JP5605696B2 - Nitrile synthesis catalyst composition and method for producing nitrile using the same - Google Patents

Nitrile synthesis catalyst composition and method for producing nitrile using the same Download PDF

Info

Publication number
JP5605696B2
JP5605696B2 JP2010206130A JP2010206130A JP5605696B2 JP 5605696 B2 JP5605696 B2 JP 5605696B2 JP 2010206130 A JP2010206130 A JP 2010206130A JP 2010206130 A JP2010206130 A JP 2010206130A JP 5605696 B2 JP5605696 B2 JP 5605696B2
Authority
JP
Japan
Prior art keywords
nitrile
oxide
catalyst composition
precipitate
primary alcohol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010206130A
Other languages
Japanese (ja)
Other versions
JP2012061394A (en
Inventor
玉青 石田
正毅 春田
寛人 渡部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Metropolitan University
Original Assignee
Tokyo Metropolitan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Metropolitan University filed Critical Tokyo Metropolitan University
Priority to JP2010206130A priority Critical patent/JP5605696B2/en
Publication of JP2012061394A publication Critical patent/JP2012061394A/en
Application granted granted Critical
Publication of JP5605696B2 publication Critical patent/JP5605696B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Description

本発明は、第1級アルコールにアンモニアと酸素とを反応させてニトリルを得るアンモ酸化反応に用いる触媒組成物、ならびにその触媒組成物を用いたニトリルの製造方法に関する。   The present invention relates to a catalyst composition used in an ammoxidation reaction in which a primary alcohol is reacted with ammonia and oxygen to obtain a nitrile, and a method for producing a nitrile using the catalyst composition.

アルコールのアンモ酸化反応により対応するニトリルを製造することができる。アルコールの酸化用触媒としては、酸化物にパラジウムなどの貴金属ナノ粒子を担持したものが一般的である。酸化モリブデンや酸化バナジウムなどといった貴金属を用いない酸化物触媒系も提案されている。そういった酸化物触媒を用いる場合には、過酸化水素などの酸化剤を酸素と併用するか、あるいは、高温の気相反応を行うことが必要である。しかし、沸点の高いアルコールを原料とする場合は、気相酸化を適用するのは難しい。   The corresponding nitrile can be produced by an ammoxidation reaction of alcohol. As an alcohol oxidation catalyst, a catalyst in which noble metal nanoparticles such as palladium are supported on an oxide is generally used. Oxide catalyst systems that do not use noble metals such as molybdenum oxide and vanadium oxide have also been proposed. When such an oxide catalyst is used, it is necessary to use an oxidizing agent such as hydrogen peroxide in combination with oxygen or to perform a high-temperature gas phase reaction. However, when using alcohol with a high boiling point as a raw material, it is difficult to apply gas phase oxidation.

液相におけるアンモ酸化反応では、貴金属ナノ粒子触媒が用いられる。貴金属の使用はコスト高の要因になる。ニトリルの合成法としては、気相ではMoO−Bi−Feなどの複合酸化物や酸化バナジウムなどが用いられる。アルコールからニトリルを液相で合成する触媒としては貴金属触媒や硫酸ニッケルが報告されているが、硫酸ニッケルを用いる場合では、さらに、酸化剤が必要である。 In the ammoxidation reaction in the liquid phase, a noble metal nanoparticle catalyst is used. The use of precious metals is a costly factor. As a synthesis method of nitrile, a composite oxide such as MoO 3 —Bi 2 O 3 —Fe 2 O 3 or vanadium oxide is used in the gas phase. As a catalyst for synthesizing nitrile from alcohol in a liquid phase, a noble metal catalyst or nickel sulfate has been reported. However, when nickel sulfate is used, an oxidizing agent is further required.

特許文献1では、貴金属を使用せずに複合酸化物を用いるアルコールのアンモ酸化反応が開示されているが、気相反応に限られる。非特許文献1では、触媒である硫酸ニッケル以外に水酸化ナトリウムを添加剤として加え、酸化剤として別に過硫酸カリウムを加えることによって、液相において貴金属を用いずにアルコールのアンモ酸化を行うことが開示されている。非特許文献2では、存在量の少ないルテニウムを貴金属触媒種として用いて、添加剤なしにアルコールのアンモ酸化を行うことが開示されている。   Patent Document 1 discloses an ammoxidation reaction of alcohol using a complex oxide without using a noble metal, but is limited to a gas phase reaction. In Non-Patent Document 1, in addition to nickel sulfate as a catalyst, sodium hydroxide is added as an additive, and potassium persulfate is added separately as an oxidant to perform ammoxidation of alcohol without using noble metals in the liquid phase. It is disclosed. Non-Patent Document 2 discloses that an ammoxidation of alcohol is performed without an additive using ruthenium having a small abundance as a noble metal catalyst species.

