeted by the present invention is a valuable metal raw material composed of an oxide and / or hydroxide containing 4 mass% or more of at least one of Ni and Co. The reason for targeting 4 mass% or more This is because if the content is less than 4 mass%, the processing cost for the recovered amount of Ni and Co becomes higher.

この原料は不純物としてP、S、Na、Zn、脈石の1種または2種以上を含有するが、その含有量は合計で30mass%以下が好ましい。その理由は、30mass%を超えて多すぎると、揮発除去が難しいとか、できたとしてもコスト高となってしまうからである。   This raw material contains one or more of P, S, Na, Zn, and gangue as impurities, and the total content is preferably 30 mass% or less. The reason is that if it exceeds 30 mass% and is too much, devolatilization is difficult or even if it is possible, the cost is high.

この原料に対して、有価金属と結合している酸素のモル量と同一比率以上の炭素源を混合する。炭素源と混合した有価金属原料は、最大径1mm〜30mmの範囲のペレット状に圧縮成型が行われ、還元反応に供されると好ましい。ペレットの寸法をこの範囲とした理由は、1mm未満では、ペレットの製造効率が悪化し、逆に30mmを超えると、不純物成分をペレット内部から系外に除去することが困難になる。本発明においては、有価金属原料を炭素源と混合して上記範囲のペレットとして還元反応に供するので、粉体は勿論、液状、ゲル状といったあらゆる性状の産業廃棄物に適用することができる。なお、廃棄物が固体の場合は、公知の方法で粉砕して粉体として用いることができる。   A carbon source having a ratio equal to or higher than the molar amount of oxygen bonded to the valuable metal is mixed with this raw material. The valuable metal raw material mixed with the carbon source is preferably compressed into a pellet having a maximum diameter of 1 mm to 30 mm and subjected to a reduction reaction. The reason why the size of the pellet is in this range is that if it is less than 1 mm, the manufacturing efficiency of the pellet is deteriorated. Conversely, if it exceeds 30 mm, it is difficult to remove the impurity component from the inside of the pellet to the outside of the system. In the present invention, a valuable metal raw material is mixed with a carbon source and subjected to a reduction reaction as pellets in the above range, so that it can be applied to industrial wastes of all properties such as liquid and gel as well as powder. In addition, when a waste is a solid, it can grind | pulverize by a well-known method and can be used as a powder.

続いて、この原料を500〜1000℃に加熱して有価金属を還元する。500℃未満では、反応が進まず不純物の揮発が進まないだけではなく、還元も進まない。一方、1000℃を超えて高いと、Pが金属Pの形態で揮発しやすくなる。気体のPは大気と触れると、急激に酸素と反応して、爆発する危険がある。そのため、温度は500〜1000℃とした。   Subsequently, this raw material is heated to 500 to 1000 ° C. to reduce valuable metals. Below 500 ° C., the reaction does not proceed and the volatilization of impurities does not proceed, and the reduction does not proceed. On the other hand, when the temperature is higher than 1000 ° C., P tends to volatilize in the form of metal P. When gaseous P comes into contact with the atmosphere, it reacts with oxygen suddenly and there is a risk of explosion. Therefore, the temperature was set to 500 to 1000 ° C.

また、不活性ガス雰囲気にて上記の処理を行うと、より酸素を排除することができるために、より高い還元率が得られ、不純物含有量も低下する。不活性ガスとしては、Arまたは窒素が汎用的であり、また安価であるため望ましいが、He、Neなどのガスであっても構わない。   In addition, when the above treatment is performed in an inert gas atmosphere, oxygen can be more eliminated, so that a higher reduction rate is obtained and the impurity content is also reduced. As the inert gas, Ar or nitrogen is generally used and is preferable because it is inexpensive, but a gas such as He or Ne may be used.

このようにして還元処理した試料を粉砕して、脈石と金属に分離する。そして、水中にて浮遊選鉱すると金属分のみ抽出できる。もちろん、スラグを含有したまま、合金原料として電気炉などで使用しても構わない。   The sample thus reduced is pulverized and separated into gangue and metal. And only metal can be extracted by flotation in water. Of course, it may be used as an alloy material in an electric furnace or the like while containing slag.

