JP5605537B2 - Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel - Google Patents

Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel Download PDF

Info

Publication number
JP5605537B2
JP5605537B2 JP2009249229A JP2009249229A JP5605537B2 JP 5605537 B2 JP5605537 B2 JP 5605537B2 JP 2009249229 A JP2009249229 A JP 2009249229A JP 2009249229 A JP2009249229 A JP 2009249229A JP 5605537 B2 JP5605537 B2 JP 5605537B2
Authority
JP
Japan
Prior art keywords
wind tunnel
model
supersonic
protrusion
projection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009249229A
Other languages
Japanese (ja)
Other versions
JP2011095098A (en
Inventor
秀俊 飯島
伸治 永井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2009249229A priority Critical patent/JP5605537B2/en
Publication of JP2011095098A publication Critical patent/JP2011095098A/en
Application granted granted Critical
Publication of JP5605537B2 publication Critical patent/JP5605537B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

本発明は、超音速風洞の始動/停止荷重低減法および超音速風洞、特に、簡易かつ試験模型に限定されない機構によって超音速風洞の始動/停止時に模型に負荷される衝撃荷重を好適に低減することが可能な超音速風洞の始動/停止荷重低減法および超音速風洞に関する。 The present invention supersonic wind tunnel start / stop load reducing method and supersonic wind tunnel, in particular, suitably reduce the impact load applied to the model at the time of starting / stopping of the supersonic wind tunnel by a mechanism that is not limited to simply and test models start / stop load reduction method for supersonic wind tunnel can and to supersonic wind tunnel.

図5は、現行の吹出式超音速風洞を示す概観図である。図6は、図5の2次元可変ノズルを示す概観図である。
吹出式超音速風洞は、実機を模擬した模型周りの空間(測定部)に所望の空気の流れ場を形成するための風流供給設備であり、その構成は、2MPaの高圧空気を貯蔵する高圧空気源としての2基の貯気槽と、高圧空気を貯気槽の下流へ導入する高圧導管と、高圧空気源と高圧導管を遮断する仕切弁と、高圧空気を所定圧に減圧して下流へ供給する調圧弁と、減圧された高圧空気を整流する集合胴と、超音速の一様な流れを形成する2次元可変ノズルと、風洞模型が設置された測定部と、気流を絞って亜音速まで減速する第2スロートと、亜音速の流れをさらに減速させる亜音速ディフューザーと、発生する騒音を吸収するサウンドサプレッサ及びヘルムホルツ共鳴型消音器とから成っている。
また、図6に示すように、2次元可変ノズルは、可撓性を有するノズル壁と、ノズル壁を法線方向に変位させる複数の電動ジャッキとを備え、電動ジャッキが軸方向に伸縮することによって、所望のノズル壁面およびスロート部を形成する。
上記吹出式超音速風洞は、仕切弁を開とすることにより、高圧空気が高圧導管を通り調圧弁によって調圧されながら集合胴からノズルスロートを通過して絞られ、さらに拡大される流路(ラバールノズル)によって超音速まで加速される。流れは、測定部を通過して第2スロートにおいて亜音速まで減速され、亜音速ディフューザーにおいてさらに減速圧縮されて大気開放される構造を採用する。亜音速ディフューザーを通過する際に発生する騒音は、サウンドサプレッサ及びヘルムホルツ共鳴型消音器によって消音される。また、通風時間は約40秒程度の極めて限られた時間である。
このように大量の高圧空気を一気に大気開放させる吹出式超音速風洞においては、風洞が始動/停止する際に衝撃波が発生し、その衝撃波に起因する大きな衝撃荷重が模型に負荷される。特にマッハ数3.0から4.0の高マッハ数では、図7に示すように、風洞の始動/停止の際に模型に対し瞬間的に上下(左右)に互い違いの非対称衝撃波が通過する。最大迎角の定常時空気力の5倍から10倍に及ぶ衝撃荷重が模型に負荷されることもある。図8は、風洞におけるマッハ数と翼面垂直方向の衝撃荷重の関係を示すグラフである。図からマッハ数が3.0以上では、垂直方向の衝撃荷重が2000N以上となり、かなりの衝撃荷重が模型に負荷されることが分かる。従って、吹出式超音速風洞において使用される模型は、その衝撃荷重に耐えられるように強固に設計・製造する必要がある。この場合、強度・剛性が最優先されるため形状、厚み等の設計の自由度は制約され、模型に係る材料も必然的に高強度の材料に限定され、その結果、模型の設計に係るコストは増大することになる。また、そのような高強度の材料は加工が難しく、模型に係る製造コストも増大することになる。従って、模型の設計・製造に係るトータルコストは増大するばかりか、望む形状の風洞試験が不可能なことさえある。
他方、代表的な測定項目である模型にかかる空気力は、歪みゲージ式天秤によって測定される。吹出式超音速風洞においては、定常時空気力よりもはるかに大きい上記衝撃荷重に耐える容量の大きな天秤を使う必要がある。従って、計測精度の悪化を余儀なくされる。
ところで、吹出式超音速風洞において上記衝撃荷重から模型を保護する方式としては、(1)風洞の始動/停止時に模型を風洞壁の下に格納する方式(例えば、特許文献1を参照。)、(2)風洞の始動/停止時に模型周りに平板または保護シェルを近接させる平板近接方式(例えば、特許文献2を参照。)、(3)風洞始動/停止時に模型とそれを支持するスティング(支持棒)との隙間にブロックを挿入するストッパーブロック方式(例えば、特許文献3及び4を参照)、等の方法が考案されている。
FIG. 5 is a schematic view showing the current blowout supersonic wind tunnel. FIG. 6 is a schematic view showing the two-dimensional variable nozzle of FIG.
The blowout supersonic wind tunnel is a wind flow supply facility for creating a desired air flow field in the space (measurement part) around the model simulating a real machine, and its configuration is high pressure air that stores 2 MPa high pressure air Two reservoirs as sources, a high-pressure conduit for introducing high-pressure air downstream of the reservoir, a gate valve for shutting off the high-pressure air source and the high-pressure conduit, and reducing the high-pressure air to a predetermined pressure downstream Pressure regulating valve to supply, collecting cylinder that rectifies the decompressed high-pressure air, two-dimensional variable nozzle that forms a supersonic uniform flow, measurement unit with a wind tunnel model, subsonic speed by narrowing the air flow And a subsonic diffuser that further decelerates the subsonic flow, a sound suppressor that absorbs generated noise, and a Helmholtz resonance silencer.
As shown in FIG. 6, the two-dimensional variable nozzle includes a flexible nozzle wall and a plurality of electric jacks that displace the nozzle wall in the normal direction, and the electric jack expands and contracts in the axial direction. To form a desired nozzle wall surface and throat portion.
The blowout supersonic wind tunnel opens the gate valve so that high pressure air is regulated by the pressure regulating valve through the high pressure conduit and is throttled through the nozzle throat and further expanded ( Laval nozzle) accelerates to supersonic speed. The flow adopts a structure in which the flow passes through the measurement unit and is decelerated to the subsonic speed at the second throat, and further decelerated and compressed by the subsonic diffuser to be released into the atmosphere. Noise generated when passing through the subsonic diffuser is silenced by a sound suppressor and a Helmholtz resonance silencer. The ventilation time is a very limited time of about 40 seconds.
In such a blow-out supersonic wind tunnel that releases a large amount of high-pressure air to the atmosphere at once, a shock wave is generated when the wind tunnel starts / stops, and a large shock load resulting from the shock wave is applied to the model. In particular, at a high Mach number of 3.0 to 4.0, as shown in FIG. 7, alternating asymmetrical shock waves instantaneously pass up and down (left and right) with respect to the model when starting / stopping the wind tunnel. An impact load ranging from 5 to 10 times the steady-state aerodynamic force at the maximum angle of attack may be applied to the model. FIG. 8 is a graph showing the relationship between the Mach number in the wind tunnel and the impact load in the direction perpendicular to the blade surface. From the figure, it is understood that when the Mach number is 3.0 or more, the impact load in the vertical direction is 2000 N or more, and a considerable impact load is applied to the model. Therefore, the model used in the blowout supersonic wind tunnel needs to be designed and manufactured firmly so as to withstand the impact load. In this case, since strength and rigidity are given top priority, the degree of freedom in design such as shape and thickness is limited, and the material related to the model is inevitably limited to high-strength materials. Will increase. In addition, such a high-strength material is difficult to process, and the manufacturing cost for the model increases. Therefore, the total cost for designing and manufacturing the model is increased, and the wind tunnel test of the desired shape may not be possible.
On the other hand, the aerodynamic force applied to the model, which is a typical measurement item, is measured by a strain gauge type balance. In the blowout supersonic wind tunnel, it is necessary to use a large-capacity balance capable of withstanding the above-described impact load that is much larger than the aerodynamic force during steady state. Therefore, the measurement accuracy is inevitably deteriorated.
By the way, as a method of protecting the model from the impact load in the blowout supersonic wind tunnel, (1) a method of storing the model under the wind tunnel wall when starting / stopping the wind tunnel (see, for example, Patent Document 1). (2) A flat plate proximity method in which a flat plate or a protective shell is brought close to the model when starting / stopping the wind tunnel (see, for example, Patent Document 2), (3) Sting (support) for supporting the model when starting / stopping the wind tunnel A stopper block method (see, for example, Patent Documents 3 and 4) in which a block is inserted into a gap with a rod) has been devised.