特開2002−306968JP 2002-306968 A 特開2010−17649JP 2010-17649 A

S. Yamazaki, Y. Yamazaki,Chem. Lett. 1990, 571-574S. Yamazaki, Y. Yamazaki, Chem. Lett. 1990, 571-574 N. Mizuno, et al., Angew. Chem. Int. Ed. 2009, 48, 6286N. Mizuno, et al., Angew. Chem. Int. Ed. 2009, 48, 6286 Sameer S.Deshpande, Radha V. Jayaram, Catalysis Communications 9 (2008) 186-193Sameer S. Deshpande, Radha V. Jayaram, Catalysis Communications 9 (2008) 186-193 Y. Sasaki, etal., Science and Technology in Catalysis, 1998, 335-338Y. Sasaki, etal., Science and Technology in Catalysis, 1998, 335-338

上記背景技術に鑑みて、本発明は、液相におけるアルコールのアンモ酸化反応において、貴金属や追加の酸化剤を要さずにニトリルを得ることができるような触媒組成物を提供すること、ならびに、そのような触媒組成物を用いるニトリルの製造方法を提供することを目的とする。   In view of the above background art, the present invention provides a catalyst composition capable of obtaining a nitrile without requiring a noble metal or an additional oxidizing agent in an ammoxidation reaction of alcohol in a liquid phase, and It aims at providing the manufacturing method of a nitrile using such a catalyst composition.

本発明者らが鋭意検討した結果、以下のような本発明を完成した。
(1)酸化コバルト、酸化マンガン、酸化ニッケルおよび酸化パラジウムからなる群から選ばれる少なくとも1種の金属酸化物を含有する組成物であって、上記金属酸化物は、対応する金属塩の水溶液とアルカリ水溶液とを混合して沈殿を析出させ、得られた沈殿を焼成することにより得られたものであり、第1級アルコールにアンモニア及び酸素を作用させてニトリルを得るアンモ酸化反応における触媒として用いられる、ニトリル合成用触媒組成物。
)上記金属酸化物の比表面積が10〜300m/gである(1)の触媒組成物。
)(1)又は(2)の触媒組成物の存在下、液相中で第1級アルコールにアンモニア及び酸素を作用させてアンモ酸化反応に供してニトリルを合成する、ニトリルの製造方法。
)第1級アルコールの分子構造中に不飽和結合が存在する()の製造方法。
)第1級アルコールの分子構造中に非共役系不飽和結合が存在する()の製造方法
As a result of intensive studies by the inventors, the present invention as described below has been completed.
(1) A composition containing at least one metal oxide selected from the group consisting of cobalt oxide, manganese oxide, nickel oxide and palladium oxide, wherein the metal oxide comprises an aqueous solution of a corresponding metal salt and an alkali. It is obtained by mixing an aqueous solution to precipitate a precipitate, and firing the obtained precipitate, and is used as a catalyst in an ammoxidation reaction in which ammonia and oxygen are allowed to act on a primary alcohol to obtain a nitrile. Catalyst composition for nitrile synthesis.
( 2 ) The catalyst composition according to (1 ), wherein the metal oxide has a specific surface area of 10 to 300 m 2 / g.
( 3 ) A method for producing a nitrile, in which ammonia and oxygen are allowed to act on a primary alcohol in a liquid phase in the presence of the catalyst composition of (1) or (2) to be subjected to an ammoxidation reaction to synthesize a nitrile.
( 4 ) The production method of ( 3 ), wherein an unsaturated bond is present in the molecular structure of the primary alcohol.
( 5 ) The production method of ( 3 ), wherein a non-conjugated unsaturated bond is present in the molecular structure of the primary alcohol .

本発明によれば、液相中において比較的温和な条件で第1級アルコールからアンモ酸化反応によりニトリルを合成することができ、その際、貴金属を含む触媒や、過酸化水素などといった追加の酸化剤の添加が不要である。本発明の触媒組成物においては、その比表面積が特定範囲内である場合には、ニトリルの収率が特に良好である。本発明によれば、第1級アルコールが不飽和結合を有する場合に、水酸基において選択的に酸化反応が進行するため、主鎖等に不飽和結合を有するニトリルを効率的に製造することもできる。   According to the present invention, a nitrile can be synthesized from a primary alcohol by an ammoxidation reaction under relatively mild conditions in a liquid phase, and at this time, an additional oxidation such as a catalyst containing a noble metal, hydrogen peroxide, or the like. The addition of an agent is unnecessary. In the catalyst composition of the present invention, the yield of nitrile is particularly good when the specific surface area is within a specific range. According to the present invention, when the primary alcohol has an unsaturated bond, the oxidation reaction proceeds selectively at the hydroxyl group, so that a nitrile having an unsaturated bond in the main chain or the like can also be efficiently produced. .

本発明の特徴のひとつは、特定の金属酸化物を触媒として用いることである。
本発明によれば、ニトリル合成用の触媒として用いられるのは、酸化コバルト、酸化マンガン、酸化ニッケルおよび酸化パラジウムからなる群から選ばれる少なくとも1種の金属酸化物であり、好ましくは酸化マンガンである。本発明においては、酸化コバルト、酸化マンガン、酸化ニッケルおよび酸化パラジウムは複合金属酸化物であってもよいし、他の金属種がドープされていてもよい。複合酸化物としては、例えば、コバルトを含むコバルト−亜鉛複合酸化物、ニッケル-銅複合酸化物、マンガン−鉄複合酸化物、などが挙げられ、ドープしてもよい金属種としては亜鉛、銅、鉄、セリウム、カリウムなどを挙げることができ、複合酸化物あるいはドープしてもよい金属種はこれらに限定されない。本発明者らは、数多くの遷移金属などの酸化物やその他の化合物について幾多の試行錯誤を経た結果、特定の金属酸化物のみにおいて本発明の効果が奏されることを見出したのである。
One of the features of the present invention is that a specific metal oxide is used as a catalyst.
According to the present invention, at least one metal oxide selected from the group consisting of cobalt oxide, manganese oxide, nickel oxide and palladium oxide is used as a catalyst for nitrile synthesis, preferably manganese oxide. . In the present invention, cobalt oxide, manganese oxide, nickel oxide and palladium oxide may be a composite metal oxide or may be doped with other metal species. Examples of the composite oxide include cobalt-zinc composite oxide containing cobalt, nickel-copper composite oxide, manganese-iron composite oxide, and the like, and metal species that may be doped include zinc, copper, Iron, cerium, potassium and the like can be mentioned, and the metal species which may be mixed or doped are not limited to these. The present inventors have found that the effect of the present invention can be achieved only with a specific metal oxide as a result of many trials and errors with respect to many oxides such as transition metals and other compounds.

上記金属酸化物は種々のものが入手可能であり、特に限定無く用いることができる。好適には、対応する金属塩の水溶液とアルカリ水溶液とを混合して沈殿を析出させ、得られた沈殿を焼成することにより上記金属酸化物を得る。「対応する金属塩の水溶液」とは、例えば、金属酸化物が酸化コバルトである場合には、コバルトの水溶性の塩を水に溶かしてなる水溶液のことである。水溶性の塩は、特に限定はなく、金属の種類に応じて適宜のものを選択すればよく、例えば、硝酸塩、酢酸塩、塩酸塩、硫酸塩、過塩素酸塩、シュウ酸塩などを挙げることができる。   Various metal oxides are available and can be used without any particular limitation. Preferably, an aqueous solution of a corresponding metal salt and an aqueous alkaline solution are mixed to precipitate a precipitate, and the obtained precipitate is fired to obtain the metal oxide. The “corresponding aqueous solution of metal salt” is, for example, an aqueous solution obtained by dissolving a water-soluble salt of cobalt in water when the metal oxide is cobalt oxide. The water-soluble salt is not particularly limited, and may be appropriately selected depending on the type of metal. Examples thereof include nitrates, acetates, hydrochlorides, sulfates, perchlorates and oxalates. be able to.

金属塩の水溶液とアルカリ水溶液とを混合することで、例えば、不溶性の沈殿(金属水酸化物など)を析出させることができる。用いるアルカリは、金属の種類に応じて適宜選択すればよく、具体的には、炭酸ナトリウム、水酸化ナトリウム、炭酸水素ナトリウム、炭酸カリウム、水酸化カリウムなどを特に限定なく挙げることができる。このとき、金属の種類によっては酸化数の調整のために酸化剤を併用してもよい。沈殿の析出の際に、水溶液を例えば40〜90℃に加熱してもよい。   By mixing an aqueous solution of a metal salt and an aqueous alkaline solution, for example, an insoluble precipitate (such as a metal hydroxide) can be deposited. What is necessary is just to select the alkali used suitably according to the kind of metal, Specifically, sodium carbonate, sodium hydroxide, sodium hydrogencarbonate, potassium carbonate, potassium hydroxide etc. can be mentioned without limitation. At this time, depending on the type of metal, an oxidizing agent may be used in combination for adjusting the oxidation number. During precipitation of the precipitate, the aqueous solution may be heated to, for example, 40 to 90 ° C.

上記のようにして得られた沈殿を回収して焼成することにより金属酸化物を得ることができる。焼成条件は金属の種類に応じて適宜選択することができ、好ましくは、200〜550℃、より好ましくは250〜450℃における空気焼成である。この方法で金属酸化物を製造する場合、焼成温度が高いほど金属酸化物粒子の比表面積が小さくなる。このことを利用して、金属酸化物の比表面積をある程度制御することができる。   The metal oxide can be obtained by collecting and baking the precipitate obtained as described above. Firing conditions can be appropriately selected depending on the type of metal, and are preferably air firing at 200 to 550 ° C, more preferably 250 to 450 ° C. When producing a metal oxide by this method, the specific surface area of the metal oxide particles decreases as the firing temperature increases. By utilizing this fact, the specific surface area of the metal oxide can be controlled to some extent.

金属酸化物が酸化コバルトである場合、通常はCoの形態であり、その製造方法は特に限定されず、例えば、上記した製法によることができる。この場合、出発原料は好ましくは硝酸塩であり、水不溶性の沈殿を得るために用いるアルカリは好ましくは炭酸ナトリウムである。回収した沈殿の焼成は好ましくは200〜550℃の空気焼成である。 When the metal oxide is cobalt oxide, it is usually in the form of Co 3 O 4 , and its production method is not particularly limited, and for example, the production method described above can be used. In this case, the starting material is preferably nitrate and the alkali used to obtain a water-insoluble precipitate is preferably sodium carbonate. The recovered precipitate is preferably fired at 200 to 550 ° C. in air.

金属酸化物が酸化マンガンである場合、通常はMnOの形態であり、その製造方法は特に限定されず、例えば、上記した製法によることができる。この場合、出発原料は硝酸塩であり、水不溶性の沈殿を得るために用いるアルカリは好ましくは水酸化ナトリウムであり、酸化数の調整のための過マンガン酸カリウムをアルカリと併用することも好ましい。回収した沈殿の焼成は好ましくは200〜650℃の空気焼成である。酸化マンガンは本発明のための触媒組成物として特に好適であり、後述する好適な比表面積範囲よりも小さな比表面積をもつ酸化マンガンであっても優れた触媒能を有する。 When the metal oxide is manganese oxide, it is usually in the form of MnO 2 and its production method is not particularly limited, and for example, it can be according to the production method described above. In this case, the starting material is nitrate, the alkali used to obtain a water-insoluble precipitate is preferably sodium hydroxide, and it is also preferable to use potassium permanganate for adjusting the oxidation number together with the alkali. The recovered precipitate is preferably baked in air at 200 to 650 ° C. Manganese oxide is particularly suitable as a catalyst composition for the present invention, and even manganese oxide having a specific surface area smaller than the preferable specific surface area range described below has excellent catalytic ability.

金属酸化物が酸化ニッケルである場合、通常はNiOの形態であり、その製造方法は特に限定されず、例えば、上記した製法によることができる。この場合、出発原料は好ましくは硝酸塩であり、水不溶性の沈殿を得るために用いるアルカリは好ましくは炭酸ナトリウムである。回収した沈殿の焼成は好ましくは200〜350℃、より好ましくは250〜320℃の空気焼成である。   When the metal oxide is nickel oxide, it is usually in the form of NiO, and its production method is not particularly limited, and for example, the production method described above can be used. In this case, the starting material is preferably nitrate and the alkali used to obtain a water-insoluble precipitate is preferably sodium carbonate. The recovered precipitate is preferably fired at 200 to 350 ° C, more preferably 250 to 320 ° C.

金属酸化物が酸化パラジウムである場合、通常はPdOの形態であり、その製造方法は特に限定されず、例えば、上記した製法によることができる。この場合、出発原料は好ましくは酢酸塩であり、水不溶性の沈殿を得るために用いるアルカリは好ましくは炭酸ナトリウムである。回収した沈殿の焼成は好ましくは280〜320℃の空気焼成である。   When the metal oxide is palladium oxide, it is usually in the form of PdO, and its production method is not particularly limited. For example, the production method described above can be used. In this case, the starting material is preferably acetate and the alkali used to obtain a water-insoluble precipitate is preferably sodium carbonate. The recovered precipitate is preferably baked in air at 280 to 320 ° C.

本発明によれば、金属酸化物の形状は特に限定なく、比表面積は好ましくは10〜300m/gであり好ましくは50〜200m/gである。前記範囲内の比表面積を有する金属酸化物によれば、アンモ酸化反応の触媒能力が向上する。上述の方法で金属酸化物を調製する場合は、比表面積の調整は、焼成温度によって制御することができる(実施例参照)。本発明において、金属酸化物の比表面積は窒素ガス吸着法(使用機器は島津製作所製 Micrometrics Tristar)によって測定される値を採用する。 According to the present invention, the shape of the metal oxide is not particularly limited, and the specific surface area is preferably 10 to 300 m 2 / g, and preferably 50 to 200 m 2 / g. According to the metal oxide having a specific surface area within the above range, the catalytic ability of the ammoxidation reaction is improved. When preparing a metal oxide by the above-mentioned method, adjustment of a specific surface area can be controlled by a calcination temperature (refer an Example). In the present invention, the value measured by the nitrogen gas adsorption method (the instrument used is Micrometrics Tristar manufactured by Shimadzu Corporation) is adopted as the specific surface area of the metal oxide.

本発明によれば、上述の金属酸化物を触媒として用いて第1級アルコールのアンモ酸化を行って対応するニトリルを製造することができる。一般式、R−CHOH(但し、Rは1価の有機基である。)で表現される第1級アルコールと酸素とアンモニアとを反応させてR−CN(但し、Rは1価の有機基である。)で表現されるニトリルを得るのが、アンモ酸化反応である。 According to the present invention, a corresponding nitrile can be produced by ammoxidation of a primary alcohol using the above-mentioned metal oxide as a catalyst. A primary alcohol represented by the general formula, R—CH 2 OH (where R is a monovalent organic group), oxygen and ammonia are reacted to form R—CN (where R is a monovalent). It is an ammoxidation reaction to obtain a nitrile represented by an organic group.

本発明によれば、金属酸化物を独立した粉末・粒子状の形態で使用することもできるし、SiOなどの担体に上記金属酸化物を担持して使用することも可能である。金属酸化物を担体に担持させる方法は従来公知の技術を適宜援用してもよく、例えば、担体と金属酸化物とを接触させた状態で焼結するなどの方法が挙げられる。 According to the present invention, the metal oxide can be used in an independent powder / particulate form, or the metal oxide can be supported on a carrier such as SiO 2 and used. As a method of supporting the metal oxide on the support, a conventionally known technique may be appropriately used, and examples thereof include a method of sintering in a state where the support and the metal oxide are in contact with each other.

本発明によれば、アンモ酸化の対象とする第1級アルコールについては特に限定はなく、一般式、R−CHOH(但し、Rは1価の有機基である。)で表現するとき、Rが有する炭素数は好ましくは1〜20であり、より好ましくは3〜15であり、さらに好ましくは4〜12である。前記Rについては、その分子構造中に不飽和結合を有していてもよく、この不飽和結合は、共役系の不飽和結合であってもよいし、非共役系の不飽和結合であってもよい。アンモ酸化反応においては不飽和結合についても不所望な酸化や異性化、水素化が生じてしまう懸念があるが、本発明による触媒組成物を用いる場合には、選択的にアルコールの水酸基の酸化が生じやすいため、前記Rに含まれていてもよい不飽和結合が維持されたまま対応するニトリルを製造することができる。上記「水素化」は、アルコール酸化の過程で副反応として水素化される場合のことを主に意味する。 According to the present invention, the primary alcohol to be subjected to ammoxidation is not particularly limited. When expressed by the general formula, R—CH 2 OH (where R is a monovalent organic group), R preferably has 1 to 20 carbon atoms, more preferably 3 to 15 carbon atoms, and still more preferably 4 to 12 carbon atoms. R may have an unsaturated bond in its molecular structure, and this unsaturated bond may be a conjugated unsaturated bond or a non-conjugated unsaturated bond. Also good. In the ammoxidation reaction, there is a concern that undesired oxidation, isomerization, and hydrogenation may occur with respect to the unsaturated bond. However, when the catalyst composition according to the present invention is used, oxidation of the hydroxyl group of the alcohol is selectively performed. Since it easily occurs, the corresponding nitrile can be produced while maintaining the unsaturated bond that may be contained in R. The above-mentioned “hydrogenation” mainly means a case where hydrogenation is performed as a side reaction in the process of alcohol oxidation.

本発明によれば、アンモ酸化反応を液相にて行うことができる。反応溶媒としては反応対象である第1級アルコールを溶解することができるものであれば特に限定なく用いることができ、具体的には、一般的な有機溶媒である炭化水素系(ヘキサン、トルエン、キシレンなど)、エーテル系(THF、ジオキサンなど)、メタノール、エタノール、アセトン、クロロホルムなどの含ハロゲン系溶媒、アセトニトリル、DMFなどの使用が挙げられる。   According to the present invention, the ammoxidation reaction can be performed in a liquid phase. The reaction solvent can be used without particular limitation as long as it can dissolve the primary alcohol to be reacted, and specifically, hydrocarbon solvents (hexane, toluene, Xylene), ethers (THF, dioxane, etc.), halogen-containing solvents such as methanol, ethanol, acetone, chloroform, acetonitrile, DMF, and the like.

アンモ酸化反応の具体的な反応条件は従来例などを参考にして容易に定めることができる。典型的には、溶媒中に反応対象となる第1級アルコールを溶解し、それをオートクレーブ中にて酸素ガスとアンモニアガスの存在下で、例えば50〜200℃、好ましくは70〜150℃に加熱するなどして反応を進行させることができる。   Specific reaction conditions for the ammoxidation reaction can be easily determined with reference to conventional examples. Typically, a primary alcohol to be reacted is dissolved in a solvent and heated in an autoclave in the presence of oxygen gas and ammonia gas, for example, 50 to 200 ° C., preferably 70 to 150 ° C. The reaction can be advanced by, for example.

第1級アルコール濃度は任意の割合で設定してよく、例えば0.1〜3M、好ましくは0.1〜1Mに設定して反応させることができる。酸素およびアンモニアのガス分圧については特に限定はなく、爆発範囲をさけて設定すればよく、必要に応じて窒素などの不活性ガスを追加してもよい。アンモニアガスは基質の第1級アルコールに対して1当量以上あればよく、酸素ガスはなくてもよいが好ましくは1当量以上、更に好ましくは2当量以上あればよい。なお、酸素を入れずにアンモニアだけでも2割くらいは反応が進行し、ニトリルが生成する。これは、アルコールからアルデヒドになる反応とアルデヒドとアンモニアから生成したイミンがニトリルになる各段階で、酸化ではなく脱水素化が一部起こるためだと考えられる。   The primary alcohol concentration may be set at an arbitrary ratio, for example, 0.1 to 3M, and preferably 0.1 to 1M. The gas partial pressures of oxygen and ammonia are not particularly limited and may be set so as to avoid the explosion range, and an inert gas such as nitrogen may be added as necessary. The ammonia gas only needs to be 1 equivalent or more with respect to the primary alcohol of the substrate, and the oxygen gas may not be present, but preferably 1 equivalent or more, more preferably 2 equivalents or more. In addition, about 20% of the reaction proceeds with ammonia alone without adding oxygen, and nitrile is produced. This is thought to be because dehydrogenation, not oxidation, occurs in part in the reaction from alcohol to aldehyde and in each stage where imine generated from aldehyde and ammonia becomes nitrile.

以下、本発明による実施例を示す。ただし、本発明はこれらの実施例に記載された態様に限定されるわけではない。   Examples according to the present invention will be described below. However, the present invention is not limited to the embodiments described in these examples.

[実施例1〜3]酸化コバルト(Co)の調製
5.9g(20mmol)の硝酸コバルト(Co(NO・6HO)を蒸留水200mLに溶解させ、これを予め調製しておいた70℃の0.1MのNaCO水溶液250mLに加えた。得られた混合液を70℃で1時間撹拌後、静置し、上澄み液のpHが安定するまで沈殿を蒸留水で洗浄した。吸引濾過により沈殿を回収してそれを65℃で乾燥させた後、各実施例についてそれぞれ表1記載の異なる温度で4時間空気焼成して酸化コバルトからなる触媒組成物を得た。
[Examples 1 to 3] Preparation of cobalt oxide (Co 3 O 4 ) 5.9 g (20 mmol) of cobalt nitrate (Co (NO 3 ) 2 · 6H 2 O) was dissolved in 200 mL of distilled water, and this was prepared in advance. It was added to 250 mL of an aqueous 0.1 M Na 2 CO 3 solution at 70 ° C. The obtained mixed solution was stirred at 70 ° C. for 1 hour and then allowed to stand, and the precipitate was washed with distilled water until the pH of the supernatant was stabilized. After collecting the precipitate by suction filtration and drying it at 65 ° C., each example was calcined with air at different temperatures shown in Table 1 for 4 hours to obtain a catalyst composition comprising cobalt oxide.

[実施例4〜9]酸化マンガン(MnO)の調製
86.1g(0.3mol)の硝酸マンガン(Mn(NO・6HO)を蒸留水500mLに溶解させた。別の容器に、31.6g(0.2mol)の過マンガン酸カリウム(KMnO)と24.0g(0.6mol)の水酸化ナトリウムを蒸留水500mLに溶解させた。この過マンガン酸カリウム水溶液を先の硝酸マンガン水溶液に加え、室温で1時間撹拌した。静置後、上澄み液のpHが安定するまで沈殿を蒸留水で洗浄した。吸引濾過により沈殿を回収してそれを65℃で乾燥させた後、各実施例についてそれぞれ表1記載の異なる温度で4時間空気焼成して目的の酸化マンガンからなる触媒組成物を得た。
Was dissolved Example 4-9] manganese nitrate Preparation 86.1g of manganese oxide (MnO 2) (0.3mol) ( Mn (NO 3) 2 · 6H 2 O) in distilled water 500 mL. In another container, 31.6 g (0.2 mol) of potassium permanganate (KMnO 4 ) and 24.0 g (0.6 mol) of sodium hydroxide were dissolved in 500 mL of distilled water. This aqueous potassium permanganate solution was added to the previous aqueous manganese nitrate solution and stirred at room temperature for 1 hour. After standing, the precipitate was washed with distilled water until the pH of the supernatant was stabilized. After collecting the precipitate by suction filtration and drying it at 65 ° C., each example was calcined with air at different temperatures shown in Table 1 for 4 hours to obtain a target catalyst composition comprising manganese oxide.

[実施例10〜11]酸化ニッケル(NiO)の調製
5.9g(10mmol)の硝酸ニッケル(Ni(NO・6HO)を蒸留水200mLに溶解させ、これを予め調製しておいた70℃の0.1MのNaCO水溶液250mLに加えた。得られた混合液を70℃で1時間撹拌後、静置し、上澄み液のpHが安定するまで沈殿を蒸留水で洗浄した。吸引濾過により沈殿を回収してそれを65℃で乾燥させた後、各実施例についてそれぞれ表1記載の異なる温度で4時間空気焼成して酸化ニッケルからなる触媒組成物を得た。
[Examples 10 to 11] Preparation of nickel oxide (NiO) 5.9 g (10 mmol) of nickel nitrate (Ni (NO 3 ) 2 · 6H 2 O) was dissolved in 200 mL of distilled water, and this was prepared in advance. Was added to 250 mL of 0.1 M Na 2 CO 3 aqueous solution at 70 ° C. The obtained mixed solution was stirred at 70 ° C. for 1 hour and then allowed to stand, and the precipitate was washed with distilled water until the pH of the supernatant was stabilized. After collecting the precipitate by suction filtration and drying it at 65 ° C., each example was calcined with air at different temperatures shown in Table 1 for 4 hours to obtain a catalyst composition comprising nickel oxide.

[実験例12]酸化パラジウム(PdO)の調製
1.54gのPd(CHCOO)にアセトン30mLと蒸留水10mLを加え、70℃で1時間撹拌した。この溶液を化学両論量で2当量のNaCO水溶液(70℃)に加え、1時間撹拌した。その後得られた沈殿物を40℃の蒸留水でpHが安定するまで洗浄し、吸引濾過により回収して65℃で乾燥した後、300℃にて4時間空気焼成して酸化パラジウムからなる触媒組成物を得た。
Experimental Example 12] The distilled water 10mL acetone 30mL was added to Pd (CH 3 COO) 2 Preparation 1.54g of palladium oxide (PdO), and stirred for 1 hour at 70 ° C.. This solution was added to a stoichiometric amount of 2 equivalents of an aqueous Na 2 CO 3 solution (70 ° C.) and stirred for 1 hour. The resulting precipitate was washed with distilled water at 40 ° C. until the pH was stabilized, recovered by suction filtration, dried at 65 ° C., and then air calcined at 300 ° C. for 4 hours to form a catalyst composition comprising palladium oxide. I got a thing.

[触媒能力の評価1]ベンジルアルコールのアンモ酸化によるベンゾニトリル合成
各実施例で調製した触媒組成物を用いて、ベンジルアルコールのアンモ酸化を行った。52μL(0.5mmol)のベンジルアルコール、0.02gの触媒組成物、3mLの脱水トルエンおよび磁気撹拌子をオートクレーブに入れた。アンモニアガスと酸素ガスをそれぞれ分圧で0.85MPaおよび0.5MPaずつ仕込み、100℃で4時間(酸化マンガンの場合は0.5時間)撹拌させた。ガスクロマトグラフィー分析により、ベンゾニトリルの生成に関する転化率と収率を測定した。結果を表1にまとめる。
[Evaluation of catalytic ability 1] Synthesis of benzonitrile by ammoxidation of benzyl alcohol Ammoxidation of benzyl alcohol was carried out using the catalyst composition prepared in each Example. 52 μL (0.5 mmol) of benzyl alcohol, 0.02 g of the catalyst composition, 3 mL of dehydrated toluene and a magnetic stir bar were placed in the autoclave. Ammonia gas and oxygen gas were charged at a partial pressure of 0.85 MPa and 0.5 MPa, respectively, and stirred at 100 ° C. for 4 hours (in the case of manganese oxide, 0.5 hour). The conversion and yield for the formation of benzonitrile were measured by gas chromatography analysis. The results are summarized in Table 1.

Figure 0005605696
Figure 0005605696

[触媒能力の評価2]アンモ酸化におけるトルエン以外の溶媒
実施例1〜3の触媒について、トルエンの代わりに1,4−ジオキサン、THF、メタノールを溶媒として用いてアンモ酸化反応を試みたところ、ニトリルを製造することができた。
[Evaluation of catalytic ability 2] Solvents other than toluene in ammoxidation For the catalysts of Examples 1 to 3, an ammoxidation reaction was attempted using 1,4-dioxane, THF and methanol as solvents instead of toluene. Could be manufactured.

[触媒能力の評価3]
実施例4〜9の触媒について、ベンジルアルコールの代わりにシンナミルアルコールおよびオクタノールについてアンモ酸化反応を試みたところ、対応するニトリルを製造することができた。シンナミルアルコールには鎖状骨格部分に非共役系の不飽和二重結合が存在するが、当該不飽和二重結合については酸化、水素化、異性化されずに、アルコールの水酸基のみが選択的に酸化された。
[Evaluation of catalytic ability 3]
When the catalysts of Examples 4 to 9 were subjected to an ammoxidation reaction using cinnamyl alcohol and octanol instead of benzyl alcohol, the corresponding nitrile could be produced. Cinnamyl alcohol has a non-conjugated unsaturated double bond in the chain skeleton, but the unsaturated double bond is not oxidized, hydrogenated or isomerized, but only the hydroxyl group of the alcohol is selective. Oxidized.

[比較例]
酸化物として以下に列挙するものを用いて上記と同様の操作によりアンモ酸化を試みたが、反応は進行せず、ニトリルを得ることができなかった。
Fe、CuO、SiO、Al(比表面積285m2/g)、V(比表面積4m2/g)、TiO(比表面積50m2/g)、CeO(比表面積166m2/g)、ZrO(比表面積80〜120m2/g)、Nb(比表面積5m2/g)、Y、MoO
[Comparative example]
Ammoxidation was attempted by the same operation as described above using the oxides listed below, but the reaction did not proceed and nitrile could not be obtained.
Fe 2 O 3 , CuO, SiO 2 , Al 2 O 3 (specific surface area 285 m 2 / g), V 2 O 5 (specific surface area 4 m 2 / g), TiO 2 (specific surface area 50 m 2 / g), CeO 2 ( Specific surface area 166 m 2 / g), ZrO 2 (specific surface area 80-120 m 2 / g), Nb 2 O 5 (specific surface area 5 m 2 / g), Y 2 O 3 , MoO 3

本発明によれば、比較的温和な条件で第1級アルコールからニトリルを製造することができ、とりわけ、不飽和結合を分子構造中に有するニトリルを選択的に製造することができる点において有用である。   According to the present invention, a nitrile can be produced from a primary alcohol under relatively mild conditions, and particularly useful in that a nitrile having an unsaturated bond in the molecular structure can be selectively produced. is there.

Claims (5)

酸化コバルト、酸化マンガン、酸化ニッケルおよび酸化パラジウムからなる群から選ばれる少なくとも1種の金属酸化物を含有する組成物であって
上記金属酸化物は、対応する金属塩の水溶液とアルカリ水溶液とを混合して沈殿を析出させ、得られた沈殿を焼成することにより得られたものであり
第1級アルコールにアンモニア及び酸素を作用させてニトリルを得るアンモ酸化反応における触媒として用いられる、
ニトリル合成用触媒組成物。
A composition containing at least one metal oxide selected from the group consisting of cobalt oxide, manganese oxide, nickel oxide and palladium oxide ,
The metal oxide is obtained by mixing an aqueous solution of a corresponding metal salt and an aqueous alkali solution to precipitate a precipitate, and firing the obtained precipitate .
Used as a catalyst in an ammoxidation reaction in which ammonia and oxygen are allowed to act on a primary alcohol to obtain a nitrile,
Catalyst composition for nitrile synthesis.
上記金属酸化物の比表面積が10〜300m/gである請求項1記載の触媒組成物。 The metal oxide according to claim 1 Symbol placement of the catalyst composition having a specific surface area of 10 to 300 m 2 / g of. 請求項1又は2記載の触媒組成物の存在下、液相中で第1級アルコールにアンモニア及び酸素を作用させてアンモ酸化反応に供してニトリルを合成する、ニトリルの製造方法。 Presence of claim 1 or 2 SL placing the catalyst composition, by the action of ammonia and oxygen to a primary alcohol in the liquid phase to synthesize a nitrile is subjected to ammoxidation method nitrile. 第1級アルコールの分子構造中に不飽和結合が存在する請求項記載の製造方法。 The process according to claim 3 , wherein an unsaturated bond is present in the molecular structure of the primary alcohol. 第1級アルコールの分子構造中に非共役系不飽和結合が存在する請求項記載の製造方法 The production method according to claim 3 , wherein a non-conjugated unsaturated bond is present in the molecular structure of the primary alcohol .
JP2010206130A 2010-09-14 2010-09-14 Nitrile synthesis catalyst composition and method for producing nitrile using the same Active JP5605696B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010206130A JP5605696B2 (en) 2010-09-14 2010-09-14 Nitrile synthesis catalyst composition and method for producing nitrile using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010206130A JP5605696B2 (en) 2010-09-14 2010-09-14 Nitrile synthesis catalyst composition and method for producing nitrile using the same

Publications (2)

Publication Number Publication Date
JP2012061394A JP2012061394A (en) 2012-03-29
JP5605696B2 true JP5605696B2 (en) 2014-10-15

Family

ID=46057697

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010206130A Active JP5605696B2 (en) 2010-09-14 2010-09-14 Nitrile synthesis catalyst composition and method for producing nitrile using the same

Country Status (1)

Country Link
JP (1) JP5605696B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114426503A (en) * 2020-10-13 2022-05-03 中国石油化工股份有限公司 Process for the preparation of dinitrile compounds
CN114042461B (en) * 2021-11-30 2024-04-30 陕西科技大学 Preparation method of supported cobalt-based catalyst and application of supported cobalt-based catalyst in synthesizing nitrile by alcohol

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4854149B2 (en) * 2001-08-29 2012-01-18 旭化成ケミカルズ株式会社 A method to stably increase the production of acetonitrile
CN100358629C (en) * 2004-09-24 2008-01-02 中国石油化工股份有限公司 Fluidized bed catalyst for preparing acetonitrile

Also Published As

Publication number Publication date
JP2012061394A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP4777670B2 (en) Ammonia synthesis catalyst and method for producing the same
KR101447683B1 (en) Iron modified Ni-based perovskite type catalyst, Preparing method thereof, and Producing method of synthesis gas from combined steam CO2 reforming of methane using the same
TWI267402B (en) Catalyst for partial oxidation and preparation method thereof
JP5459322B2 (en) Redox material for thermochemical water splitting and hydrogen production method
JP7368813B2 (en) Hydrogenation reaction catalyst used for hydrogenation of amide compounds and method for producing amine compounds using the same
CN113061122B (en) Preparation method of 2, 5-dihydroxymethyl tetrahydrofuran
TW201134548A (en) Process for preparing a supported hydrogenation catalyst with increased hydrogenation activity
CN101966460B (en) Supported catalyst for synthesis of dimethyl carbonate, preparation method and using method thereof
JP2010017649A (en) Highly active catalyst and its preparing method
CN109939693B (en) CoMn2O4Bimetallic oxide catalyst, preparation method and application
JP5543150B2 (en) Selective hydrogenation catalyst for aromatic nitro compounds, process for producing and regenerating the same, and process for selective hydrogenation of aromatic nitrated compounds using the same
KR102453050B1 (en) Methods for manufacturing metal nitrides and metal carbides
CN109529912B (en) Composite nano-structure copper catalyst for preparing furfuryl alcohol by furfural hydrogenation and preparation method thereof
JP5605696B2 (en) Nitrile synthesis catalyst composition and method for producing nitrile using the same
JP2007518557A (en) Non-chromium containing catalyst of Cu metal and at least one second metal
WO2013124392A1 (en) Metal powderdous catalyst for hydrogenation processes
CN111545239B (en) Solid catalyst for glycerol oxidation and preparation method thereof
TW201228724A (en) Promoted copper/zinc catalyst for hydrogenating aldehydes to alcohols
TWI504437B (en) Steam re-calcination of mixed metal oxide catalysts
JP2021013923A (en) Hydrogenation catalyst and production method of hydrogenated organic compound using the same
JP3552766B2 (en) Ammonia synthesis catalyst and its preparation method
KR101988370B1 (en) Catalysts for methanation of carbon dioxide and the manufacturing method of the same
CN111196763A (en) Catalyst for producing 3-aminopropanol by hydrogenating 3-hydroxypropionitrile and preparation method thereof
CN105727972A (en) Preparation method of catalyst for methane reforming with carbon dioxide to synthetic gas
KR101655092B1 (en) Manufacturing method of methane using methanation catalyst derived from hydrotalcite-type compound, methanation catalyst, and preparation mehtod of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140414

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140804

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R150 Certificate of patent or registration of utility model

Ref document number: 5605696

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250