以上のように処理された試料に含まれるP、S、Na、Znは合計で5mass%以下まで低下することが望ましい。この理由は、合金の溶解原料に用いるのに、不純物が少ないのが好ましいからである。好ましくは3mass%以下である。   It is desirable that P, S, Na, and Zn contained in the sample processed as described above decrease to a total of 5 mass% or less. This is because it is preferable to use less impurities for use as a melting raw material for the alloy. Preferably it is 3 mass% or less.

以下に幾つかの実施例を示し、本発明の効果を明確にする。
[実施例1]
下記表1に示す化学成分を持つ有価金属原料Aに15mass%の炭素を混合し、φ5mm×20mmLに圧粉成形した。この円筒ペレットを4mm程度に分割して焼成試料とした。試料の重量は0.4gであった。これをAl製容器(ボート)に乗せて、機密性の高いAl製炉心管内(25×20×850mm)に設置した。まず炉心管内を真空引きし、その後Arガスを導入した。そのまま続けてAl製管内にArガスを6cc/分の流量で流し、還元雰囲気を保持しながら、Al製管を電気炉内で室温から5℃/分の昇温速度で1000℃まで加熱した。その間に原料から揮発するガスをステンレス製毛細管で四重極質量分析計に導き、各温度におけるガス種の同定とイオン電圧の測定を行った。イオン電圧とは蒸発している分圧に従って発生する電圧である。最終的に試料を回収し、金属部をSEMで観察し、さらにEDSにより化学成分を分析した。
Several examples are shown below to clarify the effects of the present invention.
[Example 1]
The valuable metal raw material A having chemical components shown in Table 1 below was mixed with 15 mass% carbon and compacted to φ5 mm × 20 mmL. The cylindrical pellet was divided into about 4 mm to obtain a fired sample. The sample weight was 0.4 g. This was placed in an Al 2 O 3 container (boat) and installed in a highly confidential Al 2 O 3 furnace core tube (25 × 20 × 850 mm). First, the inside of the furnace tube was evacuated, and then Ar gas was introduced. Flushed with Ar gas made of Al 2 O 3 tube continues as 6 cc / min flow rate, while maintaining a reducing atmosphere, made of Al 2 O 3 tube in an electric furnace at a heating rate of 5 ° C. / min from room temperature Heated to 1000 ° C. In the meantime, gas volatilized from the raw material was introduced into a quadrupole mass spectrometer with a stainless steel capillary tube, and the gas species were identified and the ion voltage was measured at each temperature. The ion voltage is a voltage generated according to the partial pressure being evaporated. Finally, the sample was collected, the metal part was observed with SEM, and the chemical components were analyzed with EDS.

さらに、実験後の試料をSEMで観察しEDSで分析したところ、99mass%Niであり残部がCrとFeから構成される金属が得られた。また、空隙にCaO−SiO−Al−Pから成る脈石成分が見られた。およそ、体積率で10%ほどであった。金属中にS、Na、Znは検出されなかった。一部にPが確認されたが、全体的な分析によれば0.01mass%であった。 Furthermore, when the sample after the experiment was observed by SEM and analyzed by EDS, a metal composed of 99 mass% Ni and the balance being Cr and Fe was obtained. Further, gangue component consisting of CaO-SiO 2 -Al 2 O 3 -P 2 O 5 to voids were observed. The volume ratio was about 10%. S, Na, and Zn were not detected in the metal. Although P was confirmed in part, it was 0.01 mass% according to the overall analysis.

Figure 0005608876
Figure 0005608876

[実施例2]
表2に示す化学成分を持つ有価金属原料Bに15mass%の炭素を混合し、φ5mm×20mmLに圧粉成形した。この円筒ペレットを4mm程度に分割して焼成試料とした。試料の重量は0.3gであった。これをAl製容器(ボート)に乗せて、機密性の高いAl製炉心管内(25×20×850mm)に設置した。Al製管内にArガスを6cc/分の流量で流し、還元雰囲気を保持しながら、Al製管を電気炉内で室温から5℃/分の昇温速度で1000℃まで加熱した。その間に原料から揮発するガスをステンレス製毛細管で四重極質量分析計に導き、各温度におけるガス種の同定とイオン電圧の測定を行った。イオン電圧とは蒸発している分圧に従って発生する電圧である。最終的に試料を回収し、金属部をSEMで観察し、さらにEDSにより化学成分を分析した。
[Example 2]
15 mass% carbon was mixed with the valuable metal raw material B having the chemical components shown in Table 2 and compacted to φ5 mm × 20 mmL. The cylindrical pellet was divided into about 4 mm to obtain a fired sample. The sample weight was 0.3 g. This was placed in an Al 2 O 3 container (boat) and installed in a highly confidential Al 2 O 3 furnace core tube (25 × 20 × 850 mm). Al flowing 2 O 3 manufactured tract Ar gas 6 cc / min flow rate, while maintaining a reducing atmosphere, the Al 2 O 3 manufactured tube to 1000 ° C. at a heating rate of 5 ° C. / min from room temperature in an electric furnace Heated. In the meantime, gas volatilized from the raw material was introduced into a quadrupole mass spectrometer with a stainless steel capillary tube, and the gas species were identified and the ion voltage was measured at each temperature. The ion voltage is a voltage generated according to the partial pressure being evaporated. Finally, the sample was collected, the metal part was observed with SEM, and the chemical components were analyzed with EDS.

さらに、実験後の試料をSEMで観察しEDSで分析したところ、98mass%Niであり残部がCrとFeから構成される金属が得られた。全体分析でも、金属中のP、S、Na、Znは合計で0.3mass%であった。   Furthermore, when the sample after the experiment was observed by SEM and analyzed by EDS, a metal composed of 98 mass% Ni and the balance consisting of Cr and Fe was obtained. Even in the overall analysis, the total amount of P, S, Na, and Zn in the metal was 0.3 mass%.

Figure 0005608876
Figure 0005608876

[参考例]
表3に示す化学成分を持つ有価金属原料Cに15mass%の炭素を混合し、φ5mm×20mmLに圧粉成形した。この円筒ペレットを5mm程度に分割して焼成試料とした。試料の重量は0.5gであった。これをAl製容器(ボート)に乗せて、機密性の高いAl製炉心管内(25×20×850mm)に設置した。Al製管内を2.7×10−4Paの真空度に減圧して、還元雰囲気を保持しながら、Al製管を電気炉内で室温から5℃/分の昇温速度で1000℃まで加熱した。その間に原料から揮発するガスをステンレス製毛細管で四重極質量分析計に導き、各温度におけるガス種の同定とイオン電圧の測定を行った。イオン電圧とは蒸発している分圧に従って発生する電圧である。最終的に試料を回収し、金属部をSEMで観察し、さらにEDSにより化学成分を分析した。上記で説明したのと同じ傾向が確認され、Ni−Fe−Co合金が得られた。全体分析でも、金属中のP、S、Na、Znは合計で0.5mass%であった。
[Reference example]
Valuable metal raw material C having chemical components shown in Table 3 was mixed with 15 mass% of carbon, and compacted to φ5 mm × 20 mmL. The cylindrical pellet was divided into about 5 mm to obtain a fired sample. The sample weight was 0.5 g. This was placed in an Al 2 O 3 container (boat) and installed in a highly confidential Al 2 O 3 furnace core tube (25 × 20 × 850 mm). The temperature of the Al 2 O 3 pipe was increased from room temperature to 5 ° C./min in the electric furnace while maintaining a reducing atmosphere by reducing the pressure inside the Al 2 O 3 pipe to 2.7 × 10 −4 Pa. Heated to 1000 ° C. at a rate. In the meantime, gas volatilized from the raw material was introduced into a quadrupole mass spectrometer with a stainless steel capillary tube, and the gas species were identified and the ion voltage was measured at each temperature. The ion voltage is a voltage generated according to the partial pressure being evaporated. Finally, the sample was collected, the metal part was observed with SEM, and the chemical components were analyzed with EDS. The same tendency as described above was confirmed, and a Ni—Fe—Co alloy was obtained. Even in the overall analysis, the total amount of P, S, Na, and Zn in the metal was 0.5 mass%.

Figure 0005608876
Figure 0005608876

[比較例]
比較のために、表1、2、3に示した原料A、B、C、それぞれについて加熱温度を400℃に留めた実験を実施した。すなわち、有価金属原料A、B、Cに15mass%の炭素を混合し、φ5mm×20mmLに圧粉成形した。この円筒ペレットを4mm程度に分割して焼成試料とした。試料の重量は0.3gであった。これをAl製容器(ボート)に乗せて、機密性の高いAl製炉心管内(25×20×850mm)に設置した。Al製管内にArガスを6cc/分の流量で流し、還元雰囲気を保持しながら、Al製管を電気炉内で室温から5℃/分の昇温速度で400℃まで加熱した。なお、実験時間を合わせるために、400℃で200分保持した。その間に原料から揮発するガスをステンレス製毛細管で四重極質量分析計に導き、各温度におけるガス種の同定とイオン電圧の測定を行った。イオン電圧とは蒸発している分圧に従って発生する電圧である。最終的に試料を回収し、金属部をSEMで観察し、さらにEDSにより化学成分を分析した。
[Comparative example]
For comparison, an experiment was performed in which the heating temperature was kept at 400 ° C. for each of the raw materials A, B, and C shown in Tables 1, 2, and 3. That is, 15 mass% carbon was mixed with the valuable metal raw materials A, B, and C, and compacted to φ5 mm × 20 mmL. The cylindrical pellet was divided into about 4 mm to obtain a fired sample. The sample weight was 0.3 g. This was placed in an Al 2 O 3 container (boat) and installed in a highly confidential Al 2 O 3 furnace core tube (25 × 20 × 850 mm). Al flowing 2 O 3 manufactured tract Ar gas 6 cc / min flow rate, while maintaining a reducing atmosphere, the Al 2 O 3 manufactured tube to 400 ° C. at a heating rate of 5 ° C. / min from room temperature in an electric furnace Heated. In order to match the experiment time, the temperature was kept at 400 ° C. for 200 minutes. In the meantime, gas volatilized from the raw material was introduced into a quadrupole mass spectrometer with a stainless steel capillary tube, and the gas species were identified and the ion voltage was measured at each temperature. The ion voltage is a voltage generated according to the partial pressure being evaporated. Finally, the sample was collected, the metal part was observed with SEM, and the chemical components were analyzed with EDS.

その結果、還元は進んでおらず、金属相は確認されなかった。さらに、P、S、Na、Znの除去率についても20%程度と非常に低かった。   As a result, the reduction did not proceed and no metal phase was confirmed. Furthermore, the removal rate of P, S, Na, and Zn was as low as about 20%.

有価金属原料をリサイクルすることで地球資源を節約することができる。本発明で回収される有価金属は不純物元素が少ないので、ステンレス鋼、Ni基合金、Fe−Ni系合金、Co含有合金の原料として使用することができる。

Recycling valuable metal raw materials can save earth resources. Since valuable metals recovered in the present invention have few impurity elements, they can be used as raw materials for stainless steel, Ni-based alloys, Fe-Ni alloys, and Co-containing alloys.

Claims (3)

Ni、Coの少なくとも1種を4mass%以上含む酸化物および/または水酸化物で構成される有価金属原料の還元方法であって、上記原料は不純物としてP、S、Na、Zn、脈石を少なくとも含有し、この原料に炭素源を有価金属と結合している酸素のモル量と同一比率以上混合し、不活性ガス雰囲気にて500〜1000℃に加熱して還元しつつ、前記温度範囲にて、前記不純物のPをPOおよびPO のガス形態で、前記不純物のSを単体のS、SOおよびSO のガス形態にて、前記不純物のNaおよびZnを単体のNaおよびZn金属蒸気の形態にて揮発除去し、有価金属を回収することを特徴とする有価金属原料の還元方法。 Ni, and at least one oxide and / or reducing method composed valuable metal material with a hydroxide containing more than 4 mass% of Co, the raw material P as an impurity, S, Na, Zn, gangue At least , the carbon source is mixed with this raw material at a ratio equal to or higher than the molar amount of oxygen bonded to the valuable metal, and heated to 500 to 1000 ° C. in an inert gas atmosphere to reduce the carbon source to the temperature range. The impurity P in the form of PO and PO 2 gas, the impurity S in the form of simple S, SO and SO 2 , and the impurity Na and Zn in the form of simple Na and Zn metal vapor A method for reducing a valuable metal raw material, wherein the valuable metal is recovered by volatilization and removal in a form . 前記原料と前記炭素源を混合し、圧縮成型体とすることを特徴とする請求項1に記載の有価金属原料の還元方法。   The method for reducing a valuable metal raw material according to claim 1, wherein the raw material and the carbon source are mixed to form a compression molded body. 前記圧縮成型体は、最大径が1mm〜30mmであることを特徴とする請求項1または2のいずれかに記載の有価金属原料の還元方法。
The method for reducing a valuable metal raw material according to claim 1, wherein the compression-molded body has a maximum diameter of 1 mm to 30 mm.
JP2013127403A 2013-06-18 2013-06-18 Reduction method of valuable metal raw materials Active JP5608876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127403A JP5608876B2 (en) 2013-06-18 2013-06-18 Reduction method of valuable metal raw materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127403A JP5608876B2 (en) 2013-06-18 2013-06-18 Reduction method of valuable metal raw materials

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008053739A Division JP2009209411A (en) 2008-03-04 2008-03-04 Method for reducing valuable metal raw material

Publications (2)

Publication Number Publication Date
JP2013224493A JP2013224493A (en) 2013-10-31
JP5608876B2 true JP5608876B2 (en) 2014-10-15

Family

ID=49594732

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127403A Active JP5608876B2 (en) 2013-06-18 2013-06-18 Reduction method of valuable metal raw materials

Country Status (1)

Country Link
JP (1) JP5608876B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463183A (en) * 2015-11-30 2016-04-06 金川集团股份有限公司 Treatment method for intermediate product of laterite ore

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5129497B2 (en) * 1971-12-29 1976-08-26
JPH01156433A (en) * 1987-12-11 1989-06-20 Nisshin Steel Co Ltd Treatment of nickel oxide ore
JPH02111840A (en) * 1988-10-19 1990-04-24 Nisshin Steel Co Ltd Treatment for nickel oxide ore
JP2004011010A (en) * 2002-06-11 2004-01-15 Sumitomo Metal Mining Co Ltd Method for recovering lithium and cobalt from lithium cobaltate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105463183A (en) * 2015-11-30 2016-04-06 金川集团股份有限公司 Treatment method for intermediate product of laterite ore

Also Published As

Publication number Publication date
JP2013224493A (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP6819827B2 (en) How to recover valuable metals from waste lithium-ion batteries
Fang et al. Recovery of gallium from coal fly ash
JP2019135321A (en) Method for recovering valuable metal from waste lithium-ion battery
JP2012041588A (en) Separation method and separation system for rare earth element by chloride volatilization method
US20160068929A1 (en) EXTRACTION OF RARE EARTH METALS FROM NdFeB USING SELECTIVE SULFATION ROASTING
EP2650961A1 (en) Method for recovering valuable material from lithium-ion secondary battery, and recovered material containing valuable material
Takeda et al. Recycling of rare earth magnet waste by removing rare earth oxide with molten fluoride
CN106048231A (en) Method for recovering tantalum, silver, nickel and iron from waste tantalum capacitor
JP5290387B2 (en) Method for producing high purity calcium
JP5608876B2 (en) Reduction method of valuable metal raw materials
CN114051539A (en) Method for recovering PGM
JP7268382B2 (en) How to dispose of used lithium-ion batteries
CN101481806A (en) Method for desulphurization of copper sulfur ore
JP2014194056A (en) Apparatus and method for recovering rare earth metal
Oh et al. Preparation of 6N grade silicon ingot by combined purification processes from waste silicon cutting sludge
JP2009209411A (en) Method for reducing valuable metal raw material
JP2017133045A (en) Method of recovering magnesium
KR101779348B1 (en) Recovering method of valuable metal from used denitration catalyst, manufacturing method of aluminum alloy and aluminum alloy manufactured thereby
Cheng et al. Separation of arsenic and antimony from dust with high content of arsenic by a selective sulfidation roasting process using sulfur
JP7210827B2 (en) Pretreatment method for recovery of at least one of Ni or Co
RU2111833C1 (en) Method of processing of grinding waste of manufacture of permanent magnets
CN109136541B (en) Method for comprehensively recovering valuable metals from high-magnesium silicon laterite-nickel ore
JP2019151863A (en) Method for recovering tin from copper smelting dust and recovered tin
WO2024048249A1 (en) Method for recovering valuable metal
JP6179699B1 (en) Method for separating both from an alloy containing Dy and Tb

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130730

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140804

R150 Certificate of patent or registration of utility model

Ref document number: 5608876

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250