特開平6−148024号公報JP-A-6-148024 特開2005−308423号公報JP 2005-308423 A 特開平4−142437号公報JP-A-4-142437 特開平3−67144号公報JP-A-3-67144

上記(1)の模型格納方式については、2次元可変ノズルに大きな格納空間を設ける大改造(図6のノズル壁)をする必要があり、その改修費用が莫大となる。また、定常時に格納空間を塞ぐ大型のプレートが別途必要となり、風洞壁面とプレートとの継ぎ目には必然的に段差が生じる。この継ぎ目段差が存在すると圧縮膨張波が生じ、データ品質(気流の一様性)に問題が生じる。
次に、上記(2)の平板近接方式については、改修費用に対する衝撃荷重低減効果が低いという問題を有している。
次に、上記(3)のストッパーブロック方式については、スティング及び模型に依存するシステムなため、スティング及び模型が変わる場合、別途新たなブロック挿入機構が必要となり汎用性に乏しい。また、衝撃荷重の各部荷重分配は、正確な予測が難しいため、ブロックによって衝撃荷重を低減することが出来ない場合が生じる。
そこで、本発明は、かかる従来技術の問題点に鑑みなされたものであって、その目的は、超音速風洞において、汎用性、経済性および実用性に優れた風洞の模型支持装置に対する始動/停止荷重低減機構を提供することを目的とする。
The model storage method (1) requires a large remodeling (nozzle wall in FIG. 6) to provide a large storage space for the two-dimensional variable nozzle, and the repair cost is enormous. In addition, a large plate that closes the storage space at the time of steady operation is necessary, and a step is inevitably generated at the joint between the wind tunnel wall and the plate. When this seam level difference exists, a compression / expansion wave is generated, which causes a problem in data quality (airflow uniformity).
Next, the flat plate proximity method (2) has a problem that the impact load reducing effect on the repair cost is low.
Next, since the stopper block system (3) is a system that depends on the Sting and the model, if the Sting and the model change, a new block insertion mechanism is required separately, and the versatility is poor. Further, since it is difficult to accurately predict the load distribution of each part of the impact load, there is a case where the impact load cannot be reduced by the block.
Therefore, the present invention has been made in view of the problems of the prior art, and its purpose is to start / stop a model support device for a wind tunnel excellent in versatility, economy and practicality in a supersonic wind tunnel. It aims at providing a load reduction mechanism.

前記目的を達成するために請求項1に記載の風洞の始動/停止荷重低減法では、超音速風洞における始動/停止時に模型に負荷される衝撃荷重の低減法であって、
突起を、模型から上流側に所定の距離だけ離隔した風洞壁面に格納可能に、且つ該突起の上面は、格納状態において前記風洞壁面の一面を成し、データ精度に直結する気流の一様性に悪影響を及ぼさないように各々設け、風洞の始動/停止時に前記突起を前記風洞壁面から突出させ、該突起に起因して発生する衝撃波の作用によって、前記模型に負荷される前記衝撃荷重を低減することを特徴とする。
上記超音速風洞(以下、超音速風洞以外の風洞と区別する場合を除き単に風洞という。)の始動荷重低減法では、上記突起に起因して発生する別の衝撃波が模型周りの流れを減速させ、その結果、模型周りに減速領域が形成される。風洞の始動/停止に起因して発生する衝撃波が模型を通過する際、その減速領域によって衝撃波の強度が弱められ、その結果、模型に負荷される衝撃荷重が好適に低減されることになる。
ところで、風洞壁面に突起を設けることによって、風洞の定常状態における気流特性(気流の一様性)が損なわれることが考えられる。しかし、上記突起は風洞壁面に格納可能となるように設けられているため、例えば突起を風洞壁面に対し垂直方向にスライドさせ、風洞壁面に対し面一に格納することが可能である。また、突起は小型であるため、突起と風洞壁面との継ぎ目段差の管理も容易である。従って、突起が気流の一様性に影響を与えることは殆どない。
また、本発明では、従来技術に見られる模型格納機構、平板近接機構、防護シェル開閉機構、ストッパーブロック挿入機構等の複雑な機構は全く必要とされず、上記突起を上記形態で風洞壁面に設けることによって、風洞の始動/停止に係る衝撃荷重を好適に低減することが可能となる。従って、既存の風洞に対する改修規模および改修費用が少なくて済む。
また、突起は風洞の始動/停止時に突出され、それ以外の定常時においては風洞壁面に格納され上面が壁面の一面を構成するタイプなので、本発明はあらゆるタイプの模型に対して適用可能であり、汎用性及び実用性を有する。
In order to achieve the above object, the wind tunnel start / stop load reduction method according to claim 1 is a method for reducing an impact load applied to a model during start / stop in a supersonic wind tunnel,
The projection can be stored in a wind tunnel wall that is separated from the model by a predetermined distance upstream , and the upper surface of the projection forms one surface of the wind tunnel wall in the stored state, and the uniformity of the airflow directly connected to the data accuracy The projection is projected from the wall surface of the wind tunnel when starting / stopping the wind tunnel, and the impact load applied to the model is reduced by the action of the shock wave generated by the projection. It is characterized by doing.
In the starting load reduction method of the supersonic wind tunnel (hereinafter simply referred to as a wind tunnel unless it is distinguished from a wind tunnel other than the supersonic wind tunnel), another shock wave generated due to the protrusions decelerates the flow around the model. As a result, a deceleration region is formed around the model. When a shock wave generated due to the start / stop of the wind tunnel passes through the model, the intensity of the shock wave is weakened by the deceleration region, and as a result, the shock load applied to the model is suitably reduced.
By the way, it is conceivable that the airflow characteristics (airflow uniformity) in the steady state of the wind tunnel are impaired by providing protrusions on the wall surface of the wind tunnel. However, since the projection is provided so as to be retractable on the wind tunnel wall surface, for example, the projection can be slid in a direction perpendicular to the wind tunnel wall surface and stored flush with the wind tunnel wall surface. Further, since the protrusion is small, it is easy to manage the seam level difference between the protrusion and the wind tunnel wall surface. Therefore, the projection hardly affects the uniformity of the airflow.
Further, in the present invention, complicated mechanisms such as a model storage mechanism, a flat plate proximity mechanism, a protective shell opening / closing mechanism, and a stopper block insertion mechanism found in the prior art are not required at all. Thus, it is possible to suitably reduce the impact load related to the start / stop of the wind tunnel. Therefore, the retrofit scale and retrofit cost for the existing wind tunnel can be reduced.
In addition, since the protrusion protrudes when the wind tunnel is started / stopped, and is stored in the wind tunnel wall surface at other times, the upper surface constitutes one surface of the wall surface. Therefore, the present invention is applicable to all types of models. , Versatility and practicality.

さらに、突起に起因して発生する別の衝撃波の作用によって、翼面に垂直に作用する風洞の始動/停止に係る衝撃荷重を好適に低減させることが可能となる。   Furthermore, it is possible to suitably reduce the impact load related to the start / stop of the wind tunnel acting perpendicular to the blade surface by the action of another shock wave generated due to the protrusion.

また、前記突起の上面は、格納状態において前記風洞壁面の一面を成すことによって、風洞壁面に段差が形成されなくなり、風洞の定常状態における気流の一様性が好適に保たれる。 The upper surface of the projection is thus that in the storage state forms one side of the wind tunnel wall, the step is not formed in the wind tunnel wall, uniformity of air flow in the steady state wind tunnel are suitably maintained.

請求項に記載の風洞の始動/停止荷重低減法では、前記突起の前記模型からの離隔距離および該突起の風洞壁面からの突出量については、少なくとも気流のマッハ数又は/及び単位レイノルズ数(1mあたり)に基づいて決定されることとした。
本願発明の特徴は、上記突起に起因して発生する衝撃波が模型周りの流れ場を変化させることによって模型に負荷される風洞の始動/停止に係る衝撃荷重を低減することである。従って、上記突起の前記模型からの離隔距離および上記突起の風洞壁面からの突出量については、マッハ数又は/及び単位レイノルズ数に基づいて模型周りの流れ状態を把握した上で個別具体的に決定されることとした。
In the wind tunnel start / stop load reduction method according to claim 2 , at least the Mach number of the air flow and / or the unit Reynolds number (about the separation distance of the protrusion from the model and the protrusion amount of the protrusion from the wind tunnel wall surface ( Per 1 meter).
A feature of the present invention is to reduce an impact load related to start / stop of a wind tunnel loaded on the model by a shock wave generated due to the protrusion changing a flow field around the model. Accordingly, the separation distance of the protrusion from the model and the protrusion amount of the protrusion from the wind tunnel wall surface are individually and specifically determined after grasping the flow state around the model based on the Mach number or / and the unit Reynolds number. It was decided to be done.

上記風洞の始動/停止荷重低減法では、突起によって模型周りの流れ場を変化させる別の衝撃波を好適に生成することが可能となる。   In the wind tunnel start / stop load reduction method, it is possible to suitably generate another shock wave that changes the flow field around the model by the protrusion.

前記目的を達成するために請求項に記載の風洞では、実機を模擬した模型を風路に配置し、該模型周りに所望の気流を形成する超音速風洞であって、
前記模型から上流側に所定の距離だけ離隔した風洞壁面に格納可能となるように設けられた突起と、該突起を風洞壁面から所定の長さだけ突出させるスライド機構とを備え、
前記突起はその上面が、格納状態において前記風洞壁面の一面を成すように設けられ、
風洞の始動/停止時に前記突起を前記風洞壁面から突出させ、該突起に起因して発生する衝撃波の作用によって、前記模型に負荷される衝撃荷重を低減するようにしてなることを特徴とする。
上記風洞では、上記請求項1に記載の風洞の始動/停止荷重低減法を好適に実施することが出来る。
In order to achieve the object, the wind tunnel according to claim 3 is a supersonic wind tunnel in which a model simulating an actual machine is arranged in a wind path, and a desired airflow is formed around the model,
A projection provided so as to be retractable on a wind tunnel wall spaced a predetermined distance upstream from the model, and a slide mechanism for projecting the projection from the wind tunnel wall by a predetermined length;
The protrusion is provided such that its upper surface forms one surface of the wind tunnel wall surface in the retracted state,
The projections at the time of starting / stopping of the wind tunnel to protrude from the wind tunnel wall, projecting by the action of the shock wave caused by the electromotive force, characterized by comprising so as to reduce the impact load applied to the model.
In the wind tunnel, the wind tunnel start / stop load reduction method according to claim 1 can be suitably implemented.

請求項に記載の風洞では、前記突起の前記模型からの離隔距離および該突起の突出量については、少なくとも気流のマッハ数又は/及び単位レイノルズ数に基づいて決定されることとした。
上記風洞では、上記請求項に記載の風洞の始動/停止荷重低減法を好適に実施することが出来る。
In the wind tunnel according to claim 4 , the separation distance of the protrusion from the model and the protrusion amount of the protrusion are determined based on at least the Mach number of airflow and / or the unit Reynolds number.
In the wind tunnel, the wind tunnel start / stop load reduction method according to claim 2 can be suitably implemented.

本発明の風洞の始動/停止に係る衝撃荷重低減方法によれば、突起を、模型から上流側に所定の距離だけ離隔した風洞壁面に格納可能となるように設けることによって、その突起に起因して発生する別の衝撃波が、模型の周りに減速領域を形成し、風洞の始動/停止に起因して発生する衝撃波が模型を通過する際、その減速領域によって衝撃波の強度が弱められ、その結果、模型に負荷される衝撃荷重が好適に低減されることになる。このように本発明は上記突起を上記形態で風洞壁面に設けた簡易な機構であるが、後述するように、風洞の始動/停止に係る衝撃荷重を好適に低減することが出来る。
また、突起は格納時にその上面が風洞壁面の一面を成す小型の機構であるため、風洞壁面に継ぎ目段差が殆ど生じない。その結果、風洞の定常状態において気流の一様性が好適に保持されることになる。
また、模型に負荷される衝撃荷重が小さくなる結果、模型に負荷される荷重(空気力)を計測する歪みゲージ式天秤の容量を小さくすることが可能となり、空気力の計測精度が向上する。また、模型の強度・剛性を必要以上に高める必要がなくなり、特に薄翼模型の設計が可能となる等、模型設計の自由度が高くなる。
また、本発明は始動/停止時の気流そのものの流れ場を変化させているために、模型にかかる全方向の空気力の低減に効果があると考えられる。
また、風洞壁面に対する比較的小規模な改修で済むため、費用面において優れている。
また、本発明は上記突起を上記形態で風洞壁面に設ける簡素な機構であるため全ての模型に対し適用でき、高い汎用性及び実用性を有する。
According to the impact load reducing method for starting / stopping a wind tunnel according to the present invention, the projection is caused by the projection by providing the projection so that it can be stored in the wall surface of the wind tunnel separated by a predetermined distance upstream from the model. Another shock wave generated by the model forms a deceleration region around the model, and when the shock wave generated due to the start / stop of the wind tunnel passes through the model, the deceleration region weakens the strength of the shock wave. The impact load applied to the model is preferably reduced. As described above, the present invention is a simple mechanism in which the protrusion is provided on the wall surface of the wind tunnel in the form described above. However, as will be described later, it is possible to suitably reduce the impact load related to the start / stop of the wind tunnel.
Further, since the projection is a small mechanism whose upper surface forms one surface of the wind tunnel wall surface during storage, there is almost no seam step on the wind tunnel wall surface. As a result, the uniformity of the airflow is suitably maintained in the steady state of the wind tunnel.
Moreover, as a result of the impact load applied to the model being reduced, the capacity of the strain gauge type balance that measures the load (aerodynamic force) applied to the model can be reduced, and the measurement accuracy of the aerodynamic force is improved. Further, it is not necessary to increase the strength and rigidity of the model more than necessary, and the degree of freedom in model design is increased, such as the ability to design a thin wing model in particular.
Further, since the present invention changes the flow field of the airflow itself at the time of starting / stopping, it is considered that the present invention is effective in reducing the omnidirectional aerodynamic force applied to the model.
In addition, since a relatively small-scale renovation of the wind tunnel wall is sufficient, the cost is excellent.
In addition, since the present invention is a simple mechanism in which the protrusion is provided on the wind tunnel wall surface in the above-described form, it can be applied to all models and has high versatility and practicality.

本発明の超音速風洞を示す説明図である。It is explanatory drawing which shows the supersonic wind tunnel of this invention. 本発明の風洞の始動/停止に係る衝撃荷重低減のメカニズムを示す説明図である。It is explanatory drawing which shows the mechanism of the impact load reduction which concerns on the start / stop of the wind tunnel of this invention. 本発明の超音速風洞において使用される模型を示す説明図である。It is explanatory drawing which shows the model used in the supersonic wind tunnel of this invention. 本発明の風洞の始動時の衝撃荷重の低減効果を示すグラフである。It is a graph which shows the reduction effect of the impact load at the time of the start of the wind tunnel of this invention. 従来の超音速風洞を示す説明図である。It is explanatory drawing which shows the conventional supersonic wind tunnel. 図5の可変ノズルを示す説明図である。It is explanatory drawing which shows the variable nozzle of FIG. 始動/停止時の衝撃波を示す説明図である。It is explanatory drawing which shows the shock wave at the time of starting / stopping. マッハ数と翼面垂直方向の衝撃荷重との関係を示すグラフである。It is a graph which shows the relationship between Mach number and the impact load of a blade surface perpendicular | vertical direction.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings.

図1は、本発明の超音速風洞100を示す説明図である。なお、説明の都合上、測定部のみが示されている。また、図1(a)は要部断面説明図であり、同(b)はそのA矢視である。
この超音速風洞100は、風流を供給する基本的構成については図5において示した超音速風洞と同じであり、1m×1mの測定部断面(風洞断面)を持つ。風路中央には、模型10(図3)が模型支持部20によって支持・固定されている。模型支持部20の先端にはスティング型6分力検出器(図示せず)が取り付けられ、模型10にリジッドに結合されている。そして、模型10より一定距離L(又はL')隔てた上流側の風洞壁面には、突起30u,30Lが格納可能となるように各々設けられている。詳細については、後述するが、上記突起30u,30Lを上記形態で風洞壁面に各々設けることによって、突起30u,30Lに起因して発生する別の衝撃波が、模型10の周りの流れを減速させ、その結果、模型周りに減速領域が形成される。その結果、風洞の始動/停止に伴い発生する衝撃波がその減速領域を通過する際に、衝撃波の強度が弱められ、その結果、模型10に負荷される衝撃荷重が好適に低減されることになる。つまり、超音速風洞100は、風洞の始動/停止に起因して発生する衝撃波を、突起30u,30Lに起因して発生する別の衝撃波の作用によって弱める機構を備えている。
FIG. 1 is an explanatory view showing a supersonic wind tunnel 100 of the present invention. For convenience of explanation, only the measurement unit is shown. FIG. 1A is a cross-sectional explanatory view of the main part, and FIG.
The supersonic wind tunnel 100 is the same as the supersonic wind tunnel shown in FIG. 5 with respect to the basic configuration for supplying the wind flow, and has a measurement section cross section (wind tunnel cross section) of 1 m × 1 m. A model 10 (FIG. 3) is supported and fixed by a model support unit 20 in the center of the air path. A Sting type 6 component force detector (not shown) is attached to the tip of the model support 20 and is rigidly coupled to the model 10. And the protrusion 30u, 30L is each provided in the wind tunnel wall surface of the upstream side separated from the model 10 by the fixed distance L (or L ') so that accommodation is possible. Although details will be described later, by providing the projections 30u and 30L on the wall surface of the wind tunnel in the above form, another shock wave generated due to the projections 30u and 30L decelerates the flow around the model 10, As a result, a deceleration region is formed around the model. As a result, when the shock wave generated by starting / stopping the wind tunnel passes through the deceleration region, the intensity of the shock wave is weakened, and as a result, the impact load applied to the model 10 is suitably reduced. . That is, the supersonic wind tunnel 100 includes a mechanism that weakens the shock wave generated due to the start / stop of the wind tunnel by the action of another shock wave generated due to the protrusions 30u and 30L.

図示されてはいないが、突起30u,30Lにはスライド機構が備わり、突起30u,30LはZ軸方向に対し移動可能に構成されている。従って、突起30u,30Lは、風洞の始動/停止時においては、スライド機構によって風洞壁面から突出される一方、風流が定常流に達する時は、スライド機構によって風洞壁面に格納される。この場合、突起30u,30Lの各上面が風洞壁面を構成し、他の風洞壁面と面一となる。従来の模型格納機構では、格納空間を塞ぐプレートが別途必要であった。そのプレートは模型より大きくする必要があるため、プレートが閉じた状態では、プレートと風洞壁面との間には必然的に継ぎ目段差が生じていた。しかし、本発明は、突起30u,30Lそのものが小型であるため、突起上面と風洞壁面との間に継ぎ目段差が生じることは殆どない。従って、格納時に突起30u,30Lが気流の一様性に影響を及ぼすことは殆どない。   Although not shown, the protrusions 30u and 30L are provided with a slide mechanism, and the protrusions 30u and 30L are configured to be movable in the Z-axis direction. Therefore, the protrusions 30u and 30L are projected from the wind tunnel wall surface by the slide mechanism when the wind tunnel is started / stopped, and are stored in the wind tunnel wall surface by the slide mechanism when the wind flow reaches a steady flow. In this case, the upper surfaces of the protrusions 30u and 30L constitute the wind tunnel wall surface and are flush with the other wind tunnel wall surfaces. In the conventional model storing mechanism, a plate for closing the storing space is separately required. Since the plate needs to be larger than the model, a seam step inevitably occurs between the plate and the wind tunnel wall when the plate is closed. However, in the present invention, since the projections 30u and 30L themselves are small, there is almost no seam level difference between the upper surface of the projection and the wall surface of the wind tunnel. Therefore, the protrusions 30u and 30L hardly affect the uniformity of the airflow during storage.

ここで、寸法例を挙げると、突起30u,30Lは、模型10の中心から風洞上流側へ距離L=1240mm(模型10の先端から風洞上流側へ距離L'=1015mm)離隔した位置に、風洞壁面に格納可能となるように各々設けられている。また、突起30u,30Lの外形寸法(正確には、風洞壁面からの突出部の外形寸法)は、幅800mm×高さ30mm×奥行き80mmの直方体である。なお、上記設置距離L(又はL')及び外形寸法(大きさ)は、測定部断面が1m×1m、マッハ数が3、および単位レイノルズ数が40×106(1/m)の風流の場合の値である。従って、突起30u,30Lの上記設置距離L、外形寸法は、風洞断面の形状及び大きさ、並びにマッハ数及び/又は単位レイノルズ数が変わる場合は、これらに応じてその値は変わることになる。従って、上記設置距離L、外形寸法は、風洞断面の形状及び大きさ、並びにマッハ数及び/又は単位レイノルズ数に応じて個別具体的に決定されることになる。 Here, as an example of dimensions, the protrusions 30u and 30L are located at a distance L = 1240 mm from the center of the model 10 to the upstream side of the wind tunnel (distance L ′ = 1015 mm from the tip of the model 10 to the upstream side of the wind tunnel). Each is provided so that it can be stored in a wall surface. Further, the external dimensions of the protrusions 30u and 30L (exactly, the external dimensions of the protruding portion from the wall surface of the wind tunnel) are a rectangular parallelepiped having a width of 800 mm × a height of 30 mm × a depth of 80 mm. The installation distance L (or L ′) and the external dimensions (size) are as follows: the cross section of the measurement part is 1 m × 1 m, the Mach number is 3, and the unit Reynolds number is 40 × 10 6 (1 / m). Is the case value. Therefore, when the installation distance L and the external dimensions of the protrusions 30u and 30L change the shape and size of the wind tunnel cross section and the Mach number and / or the unit Reynolds number, the values thereof change accordingly. Therefore, the installation distance L and the external dimensions are individually and specifically determined according to the shape and size of the wind tunnel cross section and the Mach number and / or unit Reynolds number.

本実施例では、測定部の断面形状は矩形(1m×1m正方形)であり、突起30u,30Lの突出部分の風流当接面の形状は長方形(800mm×30mm)であった。   In the present example, the cross-sectional shape of the measurement part was a rectangle (1 m × 1 m square), and the shape of the airflow contact surface of the protruding portion of the protrusions 30u, 30L was a rectangle (800 mm × 30 mm).

図2は、本発明の風洞の始動/停止に係る衝撃荷重低減のメカニズムを示す説明図である。
本発明の特徴は、上記設置距離L、上記外形寸法で風洞壁面に各々設けられた突起30u,30Lに起因して発生する別の衝撃波が、模型10の周りの流れを減速させ、模型10の周りに減速領域を形成する。そして、風洞の始動/停止に起因して発生する衝撃波1,1',2,2'が減速領域を通過する際に、その減速領域によって強度が弱められ、模型10に負荷される衝撃荷重が低減されることになる。また、始動/停止時の気流そのものの流れ場を変化させているため、模型にかかる全方向の空気力に対し効果があると考えられ、従って、模型に負荷される全方向の衝撃荷重が本発明によって好適に低減されると考えられる。
上述した通り、突起30u,30Lの上記設置距離L、外形寸法については、突起30u,30Lに起因して発生する別の衝撃波が、模型10の周りの気流を好適に減速させるように、模型10の周りの流れ場の状態を把握した上で個別具体的に決定される必要がある。
FIG. 2 is an explanatory view showing a mechanism for reducing the impact load related to the start / stop of the wind tunnel according to the present invention.
The feature of the present invention is that another shock wave generated due to the projections 30u and 30L provided on the wind tunnel wall surface with the installation distance L and the outer dimensions described above decelerates the flow around the model 10 and A deceleration region is formed around. When the shock waves 1, 1 ′, 2, 2 ′ generated due to the start / stop of the wind tunnel pass through the deceleration region, the strength is weakened by the deceleration region, and the impact load applied to the model 10 is reduced. Will be reduced. In addition, since the flow field of the airflow itself at the start / stop is changed, it is considered effective against the omnidirectional aerodynamic force applied to the model. Therefore, the omnidirectional impact load applied to the model is It is thought that it is suitably reduced by the invention.
As described above, with respect to the installation distance L and the external dimensions of the protrusions 30u and 30L, the model 10 is such that another shock wave generated due to the protrusions 30u and 30L suitably decelerates the airflow around the model 10. It needs to be determined individually and concretely after grasping the state of the flow field around.

図3は、本発明の超音速風洞100において使用される模型10を示す説明図である。
本発明の超音速風洞100では、風洞の始動/停止時に模型10に負荷される衝撃荷重が好適に低減される。その結果、模型の強度・剛性を必要以上に高める必要がなくなり、模型設計の自由度が高くなる。
FIG. 3 is an explanatory view showing the model 10 used in the supersonic wind tunnel 100 of the present invention.
In the supersonic wind tunnel 100 of the present invention, the impact load applied to the model 10 when the wind tunnel is started / stopped is preferably reduced. As a result, it is not necessary to increase the strength and rigidity of the model more than necessary, and the degree of freedom in model design is increased.

模型10のノーズ部には円筒タイプの圧力センサP1、前胴部上面および下面にはフラッシュマウントタイプの圧力センサP2U,P2L、翼右上面および下面には同じくフラッシュマウントタイプの圧力センサP3U,P3L、翼左上面には同じくフラッシュマウントタイプのP4Uが取り付けられている。 The model 10 has a cylindrical pressure sensor P 1 at the nose portion, flush mount type pressure sensors P 2U and P 2L at the upper and lower surfaces of the front trunk portion, and flush mount type pressure sensor P at the upper right and lower surfaces of the wing. 3U , P 3L , and flush mount type P 4U are mounted on the upper left surface of the wing.

図4は、本発明の風洞の始動時の衝撃荷重の低減効果を示すグラフである。なお、図4(a)は突起30u,30Lを備えない従来の超音速風洞における翼に負荷される垂直力および翼表面圧力を示し、同(b)は突起30u,30Lを備えた本発明の超音速風洞100における翼に負荷される垂直力および翼表面圧力を示している。
垂直力について、図から突起30u,30Lを備えない従来の超音速風洞では、1.275秒から1.375秒の間に模型翼面に2000Nを超える垂直力(約3000N)が衝撃荷重として負荷されていることが分かる。対する突起30u,30Lを備えた本発明の超音速風洞100では、1.275秒から1.375秒間に模型翼面に負荷される垂直力は2000N以下(約1800N)に抑えられていることが分かる。
また、翼表面圧力について、図から右翼上の圧力結果は、従来の超音速風洞では大きなピークが生じているが、本発明の超音速風洞100ではピークが小さいことが分かる。
FIG. 4 is a graph showing the effect of reducing the impact load when starting the wind tunnel according to the present invention. FIG. 4 (a) shows the normal force and blade surface pressure applied to the blade in a conventional supersonic wind tunnel without the projections 30u, 30L, and FIG. 4 (b) shows the present invention with the projections 30u, 30L. The normal force and the blade surface pressure applied to the blade in the supersonic wind tunnel 100 are shown.
Regarding the normal force, in the conventional supersonic wind tunnel without protrusions 30u and 30L, the normal force exceeding 2000N (approximately 3000N) is applied to the model blade surface as an impact load between 1.275 seconds and 1.375 seconds. You can see that. In the supersonic wind tunnel 100 of the present invention provided with the protrusions 30u and 30L, the normal force applied to the model blade surface from 1.275 seconds to 1.375 seconds is suppressed to 2000 N or less (about 1800 N). I understand.
As for the blade surface pressure, it can be seen from the figure that the pressure result on the right wing has a large peak in the conventional supersonic wind tunnel, but the peak is small in the supersonic wind tunnel 100 of the present invention.

上述した通り、本発明の風洞の始動/停止荷重低減法は、上記突起30u,30Lを、上記設置距離L、上記外形寸法で模型10の上流側の風洞壁面に格納可能となるように各々設け、突起30u,30Lに起因して発生する別の衝撃波が、模型10の周りの流れを減速させ、その結果、模型周りに減速領域が形成されるようにする。その結果、風洞の始動/停止に伴い発生する衝撃波がその減速領域を通過する際に、衝撃波の強度が弱められ、その結果、模型10に負荷される衝撃荷重が好適に低減されることになる。このように、本発明は簡易な機構であるが、風洞の始動/停止に係る衝撃荷重低減効果は非常に大きい。   As described above, the wind tunnel start / stop load reducing method of the present invention is provided so that the protrusions 30u and 30L can be stored on the wind tunnel wall upstream of the model 10 with the installation distance L and the outer dimensions. Another shock wave generated due to the protrusions 30u, 30L decelerates the flow around the model 10 so that a deceleration region is formed around the model. As a result, when the shock wave generated by starting / stopping the wind tunnel passes through the deceleration region, the intensity of the shock wave is weakened, and as a result, the impact load applied to the model 10 is suitably reduced. . As described above, the present invention is a simple mechanism, but the impact load reducing effect related to the start / stop of the wind tunnel is very large.

本発明の風洞の始動/停止に係る衝撃荷重低減方法は、間欠式の吹出式超音速・極超音速風洞に適用することが可能である。   The impact load reducing method for starting / stopping a wind tunnel according to the present invention can be applied to an intermittent blowing supersonic / hypersonic wind tunnel.

1,1',2,2' 衝撃波
10 模型
11 翼
20 模型支持部
30u,30L 突起
100 超音速風洞
1, 1 ', 2, 2' Shock wave 10 Model 11 Wing 20 Model support 30u, 30L Protrusion 100 Supersonic wind tunnel

Claims (4)

超音速風洞における始動/停止時に模型に負荷される衝撃荷重の低減法であって、
突起を、模型から上流側に所定の距離だけ離隔した風洞壁面に格納可能に、且つ該突起の上面は、格納状態において前記風洞壁面の一面を成し、データ精度に直結する気流の一様性に悪影響を及ぼさないように各々設け、風洞の始動/停止時に前記突起を前記風洞壁面から突出させ、該突起に起因して発生する衝撃波の作用によって、前記模型に負荷される前記衝撃荷重を低減することを特徴とする超音速風洞の始動/停止荷重低減法。
A method of reducing the impact load applied to the model during start / stop in a supersonic wind tunnel,
The projection can be stored in a wind tunnel wall that is separated from the model by a predetermined distance upstream , and the upper surface of the projection forms one surface of the wind tunnel wall in the stored state, and the uniformity of the airflow directly connected to the data accuracy The projection is projected from the wall surface of the wind tunnel when starting / stopping the wind tunnel, and the impact load applied to the model is reduced by the action of the shock wave generated by the projection. A method for reducing the start / stop load of a supersonic wind tunnel.
前記突起の前記模型からの離隔距離および該突起の前記風洞壁面からの突出量については、少なくとも気流のマッハ数又は/及びレイノルズ数に基づいて決定される請求項に記載の超音速風洞の始動/停止荷重低減法。 The start of the supersonic wind tunnel according to claim 1 , wherein the separation distance of the protrusion from the model and the protrusion amount of the protrusion from the wind tunnel wall surface are determined based on at least the Mach number and / or the Reynolds number of the air flow. / Stop load reduction method. 実機を模擬した模型を風路に配置し、該模型周りに所望の気流を形成する超音速風洞であって、
前記模型から上流側に所定の距離だけ離隔した風洞壁面に格納可能となるように設けられた突起と、該突起を風洞壁面から所定の長さだけ突出させるスライド機構とを備え、
前記突起はその上面が、格納状態において前記風洞壁面の一面を成すように設けられ、
風洞の始動/停止時に前記突起を前記風洞壁面から突出させ、該突起に起因して発生する衝撃波の作用によって、前記模型に負荷される衝撃荷重を低減するようにしてなることを特徴とする超音速風洞。
A supersonic wind tunnel that arranges a model simulating a real machine in the wind path and forms a desired airflow around the model,
A projection provided so as to be retractable on a wind tunnel wall spaced a predetermined distance upstream from the model, and a slide mechanism for projecting the projection from the wind tunnel wall by a predetermined length;
The protrusion is provided such that its upper surface forms one surface of the wind tunnel wall surface in the retracted state,
The projections at the time of starting / stopping of the wind tunnel to protrude from the wind tunnel wall, projecting by the action of the shock wave caused by the electromotive force, characterized by comprising so as to reduce the impact load applied to the model Ultra Sonic wind tunnel.
前記突起の前記模型からの離隔距離および該突起の風洞壁面からの突出量については、少なくとも気流のマッハ数又は/及びレイノルズ数に基づいて決定される請求項に記載の超音速風洞。 The supersonic wind tunnel according to claim 3 , wherein the separation distance of the protrusion from the model and the protrusion amount of the protrusion from the wind tunnel wall surface are determined based on at least the Mach number and / or the Reynolds number of the airflow.
JP2009249229A 2009-10-29 2009-10-29 Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel Expired - Fee Related JP5605537B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009249229A JP5605537B2 (en) 2009-10-29 2009-10-29 Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009249229A JP5605537B2 (en) 2009-10-29 2009-10-29 Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel

Publications (2)

Publication Number Publication Date
JP2011095098A JP2011095098A (en) 2011-05-12
JP5605537B2 true JP5605537B2 (en) 2014-10-15

Family

ID=44112176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009249229A Expired - Fee Related JP5605537B2 (en) 2009-10-29 2009-10-29 Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel

Country Status (1)

Country Link
JP (1) JP5605537B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362468A (en) * 2018-05-25 2018-08-03 中国空气动力研究与发展中心高速空气动力研究所 A kind of model vibration-repressing device that wind-tunnel supersonic speed starts and cut-offs

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109682699B (en) * 2019-01-16 2023-12-19 中铁第四勘察设计院集团有限公司 Loading mechanism of tunnel protection door and wind pressure test device comprising loading mechanism
RU2722856C1 (en) * 2019-06-21 2020-06-04 Федеральное государственное унитарное предприятие "Центральный аэрогидродинамический институт имени профессора Н.Е. Жуковского" (ФГУП "ЦАГИ") Test bench for aerodynamic characteristics measurement of wing compartment model
CN114414197B (en) * 2022-03-28 2022-09-09 中国空气动力研究与发展中心设备设计与测试技术研究所 Variable Mach number spray pipe of flexible wallboard of prebending
CN114544134B (en) * 2022-04-28 2022-07-01 中国空气动力研究与发展中心超高速空气动力研究所 Gas type wind tunnel based on rail acceleration
CN115493802B (en) * 2022-11-18 2023-03-10 中国空气动力研究与发展中心空天技术研究所 Internal and external flow aerodynamic decoupling structure of body propulsion integrated model and working installation method
CN116296237B (en) * 2023-05-18 2023-07-21 中国航空工业集团公司哈尔滨空气动力研究所 Vertical wind load test method for large carrier rocket in low-speed wind tunnel
CN116818259B (en) * 2023-08-23 2023-10-27 中国航空工业集团公司沈阳空气动力研究所 Vibration damping device and method for dynamic derivative test mechanism
CN117949164B (en) * 2024-03-22 2024-05-28 中国空气动力研究与发展中心高速空气动力研究所 Time-related data correction method for high-speed continuous wind tunnel balance

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6394130A (en) * 1986-10-08 1988-04-25 Natl Aerospace Lab Flutter stopping device
JPH04289425A (en) * 1991-02-27 1992-10-14 Mitsubishi Electric Corp Intermittent blow type wind tunnel testing apparatus
JPH0823517B2 (en) * 1992-11-16 1996-03-06 科学技術庁航空宇宙技術研究所長 Transonic flutter stop device in wind tunnel test.
JP3772212B2 (en) * 2002-09-20 2006-05-10 独立行政法人 宇宙航空研究開発機構 Transonic flutter stop device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108362468A (en) * 2018-05-25 2018-08-03 中国空气动力研究与发展中心高速空气动力研究所 A kind of model vibration-repressing device that wind-tunnel supersonic speed starts and cut-offs
CN108362468B (en) * 2018-05-25 2023-11-17 中国空气动力研究与发展中心高速空气动力研究所 Model vibration suppression device for supersonic starting and closing of wind tunnel

Also Published As

Publication number Publication date
JP2011095098A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5605537B2 (en) Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel
Tan et al. Behavior of shock trains in a hypersonic inlet/isolator model with complex background waves
CN106762149B (en) A kind of hypersonic inlet self-starting energy force checking device
McGilvray et al. The oxford high density tunnel
Park et al. Design and analysis of a second-throat exhaust diffuser for altitude simulation
CN108181080A (en) A kind of sub- position feedback and protective device across super wind-tunnel diffuser adjustment sheet
US20180073527A1 (en) Piezoelectric Actuators Optimized for Synthetic Jet Actuators
Ilakkiya et al. An experimental study on the effect of square grooves on decay characteristics of a supersonic jet from a circular nozzle
Seifert Closed-loop active flow control systems: actuators
CN103994873A (en) Protection stop motion mechanism for trailing edge rudder surface of flutter model
Sinha et al. High fidelity simulation and measurements of aircraft weapons bay dynamics
JP3772212B2 (en) Transonic flutter stop device
CN206448877U (en) A kind of hypersonic inlet self-starting energy force checking device
Hou et al. Experimental study and analysis of shock train self-excited oscillation in an isolator with background waves
JP2011252830A (en) Support equipment for wind tunnel test model
Sun et al. Investigations on aerodynamic performance of turbine cascade at different flow conditions
Hong Numerical investigation to forcing frequency and amplitude of synthetic jet actuators
Casper Fluid-structure interactions on a slender cone under quiet flow conditions at Mach 6
Li et al. Low speed axial compressor stall margin improvement by unsteady plasma actuation
Zhou et al. High cycle fatigue limit prediction of foreign object damaged aerofoil samples by the theory of critical distance
Matsuo Shock train and pseudo-shock phenomena in supersonic internal flows
Ma et al. Efficient Aeroelastic Energy Harvesting From HVAC Ducts
Lee et al. Experimental and numerical investigation on the supersonic inlet buzz with angle of attack
Wang et al. Experimental and numerical investigation of three-dimensional shock train topology with differently oriented background waves
Shpak et al. Analysis of the off-design behavior of the adiabatic heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121003

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130717

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130913

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140602

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140730

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140812

R150 Certificate of patent or registration of utility model

Ref document number: 5605537

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees