JP5605687B2 - Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same - Google Patents

Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same Download PDF

Info

Publication number
JP5605687B2
JP5605687B2 JP2010147647A JP2010147647A JP5605687B2 JP 5605687 B2 JP5605687 B2 JP 5605687B2 JP 2010147647 A JP2010147647 A JP 2010147647A JP 2010147647 A JP2010147647 A JP 2010147647A JP 5605687 B2 JP5605687 B2 JP 5605687B2
Authority
JP
Japan
Prior art keywords
sensor response
light intensity
spectral
spectral characteristic
wavelength band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010147647A
Other languages
Japanese (ja)
Other versions
JP2012013437A (en
JP2012013437A5 (en
Inventor
晃平 新保
直裕 上条
学 瀬尾
陽一 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2010147647A priority Critical patent/JP5605687B2/en
Priority to EP11170204.9A priority patent/EP2403229B1/en
Priority to US13/165,205 priority patent/US8593628B2/en
Publication of JP2012013437A publication Critical patent/JP2012013437A/en
Publication of JP2012013437A5 publication Critical patent/JP2012013437A5/ja
Application granted granted Critical
Publication of JP5605687B2 publication Critical patent/JP5605687B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/46Colour picture communication systems
    • H04N1/56Processing of colour picture signals
    • H04N1/60Colour correction or control
    • H04N1/6027Correction or control of colour gradation or colour contrast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/462Computing operations in or between colour spaces; Colour management systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/501Colorimeters using spectrally-selective light sources, e.g. LEDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/502Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using a dispersive element, e.g. grating, prism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Control Or Security For Electrophotography (AREA)
  • Color Electrophotography (AREA)

Description

本発明は、測定対象における分光反射率、分光透過率、CIE(国際照明委員会)が定める各種表色系で用いられるパラメータ(測色値)などの分光特性を測定する分光特性測定方法及び分光特性測定装置、並びに、その分光特性測定装置を備えた画像形成装置に関するものである。   The present invention relates to a spectral characteristic measuring method for measuring spectral characteristics such as spectral reflectance, spectral transmittance, and parameters (colorimetric values) used in various color systems defined by CIE (International Commission on Illumination). The present invention relates to a characteristic measuring apparatus and an image forming apparatus including the spectral characteristic measuring apparatus.

印刷装置やプリンタ等の画像形成装置において色安定性や色再現性などの色調管理は重要な技術課題の1つであり、近年、分光光度計等の分光器(検出手段)を用いて画像形成装置の色調管理が行われるようになってきている(例えば特許文献1)。具体的には、例えば、出力画像(測定対象)の拡散反射光を分光器で測定して分光反射率を求め、そこからCIEで定めるXYZ表色系やL*a*b*表色系等に用いられるパラメータを計算し、この結果を利用して出力画像の色調検査を行ったり、画像形成条件の調整を行ったりする。   Color management such as color stability and color reproducibility is one of the important technical problems in image forming apparatuses such as printing apparatuses and printers. In recent years, image formation is performed using a spectroscope (detection means) such as a spectrophotometer. The color tone management of the apparatus has been performed (for example, Patent Document 1). Specifically, for example, the diffuse reflection light of the output image (measurement target) is measured with a spectroscope to obtain the spectral reflectance, and from there, the XYZ color system, L * a * b * color system, etc. defined by CIE The parameters used in the above are calculated, and the color tone inspection of the output image is performed using this result, and the image forming conditions are adjusted.

図3は、分光器の一例を説明するための説明図である。
この測定系においては、測定対象1における被測定面の法線方向から45°傾いた方向から照明系2より照明する。分光器は、被測定面からの拡散反射光束を集光レンズ3によりスリット11に集光し、スリットを通過した光束を凹面回折素子12により分光、集光して、アレイ受光素子13に案内する。アレイ受光素子13は、複数の受光領域が凹面回折素子12の回折方向に対応する方向に配列されたものであり、各受光領域で異なる波長帯の光強度信号を検出する。そして、アレイ受光素子13の各受光領域での検出結果と、標準白色面等から得られる光強度信号とから、各受光領域に対応する波長帯それぞれの反射率を算出して、分光反射率を得る。このように得られる分光反射率を用いれば、XYZ表色系やL*a*b*表色系等のパラメータ(測色値)などの他の分光特性を把握することもできる。
FIG. 3 is an explanatory diagram for explaining an example of a spectroscope.
In this measurement system, illumination is performed from the illumination system 2 from a direction inclined by 45 ° from the normal direction of the surface to be measured in the measurement object 1. The spectroscope condenses the diffusely reflected light beam from the surface to be measured on the slit 11 by the condensing lens 3, splits and condenses the light beam that has passed through the slit by the concave diffraction element 12, and guides it to the array light receiving element 13. . The array light receiving element 13 has a plurality of light receiving areas arranged in a direction corresponding to the diffraction direction of the concave diffraction element 12, and detects light intensity signals in different wavelength bands in each light receiving area. Then, the reflectance of each wavelength band corresponding to each light receiving region is calculated from the detection result in each light receiving region of the array light receiving element 13 and the light intensity signal obtained from the standard white surface or the like, and the spectral reflectance is calculated. obtain. If the spectral reflectance obtained in this way is used, other spectral characteristics such as parameters (colorimetric values) such as the XYZ color system and the L * a * b * color system can be grasped.

可視光を測定する分光器は、例えば波長400〜700[nm]の範囲の光を含む光束を10[nm]ピッチで分光して検出した31以上の波長帯に離散化された光強度信号の群をセンサ応答として出力する。このような分光器では、被測定面からの拡散反射光束を時間的あるいは空間的に31以上の波長帯に分割して各波長帯の光強度信号を検出し、その検出値を順次取り込む。よって、すべての波長帯の検出値を取得するには、ある程度の時間を必要とする。そのため、例えば、近年の高速な画像形成装置における出力画像をその印刷速度に対応したスピードでインライン測定するような用途には、検出速度が不十分であり、適用が困難であった。   The spectroscope that measures visible light, for example, has a light intensity signal discretized into 31 or more wavelength bands detected by spectroscopically detecting a light beam including light in a wavelength range of 400 to 700 [nm] at a pitch of 10 [nm]. The group is output as a sensor response. In such a spectroscope, the diffusely reflected light beam from the surface to be measured is temporally or spatially divided into 31 or more wavelength bands to detect light intensity signals in each wavelength band, and the detected values are sequentially captured. Therefore, it takes a certain amount of time to acquire detection values in all wavelength bands. For this reason, for example, the detection speed is insufficient for an application in which an output image in a recent high-speed image forming apparatus is measured in-line at a speed corresponding to the printing speed, and the application is difficult.

しかしながら、印刷画像など、分光反射率の分布が比較的なだらかに変化する測定対象についての分光特性を測定する場合、その分光特性を把握するにあたっては、3〜16程度の比較的少数に区分した各波長帯についての光強度信号を検出する分光器で分光反射率を測定することが可能である。例えば、3〜16程度の波長帯についての光強度信号を分光器で検出し、その検出結果から他の波長帯の検出値を推定して、分光反射率を得ることができる。そして、この場合には、検出する光強度信号の数が少ないので、その検出に必要な時間が短く、出力画像のインライン測定などの高速な測定が要求される用途にも適用できる。   However, when measuring the spectral characteristics of a measurement object whose spectral reflectance distribution changes relatively gently, such as a printed image, each of the three or more divided sections of about 3 to 16 is used to grasp the spectral characteristics. It is possible to measure the spectral reflectance with a spectroscope that detects the light intensity signal for the wavelength band. For example, a spectral intensity can be obtained by detecting a light intensity signal in a wavelength band of about 3 to 16 with a spectroscope and estimating a detection value in another wavelength band from the detection result. In this case, since the number of light intensity signals to be detected is small, the time required for the detection is short, and the present invention can be applied to applications that require high-speed measurement such as in-line measurement of an output image.

分光反射率の算出は、例えば、あらかじめ分光反射率が得られている複数の色サンプルの測定結果を用いて、検出した光強度信号から分光反射率への変換行列を求めることにより行う。変換行列の算出方法として、低次元線形近似法、Wiener推定法、ニューラルネットワーク等を用いた非線形演算による推定法、重回帰分析法などが知られている(非特許文献1参照)。なお、非特許文献1は、複数の広帯域色フィルタを用いて撮像されたマルチバンド画像から、事前に得られている分光反射率サンプルをもとに各点の分光反射率を推定する手法として、マルチバンド画像の画素値とそれらの高次の項を説明変数とし、分光反射率を目的変数とした重回帰分析法を用いた分光反射率推定法を開示している。   The spectral reflectance is calculated, for example, by obtaining a conversion matrix from the detected light intensity signal to the spectral reflectance using the measurement results of a plurality of color samples for which the spectral reflectance is obtained in advance. Known conversion matrix calculation methods include a low-dimensional linear approximation method, a Wiener estimation method, an estimation method using a nonlinear operation using a neural network, a multiple regression analysis method, and the like (see Non-Patent Document 1). Non-Patent Document 1 discloses a technique for estimating the spectral reflectance of each point based on a spectral reflectance sample obtained in advance from a multiband image captured using a plurality of broadband color filters. A spectral reflectance estimation method using a multiple regression analysis method with the pixel values of a multiband image and their higher-order terms as explanatory variables and the spectral reflectance as an objective variable is disclosed.

以下、重回帰分析法を例に挙げて、変換行列の算出方法を説明する。
波長帯の異なるm個の光強度信号からなるセンサ応答を、m個の光強度信号に対応したm個の要素をもつ行ベクトルで表現したものをセンサ応答ベクトルvとし、測定対象の分光反射率を表すl個の要素で構成される行ベクトルを分光反射率ベクトルrとしたとき、変換行列Gが求まれば、下記の式(1)より、センサ応答ベクトルvから分光反射率ベクトルrを推定することができる。

Figure 0005605687
Hereinafter, the calculation method of the transformation matrix will be described by taking the multiple regression analysis method as an example.
Spectral response of the object to be measured is defined as a sensor response vector v that represents a sensor response composed of m light intensity signals in different wavelength bands as a row vector having m elements corresponding to m light intensity signals. If a conversion matrix G is obtained when a row vector composed of l elements representing is a spectral reflectance vector r, the spectral reflectance vector r is estimated from the sensor response vector v using the following equation (1). can do.
Figure 0005605687

ここで、分光反射率が予め知られているn個(n>m)のサンプルの各分光反射率ベクトルr1〜rnの群を下記の式(2)に示すサンプル分光反射率行列Rで表し、これらのサンプルについてのセンサ応答ベクトルv1〜vnの群を下記の式(3)に示すサンプルセンサ応答行列Vで表す。

Figure 0005605687
Here, a group of spectral reflectance vectors r 1 to rn of n samples (n> m) whose spectral reflectances are known in advance is represented by a sample spectral reflectance matrix R represented by the following equation (2). A group of sensor response vectors v 1 to v n for these samples is represented by a sample sensor response matrix V shown in the following equation (3).
Figure 0005605687

この場合、サンプルセンサ応答行列Vを説明変数、サンプル分光反射率行列Rを目的変数とした、VからRへの回帰式の回帰係数行列(変換行列)Gは、サンプルセンサ応答行列Vの最小二乗最小ノルム解を与えるMoor−Penroseの一般化逆行列を用いて、次の式(4)のように求めることができる。ここで、上付き添え字「t」はベクトルや行列の転置を示し、上付き添え字「−1」は逆行列を示す。逆行列の算出には、一般に知られる特異値分解法などを用いることができる。

Figure 0005605687
In this case, the regression coefficient matrix (conversion matrix) G of the regression equation from V to R with the sample sensor response matrix V as the explanatory variable and the sample spectral reflectance matrix R as the objective variable is the least square of the sample sensor response matrix V. Using the generalized inverse matrix of Moor-Penrose that gives the minimum norm solution, the following equation (4) can be obtained. Here, the superscript “t” indicates transposition of a vector or a matrix, and the superscript “−1” indicates an inverse matrix. For calculating the inverse matrix, a generally known singular value decomposition method or the like can be used.
Figure 0005605687

重回帰分析法では、説明変数と目的変数の間に非線形な関係がある場合、その推定精度を向上するために説明変数の高次の項(2次項以降の項。以下同じ。)が用いられる。よって、分光反射率の測定においても、センサ応答の高次の項を入れることで、その測定精度を向上させることが可能である。例えば、2次の項を含める場合には、m個の波長帯ごとの光強度信号s1〜smのみを要素とするセンサ応答ベクトルvに代えて、以下の式(5)に示すように2次の項で拡張された拡張センサ応答ベクトルv’を用いる。

Figure 0005605687
なお、特許文献1には、RGBの3チャンネルのセンサ応答ベクトルを高次項で拡張した例が示されている(特許文献1に記載の式(5)参照)。 In the multiple regression analysis method, when there is a non-linear relationship between the explanatory variable and the objective variable, higher-order terms of the explanatory variable (second and subsequent terms; the same applies hereinafter) are used to improve the estimation accuracy. . Therefore, also in the measurement of the spectral reflectance, it is possible to improve the measurement accuracy by adding a higher-order term of the sensor response. For example, when including second-order term, instead of the sensor response vector v to the m for each wavelength band light intensity signal s 1 ~s m only an element, as shown in the following equation (5) An extended sensor response vector v ′ extended by a quadratic term is used.
Figure 0005605687
Note that Patent Document 1 shows an example in which the sensor response vectors of RGB three channels are expanded by high-order terms (see Equation (5) described in Patent Document 1).

以上説明した分光反射率の算出方法は、分光反射率だけではなく、透過サンプルの分光透過率、CIEで定めるXYZ表色系等に用いられるパラメータ(測色値)などの他の分光特性を測定(推定)する場合にも、あらかじめ複数のサンプルの目標変数からサンプル分光反射率行列Rが作成可能なものに対しては、同様に適用可能である。   The spectral reflectance calculation method described above measures not only the spectral reflectance, but also other spectral characteristics such as the spectral transmittance of the transmission sample and parameters (colorimetric values) used in the XYZ color system defined by the CIE. In the case of (estimation), the present invention can be similarly applied to a sample in which a sample spectral reflectance matrix R can be created from target variables of a plurality of samples in advance.

ところが、上記のようにセンサ応答ベクトルvを高次項で拡張した拡張センサ応答ベクトルv’を用いて測定精度を向上させる場合には、次のような問題がある。
例えば分光器のチャンネル数すなわちセンサ応答ベクトルvの要素数が6個(m=6)である場合、その2次の項の数は6×6=36個となるので、拡張センサ応答ベクトルv’の要素数は、これに1次の項を加えた42個となる。このような多数の要素をもつベクトルv’について変換行列Gを算出したり、分光反射率ベクトルrを演算したりする場合には、その演算負荷が大きく、要求される短い時間で演算結果を出すことが困難となる。
However, when the measurement accuracy is improved by using the extended sensor response vector v ′ obtained by extending the sensor response vector v by a high-order term as described above, there are the following problems.
For example, when the number of channels of the spectroscope, that is, the number of elements of the sensor response vector v is 6 (m = 6), the number of secondary terms is 6 × 6 = 36, and thus the extended sensor response vector v ′. The number of elements is 42, which is obtained by adding a first-order term. When the conversion matrix G is calculated for the vector v ′ having such a large number of elements or when the spectral reflectance vector r is calculated, the calculation load is large, and the calculation result is obtained in the required short time. It becomes difficult.

この問題を解決すべく、本発明者らは、鋭意研究の結果、高次項(2次項以降の項)の中には、推定すべき分光反射率等の分光特性の推定にほとんど寄与しないばかりか、検出時のノイズの影響で推定精度を低下させる可能性の高い項が存在することを見出した。したがって、高次項の中からこのような項を排除した拡張センサ応答ベクトルv''を作成し、これを用いて分光特性を測定すれば、これを排除しない場合と比較して、短い演算時間で分光特性の測定が可能となる。 To solve this problem, the present inventors have conducted extensive research results, in the higher order terms (term of the quadratic term later), only contribute little to the estimation of spectral characteristics of such estimation Teisu should spectral reflectance It was also found that there is a term that is likely to reduce the estimation accuracy due to the influence of noise during detection. Therefore, if an extended sensor response vector v ″ that excludes such terms from high-order terms is created and the spectral characteristics are measured using this, the computation time can be reduced compared to the case where this is not excluded. Spectral characteristics can be measured.

本発明は、以上の観点に鑑みなされたものであり、その目的とするところは、少なくともセンサ応答の2次の項を含む拡張センサ応答を用いて測定精度を高める場合の演算時間を短縮し、あるいは、測定精度をより高めることが可能な分光特性測定方法、分光特性測定装置及びこれを備えた画像形成装置を提供することである。   The present invention has been made in view of the above viewpoint, and the object of the present invention is to shorten the calculation time in the case of increasing the measurement accuracy using an extended sensor response including at least a quadratic term of the sensor response, Alternatively, it is to provide a spectral characteristic measuring method, a spectral characteristic measuring apparatus, and an image forming apparatus including the spectral characteristic measuring method capable of further increasing measurement accuracy.

前記目的を達成するために、請求項1の発明は、測定対象から入射される光束を所定の波長帯ごとに分光し分光特性を測定する分光特性測定方法において、波長帯の一部が互いに重複している少なくとも2つの光強度信号を検出する検出工程と、該検出工程で検出された光強度信号を用いて、波長帯の一部が互いに重複している2つの光強度信号の積を演算し、当該演算した結果に基づいて、波長帯が重複していない2つの光強度信号の積を含まない拡張センサ応答を生成する拡張センサ応答生成工程と、該拡張センサ応答生成工程で生成された拡張センサ応答に基づいて前記測定対象の分光特性を導出する分光特性導出工程とを有することを特徴とするものである。
また、請求項2の発明は、請求項1の分光特性測定方法において、既知の分光特性をそれぞれ有する複数のサンプルから入射される各光束を前記所定の波長帯ごとに分光して波長帯ごとの光強度信号を検出するサンプル検出工程と、該サンプル検出工程で検出された光強度信号を用いて変換パラメータを算出する変換パラメータ算出工程とを有し、前記分光特性導出工程は、該変換パラメータ算出工程が算出した変換パラメータを用いて、前記拡張センサ応答生成工程で生成される拡張センサ応答から前記測定対象の分光特性を導出することを特徴とするものである。
また、請求項3の発明は、請求項1又は2の分光特性測定方法において、前記拡張センサ応答生成工程は、中心波長が隣り合っている波長帯間の2つの光強度信号の積を演算し、当該演算した結果をセンサ応答と組み合わせて、中心波長が隣り合っていない波長帯間における2つの光強度信号の積を含まない拡張センサ応答を生成するものであることを特徴とするものである。
また、請求項4の発明は、請求項1乃至3のいずれか1項に記載の分光特性測定方法において、前記拡張センサ応答生成工程は、前記2つの光強度信号の積に代えて該2つの光強度信号の積の平方根を用いて、前記拡張センサ応答を算出することを特徴とするものである。
また、請求項5の発明は、測定対象から入射される光束を所定の波長帯ごとに分光し分光特性を測定する分光特性測定装置において、波長帯の一部が互いに重複している少なくとも2つの光強度信号を検出する検出手段と、該検出手段で検出された光強度信号を用いて、波長帯の一部が互いに重複している2つの光強度信号の積を演算し、当該演算した結果に基づいて、波長帯が重複していない2つの光強度信号の積を含まない拡張センサ応答を生成する拡張センサ応答生成手段と、該拡張センサ応答生成手段で生成された拡張センサ応答に基づいて前記測定対象の分光特性を導出する分光特性導出手段とを有することを特徴とするものである
た、請求項の発明は、画像担持媒体上に複数色で構成される画像を形成する画像形成装置において、画像担持媒体上に形成した前記画像の分光特性を測定する分光特性測定手段と、該分光特性測定手段により測定した分光特性に基づいて画像形成条件を調整する画像形成条件調整手段とを有し、前記分光特性測定手段として、請求項5の分光特性測定装置を用いることを特徴とするものである。
To achieve the above object, a first aspect of the present invention, the light flux incident from the measurement object and split into each predetermined wavelength band, in the spectral characteristic measuring method for measuring the spectral characteristics, each other part of the wavelength band a detection step of detecting at least two light intensity signals are overlapping, the detection using the detected light intensity signal in step, the product of the two light intensity signals some wavelength band overlap each other calculated, and based on the result of the calculation, the extended sensor response generation step of generating an extended sensor response waveband does not contain the product of the two light intensity signals do not overlap, generated by the extended sensor response generation process it is characterized in that it has a spectral characteristic deriving step of deriving the spectral characteristics of the measurement target on the basis of the extended sensor responses.
The invention of claim 2 is the spectral characteristic measuring method according to claim 1, by dispersing the respective light beams incident from the plurality of samples having known spectral characteristics respectively for each of the predetermined wavelength band, each wavelength band a sample detection step of detecting a light intensity signal, by using a light intensity signal detected by the sample detecting step, and a conversion parameter calculating step of calculating the conversion parameters, the spectral characteristic deriving step, the conversion using the transformation parameters parameter calculating process is calculated, and is characterized in that for deriving the spectral characteristics of the measurement object from the extension sensor responses generated by the extended sensor response generation process.
Further, the invention of claim 3 is the spectral characteristic measurement method of claim 1 or 2, wherein the extended sensor response generation step calculates a product of two light intensity signals between wavelength bands in which the center wavelengths are adjacent to each other. , the result of the operation in conjunction with the sensor response, characterized in that it is intended to produce an extended sensor response that does not contain the product of the two light intensity signals between a wavelength band in which the center wavelength not adjacent is there.
The invention of claim 4 is the spectral characteristic measuring method according to any one of claims 1 to 3, wherein the extension sensor response generation step, the two in place of the product of the two light intensity signals using the square root of the product of the light intensity signal, it is characterized in that to calculate the extended sensor response.
The invention of claim 5 is the light flux incident from the measurement object and split into each predetermined wavelength band, in the spectral characteristic measuring apparatus for measuring the spectral characteristics, at least part of the wavelength band overlap each other 2 one of the detecting means for detecting a light intensity signal, by using a light intensity signal detected by the detecting means, calculates the product of the two light intensity signals some wavelength band overlap each other, the operation Based on the result , an extended sensor response generating means for generating an extended sensor response not including the product of two light intensity signals whose wavelength bands do not overlap, and an extended sensor response generated by the extended sensor response generating means it is characterized in that it has a spectral characteristic deriving means for deriving the spectral characteristics of the measurement target based.
Also, the invention of claim 6 is the image forming apparatus for forming an image composed of a plurality of colors on an image bearing medium, the spectral characteristics measuring means for measuring the spectral characteristics of the image formed on the image carrying medium , characterized and an image forming condition adjusting means for adjusting the image forming conditions based on the spectral characteristics measured by spectroscopic characteristic measurement means, as the spectral characteristic measuring means, the use of spectral characteristic measuring device according to claim 5 It is what.

本発明者らは、鋭意研究の結果、波長帯の一部が互いに重複している2つの光強度信号の積は、交互作用の得られる信号成分が小さいかあるいは全くないので、これを拡張センサ応答に含めても、分光特性の測定精度の向上にほとんど寄与しないばかりか、検出時のノイズの影響で測定精度を低下させる可能性が高いという知見を得た。本発明は、この知見に基づき、2つの光強度信号の積(2次の項)を含む拡張センサ応答を用いて分光特性の測定精度を向上させる際、その拡張センサ応答に対し、波長帯の一部が互いに重複している2つの光強度信号の積は含めるが、波長帯が重複していない2つの光強度信号の積は含めないようにしたものである。これにより、後者の積も拡張センサ応答に含めて測定対象の分光特性を測定する従来の測定方法よりも、拡張センサ応答の要素数が少なくなるので、演算時間を短縮することができる。また、測定精度を低下させる可能性が高い後者の積が拡張センサ応答に含まれないので、測定精度を高めることもできる。   As a result of diligent research, the present inventors have found that the product of two light intensity signals in which a part of the wavelength band overlaps each other has little or no signal component that can be interacted with. It was found that the inclusion of the response hardly contributes to the improvement of the measurement accuracy of the spectral characteristics, and that the measurement accuracy is highly likely to be lowered due to the influence of noise at the time of detection. Based on this knowledge, the present invention improves the measurement accuracy of spectral characteristics using an extended sensor response including the product (second order term) of two light intensity signals. The product of two light intensity signals that partially overlap each other is included, but the product of two light intensity signals that do not overlap the wavelength band is not included. As a result, the number of elements of the extended sensor response is reduced as compared with the conventional measurement method in which the latter product is included in the extended sensor response and the spectral characteristic of the measurement target is measured, so that the calculation time can be shortened. In addition, the latter product, which is likely to reduce the measurement accuracy, is not included in the extended sensor response, so that the measurement accuracy can be increased.

以上より、本発明によれば、少なくともセンサ応答の2次の項を含む拡張センサ応答を用いて測定精度を高める場合の演算時間を短縮し、あるいは、測定精度をより高めることができるという優れた効果が得られる。   As described above, according to the present invention, it is possible to shorten the calculation time when increasing the measurement accuracy using the extended sensor response including at least the second order term of the sensor response, or to improve the measurement accuracy. An effect is obtained.

実施形態における分光特性測定装置の機能ブロック図である。It is a functional block diagram of the spectral characteristic measuring apparatus in the embodiment. 同分光特性測定装置の分光器で検出される6個の光強度信号を示すグラフである。It is a graph which shows six light intensity signals detected with the spectroscope of the same spectral characteristic measuring apparatus. 同分光器の一例を説明するための説明図である。It is explanatory drawing for demonstrating an example of the spectrometer. 同分光特性測定装置を搭載した画像形成装置の一例を示す説明図である。It is explanatory drawing which shows an example of the image forming apparatus carrying the same spectral characteristic measuring apparatus.

以下、本発明に係る分光特性測定方法及び分光特性測定装置の一実施形態について、図面を参照しながら説明する。
図1は、本分光特性測定装置の機能ブロック図である。
この機能ブロック図において、実線矢印で結んだブロック部分は、分光器101からのセンサ応答に基づいて測定対象の分光特性を算出するときに使用される機能である。一方、破線矢印で結んだブロック部分は、分光特性の算出に使用される変換パラメータである変換行列を算出するときに使用される機能である。
Hereinafter, an embodiment of a spectral characteristic measuring method and a spectral characteristic measuring apparatus according to the present invention will be described with reference to the drawings.
FIG. 1 is a functional block diagram of the spectral characteristic measuring apparatus.
In this functional block diagram, a block portion connected by a solid line arrow is a function used when calculating the spectral characteristic of the measurement object based on the sensor response from the spectroscope 101. On the other hand, the block portion connected by the broken-line arrow is a function used when calculating a conversion matrix which is a conversion parameter used for calculation of spectral characteristics.

まず、本分光特性測定装置を用いた分光特性測定方法により測定対象の分光反射率(分光特性)を測定する流れに沿って、本分光特性測定装置の構成及び動作について説明する。
分光器101は、測定対象から入射される光束をm個の波長帯(波長帯)に分光して得られる各波長帯の光強度信号を各波長帯にそれぞれ対応した各受光領域(光強度センサ)で検出し、これらの光強度信号をセンサ応答として出力する検出手段である。本実施形態では、この分光器101として、図3に示した分光器を用いる。この分光器101から出力されるセンサ応答をm個の波長帯の光強度信号を要素とした行ベクトルを、センサ応答ベクトルvとする。分光器101から出力されるセンサ応答は、拡張センサ応答生成手段としてのセンサ応答拡張部102に入力される。
First, the configuration and operation of the spectral characteristic measuring apparatus will be described along the flow of measuring the spectral reflectance (spectral characteristic) of the measurement object by the spectral characteristic measuring method using the spectral characteristic measuring apparatus.
The spectroscope 101 includes light receiving regions (light intensity sensors) each corresponding to a light intensity signal of each wavelength band obtained by dispersing a light beam incident from a measurement object into m wavelength bands (wavelength bands). ) And outputs these light intensity signals as sensor responses. In the present embodiment, the spectrometer shown in FIG. The sensor response output from the spectroscope 101 is defined as a sensor response vector v with a row vector having light intensity signals in m wavelength bands as elements. The sensor response output from the spectroscope 101 is input to a sensor response extension unit 102 as an extended sensor response generation unit.

センサ応答拡張部102は、分光器101から入力されるセンサ応答を用いて、波長帯の一部が互いに重複している2つの光強度信号の積(2次の特定項)を演算し、その演算結果を当該センサ応答と組み合わせて拡張センサ応答を生成する。このとき、センサ応答拡張部102では、波長帯が重複していない光強度信号間の積は演算せず、これを拡張センサ応答には含めない。センサ応答の要素であるm個の波長帯の光強度信号と、ここで演算した上記2次の特定項とを要素とした行ベクトルを、拡張センサ応答ベクトルv''とする。このようにしてセンサ応答拡張部102で生成された拡張センサ応答は、分光特性導出手段としての分光反射率推定部103に入力される。   The sensor response extension unit 102 uses the sensor response input from the spectroscope 101 to calculate a product (second-order specific term) of two light intensity signals in which parts of the wavelength band overlap each other, An extended sensor response is generated by combining the calculation result with the sensor response. At this time, the sensor response extension unit 102 does not calculate the product between the light intensity signals whose wavelength bands do not overlap, and does not include this in the extended sensor response. A row vector whose elements are the light intensity signals of m wavelength bands, which are the elements of the sensor response, and the second-order specific term calculated here is defined as an extended sensor response vector v ″. The extended sensor response generated by the sensor response extension unit 102 in this way is input to the spectral reflectance estimation unit 103 as a spectral characteristic deriving unit.

分光反射率推定部103は、センサ応答拡張部102で生成された拡張センサ応答に基づく拡張センサ応答ベクトルv''と、変換パラメータ記憶手段としての変換行列記憶部104に記憶されている変換行列G''との積を演算し、その演算結果を、測定対象の分光反射率を示す分光反射率ベクトルrとして出力する。本実施形態では、この分光反射率ベクトルrを、測定対象の分光特性として導出し、これを測定結果とするものである。   The spectral reflectance estimation unit 103 includes an extended sensor response vector v ″ based on the extended sensor response generated by the sensor response extension unit 102, and a conversion matrix G stored in the conversion matrix storage unit 104 serving as a conversion parameter storage unit. ”Is calculated, and the calculation result is output as a spectral reflectance vector r indicating the spectral reflectance of the measurement target. In the present embodiment, this spectral reflectance vector r is derived as the spectral characteristic of the measurement target, and this is used as the measurement result.

本実施形態において、拡張センサ応答ベクトルv''の要素となる1次項の積(2次項)に関し、その2次項の算出に用いられる2つの光強度信号の波長帯が互いに重なっていない場合、その2つの光強度信号は光学的には独立であり、交互作用は無い。これに対し、その2次項の算出に用いられる2つの光強度信号の波長帯に互いに重なった部分が存在している場合、その積は交互作用を持ち、有意なものとなる。本実施形態では、このような有意な交互作用を持ち得る2次項のみを拡張センサ応答ベクトルv''に含ませているので、分光反射率(分光反射率ベクトルr)の測定精度(推定精度)が向上する。   In the present embodiment, regarding the product (second order term) of the first order term that is an element of the extended sensor response vector v ″, when the wavelength bands of the two light intensity signals used for calculation of the second order term do not overlap each other, The two light intensity signals are optically independent and do not interact. On the other hand, when there are overlapping portions in the wavelength bands of the two light intensity signals used for the calculation of the second-order term, the product has an interaction and becomes significant. In the present embodiment, since only the quadratic term that can have such a significant interaction is included in the extended sensor response vector v ″, the measurement accuracy (estimation accuracy) of the spectral reflectance (spectral reflectance vector r) is increased. Will improve.

次に、変換行列記憶部104に記憶される変換行列Gの算出方法の一例を説明する。
本実施形態においては、既知の分光反射率を有する複数の色サンプルを用意し、それらの各分光反射率ベクトルr1〜rnを下記の式(2)に示すサンプル分光反射率行列Rとしてサンプル分光反射率記憶部105に記憶しておく。そして、これらの色サンプルを対象として分光器101によりセンサ応答(サンプルセンサ応答)を得る。

Figure 0005605687
Next, an example of a method for calculating the transformation matrix G stored in the transformation matrix storage unit 104 will be described.
In the present embodiment, by preparing a plurality of color samples having a known spectral reflectance, a sample thereof the spectral reflectance vector r 1 ~r n as a sample spectral reflectance matrix R shown in equation (2) below This is stored in the spectral reflectance storage unit 105. Then, a sensor response (sample sensor response) is obtained by the spectroscope 101 for these color samples.
Figure 0005605687

その後、各色サンプルのサンプルセンサ応答をセンサ応答拡張部102に入力し、センサ応答拡張部102において各サンプルセンサ応答に対応する拡張センサ応答ベクトル(サンプル拡張センサ応答ベクトル)v1''〜vn''を生成する。このサンプル拡張センサ応答ベクトルv1〜vnの群を下記の式(3')に示すサンプル拡張センサ応答行列V''とする。

Figure 0005605687
Thereafter, the sample sensor response of each color sample is input to the sensor response extension unit 102, and the sensor response extension unit 102 extends an extended sensor response vector (sample extended sensor response vector) v 1 ″ to v n ′ corresponding to each sample sensor response. Generate '. The group of the sample extended sensor response vectors v 1 to v n is a sample extended sensor response matrix V ″ shown in the following equation (3 ′).
Figure 0005605687

このようにして生成されたサンプル拡張センサ応答ベクトルv1''〜vn''からなるサンプル拡張センサ応答行列V''は、変換パラメータ算出手段としての変換行列算出部106に入力される。そして、変換行列算出部106では、このサンプル拡張センサ応答行列V''と、サンプル分光反射率記憶部105に記憶されているサンプル分光反射率行列Rとを用いて、下記の式(4')より、変換行列G''を算出する。このようにして算出された変換行列G''は、変換行列記憶部104にセットされる。

Figure 0005605687
The sample extended sensor response matrix V ″ composed of the sample extended sensor response vectors v 1 ″ to v n ″ generated in this way is input to the conversion matrix calculation unit 106 as conversion parameter calculation means. Then, the conversion matrix calculation unit 106 uses the sample extended sensor response matrix V ″ and the sample spectral reflectance matrix R stored in the sample spectral reflectance storage unit 105 to obtain the following equation (4 ′) Thus, a conversion matrix G ″ is calculated. The transformation matrix G ″ calculated in this way is set in the transformation matrix storage unit 104.
Figure 0005605687

図2は、図3に示した分光器101で検出される6個の光強度信号を示すグラフである。
分光器101は、回折素子12で分光した後にアレイ受光素子13で波長帯ごとの光強度信号を検出する。この分光器101においては、スリット11の幅が有限であるため、任意の単色光を入力した時のアレイ受光素子13上の像は、スリット11の幅と光学系の結像性能に依存した有限の幅を持つ。そのため、この像の重心がアレイ受光素子13における2つの受光領域の境界に位置するとき、これらの2つの受光領域で光強度信号が検出される。つまり、図2に示すように、少なくとも隣り合う2つの受光領域で検出される光強度信号については、互いに波長帯の一部が重複したものとなる。
FIG. 2 is a graph showing six light intensity signals detected by the spectroscope 101 shown in FIG.
The spectroscope 101 detects the light intensity signal for each wavelength band with the array light receiving element 13 after spectrally separating with the diffraction element 12. In this spectroscope 101, since the width of the slit 11 is finite, the image on the array light receiving element 13 when an arbitrary monochromatic light is input depends on the width of the slit 11 and the imaging performance of the optical system. With a width of Therefore, when the center of gravity of this image is located at the boundary between two light receiving areas in the array light receiving element 13, the light intensity signal is detected in these two light receiving areas. That is, as shown in FIG. 2, the light intensity signals detected in at least two adjacent light receiving regions are partially overlapped with each other in the wavelength band.

図2に示す例において、隣り合った受光領域で検出される2つの光強度信号の組合せについては、その波長帯の重なりは十分、すなわち、重なった波長帯部分についての光強度信号の信号成分は十分に大きなものである。なお、隣り合った受光領域間における波長帯の重なり具合は、スリット11の幅を変更することで適宜調整可能である。一方、その他の組合せについては波長帯の重なりが不十分あるいは重なりが無いため、重なっている波長帯部分の光強度信号の信号成分が小さすぎて又は無いため、その信号成分と測定時のノイズとの区別が困難である。したがって、拡張センサ応答ベクトルv''に含ませることで各波長帯の分光特性測定精度(推定精度)の向上に寄与し得るのは、2つの光強度信号の積からなる2次項のうち、波長帯が十分に重なった2つの光強度信号の積からなる2次項のみである。そして、図2に示した例では、このような有意な2次項は、互いに隣り合う受光領域(すなわち、中心波長が隣り合っている波長帯)で検出される2つの光強度信号の積である。したがって、この場合の拡張センサ応答ベクトルv''は、下記の式(6)に示すとおりとなる。

Figure 0005605687
In the example shown in FIG. 2, for the combination of two light intensity signals detected in adjacent light receiving areas, the overlapping of the wavelength bands is sufficient, that is, the signal component of the light intensity signal for the overlapping wavelength band part is It is big enough. The overlapping state of the wavelength bands between the adjacent light receiving regions can be adjusted as appropriate by changing the width of the slit 11. On the other hand, there is no insufficient or overlap overlapping wavelength band for other combinations, for the signal component of the light intensity signal of the wavelength band portion adapted heavy is or not too small, the noise at the time of measurement and the signal component Is difficult to distinguish. Therefore, the inclusion of the extended sensor response vector v ″ in the spectral characteristics measurement accuracy (estimation accuracy) in each wavelength band can contribute to the improvement of the spectral characteristics of the second order term consisting of the product of two light intensity signals. band is only the second order term comprising the product of the two light intensity signals overlap sufficiently. In the example shown in FIG. 2, such a significant second-order term is a product of two light intensity signals detected in the light receiving regions adjacent to each other (that is, the wavelength bands where the center wavelengths are adjacent). . Therefore, the extended sensor response vector v ″ in this case is as shown in the following equation (6).
Figure 0005605687

例えばアレイ受光素子13が6個(m=6)の受光領域を持つ場合、本実施形態の拡張センサ応答ベクトルv''によれば、上記式(5)に示した従来の拡張センサ応答ベクトルv'に含まれる36個の2次項のうちの5個のみが含まれたものとなる。すなわち、本実施形態の拡張センサ応答ベクトルv''の要素数は11個となり、上記式(5)に示した従来の拡張センサ応答ベクトルv'の要素数(42個)よりもずっと少なくすることができる。   For example, when the array light receiving element 13 has six (m = 6) light receiving regions, according to the extended sensor response vector v ″ of the present embodiment, the conventional extended sensor response vector v shown in the above equation (5). Only five of the 36 quadratic terms included in 'are included. That is, the number of elements of the extended sensor response vector v ″ in this embodiment is 11, which is much smaller than the number of elements (42) of the conventional extended sensor response vector v ′ shown in the above formula (5). Can do.

〔変形例〕
次に、上記実施形態の拡張センサ応答ベクトルv''を変更した一変形例について説明する。
本変形例の基本構成は、上記実施形態のものと同様であるが、センサ応答拡張部102においてセンサ応答の拡張に用いる拡張要素として、互いに隣接する波長帯をもつ2つの光強度信号の積ではなく、互いに隣接する波長帯をもつ2つの光強度信号の積の平方根を用いる点で、上記実施形態とは異なっている。したがって、本変形例における拡張センサ応答ベクトルv'''は、下記の式(6')に示すとおりとなる。

Figure 0005605687
[Modification]
Next, a modified example in which the extended sensor response vector v ″ of the above embodiment is changed will be described.
The basic configuration of this modification is the same as that of the above embodiment, but the product of two light intensity signals having wavelength bands adjacent to each other is used as an expansion element used for sensor response expansion in the sensor response expansion unit 102. Instead, the second embodiment is different from the above embodiment in that the square root of the product of two light intensity signals having wavelength bands adjacent to each other is used. Accordingly, the extended sensor response vector v ′ ″ in this modification is as shown in the following equation (6 ′).
Figure 0005605687

拡張センサ応答の拡張要素として、上記実施形態のような2つの光強度信号の積を用いる場合、その積は波長帯の重なった信号成分に関連した信号に対応するものとなるが、その信号は個々の光強度信号の約2乗に略比例した信号となってしまう。しかしながら、変換行列Gを算出する際に目的変数とするサンプル分光反射率行列Rの分光反射率ベクトルr1〜rnも、説明変数とするサンプルセンサ応答行列Vのサンプルセンサ応答ベクトルv1〜vnも、光強度に比例した信号であるので、拡張要素として用いる信号も、光強度に略比例した信号であるのが望ましい。この知見より、本変形例では、2つの光強度信号の積の平方根を拡張要素として用いてセンサ応答を拡張することしたので、拡張要素として用いられる信号は、波長帯分が互いに重なった部分に中心波長を持ち、光強度に略比例した信号に類似した効果を有することになる。よって、分光反射率ベクトルrの測定精度(推定精度)が上記実施形態の場合よりも向上する。 When the product of two light intensity signals as in the above embodiment is used as an extension element of the extension sensor response, the product corresponds to a signal related to a signal component with overlapping wavelength bands, but the signal is The signal is approximately proportional to the square of each light intensity signal. However, the spectral reflectance vector r 1 ~r n sample spectral reflectance matrix R of interest variables in calculating a transformation matrix G also samples the sensor response vector v 1 to v sample sensor response matrix V as explanatory variables Since n is also a signal proportional to the light intensity, it is desirable that the signal used as the expansion element is also a signal substantially proportional to the light intensity. From this knowledge, in this modification, the sensor response was expanded using the square root of the product of the two light intensity signals as the expansion element, so that the signals used as the expansion element are in portions where the wavelength bands overlap each other. It has an effect similar to a signal having a central wavelength and approximately proportional to the light intensity. Therefore, the measurement accuracy (estimation accuracy) of the spectral reflectance vector r is improved as compared with the case of the above embodiment.

なお、以上の説明では、変換行列Gを求める際の目的変数としてサンプルの分光反射率(サンプル分光反射率行列R)を用いているが、これに代えて、例えばCIEで定めるXYZ表色系の三刺激値を用いてもよい。この場合でも、あらかじめ分光測色計等で、別途、色サンプルの三刺激値を測定しておき、サンプル分光反射率行列Rと同様の行列を作成することで、まったく同様に適用可能である。この場合、分光器101のセンサ応答から直接三刺激値を高精度に測定(推定)できる点で有利である。同様に、分光透過率等の他の分光特性に関しても、事前に目的変数が取得可能な複数のサンプルを準備することで、同様に、本発明を適用することが可能である。   In the above description, the spectral reflectance of the sample (sample spectral reflectance matrix R) is used as the objective variable when obtaining the conversion matrix G. Instead, for example, the XYZ color system defined by the CIE is used. Tristimulus values may be used. Even in this case, the tristimulus values of the color samples are separately measured in advance with a spectrocolorimeter or the like, and a matrix similar to the sample spectral reflectance matrix R is created, so that the same applies. This is advantageous in that tristimulus values can be directly measured (estimated) with high accuracy from the sensor response of the spectroscope 101. Similarly, regarding other spectral characteristics such as spectral transmittance, the present invention can be similarly applied by preparing a plurality of samples from which an objective variable can be acquired in advance.

また、本実施形態(上記変形例を含む。)では、回折素子12とアレイ受光素子13を用いた分光器101を用いる場合を例に挙げて説明したが、本発明はこれに限定されるものではない。分光器からの出力信号の分光特性が中心波長の異なる広帯域バンドパスフィルタであり、中心波長が隣り合う信号の波長帯の一部に重なった部分が存在する場合には、同様に利用することができる。例えば、複数の広帯域色フィルタを順次入れ替えつつ光検出する分光器(例えば非特許文献1のFig.1に記載されているような分光器)や、中心波長の異なる複数の光源(LEDなど)を順次点灯しつつ光検出する分光器などを利用することができる。また、例えば、色フィルタを用いたRGBカラーセンサでも、色フィルタの分光特性に重なっている領域があれば適用可能である。   In the present embodiment (including the above-described modification), the case where the spectroscope 101 using the diffraction element 12 and the array light receiving element 13 is used has been described as an example. However, the present invention is not limited to this. is not. If the spectral characteristics of the output signal from the spectroscope are broadband bandpass filters with different center wavelengths, and there is a part where the center wavelength overlaps part of the wavelength band of adjacent signals, it can be used in the same way it can. For example, a spectroscope that detects light while sequentially replacing a plurality of broadband color filters (for example, a spectroscope as described in FIG. 1 of Non-Patent Document 1) or a plurality of light sources (such as LEDs) having different center wavelengths. A spectroscope that detects light while sequentially lighting can be used. Further, for example, even an RGB color sensor using a color filter is applicable if there is a region overlapping the spectral characteristics of the color filter.

また、拡張要素として用いる波長帯の一部が互いに重複している2つの光強度信号は、その中心波長が隣り合う信号に限らず、中心波長が隣り合っていない信号同士であっても波長帯の一部が互いに重複している光強度信号であればよい。例えば、分光して得られる各光強度信号が互いに離れた2つ以上の波長帯をもつ場合、すなわち、各光強度信号に対応する分光した光がそれぞれ2箇所以上の波長部分でピークを有する場合でも、そのピーク波長付近の波長帯が互いに重なっている2つの光強度信号を用いることもできる。   In addition, the two light intensity signals in which a part of the wavelength bands used as the extension elements overlap each other are not limited to signals whose center wavelengths are adjacent to each other. As long as the light intensity signals partially overlap each other. For example, when each light intensity signal obtained by spectroscopy has two or more wavelength bands separated from each other, that is, when the dispersed light corresponding to each light intensity signal has a peak at two or more wavelength portions, respectively. However, it is also possible to use two light intensity signals whose wavelength bands near the peak wavelength overlap each other.

また、以上説明した分光特性測定装置は、画像形成装置に搭載し、その分光特性測定手段により測定した出力画像の分光特性に基づいて画像形成条件を調整するなどの利用方法がある。以下、この例について、図4を参照しながら説明する。
図4に示すように、画像形成装置80は、符号60で示す上述した分光特性測定装置を備えている。この画像形成装置80は、そのほか、給紙カセット81a、給紙カセット81b、給紙ローラ82、コントローラ83、書込光学系84、感光体85、中間転写体86、定着ローラ87、排紙ローラ88なども備えている。符号90は、画像担持媒体(紙等)を示している。
Further, the spectral characteristic measuring apparatus described above is mounted on an image forming apparatus, and there is a utilization method such as adjusting image forming conditions based on the spectral characteristics of an output image measured by the spectral characteristic measuring means. Hereinafter, this example will be described with reference to FIG.
As shown in FIG. 4, the image forming apparatus 80 includes the above-described spectral characteristic measuring apparatus indicated by reference numeral 60. In addition, the image forming apparatus 80 includes a paper feed cassette 81a, a paper feed cassette 81b, a paper feed roller 82, a controller 83, a writing optical system 84, a photosensitive member 85, an intermediate transfer member 86, a fixing roller 87, and a paper discharge roller 88. And so on. Reference numeral 90 denotes an image bearing medium (paper or the like).

画像形成装置80において、画像データに基づいて書込光学系84により4つの感光体85が露光されると、各感光体85上には各色に対応した静電潜像が形成され、これらの静電潜像に対応する色のトナー等の色材を付着させることで現像処理を行う。この現像処理により各感光体85上に形成された各色トナー像は互いに重なり合うように中間転写体86上に転写される。その後、中間転写体86上のトナー像は、給紙カセット81a及び81bから図示しないガイド、給紙ローラ82により搬送された画像担持媒体90に転写される。このようにして画像担持媒体90上に転写されたトナー像は定着ローラ87により定着され、その画像担持媒体90は排紙ローラ88により排紙される。本実施形態において、分光特性測定装置60は、定着ローラ87の後段に設置されている。   In the image forming apparatus 80, when the four photoconductors 85 are exposed by the writing optical system 84 based on the image data, an electrostatic latent image corresponding to each color is formed on each photoconductor 85. Development processing is performed by attaching a color material such as toner of a color corresponding to the electrostatic latent image. Each color toner image formed on each photoconductor 85 by this development processing is transferred onto the intermediate transfer body 86 so as to overlap each other. Thereafter, the toner image on the intermediate transfer body 86 is transferred from the paper feed cassettes 81 a and 81 b to the image carrier medium 90 conveyed by a guide (not shown) and the paper feed roller 82. The toner image transferred onto the image bearing medium 90 in this manner is fixed by the fixing roller 87, and the image bearing medium 90 is ejected by the ejection roller 88. In the present embodiment, the spectral characteristic measuring device 60 is installed at the subsequent stage of the fixing roller 87.

この画像形成装置においては、所定のタイミングで分光特性測定装置60により出力画像(測定対象)の分光特性(分光反射率等)を測定(推定)し、その測定結果をコントローラ83に送る。コントローラ83は、画像形成条件調整手段として機能し、その測定結果に基づいて画像形成条件を調整する。これにより、色の自動キャリブレーションを可能とすることから、色変動の少ない高品質な画像を継続的に提供することが可能となり、安定的に画像形成装置を稼動させることが可能となる。   In this image forming apparatus, the spectral characteristic measurement device 60 measures (estimates) the spectral characteristics (spectral reflectance, etc.) of the output image (measurement target) at a predetermined timing, and sends the measurement results to the controller 83. The controller 83 functions as an image forming condition adjusting unit, and adjusts the image forming condition based on the measurement result. As a result, since automatic color calibration is possible, it is possible to continuously provide a high-quality image with little color variation, and to stably operate the image forming apparatus.

以上説明したように、本実施形態に係る分光特性測定方法は、測定対象から入射される光束を所定の波長帯ごとに分光して光強度センサであるアレイ受光素子13により各波長帯の光強度信号を検出し、これにより得られる各光強度信号s1〜smからなるセンサ応答(センサ応答ベクトルv)に基づいて当該測定対象の分光特性である分光反射率を測定するものである。この分光特性測定方法では、波長帯の一部が互いに重複している少なくとも2つの光強度信号がアレイ受光素子13により検出されるようにアレイ受光素子13で各波長帯の光強度信号s1〜smを検出する分光器101での検出工程と、その検出工程で検出された光強度信号s1〜smを用いて、波長帯の一部が互いに重複している2つの光強度信号の積(s1×s2,s2×s3,・・・,sm-1×sm)を演算し、その演算結果を上記センサ応答ベクトルvと組み合わせて、波長帯が重複していない2つの光強度信号の積を含まない拡張センサ応答ベクトルv''を生成するセンサ応答拡張部102での拡張センサ応答生成工程と、その拡張センサ応答生成工程で生成された拡張センサ応答ベクトルv''に基づいて測定対象の分光反射率(分光反射率ベクトルr)を導出する分光反射率推定部103での分光特性導出工程とを有する。この方法によれば、拡張センサ応答ベクトルを構成する拡張要素である2次項の数が少ないので、拡張センサ応答を用いて測定精度を高める場合の演算時間を短縮することができる。しかも、拡張要素として用いる2次項は有意な項のみであるため、測定精度が高まるという効果も得られる。
また、本実施形態(上記変形例を含む)においては、既知の分光反射率r1〜rnをそれぞれ有する複数のサンプルから入射される各光束を上記所定の波長帯ごとに分光してアレイ受光素子13により各波長帯の光強度信号を検出するサンプル検出工程と、そのサンプル検出工程で検出された光強度信号を用いて各サンプルについての上記拡張センサ応答を生成し、生成された複数の拡張センサ応答からなるサンプル拡張センサ応答行列V''と各サンプルにおける上記既知の分光反射率r1〜rnからなるサンプル分光反射率行列Rとから、上記拡張センサ応答生成工程で生成される拡張センサ応答ベクトルv''を上記測定対象の分光反射率ベクトルrへ変換するための変換パラメータである変換行列G''を算出する変換パラメータ算出工程とを有し、上記分光特性導出工程では、その変換パラメータ算出工程が算出した変換行列G''を用いて、上記拡張センサ応答生成工程で生成される拡張センサ応答ベクトルv''から上記測定対象の分光反射率ベクトルrを導出する。これにより、分光器のキャリブレーション作業を適正に行うことができる。
また、本実施形態では、拡張センサ応答生成工程において、中心波長が隣り合っている波長帯間の2つの光強度信号の積を演算し、その演算結果を上記センサ応答ベクトルvと組み合わせて、中心波長が隣り合っていない波長帯間における2つの光強度信号の積を含まない拡張センサ応答ベクトルv''を生成する。この方法は、プリズムや回折素子12などで分光してアレイ受光素子13でセンサ応答を得るような分光器101のように、センサ応答の光学特性が中心波長の異なるバンドパスフィルタであるとわかっている場合に、中心波長の隣り合う出力信号の組み合わせによる交互作用でセンサ応答を拡張することができ,安定して推定精度を高めることができる。
また、上記変形例において、拡張センサ応答生成工程では、上記2つの光強度信号の積に代えて該2つの光強度信号の積の平方根を用いて、拡張センサ応答ベクトルv'''を算出する。これにより、より高精度に分光反射を推定することができる。
As described above, in the spectral characteristic measurement method according to the present embodiment, the light beam incident from the measurement target is dispersed for each predetermined wavelength band, and the light intensity in each wavelength band is obtained by the array light receiving element 13 that is a light intensity sensor. detecting a signal, and measures the spectral reflectance is a spectral characteristic of the measurement object based on this the sensor response consisting of the light intensity signal s 1 ~s m obtained (sensor response vector v). In this spectral characteristic measurement method, the array light receiving element 13 detects the light intensity signals s 1 to s 1 of each wavelength band so that the array light receiving element 13 detects at least two light intensity signals whose wavelength bands partially overlap each other. a detecting step of spectroscope 101 for detecting the s m, using the detection step light intensity signal s 1 ~s m detected in, of the two light intensity signals some wavelength band overlap each other The product (s 1 × s 2 , s 2 × s 3 ,..., S m-1 × s m ) is calculated, and the calculation result is combined with the sensor response vector v so that the wavelength bands do not overlap. An extended sensor response generation step in the sensor response extension unit 102 that generates an extended sensor response vector v ″ that does not include the product of two light intensity signals, and an extended sensor response vector v ′ generated in the extended sensor response generation step Spectral reflectance of the measurement object based on A spectral characteristic deriving step in the spectral reflectance estimating unit 103 for deriving the reflectance vector r). According to this method, since the number of secondary terms that are the expansion elements constituting the extended sensor response vector is small, it is possible to shorten the calculation time when the measurement accuracy is increased using the extended sensor response. In addition, since the quadratic term used as the expansion element is only a significant term, an effect of increasing the measurement accuracy can be obtained.
Further, in the present embodiment (including the modified example), the respective light beams incident from the plurality of samples each having a known spectral reflectance r 1 ~r n spectrally for each of the predetermined wavelength band array receiving A sample detection step of detecting a light intensity signal in each wavelength band by the element 13, and the extended sensor response for each sample is generated using the light intensity signal detected in the sample detection step, and a plurality of extensions generated from the sample extension sensor response matrix V '' and the sample spectral reflectance matrix R formed of the above known spectral reflectance r 1 ~r n in each sample of the sensor response, expansion sensors produced by the extended sensor response generating step A conversion parameter calculation step of calculating a conversion matrix G ″ that is a conversion parameter for converting the response vector v ″ to the spectral reflectance vector r to be measured. In the spectral characteristic deriving step, using the conversion matrix G ″ calculated in the conversion parameter calculating step, the spectral of the measurement target is calculated from the extended sensor response vector v ″ generated in the extended sensor response generating step. A reflectance vector r is derived. Thereby, the calibration work of a spectroscope can be performed appropriately.
In this embodiment, in the extended sensor response generation step, the product of two light intensity signals between wavelength bands adjacent to each other in the center wavelength is calculated, and the calculation result is combined with the sensor response vector v to obtain the center An extended sensor response vector v ″ that does not include the product of two light intensity signals between the wavelength bands where the wavelengths are not adjacent to each other is generated. This method is known to be a band-pass filter having different optical characteristics of the sensor response, such as a spectroscope 101 that spectrally separates with a prism or diffraction element 12 and obtains a sensor response with the array light receiving element 13. The sensor response can be expanded by the interaction of the adjacent output signals of the center wavelengths, and the estimation accuracy can be stably increased.
In the modified example, in the extended sensor response generation step, the extended sensor response vector v ′ ″ is calculated using the square root of the product of the two light intensity signals instead of the product of the two light intensity signals. . Thereby, the spectral reflection can be estimated with higher accuracy.

なお、以上説明した分光反射率測定方法は、例えば、コンピュータ内のソフトウエアとして実現可能である。   The spectral reflectance measurement method described above can be realized as software in a computer, for example.

1 測定対象
2 照明系
3 集光レンズ
11 スリット
12 回折素子
13 アレイ受光素子
60 分光特性測定装置
80 画像形成装置
85 感光体
86 中間転写体
90 画像担持媒体
101 分光器
102 センサ応答拡張部
103 分光反射率推定部
104 変換行列記憶部
105 サンプル分光反射率記憶部
106 変換行列算出部
DESCRIPTION OF SYMBOLS 1 Measurement object 2 Illumination system 3 Condensing lens 11 Slit 12 Diffraction element 13 Array light receiving element 60 Spectral characteristic measurement apparatus 80 Image forming apparatus 85 Photoconductor 86 Intermediate transfer body 90 Image carrier medium 101 Spectroscope 102 Sensor response expansion part 103 Spectral reflection Rate estimation unit 104 Conversion matrix storage unit 105 Sample spectral reflectance storage unit 106 Conversion matrix calculation unit

特開2007−208708号公報JP 2007-208708 A

津村徳道、羽石秀昭、三宅洋一、「重回帰分析によるマルチバンド画像からの分光反射率の推定」、光学、日本光学会、1998年、第27巻、第7号、P.384〜391Tokudo Tsumura, Hideaki Haneishi, Yoichi Miyake, “Estimation of Spectral Reflectance from Multiband Images by Multiple Regression Analysis”, Optics, Japan Optical Society, 1998, 27, 7, 384-391

Claims (6)

測定対象から入射される光束を所定の波長帯ごとに分光し分光特性を測定する分光特性測定方法において、
波長帯の一部が互いに重複している少なくとも2つの光強度信号を検出する検出工程と、
該検出工程で検出された光強度信号を用いて、波長帯の一部が互いに重複している2つの光強度信号の積を演算し、当該演算した結果に基づいて、波長帯が重複していない2つの光強度信号の積を含まない拡張センサ応答を生成する拡張センサ応答生成工程と、
該拡張センサ応答生成工程で生成された拡張センサ応答に基づいて前記測定対象の分光特性を導出する分光特性導出工程とを有することを特徴とする分光特性測定方法。
The light flux incident from the measurement object and split into each predetermined wavelength band, in the spectral characteristic measuring method for measuring the spectral characteristics,
A detection step of detecting at least two light intensity signal that part of the wavelength band overlap each other,
Using detection light intensity signal detected in step, it calculates the product of the two light intensity signals some wavelength band overlap each other, based on the result of the calculation, has a wavelength band overlap An extended sensor response generating step for generating an extended sensor response that does not include a product of no two light intensity signals;
A spectral characteristic measuring method comprising: a spectral characteristic deriving step of deriving the spectral characteristic of the measurement object based on the extended sensor response generated in the extended sensor response generating step.
請求項1の分光特性測定方法において、
既知の分光特性をそれぞれ有する複数のサンプルから入射される各光束を前記所定の波長帯ごとに分光して波長帯ごとの光強度信号を検出するサンプル検出工程と、
該サンプル検出工程で検出された光強度信号を用いて変換パラメータを算出する変換パラメータ算出工程とを有し、
前記分光特性導出工程は、該変換パラメータ算出工程が算出した変換パラメータを用いて、前記拡張センサ応答生成工程で生成される拡張センサ応答から前記測定対象の分光特性を導出することを特徴とする分光特性測定方法。
In the spectral characteristic measuring method of Claim 1,
The respective light beams incident from the plurality of samples having known spectral characteristics each split into each of the predetermined wavelength band, and the sample detection step of detecting a light intensity signal for each wavelength band,
With a light intensity signal detected by the sample detecting step, and a conversion parameter calculating step of calculating a conversion parameter,
The spectral characteristic deriving step, spectroscopic said transformation parameter calculating process by using the conversion parameter calculated, characterized by deriving the spectral characteristics of the measurement object from the extension sensor responses generated by the extended sensor response generation process Characteristic measurement method.
請求項1又は2の分光特性測定方法において、前記拡張センサ応答生成工程は、中心波長が隣り合っている波長帯間の2つの光強度信号の積を演算し、当該演算した結果をセンサ応答と組み合わせて、中心波長が隣り合っていない波長帯間における2つの光強度信号の積を含まない拡張センサ応答を生成するものであることを特徴とする分光特性測定方法。 The spectroscopic characteristic measurement method according to claim 1 or 2, wherein the extended sensor response generation step calculates the product of the two light intensity signals between wavelength band centered wavelengths are adjacent, sensor response results of the calculation A spectral characteristic measurement method characterized by generating an extended sensor response that does not include a product of two light intensity signals between wavelength bands in which the center wavelengths are not adjacent to each other. 請求項1乃至3のいずれか1項に記載の分光特性測定方法において、前記拡張センサ応答生成工程は、前記2つの光強度信号の積に代えて該2つの光強度信号の積の平方根を用いて、前記拡張センサ応答を算出することを特徴とする分光特性測定方法。 The spectroscopic characteristic measurement method according to any one of claims 1 to 3, wherein the extension sensor response generation step, using the square root of the product of the two light intensity signals in place of the product of the two light intensity signals Te, spectroscopic characteristic measurement method characterized by calculating the extended sensor response. 測定対象から入射される光束を所定の波長帯ごとに分光し分光特性を測定する分光特性測定装置において、
波長帯の一部が互いに重複している少なくとも2つの光強度信号を検出する検出手段と、
該検出手段で検出された光強度信号を用いて、波長帯の一部が互いに重複している2つの光強度信号の積を演算し、当該演算した結果に基づいて、波長帯が重複していない2つの光強度信号の積を含まない拡張センサ応答を生成する拡張センサ応答生成手段と、
該拡張センサ応答生成手段で生成された拡張センサ応答に基づいて前記測定対象の分光特性を導出する分光特性導出手段とを有することを特徴とする分光特性測定装置。
The light flux incident from the measurement object and split into each predetermined wavelength band, in the spectral characteristic measuring apparatus for measuring the spectral characteristics,
A detecting means for detecting at least two light intensity signal that part of the wavelength band overlap each other,
With a light intensity signal detected by the detecting means, calculates the product of the two light intensity signals some wavelength band overlap each other, based on the result of the calculation, has a wavelength band overlap Extended sensor response generating means for generating an extended sensor response that does not include a product of no two light intensity signals;
A spectral characteristic measuring device comprising spectral characteristic deriving means for deriving the spectral characteristic of the measurement object based on the extended sensor response generated by the extended sensor response generating means.
画像担持媒体上に複数色で構成される画像を形成する画像形成装置において、
画像担持媒体上に形成した前記画像の分光特性を測定する分光特性測定手段と、
該分光特性測定手段により測定した分光特性に基づいて画像形成条件を調整する画像形成条件調整手段とを有し、
前記分光特性測定手段として、請求項5の分光特性測定装置を用いることを特徴とする画像形成装置。
In an image forming apparatus for forming an image composed of a plurality of colors on an image bearing medium,
A spectral characteristic measuring means for measuring the spectral characteristics of the image formed on the image carrying medium,
Image forming condition adjusting means for adjusting image forming conditions based on the spectral characteristics measured by the spectral characteristic measuring means;
As the spectral characteristic measuring means, an image forming apparatus which comprises using a spectroscopic characteristic measurement apparatus according to claim 5.
JP2010147647A 2010-06-29 2010-06-29 Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same Expired - Fee Related JP5605687B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010147647A JP5605687B2 (en) 2010-06-29 2010-06-29 Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same
EP11170204.9A EP2403229B1 (en) 2010-06-29 2011-06-16 Spectral characteristics estimation device, image forming apparatus having the same, and spectral characteristics estimation method
US13/165,205 US8593628B2 (en) 2010-06-29 2011-06-21 Spectral characteristics estimation device, image forming apparatus having the same, and spectral characteristics estimation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010147647A JP5605687B2 (en) 2010-06-29 2010-06-29 Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same

Publications (3)

Publication Number Publication Date
JP2012013437A JP2012013437A (en) 2012-01-19
JP2012013437A5 JP2012013437A5 (en) 2013-05-16
JP5605687B2 true JP5605687B2 (en) 2014-10-15

Family

ID=44513312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010147647A Expired - Fee Related JP5605687B2 (en) 2010-06-29 2010-06-29 Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same

Country Status (3)

Country Link
US (1) US8593628B2 (en)
EP (1) EP2403229B1 (en)
JP (1) JP5605687B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5884347B2 (en) 2011-09-12 2016-03-15 株式会社リコー Spectral characteristic acquisition apparatus, spectral characteristic acquisition method, image evaluation apparatus, and image forming apparatus
WO2013065035A1 (en) 2011-11-03 2013-05-10 Verifood Ltd. Low-cost spectrometry system for end-user food analysis
JP5880053B2 (en) 2012-01-12 2016-03-08 株式会社リコー Spectral characteristic acquisition apparatus and image forming apparatus
JP5834938B2 (en) 2012-01-17 2015-12-24 株式会社リコー Spectral characteristic acquisition apparatus, image evaluation apparatus, image forming apparatus, and spectral characteristic acquisition method
JP6051543B2 (en) 2012-03-09 2016-12-27 株式会社リコー Spectroscopic measurement apparatus, image evaluation apparatus, and image forming apparatus
JP5910989B2 (en) 2012-03-09 2016-04-27 株式会社リコー Spectroscopic measurement apparatus, image evaluation apparatus, and image forming apparatus
JP6278625B2 (en) 2012-07-30 2018-02-14 キヤノン株式会社 Color measuring device and image forming apparatus having the same
US20140213909A1 (en) * 2013-01-31 2014-07-31 Xerox Corporation Control-based inversion for estimating a biological parameter vector for a biophysics model from diffused reflectance data
DE102013103333A1 (en) * 2013-04-03 2014-10-09 Karl Storz Gmbh & Co. Kg Camera for recording optical properties and room structure properties
GB2543655B (en) 2013-08-02 2017-11-01 Verifood Ltd Compact spectrometer comprising a diffuser, filter matrix, lens array and multiple sensor detector
US9631977B2 (en) * 2013-12-17 2017-04-25 Xerox Corporation Device calibration using augmented data with hadamard variation
EP3090239A4 (en) 2014-01-03 2018-01-10 Verifood Ltd. Spectrometry systems, methods, and applications
EP3209983A4 (en) 2014-10-23 2018-06-27 Verifood Ltd. Accessories for handheld spectrometer
WO2016125165A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system with visible aiming beam
WO2016125164A2 (en) 2015-02-05 2016-08-11 Verifood, Ltd. Spectrometry system applications
WO2016162865A1 (en) 2015-04-07 2016-10-13 Verifood, Ltd. Detector for spectrometry system
US10066990B2 (en) 2015-07-09 2018-09-04 Verifood, Ltd. Spatially variable filter systems and methods
US10203246B2 (en) 2015-11-20 2019-02-12 Verifood, Ltd. Systems and methods for calibration of a handheld spectrometer
US10254215B2 (en) 2016-04-07 2019-04-09 Verifood, Ltd. Spectrometry system applications
EP3488204A4 (en) 2016-07-20 2020-07-22 Verifood Ltd. Accessories for handheld spectrometer
US10791933B2 (en) 2016-07-27 2020-10-06 Verifood, Ltd. Spectrometry systems, methods, and applications
JP6988512B2 (en) 2018-01-24 2022-01-05 株式会社リコー Spectroscopic property acquisition device, image forming device, image forming system
JP7095304B2 (en) 2018-02-15 2022-07-05 株式会社リコー Spectral characteristic acquisition device, image forming device, image forming system, image forming device management system, and image forming device management method
US10444074B1 (en) * 2018-03-28 2019-10-15 Datacolor Inc. Spectrum recovery in a sample
JP7087735B2 (en) 2018-06-29 2022-06-21 株式会社リコー Spectroscopic property acquisition device, image forming device, and management system for image forming device
JP2020153814A (en) 2019-03-20 2020-09-24 株式会社リコー Spectral characteristic acquisition device
US11340156B2 (en) * 2020-09-28 2022-05-24 Datacolor Inc. Spectrum recovery in a sample

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710876A (en) * 1995-05-25 1998-01-20 Silicon Graphics, Inc. Computer graphics system for rendering images using full spectral illumination data
JP2004336657A (en) * 2003-05-12 2004-11-25 Minolta Co Ltd Spectral image photographing system and adjusting method of spectral image photographing system
JP2005311581A (en) * 2004-04-20 2005-11-04 Konica Minolta Holdings Inc Image input system, transformation matrix calculating method, and program
JP4798354B2 (en) 2006-02-02 2011-10-19 凸版印刷株式会社 Spectral reflectance estimation method, spectral reflectance estimation apparatus, and spectral reflectance estimation program
JP2009081986A (en) 2007-09-06 2009-04-16 Citizen Holdings Co Ltd Stepping motor
EP2391899A4 (en) * 2009-01-30 2017-12-27 Hewlett-Packard Development Company, L.P. Method and system for determining a spectral vector from measured electromagnetic-radiation intensities

Also Published As

Publication number Publication date
EP2403229B1 (en) 2017-05-10
US20110317149A1 (en) 2011-12-29
JP2012013437A (en) 2012-01-19
EP2403229A1 (en) 2012-01-04
US8593628B2 (en) 2013-11-26

Similar Documents

Publication Publication Date Title
JP5605687B2 (en) Spectral characteristic measuring method, spectral characteristic measuring apparatus, and image forming apparatus having the same
JP5834938B2 (en) Spectral characteristic acquisition apparatus, image evaluation apparatus, image forming apparatus, and spectral characteristic acquisition method
JP4323991B2 (en) Spectral reflectance measuring device, film thickness measuring device, and spectral reflectance measuring method
JP5609068B2 (en) Spectrometer, image evaluation apparatus, and image forming apparatus
JP2008539417A (en) Spectroscopy for determining the amount of analyte in a mixture of analytes.
US8879057B2 (en) Spectral characteristic acquiring apparatus, spectral characteristic acquiring method and image evaluating apparatus
JP6550743B2 (en) Spectral characteristic acquisition apparatus, image evaluation apparatus, and image forming apparatus
JP6232831B2 (en) Spectral characteristic acquisition device, image evaluation device, and image forming device
JP5534046B2 (en) SPECTRUM CHARACTERISTIC MEASURING DEVICE, SPECTRICAL CHARACTERISTIC MEASURING DEVICE CORRECTION METHOD, AND PROGRAM
US10564038B2 (en) Spectral characteristic acquiring apparatus, image forming apparatus, image forming system, image forming apparatus management system, and image forming apparatus management method
JP5402740B2 (en) Spectral characteristic acquisition device, image evaluation device, and image forming device
JP2011252749A (en) Spectrometer
JP2016102679A (en) Spectroscopic measurement device
JP2014048271A (en) Arithmetic operation device and arithmetic operation method, spectral reflectivity acquisition device, image evaluation device, and image forming device
JP5499767B2 (en) Image characteristic measuring method, image characteristic measuring apparatus, image evaluation apparatus, and image forming apparatus
JP6197318B2 (en) Spectral characteristic measurement method, spectral characteristic measurement apparatus, image evaluation apparatus, and image forming apparatus
KR101054017B1 (en) Calibration method of the spectrometer
US10382655B2 (en) System and method for calibrating a linear array using a calibration standard and a calibration piece with dark and light response measurements
JP5493364B2 (en) Image density measuring method, image density measuring apparatus, and image forming apparatus
JP5652183B2 (en) Image characteristic measuring apparatus and image forming apparatus
JP2012058177A (en) Spectral characteristic acquisition device, image evaluation device, and image forming device
JP2022177441A (en) Spectroscopic measurement unit and computer program
JP5923979B2 (en) Spectral characteristic acquisition device, image evaluation device, and image forming device
JP2015036659A (en) Spectroscopic characteristic acquisition device, image evaluation device, and image forming apparatus
JP2013142595A (en) Spectroscopic characteristic acquisition device, image evaluation device, and image forming apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130328

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140801

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140814

R151 Written notification of patent or utility model registration

Ref document number: 5605687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees