JP5606246B2 - Method for manufacturing phosphor - Google Patents

Method for manufacturing phosphor Download PDF

Info

Publication number
JP5606246B2
JP5606246B2 JP2010215777A JP2010215777A JP5606246B2 JP 5606246 B2 JP5606246 B2 JP 5606246B2 JP 2010215777 A JP2010215777 A JP 2010215777A JP 2010215777 A JP2010215777 A JP 2010215777A JP 5606246 B2 JP5606246 B2 JP 5606246B2
Authority
JP
Japan
Prior art keywords
phosphor
raw material
powder
light
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2010215777A
Other languages
Japanese (ja)
Other versions
JP2011017024A (en
Inventor
直美 信田
正昭 玉谷
善仁 筒井
一昭 大塚
亮介 平松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Materials Co Ltd
Original Assignee
Toshiba Corp
Toshiba Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Materials Co Ltd filed Critical Toshiba Corp
Priority to JP2010215777A priority Critical patent/JP5606246B2/en
Publication of JP2011017024A publication Critical patent/JP2011017024A/en
Application granted granted Critical
Publication of JP5606246B2 publication Critical patent/JP5606246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Landscapes

  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)

Description

本発明は、ディスプレイ、照明や各種光源に使用されるケイ酸塩蛍光体およびこれを用いた発光装置に関する。   The present invention relates to a silicate phosphor used for a display, illumination and various light sources, and a light emitting device using the same.

励起光源としての発光素子と蛍光体とを組み合わせた発光ダイオード(以下、LEDという)が知られており、組み合わせによって様々な色の発光色を実現することができる。そのうち、いわゆる白色LEDと呼ばれる白色光を放出する発光装置を得るには、主に青色光を放つ発光素子と黄色系蛍光体を組み合わせる方法、近紫外光を放つ発光素子と青色系蛍光体、黄色系蛍光体、および赤色系蛍光体を組み合わせる方法がある。白色LEDに使用される黄色系蛍光体としては、YAG系蛍光体がよく知られているが、波長360nm乃至410nmの光では発光が弱いため、青色光源を用いたLEDに限定されている。   A light emitting diode (hereinafter referred to as an LED) in which a light emitting element as an excitation light source and a phosphor are combined is known, and various emission colors can be realized by the combination. Among them, in order to obtain a light emitting device that emits white light called a so-called white LED, a method of combining a light emitting element that emits blue light and a yellow phosphor, a light emitting element that emits near ultraviolet light, a blue phosphor, and yellow There is a method of combining a phosphor and a red phosphor. As a yellow phosphor used for white LEDs, YAG phosphors are well known, but are limited to LEDs using a blue light source because light emission is weak with light having a wavelength of 360 nm to 410 nm.

波長360nm乃至500nmの光で励起した際の発光スペクトルが、黄色の光を放出する蛍光体としては、M2SiO4:Euで表わされる組成を有するケイ酸塩系蛍光体が知られている(例えば、非特許文献1)。例えばBa2SiO4:Eu2+の結晶構造は斜方晶のみであるが、Sr2SiO4:Eu2+の結晶構造は85℃以下では単斜晶となり、それ以上では斜方晶構造となることが報告されている(例えば、非特許文献2参照)。 Silicate-based phosphors having a composition represented by M 2 SiO 4 : Eu are known as phosphors that emit yellow light with an emission spectrum when excited with light having a wavelength of 360 nm to 500 nm. For example, Non-Patent Document 1). For example, the crystal structure of Ba 2 SiO 4 : Eu 2+ is orthorhombic only, but the crystal structure of Sr 2 SiO 4 : Eu 2+ is monoclinic at 85 ° C. or lower, and is orthorhombic at higher temperatures. (For example, refer nonpatent literature 2).

斜方晶Ba2SiO4:Eu2+及び単斜晶Sr2SiO4:Eu2+の発光は、ピーク波長520〜540nm前後の緑黄色となる。Sr2SiO4:Eu2+のSrの一部をBaに置き換えることによって室温でも斜方晶が得られ、その発光はピーク波長570nmの色純度の良い黄色となる。そのため、M2SiO4:Euで表わされる組成のケイ酸塩蛍光体において色純度の良い黄色発光を得るためには、Baを含むことが不可欠であった。また、520〜600nmの間で望ましい波長をもつバンドを得るためには、Baの含有量により調節することが必要であった。 The emission of orthorhombic Ba 2 SiO 4 : Eu 2+ and monoclinic Sr 2 SiO 4 : Eu 2+ becomes greenish yellow with a peak wavelength of about 520 to 540 nm. By replacing part of Sr in Sr 2 SiO 4 : Eu 2+ with Ba, an orthorhombic crystal can be obtained even at room temperature, and its emission becomes yellow with a peak wavelength of 570 nm and good color purity. Therefore, in order to obtain yellow light emission with good color purity in the silicate phosphor having a composition represented by M 2 SiO 4 : Eu, it is essential to contain Ba. Further, in order to obtain a band having a desirable wavelength between 520 and 600 nm, it was necessary to adjust by the Ba content.

G.Blasse,W.L.Wanmaher,J.W.terVrugt,and A.Bril,Philips Res.Repts,23,189−200,(1968)G. Blasse, W.M. L. Wanmaher, J. et al. W. terVrugt, and A.A. Brill, Philips Res. Repts, 23, 189-200, (1968) S.H.M.Poort,W.Janssen,G.Blasse,J.Alloys and Compounds,260,93−97,(1997)S. H. M.M. Port, W. Janssen, G.M. Blasse, J. et al. Alloys and Compounds, 260, 93-97, (1997)

しかしながら、Ba化合物は毒物であり、劇物取締法により規制を受けた物質であり、人体に悪影響を及ぼす。純度の高い黄色発光を放出する蛍光体であっても、Ba化合物の含有量をできる限り低減することが望まれる。   However, the Ba compound is a toxic substance and is a substance regulated by the Deleterious Substances Control Law, which adversely affects the human body. Even for a phosphor that emits yellow light with high purity, it is desired to reduce the content of the Ba compound as much as possible.

そこで本発明は、波長360nm乃至500nmの光で励起した際に、波長520nm乃至600nmに単一の発光バンドを有する色純度の良い緑−黄色−オレンジ光を放出可能であるとともに、毒性の低減されたケイ酸塩系蛍光体の製造方法を提供することを目的とする。 Therefore, the present invention is capable of emitting green-yellow-orange light having a high color purity and having a single emission band at a wavelength of 520 nm to 600 nm when excited with light having a wavelength of 360 nm to 500 nm, and has reduced toxicity. Another object of the present invention is to provide a method for producing a silicate phosphor.

本発明の一態様にかかる蛍光体の製造方法は、下記一般式(2)で表わされる組成を有する蛍光体の製造方法であって、
SrCO 3 を含むSr原料と、Eu 2 3 を含むEu原料と、SiO 2 を含むSi原料と、CaCO 3 およびBaCO 3 から選択されるCaおよびBaの少なくとも1種の原料粉末と、La 2 3 およびCsClから選択されるLaおよびCsの少なくとも1種の原料粉末とを混合して、原料粉末の混合物を得る工程、
前記混合物を、N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜10時間焼成し、粉砕して粉砕焼成物を得る工程、
前記粉砕焼成物を、N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜7時間焼成して、第一の焼成物を得る工程、
前記第一の焼成物を粉砕し、真空で窒素置換された炉内に配置する工程、および
前記炉内の第一の焼成物を、水素濃度5%以上100%以下のN2/2の還元性雰囲気中で、1000〜1600℃で2〜6時間焼成する工程
を具備することを特徴とする。
(Sr 1-x-y-z-w Ca x Ba y z Eu w 2 Si v 2+2v (2)
(上記一般式(2)中、AはLaおよびCsから選択される少なくとも1種の金属であり、x、y、z、w、およびvは、次の関係を満たす数値である。
0≦x≦0.8, 0≦y≦0.03, 0<z≦0.1, 0.001≦w≦0.2
0<(1−x−y−z−w)<1, 0.9≦v≦1.1)
The method for producing a phosphor according to one aspect of the present invention is a method for producing a phosphor having a composition represented by the following general formula (2),
Sr raw material containing SrCO 3 , Eu raw material containing Eu 2 O 3 , Si raw material containing SiO 2 , at least one raw material powder of Ca and Ba selected from CaCO 3 and BaCO 3 , La 2 O Mixing at least one raw material powder of La and Cs selected from 3 and CsCl to obtain a mixture of raw material powders;
Firing the mixture in a reducing atmosphere composed of a mixed gas of N 2 / H 2 at a temperature of 1000 to 1600 ° C. for 3 to 10 hours and crushing to obtain a pulverized fired product,
Firing the pulverized fired product in a reducing atmosphere composed of a mixed gas of N 2 / H 2 at a temperature of 1000 to 1600 ° C. for 3 to 7 hours to obtain a first fired product,
Crushing the first calcined product and placing it in a furnace purged with nitrogen in a vacuum; and the first calcined product in the furnace is made of N 2 / H 2 with a hydrogen concentration of 5% or more and 100% or less It comprises a step of baking at 1000-1600 ° C. for 2-6 hours in a reducing atmosphere.
(Sr 1-xyzw Ca x Ba y A z Eu w) 2 Si v O 2 + 2v (2)
(In the general formula (2), A is at least one metal selected from La and Cs, and x, y, z, w, and v are numerical values that satisfy the following relationship.
0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.03, 0 <z ≦ 0.1, 0.001 ≦ w ≦ 0.2
0 <(1-xyzw) <1, 0.9 ≦ v ≦ 1.1)

本発明によれば、波長360nm乃至500nmの光で励起した際に、波長520nm乃至600nmに単一の発光バンドを有する色純度の良い緑−黄色−オレンジ光を放出可能であるとともに、毒性の低減されたケイ酸塩系蛍光体、およびこれを用いた発光装置が提供される。   According to the present invention, when excited with light having a wavelength of 360 nm to 500 nm, it is possible to emit green-yellow-orange light having a single emission band at a wavelength of 520 nm to 600 nm and having good color purity and reducing toxicity. Provided are silicate-based phosphors and light-emitting devices using the same.

本発明の一実施形態にかかる発光装置の構成を表わす概略図。Schematic showing the structure of the light-emitting device concerning one Embodiment of this invention. 実施例1および比較例2の蛍光体の励起スペクトル。The excitation spectrum of the fluorescent substance of Example 1 and Comparative Example 2. 実施例1の蛍光体の発光スペクトル。The emission spectrum of the phosphor of Example 1. 実施例1の蛍光体のX線回折図。2 is an X-ray diffraction pattern of the phosphor of Example 1. FIG. 従来のSr2SiO4:Eu(単斜晶)のX線回折図。X-ray diffraction pattern of conventional Sr 2 SiO 4 : Eu (monoclinic crystal). 従来の(Sr,Ba)2SiO4:Eu(斜方晶)のX線回折図。X-ray diffraction pattern of conventional (Sr, Ba) 2 SiO 4 : Eu (orthorhombic crystal). 参考例2の蛍光体の発光スペクトル。The emission spectrum of the phosphor of Reference Example 2. 参考例3の蛍光体の発光スペクトル。The emission spectrum of the phosphor of Reference Example 3. 実施例4の蛍光体の発光スペクトル。The emission spectrum of the phosphor of Example 4. 実施例1の蛍光体と470nmのLEDチップを組み合わせた白色LEDの発光スペクトル。The emission spectrum of white LED which combined the fluorescent substance of Example 1, and a 470 nm LED chip. 比較例1の蛍光体の発光スペクトル。The emission spectrum of the phosphor of Comparative Example 1. 比較例2の蛍光体の発光スペクトル。The emission spectrum of the phosphor of Comparative Example 2.

以下、本発明の実施形態を説明する。   Embodiments of the present invention will be described below.

本発明者らは鋭意検討した結果、アルカリ土類金属ケイ酸塩化合物からなり、Eu2+で活性化された蛍光体においては、Baと同様に結晶構造を単斜晶から斜方晶に変化させる作用を有する元素が存在することを見出した。La,Gd,CsおよびKから選択される少なくとも1種であり、これらは毒性をほとんど有さず人体に無害である。本発明は、こうした知見に基づいてなされたものである。 As a result of intensive studies, the inventors of the present invention have changed the crystal structure from monoclinic to orthorhombic in the same manner as Ba in phosphors made of alkaline earth metal silicate compounds and activated with Eu 2+. It has been found that there is an element having a function of causing At least one selected from La, Gd, Cs, and K, which has little toxicity and is harmless to the human body. The present invention has been made based on these findings.

Ba含有アルカリ土類金属ケイ酸塩化合物からなり、Eu2+で活性化された蛍光体は、例えば、下記一般式(1)で表わすことができる。 A phosphor made of a Ba-containing alkaline earth metal silicate compound and activated with Eu 2+ can be represented, for example, by the following general formula (1).

(Sr,Ca,Ba,Eu)2SiO4 (1)
本発明の実施形態にかかる蛍光体は、例えば下記一般式(2)で表わされる。
(Sr, Ca, Ba, Eu) 2 SiO 4 (1)
The phosphor according to the embodiment of the present invention is represented by, for example, the following general formula (2).

(Sr1-x-y-z-wCaxBayzEuw2Siv2+2v (2)
(上記一般式(2)中、AはLa,Gd,CsおよびKから選択される少なくとも1種の金属であり、x、y、z、w、およびvは、次の関係を満たす数値である。
(Sr 1-xyzw Ca x Ba y A z Eu w) 2 Si v O 2 + 2v (2)
(In the general formula (2), A is at least one metal selected from La, Gd, Cs, and K, and x, y, z, w, and v are numerical values that satisfy the following relationship: .

0≦x≦0.8, 0≦y≦0.6, 0<z≦0.1, 0.001≦w≦0.2
0<(1−x−y−z−w)<1, 0.9≦v≦1.1)
Caの含有量が多すぎる場合には、発光効率が低下するが、xが0.8以下であれば、これを避けることができる。また、人体への影響を考慮すると、Baの含有量は可能な限り少ないことが望まれ、y=0が最も好ましいが、発光波長を調整するためにBaが含有されてもよい。この場合には、yが0.6以下であれば、毒性の影響を低減することができる。
0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.6, 0 <z ≦ 0.1, 0.001 ≦ w ≦ 0.2
0 <(1-xyzw) <1, 0.9 ≦ v ≦ 1.1)
If the Ca content is too high, the light emission efficiency decreases, but this can be avoided if x is 0.8 or less. In consideration of the influence on the human body, the Ba content is desired to be as small as possible, and y = 0 is most preferable. However, Ba may be contained in order to adjust the emission wavelength. In this case, if y is 0.6 or less, the influence of toxicity can be reduced.

アルカリ土類金属元素以外の元素Aは、La,Gd,CsおよびKから選択される少なくとも1種である。これらの元素は、単独でも2種以上を組み合わせて用いてもよい。こうした元素の割合が多すぎる場合には、異相が現れて発光効率が低下するおそれがある。zが0.1以下の範囲であれば、これを避けることができる。   The element A other than the alkaline earth metal element is at least one selected from La, Gd, Cs, and K. These elements may be used alone or in combination of two or more. If the ratio of these elements is too large, a heterogeneous phase may appear and the luminous efficiency may decrease. This can be avoided if z is in the range of 0.1 or less.

上記一般式(2)に示されるように、本発明にかかる蛍光体は、Eu2+で活性化されたケイ酸塩化合物である。Euの組成比wは、0.001以上0.2以下であることが好ましい。wが0.001未満の場合には、十分な発光輝度を得るのが困難となる。一方、wが0.2を越えると、濃度消光によって発光輝度が低下するおそれがある。 As shown in the general formula (2), the phosphor according to the present invention is a silicate compound activated with Eu 2+ . The composition ratio w of Eu is preferably 0.001 or more and 0.2 or less. When w is less than 0.001, it is difficult to obtain sufficient light emission luminance. On the other hand, if w exceeds 0.2, the light emission luminance may decrease due to concentration quenching.

また、Siの組成比vは、0.9以上1.1以下であることが好ましい。vが0.9未満の場合には、500nm近傍の第二のバンドが発現して、発光スペクトルが広がるおそれがある。一方、1.1を超えると、充分な発光輝度を得るのが困難となる。vは、0.95以上1.05以下の範囲内であることがより好ましい。   Further, the composition ratio v of Si is preferably 0.9 or more and 1.1 or less. When v is less than 0.9, a second band near 500 nm appears and the emission spectrum may spread. On the other hand, if it exceeds 1.1, it is difficult to obtain sufficient light emission luminance. v is more preferably in the range of 0.95 to 1.05.

本発明の実施形態にかかる蛍光体は、例えば、以下のような手法により合成することができる。   The phosphor according to the embodiment of the present invention can be synthesized, for example, by the following method.

まず、構成元素の酸化物粉末を所定量秤量し、結晶成長剤として適当量の塩化アンモニウムを加えてボールミル等で混合する。酸化物粉末の代わりに、熱分解により酸化物となり得る各種化合物を用いることもできる。例えば、Eu原料としてはEu23等、Ca原料としてはCaCO3等、Sr原料としてはSrCO3等、Ba原料としてはBaCO3等、La原料としてはLa23等、Gd原料としてはGd23等、Cs原料としてはCsCl等、K原料としてはKCl等、Si原料としてはSiO2等を用いることができる。こうした原料粉末が結晶成長剤としても作用する場合には、必ずしも塩化アンモニウム等の結晶成長剤を別途加えなくてもよい。 First, a predetermined amount of the constituent element oxide powder is weighed, an appropriate amount of ammonium chloride is added as a crystal growth agent, and mixed with a ball mill or the like. Instead of the oxide powder, various compounds that can be converted into oxides by thermal decomposition can also be used. For example, Eu 2 O 3 etc. as the Eu source, CaCO 3 etc. as the Ca source, SrCO 3 etc. as the Sr source, BaCO 3 etc. as the Ba source, La 2 O 3 etc. as the La source, etc. Gd 2 O 3 and the like, CsCl and the like as the Cs material, KCl and the like as the K material, and SiO 2 and the like as the Si material can be used. When such a raw material powder also acts as a crystal growth agent, a crystal growth agent such as ammonium chloride is not necessarily added separately.

結晶成長剤としては、塩化アンモニウム以外のアンモニウム、アルカリ金属あるいはアルカリ土類金属の塩化物、フッ化物、臭化物、あるいは沃化物などを用いてもよい。吸湿性の増加を防止するために、結晶成長剤の添加量は、原料粉末全体に対して0.5重量%以上30重量%以下程度とすることが好ましい。   As the crystal growth agent, ammonium other than ammonium chloride, chloride of alkali metal or alkaline earth metal, fluoride, bromide, or iodide may be used. In order to prevent an increase in hygroscopicity, the amount of the crystal growth agent added is preferably about 0.5 wt% or more and 30 wt% or less with respect to the entire raw material powder.

その後、坩堝に収容し、N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜10時間焼成する。得られた焼成物を、乳鉢等を用いて粉砕後、再度N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜7時間焼成する。こうした得られた第一の焼成物を粉砕して、再度容器に収容する。粉砕の程度は特に規定されず、焼成によって生じた塊を、乳鉢等を用いて砕いて表面積が増大すればよい。 Then, it is accommodated in a crucible and fired at a temperature of 1000 to 1600 ° C. for 3 to 10 hours in a reducing atmosphere composed of a mixed gas of N 2 / H 2 . The obtained fired product is pulverized using a mortar or the like and then fired again at a temperature of 1000 to 1600 ° C. for 3 to 7 hours in a reducing atmosphere composed of a mixed gas of N 2 / H 2 . The obtained first fired product is pulverized and accommodated in the container again. The degree of pulverization is not particularly limited, and the surface area may be increased by crushing a lump produced by firing using a mortar or the like.

再び炉内に配置して、真空で窒素置換する。この際の真空は、1000Pa以下であることが好ましい。これ以上であると、材料に付着した水分を除去することができない。   Place in the furnace again and purge with nitrogen under vacuum. The vacuum at this time is preferably 1000 Pa or less. If it is more than this, water attached to the material cannot be removed.

次いで、前記第一の焼成物を、水素濃度5%以上100%以下のN2/2の還元性雰囲気中で、1000〜1600℃で2〜6時間焼成する。得られた焼成物を、乳鉢等を用いて粉砕後、適当なメッシュ幅の篩を通過させることによって、前記一般式(2)で表わされるアルカリ土類金属ケイ酸塩化合物からなる蛍光体粒子を得ることができる。 Next, the first fired product is fired at 1000 to 1600 ° C. for 2 to 6 hours in a reducing atmosphere of N 2 / H 2 having a hydrogen concentration of 5% or more and 100% or less. The obtained fired product is pulverized using a mortar or the like and then passed through a sieve having an appropriate mesh width to obtain phosphor particles composed of the alkaline earth metal silicate compound represented by the general formula (2). Can be obtained.

本発明の実施形態にかかる蛍光体粒子の表面には、シリコーン樹脂、エポキシ樹脂、フッ素樹脂、テトラエトキシシラン(TEOS)、シリカ、ケイ酸亜鉛、ケイ酸アルミニウム、カルシウムポリフォスフェート、シリコーンオイル、およびシリコーングリースから選択される少なくとも一種からなる表層材が配置されてもよい。これによって、防湿効果を付与することができる。ケイ酸亜鉛およびケイ酸アルミニウムは、例えばZnO・aSiO2(1≦a≦4)、およびAl23・bSiO2(1≦b≦10)でそれぞれ表わされる。蛍光体粒子表面が完全に表層材で覆われている必要はなく、その一部が露出していてもよい。蛍光体粒子の表面に、上述したような材質からなる表層材が存在していれば、その効果が得られる。 On the surface of the phosphor particles according to the embodiment of the present invention, silicone resin, epoxy resin, fluororesin, tetraethoxysilane (TEOS), silica, zinc silicate, aluminum silicate, calcium polyphosphate, silicone oil, and A surface layer material made of at least one selected from silicone grease may be disposed. Thereby, a moisture-proof effect can be imparted. Zinc silicate and aluminum silicate are represented by, for example, ZnO.aSiO 2 (1 ≦ a ≦ 4) and Al 2 O 3 .bSiO 2 (1 ≦ b ≦ 10), respectively. It is not necessary for the surface of the phosphor particles to be completely covered with the surface layer material, and a part thereof may be exposed. If a surface layer material made of the above-described material is present on the surface of the phosphor particles, the effect can be obtained.

表層材は、その分散液または溶液を用いて蛍光体粒子表面に配置することができる。分散液または溶液中に蛍光体粒子を所定時間浸漬した後、加熱等により乾燥させることによって表層材が配置される。蛍光体としての本来の機能を損なうことなく、表層材の効果を得るために、表層材は、蛍光体粒子の0.1〜50%程度の体積割合で存在することが好ましい。   The surface layer material can be disposed on the surface of the phosphor particles using the dispersion or solution. After the phosphor particles are immersed in the dispersion or solution for a predetermined time, the surface layer material is disposed by drying by heating or the like. In order to obtain the effect of the surface layer material without impairing the original function as the phosphor, the surface layer material is preferably present in a volume ratio of about 0.1 to 50% of the phosphor particles.

図1に、本発明の一実施形態にかかる発光装置の断面を示す。   FIG. 1 shows a cross section of a light emitting device according to an embodiment of the present invention.

図示する発光装置においては、樹脂ステム200はリードフレームを成形してなるリード201およびリード202と、これに一体成形されてなる樹脂部203とを有する。樹脂部203は、上部開口部が底面部より広い凹部205を有しており、この凹部の側面には反射面204が設けられる。   In the illustrated light emitting device, the resin stem 200 has a lead 201 and a lead 202 formed by molding a lead frame, and a resin portion 203 formed integrally therewith. The resin portion 203 has a concave portion 205 whose upper opening is wider than the bottom portion, and a reflective surface 204 is provided on the side surface of the concave portion.

凹部205の略円形底面中央部には、発光チップ206がAgペースト等によりマウントされている。発光チップ206としては、紫外発光を行なうもの、あるいは可視領域の発光を行なうものを用いることができる。例えば、GaAs系、GaN系等の半導体発光素子等を用いることが可能である。発光チップ206の電極(図示せず)は、Auなどからなるボンデイングワイヤー207および208によって、リード201およびリード202にそれぞれ接続されている。なお、リード201および202の配置は、適宜変更することができる。   A light emitting chip 206 is mounted with Ag paste or the like at the center of the substantially circular bottom surface of the recess 205. As the light-emitting chip 206, a chip that emits ultraviolet light or a chip that emits light in the visible region can be used. For example, it is possible to use a GaAs-based or GaN-based semiconductor light emitting element. The electrodes (not shown) of the light emitting chip 206 are connected to the leads 201 and 202 by bonding wires 207 and 208 made of Au or the like, respectively. The arrangement of the leads 201 and 202 can be changed as appropriate.

樹脂部203の凹部205内には、蛍光層209が配置される。この蛍光層209は、本発明の実施形態にかかる蛍光体210を、例えばシリコーン樹脂からなる樹脂層211中に5重量%から50重量%の割合で分散することによって形成することができる。   A fluorescent layer 209 is disposed in the recess 205 of the resin portion 203. The phosphor layer 209 can be formed by dispersing the phosphor 210 according to the embodiment of the present invention in a resin layer 211 made of, for example, a silicone resin at a ratio of 5 wt% to 50 wt%.

発光チップ206としては、n型電極とp型電極とを同一面上に有するフリップチップ型のものを用いることも可能である。この場合には、ワイヤーの断線や剥離、ワイヤーによる光吸収等のワイヤーに起因した問題を解消して、信頼性の高い高輝度な半導体発光装置が得られる。また、発光チップ206にn型基板を用いて、次のような構成とすることもできる。具体的には、n型基板の裏面にn型電極を形成し、基板上の半導体層上面にはp型電極を形成して、n型電極またはp型電極をリードにマウントする。p型電極またはn型電極は、ワイヤーにより他方のリードに接続することができる。   As the light emitting chip 206, a flip chip type having an n-type electrode and a p-type electrode on the same surface can be used. In this case, problems caused by the wire such as wire breakage and peeling and light absorption by the wire are solved, and a highly reliable and high-luminance semiconductor light-emitting device can be obtained. In addition, an n-type substrate may be used for the light emitting chip 206 to have the following configuration. Specifically, an n-type electrode is formed on the back surface of the n-type substrate, a p-type electrode is formed on the upper surface of the semiconductor layer on the substrate, and the n-type electrode or the p-type electrode is mounted on a lead. The p-type electrode or the n-type electrode can be connected to the other lead by a wire.

発光チップ206のサイズ、凹部205の寸法および形状は、適宜変更することができる。本発明の実施形態にかかる蛍光体は、360nm乃至500nmの波長の光で励起することによって、520nm乃至600nmの緑色−黄色−オレンジ色の発光色を示す。具体的には、本発明の実施形態にかかる蛍光体の発光スペクトルは、520nm乃至600nmの間に単一の発光バンドを有する。なお、単一の発光バンドを有するとは、単一の発光ピークを有し、肩状の起伏を示さないバンド形を有することをさす。本発明に実施形態にかかる蛍光体を、青色発光蛍光体および赤色発光蛍光体と組み合わせて用いる場合には、白色光を得ることも可能である。   The size of the light emitting chip 206 and the size and shape of the recess 205 can be changed as appropriate. The phosphor according to the embodiment of the present invention exhibits a green-yellow-orange emission color of 520 nm to 600 nm when excited with light having a wavelength of 360 nm to 500 nm. Specifically, the emission spectrum of the phosphor according to the embodiment of the present invention has a single emission band between 520 nm and 600 nm. Note that having a single emission band means having a band shape having a single emission peak and no shoulder-like undulations. When the phosphor according to the embodiment of the present invention is used in combination with a blue light-emitting phosphor and a red light-emitting phosphor, white light can be obtained.

本発明の実施形態にかかる蛍光体は斜方晶構造を有するので、この蛍光体を含有する蛍光層を設けることによって、色純度のよい発光を放出する発光装置が得られる。
以下、実施例および比較例を示して本発明をさらに詳細に説明するが、本発明は実施例のみに限定されるものではない。
Since the phosphor according to the embodiment of the present invention has an orthorhombic structure, a light emitting device that emits light with good color purity can be obtained by providing a phosphor layer containing the phosphor.
EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated further in detail, this invention is not limited only to an Example.

(実施例1)
まず、(Sr0.915La0.06Eu0.0252SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、La23粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量した。原料粉末の全量に対して1.5重量%の割合で結晶成長剤としてのNH4Clを添加して、ボールミルで均一に混合した。
Example 1
First, a phosphor having a composition represented by (Sr 0.915 La 0.06 Eu 0.025 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, La 2 O 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared and weighed in predetermined amounts. NH 4 Cl as a crystal growth agent was added at a ratio of 1.5% by weight with respect to the total amount of the raw material powder, and uniformly mixed by a ball mill.

得られた混合原料を蓋付きアルミナ坩堝に充填して、大気中、600℃で1時間焼成し、NH4Clを分解させた。次に、N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜7時間焼成して、第一の焼成物を得た。これを粉砕して再び坩堝に収容し、炉内に配置して、炉内を真空で窒素置換した。さらに、水素濃度5%以上100%以下のN2/2の還元性雰囲気において1000〜1600℃の温度で2〜6時間焼成して、第二の焼成物を得た。焼成物を乳鉢で粉砕し、目開き75μmの篩を通過させることによって、実施例1の蛍光体を得た。 The obtained mixed raw material was filled in an alumina crucible with a lid, and calcined in the atmosphere at 600 ° C. for 1 hour to decompose NH 4 Cl. Next, it was fired at a temperature of 1000 to 1600 ° C. for 3 to 7 hours in a reducing atmosphere composed of a mixed gas of N 2 / H 2 to obtain a first fired product. This was pulverized and again stored in a crucible, placed in a furnace, and the inside of the furnace was purged with nitrogen under vacuum. Furthermore, it was fired at a temperature of 1000 to 1600 ° C. for 2 to 6 hours in a reducing atmosphere of N 2 / H 2 with a hydrogen concentration of 5% or more and 100% or less to obtain a second fired product. The fired product was pulverized in a mortar and passed through a sieve having an opening of 75 μm to obtain the phosphor of Example 1.

この蛍光体の励起スペクトルを、図2に曲線aとして示す。図2中、曲線bは後述する比較例2の蛍光体の励起スペクトルである。本実施例の蛍光体は、比較例2の蛍光体と同様のUV〜黄色まで広い波長域において励起可能であることが、曲線aからわかる。   The excitation spectrum of this phosphor is shown as curve a in FIG. In FIG. 2, a curve b is an excitation spectrum of a phosphor of Comparative Example 2 described later. It can be seen from the curve a that the phosphor of this example can be excited in a wide wavelength range from UV to yellow similar to the phosphor of Comparative Example 2.

図3および図4には、本実施例の蛍光体の395nm励起時の発光スペクトル、および蛍光体のX線回折図をそれぞれ示す。ここで用いた発光スペクトルは、395nmおよび470nmのピーク波長を有する発光ダイオードにより励起された蛍光体の発光スペクトルを、大塚電子製IMUC−7000G型瞬間マルチ測光システムで測定したものである。図3の発光スペクトルに示されるように、単一の発光ピークを有し、肩状の起伏を示さない。このことから、本実施例の蛍光体は、波長360nm乃至500nmの光で励起した際の発光スペクトルが、波長520nm乃至600nmの間に単一のピークを有することがわかる。また、X線回折パターンは、JCPDS(Joint Committee on Powder Diffraction Standards)カード39−1256と一致している。なお、JCPDSカードとは、粉末X線回折のデータベースにかかわるものであり、JCPDSで編集、刊行されたカードをいう。2θ=34.2°にピークが存在しないことから、本実施例の蛍光体は斜方晶の結晶構造であることが、図4のX線回折図に現れている。   3 and 4 show the emission spectrum of the phosphor of this example when excited at 395 nm and the X-ray diffraction pattern of the phosphor, respectively. The emission spectrum used here is obtained by measuring the emission spectrum of a phosphor excited by a light emitting diode having peak wavelengths of 395 nm and 470 nm using an IMUC-7000G type instantaneous multi-photometry system manufactured by Otsuka Electronics. As shown in the emission spectrum of FIG. 3, it has a single emission peak and does not show shoulder-like undulations. From this, it can be seen that the phosphor of this example has a single peak in the emission spectrum when excited with light having a wavelength of 360 nm to 500 nm. Further, the X-ray diffraction pattern is consistent with a JCPDS (Joint Committee on Powder Diffraction Standards) card 39-1256. The JCPDS card relates to a powder X-ray diffraction database, and refers to a card edited and published by JCPDS. Since there is no peak at 2θ = 34.2 °, it can be seen from the X-ray diffraction diagram of FIG. 4 that the phosphor of this example has an orthorhombic crystal structure.

参考のために、従来のSr2SiO4:Eu蛍光体のX線回折図を図5に示す。この回折パターンは、JCPDSカード76−1630と一致し、2θ=34.2°にピークが存在することから、単斜晶の結晶構造である。また、図6には、従来の(Sr,Ba)2SiO4:Eu蛍光体のX線回折図を示す。図6のX線回折図に示されるように、JCPDSカード39−1256と一致し、2θ=34.2°にピークが存在しないことから、従来の(Sr,Ba)2SiO4:Eu蛍光体は斜方晶の結晶構造を有することわかる。図4に示したX線回折図と比較すると、本発明の実施形態にかかる蛍光体は、従来のBaを含有する蛍光体と同様に、斜方晶の結晶構造を有することが明らかである。 For reference, an X-ray diffraction diagram of a conventional Sr 2 SiO 4 : Eu phosphor is shown in FIG. This diffraction pattern coincides with the JCPDS card 76-1630 and has a monoclinic crystal structure because a peak exists at 2θ = 34.2 °. FIG. 6 shows an X-ray diffraction pattern of a conventional (Sr, Ba) 2 SiO 4 : Eu phosphor. As shown in the X-ray diffraction diagram of FIG. 6, it matches the JCPDS card 39-1256 and has no peak at 2θ = 34.2 °, so that the conventional (Sr, Ba) 2 SiO 4 : Eu phosphor Has an orthorhombic crystal structure. Compared with the X-ray diffraction pattern shown in FIG. 4, it is clear that the phosphor according to the embodiment of the present invention has an orthorhombic crystal structure, similar to a phosphor containing conventional Ba.

参考例2)
まず、(Sr0.915Gd0.060Eu0.0252SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、Gd23粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量した。原料粉末の全量に対して1.5重量%の割合で結晶成長剤としてのNH4Clを添加して、ボールミルで均一に混合した。
( Reference Example 2)
First, a phosphor having a composition represented by (Sr 0.915 Gd 0.060 Eu 0.025 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, Gd 2 O 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared and weighed in predetermined amounts. NH 4 Cl as a crystal growth agent was added at a ratio of 1.5% by weight with respect to the total amount of the raw material powder, and uniformly mixed by a ball mill.

その後、実施例1と同様の製造方法にて参考例2の蛍光体を得た。この蛍光体の波長395nm励起時の発光スペクトルを、図7に示す。図7の発光スペクトルに示されるように、本実施例の蛍光体は、波長360nm乃至500nmの光で励起した際の発光スペクトルが、波長520nm乃至600nmの間に単一のバンドを有することがわかる。 Thereafter, the phosphor of Reference Example 2 was obtained by the same production method as in Example 1. FIG. 7 shows an emission spectrum of the phosphor when excited with a wavelength of 395 nm. As shown in the emission spectrum of FIG. 7, it can be seen that the phosphor of this example has a single band between wavelengths of 520 nm and 600 nm when excited with light having a wavelength of 360 nm to 500 nm. .

参考例3)
まず、(Sr0.9200.055Eu0.0252SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、KCl粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量し、ボールミルで均一に混合した。ここでは、K原料であるKClが結晶成長剤としての役割を果たすため、NH4Clは添加しなかった。
( Reference Example 3)
First, a phosphor having a composition represented by (Sr 0.920 K 0.055 Eu 0.025 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, KCl powder, Eu 2 O 3 powder and SiO 2 powder were prepared, weighed in a predetermined amount, and uniformly mixed by a ball mill. In this case, NH 4 Cl was not added because KCl as the K raw material plays a role as a crystal growth agent.

その後、実施例1と同様の製造方法にて参考例3の蛍光体を得た。この蛍光体の波長395nm励起時の発光スペクトルを、図8に示す。図8の発光スペクトルに示されるように、本実施例の蛍光体は、波長360nm乃至500nmの光で励起した際の発光スペクトルが、波長520nm乃至600nmの間に単一のバンドを有することがわかる。 Thereafter, the phosphor of Reference Example 3 was obtained by the same production method as in Example 1. FIG. 8 shows an emission spectrum of the phosphor when excited with a wavelength of 395 nm. As shown in the emission spectrum of FIG. 8, it can be seen that the phosphor of this example has a single band between the wavelengths of 520 nm and 600 nm when excited with light having a wavelength of 360 nm to 500 nm. .

(実施例4)
まず、(Sr0.915Cs0.03La0.03Eu0.0252SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、CsCl粉末、La23粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量し、ボールミルで均一に混合した。ここでは、Cs原料であるCsClが結晶成長剤としての役割を果たすが、Cl比率調整のため、NH4Clも同時に添加した。
Example 4
First, a phosphor having a composition represented by (Sr 0.915 Cs 0.03 La 0.03 Eu 0.025 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, CsCl powder, La 2 O 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared, weighed in predetermined amounts, and uniformly mixed by a ball mill. Here, CsCl as a Cs raw material plays a role as a crystal growth agent, but NH 4 Cl was also added at the same time for adjusting the Cl ratio.

その後、実施例1と同様の製造方法にて実施例4の蛍光体を得た。この蛍光体の波長395nm励起時の発光スペクトルを、図9に示す。図9の発光スペクトルに示されるように、本実施例の蛍光体は、波長360nm乃至500nmの光で励起した際の発光スペクトルが、波長520nm乃至600nmの間に単一のバンドを有することがわかる。   Thereafter, the phosphor of Example 4 was obtained by the same production method as in Example 1. FIG. 9 shows the emission spectrum of this phosphor when excited with a wavelength of 395 nm. As shown in the emission spectrum of FIG. 9, it can be seen that the phosphor of this example has a single band between the wavelengths of 520 nm and 600 nm when excited with light having a wavelength of 360 nm to 500 nm. .

(実施例5)
まず、(Sr0.915Ba0.03La0.03Eu0.0252SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、BaCO3粉末、La23粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量し、ボールミルで均一に混合した。原料粉末の全量に対して1.5重量%の割合で結晶成長剤としてのNH4Clを添加して、ボールミルで均一に混合した。
(Example 5)
First, a phosphor having a composition represented by (Sr 0.915 Ba 0.03 La 0.03 Eu 0.025 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, BaCO 3 powder, La 2 O 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared, weighed in predetermined amounts, and uniformly mixed by a ball mill. NH 4 Cl as a crystal growth agent was added at a ratio of 1.5% by weight with respect to the total amount of the raw material powder, and uniformly mixed by a ball mill.

その後、実施例1と同様の製造方法にて実施例5の蛍光体を得た。この蛍光体の波長395nm励起時の発光スペクトルは、ピーク波長575nm、波長470nm励起時の発光スペクトルは、ピーク波長580nmであった。実施例1乃至4の蛍光体と同様、本実施例の蛍光体も、波長360nm乃至500nmの光で励起した際の発光スペクトルが、波長520nm乃至600nmの間に単一の発光バンドを有するものであった。   Thereafter, the phosphor of Example 5 was obtained by the same production method as in Example 1. The emission spectrum of this phosphor when excited with a wavelength of 395 nm was a peak wavelength of 575 nm, and the emission spectrum when excited with a wavelength of 470 nm was a peak wavelength of 580 nm. Similar to the phosphors of Examples 1 to 4, the phosphor of this example has a single emission band between 520 nm and 600 nm in the emission spectrum when excited with light having a wavelength of 360 nm to 500 nm. there were.

X線回折の結果から、参考例2,3、および実施例4,5のいずれの蛍光体も、実施例1の場合と同様、斜方晶の結晶構造を有することが確認された。 From the results of X-ray diffraction, it was confirmed that each of the phosphors of Reference Examples 2 and 3 and Examples 4 and 5 had an orthorhombic crystal structure as in Example 1.

(実施例6)(LED)
実施例1の蛍光体、青色蛍光体、および赤色蛍光体をエポキシ樹脂に分散させて、この樹脂混合物を調製した。なお、青色蛍光体としては、ユーロピウム付活アルカリ土類クロロリン酸塩蛍光体を用い、赤色蛍光体としては、ユーロピウム付活酸硫化ランタン蛍光体を用いた。この樹脂混合物を、発光ピーク波長395nmなるLEDチップをマウントしたLEDパッケージに塗布して、図1に示したような発光装置を作製した。
(Example 6) (LED)
The resin mixture was prepared by dispersing the phosphor of Example 1, the blue phosphor, and the red phosphor in an epoxy resin. In addition, as the blue phosphor, a europium activated alkaline earth chlorophosphate phosphor was used, and as the red phosphor, a europium activated lanthanum oxysulfide phosphor was used. This resin mixture was applied to an LED package on which an LED chip having an emission peak wavelength of 395 nm was mounted, and a light emitting device as shown in FIG. 1 was produced.

得られた発光装置から、演色性のよい白色光が放出されることが確認された。   It was confirmed that white light with good color rendering properties was emitted from the obtained light emitting device.

(実施例7)(LED)
実施例1の蛍光体をエポキシ樹脂に分散させて、樹脂混合物を調製した。この樹脂混合物を、発光ピーク波長470nmなるLEDチップをマウントしたLEDパッケージに塗布して、白色LEDを作製した。
(Example 7) (LED)
The phosphor of Example 1 was dispersed in an epoxy resin to prepare a resin mixture. This resin mixture was applied to an LED package on which an LED chip having an emission peak wavelength of 470 nm was mounted to produce a white LED.

得られた白色LEDの発光スペクトルを、図10に示す。この場合の発光色は、色度値x=0.337、y=0.303であり、色温度5247Kであった。このように、演色性のよい白色発光が放出される白色LEDを作製することができる。   The emission spectrum of the obtained white LED is shown in FIG. In this case, the luminescent color was chromaticity value x = 0.337, y = 0.303, and the color temperature was 5247K. In this way, a white LED that emits white light with good color rendering can be produced.

(比較例1)
まず、(Sr0.285Ba0.665Eu0.052SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、BaCO3粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量した。原料粉末の全量に対して1.5重量%の割合で結晶成長剤としてのNH4Clを添加して、ボールミルで均一に混合した。
(Comparative Example 1)
First, a phosphor having a composition represented by (Sr 0.285 Ba 0.665 Eu 0.05 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, BaCO 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared and weighed in predetermined amounts. NH 4 Cl as a crystal growth agent was added at a ratio of 1.5% by weight with respect to the total amount of the raw material powder, and uniformly mixed by a ball mill.

その後、実施例1と同様の手法により比較例1の蛍光体を得た。この蛍光体の波長395nm励起時の発光スペクトルを、図11に示す。図11の発光スペクトルから、525nmに単一のバンドを有する緑色の発光であることがわかるが、本比較例の蛍光体はBaを0.6よりも多く含有しているので、毒性の問題は回避することができない。   Thereafter, the phosphor of Comparative Example 1 was obtained in the same manner as in Example 1. FIG. 11 shows an emission spectrum of the phosphor when excited with a wavelength of 395 nm. From the emission spectrum of FIG. 11, it can be seen that the emission is green with a single band at 525 nm. However, since the phosphor of this comparative example contains more than 0.6 Ba, the problem of toxicity is It cannot be avoided.

(比較例2)
(Sr0.915Ba0.06Eu0.0252SiO4で表わされる組成の蛍光体を調製した。原料粉末としては、SrCO3粉末、BaCO3粉末、Eu23粉末およびSiO2粉末を用意し、所定量秤量した。原料粉末の全量に対して1.5重量%の割合で結晶成長剤としてのNH4Clを添加して、ボールミルで均一に混合した。その後、実施例1と同様の製造方法にて比較例2の蛍光体を得た。
(Comparative Example 2)
A phosphor having a composition represented by (Sr 0.915 Ba 0.06 Eu 0.025 ) 2 SiO 4 was prepared. As raw material powders, SrCO 3 powder, BaCO 3 powder, Eu 2 O 3 powder and SiO 2 powder were prepared and weighed in predetermined amounts. NH 4 Cl as a crystal growth agent was added at a ratio of 1.5% by weight with respect to the total amount of the raw material powder, and uniformly mixed by a ball mill. Thereafter, the phosphor of Comparative Example 2 was obtained by the same production method as in Example 1.

この蛍光体の波長395nm励起時の発光スペクトルを図12に示す。Baを含有しているので、比較例2の蛍光体は、図12の発光スペクトルに示されるように、波長360nm乃至500nmの光で励起した際の発光スペクトルが、波長520nm乃至600nmの間に単一のバンドを有している。   FIG. 12 shows an emission spectrum of the phosphor when excited with a wavelength of 395 nm. Since it contains Ba, the phosphor of Comparative Example 2 has a single emission spectrum between wavelengths of 520 nm and 600 nm when excited with light of a wavelength of 360 nm to 500 nm, as shown in the emission spectrum of FIG. Has one band.

一方、実施例14は、Baを含有しなくても同等の発光波長のバンドを示す。実施例5は、比較例2と同等の発光バンドを示すが、Baの量は比較例2に比べて半減する。 On the other hand, Examples 1 and 4 show bands having the same emission wavelength even without containing Ba. Example 5 shows an emission band equivalent to that of Comparative Example 2, but the amount of Ba is halved compared to Comparative Example 2.

下記表1には、上述した実施例および比較例の蛍光体の組成、発光ピーク、および結晶形をまとめる。
Table 1 below summarizes the compositions, emission peaks, and crystal forms of the phosphors of the examples and comparative examples described above.

表1に示されるように、Baの少なくとも一部がLa,Gd,CsおよびKから選択される少なくとも1種で置換された本発明の実施形態にかかる蛍光体は、いずれも斜方晶の結晶構造を有する。その結果、395nmあるいは475nmで励起した際には、波長520nm乃至600nmの間に単一のバンドが現われて、純度の高い発光が放出されることになる。   As shown in Table 1, the phosphor according to the embodiment of the present invention in which at least a part of Ba is substituted with at least one selected from La, Gd, Cs, and K is an orthorhombic crystal. It has a structure. As a result, when excited at 395 nm or 475 nm, a single band appears between wavelengths 520 nm and 600 nm, and emission with high purity is emitted.

これは、比較例2の従来のBa含蛍光体の場合と比較しても、何等遜色ないことが明確に示されている。   It is clearly shown that this is comparable to the case of the conventional Ba-containing phosphor of Comparative Example 2.

200…樹脂ステム; 201…リード; 202…リード; 203…樹脂部
204…反射面; 205…凹部; 206…発光チップ
207…ボンディングワイヤー; 208…ボンディングワイヤー
209…蛍光層; 210…蛍光体; 211…樹脂層。
200 ... Resin stem; 201 ... Lead; 202 ... Lead; 203 ... Resin part 204 ... Reflecting surface; 205 ... Recessed part; 206 ... Light emitting chip 207 ... Bonding wire; 208 ... Bonding wire 209 ... Fluorescent layer; ... resin layer.

Claims (5)

下記一般式(2)で表わされる組成を有する蛍光体の製造方法であって、
SrCO 3 を含むSr原料と、Eu 2 3 を含むEu原料と、SiO 2 を含むSi原料と、CaCO 3 およびBaCO 3 から選択されるCaおよびBaの少なくとも1種の原料粉末と、La 2 3 およびCsClから選択されるLaおよびCsの少なくとも1種の原料粉末とを混合して、原料粉末の混合物を得る工程、
前記混合物を、N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜10時間焼成し、粉砕して粉砕焼成物を得る工程、
前記粉砕焼成物を、N2/H2の混合ガスからなる還元性雰囲気中、1000〜1600℃の温度で3〜7時間焼成して、第一の焼成物を得る工程、
前記第一の焼成物を粉砕し、真空で窒素置換された炉内に配置する工程、および
前記炉内の第一の焼成物を、水素濃度5%以上100%以下のN2/2の還元性雰囲気中で、1000〜1600℃で2〜6時間焼成する工程
を具備することを特徴とする蛍光体の製造方法。
(Sr 1-x-y-z-w Ca x Ba y z Eu w 2 Si v 2+2v (2)
(上記一般式(2)中、AはLaおよびCsから選択される少なくとも1種の金属であり、x、y、z、w、およびvは、次の関係を満たす数値である。
0≦x≦0.8, 0≦y≦0.03, 0<z≦0.1, 0.001≦w≦0.2
0<(1−x−y−z−w)<1, 0.9≦v≦1.1)
A method for producing a phosphor having a composition represented by the following general formula (2):
Sr raw material containing SrCO 3 , Eu raw material containing Eu 2 O 3 , Si raw material containing SiO 2 , at least one raw material powder of Ca and Ba selected from CaCO 3 and BaCO 3 , La 2 O Mixing at least one raw material powder of La and Cs selected from 3 and CsCl to obtain a mixture of raw material powders;
Firing the mixture in a reducing atmosphere composed of a mixed gas of N 2 / H 2 at a temperature of 1000 to 1600 ° C. for 3 to 10 hours and crushing to obtain a pulverized fired product,
Firing the pulverized fired product in a reducing atmosphere composed of a mixed gas of N 2 / H 2 at a temperature of 1000 to 1600 ° C. for 3 to 7 hours to obtain a first fired product,
Crushing the first calcined product and placing it in a furnace purged with nitrogen in a vacuum; and the first calcined product in the furnace is made of N 2 / H 2 with a hydrogen concentration of 5% or more and 100% or less A method for producing a phosphor, comprising a step of baking at 1000 to 1600 ° C. for 2 to 6 hours in a reducing atmosphere.
(Sr 1-xyzw Ca x Ba y A z Eu w) 2 Si v O 2 + 2v (2)
(In the general formula (2), A is at least one metal selected from La and Cs, and x, y, z, w, and v are numerical values that satisfy the following relationship.
0 ≦ x ≦ 0.8, 0 ≦ y ≦ 0.03, 0 <z ≦ 0.1, 0.001 ≦ w ≦ 0.2
0 <(1-xyzw) <1, 0.9 ≦ v ≦ 1.1)
前記原料粉末の混合物に結晶成長剤を加える工程をさらに具備する請求項1に記載の蛍光体の製造方法。 The method for producing a phosphor according to claim 1, comprising further the step of adding a crystal growth agent to the mixture of the raw material powder. 前記真空は、1000Pa以下であることを特徴とする請求項1または2に記載の蛍光体の製造方法。 The said vacuum is 1000 Pa or less, The manufacturing method of the fluorescent substance of Claim 1 or 2 characterized by the above-mentioned. 前記蛍光体を粉砕して、蛍光体粒子を得る工程をさらに具備する請求項1乃至のいずれか1項に記載の蛍光体の製造方法。 The phosphor by pulverizing method for manufacturing the phosphor according to any one of claims 1 to 3 further comprising the step of obtaining the phosphor particles. 前記粒子状の蛍光体の表面に、表層材を配置する工程をさらに具備する請求項に記載の蛍光体の製造方法。 The manufacturing method of the fluorescent substance of Claim 4 which further comprises the process of arrange | positioning surface material on the surface of the said granular fluorescent substance.
JP2010215777A 2010-09-27 2010-09-27 Method for manufacturing phosphor Expired - Lifetime JP5606246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010215777A JP5606246B2 (en) 2010-09-27 2010-09-27 Method for manufacturing phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010215777A JP5606246B2 (en) 2010-09-27 2010-09-27 Method for manufacturing phosphor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2004303509A Division JP4836429B2 (en) 2004-10-18 2004-10-18 Phosphor and light emitting device using the same

Publications (2)

Publication Number Publication Date
JP2011017024A JP2011017024A (en) 2011-01-27
JP5606246B2 true JP5606246B2 (en) 2014-10-15

Family

ID=43595017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010215777A Expired - Lifetime JP5606246B2 (en) 2010-09-27 2010-09-27 Method for manufacturing phosphor

Country Status (1)

Country Link
JP (1) JP5606246B2 (en)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051242A1 (en) * 2000-10-17 2002-04-25 Philips Corp Intellectual Pty Light-emitting device with coated phosphor
KR100458126B1 (en) * 2002-01-11 2004-11-20 한국화학연구원 Green-emitting phosphor for long wavelength ultraviolet and a preparation method thereof
US6734466B2 (en) * 2002-03-05 2004-05-11 Agilent Technologies, Inc. Coated phosphor filler and a method of forming the coated phosphor filler
JP4046542B2 (en) * 2002-03-22 2008-02-13 化成オプトニクス株式会社 Calcium silicate / magnesium phosphor, phosphor paste composition, and vacuum ultraviolet-excited light emitting device
JP4228098B2 (en) * 2002-08-29 2009-02-25 東ソー株式会社 Alkaline earth metal silicate phosphor and light emitting device
JP4225083B2 (en) * 2002-09-24 2009-02-18 日亜化学工業株式会社 Phosphor
JP4325364B2 (en) * 2003-11-07 2009-09-02 住友化学株式会社 Method for manufacturing phosphor
KR20040088446A (en) * 2004-09-20 2004-10-16 박재익 White light emitted diode

Also Published As

Publication number Publication date
JP2011017024A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP4836429B2 (en) Phosphor and light emitting device using the same
JP5190475B2 (en) Phosphor and light emitting device using the same
JP4413955B2 (en) Phosphor and light emitting device
JP5129283B2 (en) Phosphor, phosphor manufacturing method, light emitting device, and light emitting module
JP4314279B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4199267B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP4521227B2 (en) Method for producing phosphor containing nitrogen
JP4880892B2 (en) Phosphor, phosphor manufacturing method, and light emitting device using the same
US20060049414A1 (en) Novel oxynitride phosphors
JP2009179662A (en) Fluorescent material and light emitting device
JP2009035673A (en) Fluorescent material and light-emitting device
CA2969524C (en) Phosphor compositions and lighting apparatus thereof
JP2008028042A (en) Light emitting device
JP2016060845A (en) Phosphor, process for producing phosphor, and light-emitting device using the same
JPWO2016076380A1 (en) Phosphor, light emitting device, lighting device, and image display device
JP5606246B2 (en) Method for manufacturing phosphor
WO2024142450A1 (en) Light-emitting device, lighting device, image display device, and indicator lamp for vehicles
JP6962569B2 (en) A phosphor and a phosphor-containing composition using the same, and a light emitting device, a lighting device, and an image display device using these.
JP6681142B2 (en) Light emitting device
JP2016060844A (en) Phosphor, light-emitting device and process for producing phosphor
JP5646567B2 (en) Method for manufacturing phosphor
TW202426812A (en) Light-emitting device, lighting device, image display device, and vehicular indicator lamp
JP2013216909A (en) Phosphor
JP2011153319A (en) Method for producing phosphor

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131120

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131205

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131212

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131219

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20131226

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20140116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140826

R150 Certificate of patent or registration of utility model

Ref document number: 5606246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250