JP3772212B2 - Transonic flutter stop device - Google Patents

Transonic flutter stop device Download PDF

Info

Publication number
JP3772212B2
JP3772212B2 JP2002275527A JP2002275527A JP3772212B2 JP 3772212 B2 JP3772212 B2 JP 3772212B2 JP 2002275527 A JP2002275527 A JP 2002275527A JP 2002275527 A JP2002275527 A JP 2002275527A JP 3772212 B2 JP3772212 B2 JP 3772212B2
Authority
JP
Japan
Prior art keywords
flutter
flutter stop
wall
stop device
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002275527A
Other languages
Japanese (ja)
Other versions
JP2004109067A (en
Inventor
麻雄 半澤
正光 鈴木
保男 小國
敏夫 唐澤
泰勝 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aerospace Exploration Agency JAXA
Original Assignee
Japan Aerospace Exploration Agency JAXA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aerospace Exploration Agency JAXA filed Critical Japan Aerospace Exploration Agency JAXA
Priority to JP2002275527A priority Critical patent/JP3772212B2/en
Publication of JP2004109067A publication Critical patent/JP2004109067A/en
Application granted granted Critical
Publication of JP3772212B2 publication Critical patent/JP3772212B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、航空機の研究・開発に用いられる風洞実験技術に関し、特にフラッタ停止装置にする。
【0002】
【従来の技術】
遷音速領域での空力弾性試験を実行する際、風洞内に設置された風洞試験用模型が気流による微小擾乱でフラッタを生じるという現象は周知であるが、このフラッタが発生すると瞬時に模型が風洞内で飛散してしまう危険がある。そこで、遷音速領域での高速フラッタ風洞試験を安全、確実に、模型を壊さずに高精度、高効率に行うためには、上記のような模型の破壊が生じることがない、自動化したフラッタ停止装置が、風洞の付帯設備として必要となる。気流特性の良い大型風洞設備において、大型の高価な模型を用いた試験を行なう場合にはこのような破壊現象を回避することがとくに重要となる。そして、このようなフラッタ停止装置は、風洞本体の基本構造や性能を変えることなく設置できるものであることが必要であり、翼にフラッタが発生したら直ちにマッハ数や動圧を自動的に限界値以下に下げるものでなければならない。
空力弾性試験を実行する遷音速風洞の測定カートは、上下左右の4壁が多孔板からなるものであって、その多孔板の孔からは抽気がなされる構造のものが従来は一般的であった。その後、気流特性がよい測定カートとして上下が多溝壁で左右がフラットな固定壁からなり、多溝壁の溝から抽気がなされる構造のものが開発されている。抽気室を有する最近の遷音速風洞設備には、一般に風洞試験目的に応じて選択使用される数種類の風洞測定部が風洞内に用意されている。
【0003】
遷音速領域での高速フラッタ風洞試験を安全、確実に、模型を壊さずに高精度、高効率に行うためには、自動化したフラッタ停止装置が、風洞の付帯設備として必要となる。そして、このようなフラッタ停止装置は、風洞本体の基本構造や性能を変えることなく設置されることが望ましく、翼にフラッタが発生したら直ちにマッハ数や動圧を自動的に限界値以下に下げるものでなければならない。このような事情の中で本出願人は特許第2099140号(特公平8−23517号公報:特許文献1)「風洞試験における遷音速フラッタ停止装置」を先に出願提示した。このフラッタ停止装置は、図7に示すように遷音速領域のフラッタ試験のための抽気室8を有する風洞において、気流遮蔽効果を有するフラッタ停止部材2を、該停止部材2の後流が試験体3に当らない位置で、測定部1の壁面に格納し、フラッタ検出装置からのフラッタ発生信号により、上記フラッタ停止部材2を上記測定部1内に挿入するようにしたことを特徴とするもので、上記抽気室を有する遷音速風洞の測定部壁面の任意の位置に格納されたフラッタ停止部材2は、翼模型3に取り付けたセンサ5の信号により、直ちにアクチュエータ6を作動し、自動的にフラッタ停止部材2を測定部1に挿入する。測定部1に挿入されたフラッタ停止部材2の断面積と風洞の測定部断面積の比に応じて、抵抗による風洞のエネルギー損失と抽気室8に回流する抽気作用によって、マッハ数と動圧が瞬間的にフラッタ限界値以下に低下する。これによって翼のフラッタを安全確実に停止できるというものであった。
【0004】
この抽気室を有する遷音速風洞では、測定部内の気流に対して抵抗部材を出すことにより、マッハ数や動圧を瞬時にフラッタ限界値以下に低下させて、供試模型のフラッタを安全に抑止する機能を備えているが、風洞の側壁とフラッタ停止部材との間に開口部及び多孔板を有する構造であるため、この部分から気流の出入りがあり、気流の偏流と変動を生じるものであった。この気流の偏流と変動が気流に影響を与え、供試模型に対する本来の迎角とは異なる迎角で流れて供試模型を不規則励振する。そのため、この不規則励振が試験精度の低下をもたらし問題とされた。この現象は4壁多孔板の風洞壁では多孔フラッタ停止部材ではもともと壁面からの抽気があるため大きな問題とはならないが、気流特性に重点を置いた上下多溝壁、左右固定壁の風洞壁では多孔フラッタ停止部材開口部及び壁面との間隙、先端部材の格納時の凹凸等が存在すると、本来の設計とは異なり本来平坦であるべき固定壁で偏流を生じたり抽気を生じる等のため上記問題を指摘されていた。
【0005】
【特許文献1】
特公平8−23517号公報
【0006】
【発明が解決しようとする課題】
本発明の課題は、フラッタが発生したら直ちにマッハ数や動圧を自動的に限界値以下に下げるフラッタ停止機能を備えた風洞システムにおいて、気流の偏流と変動を生じさせることのないフラッタ停止装置を提供することにより、供試模型が不規則励振されることを防止し、試験精度の低下が起こらないようにすることにある。
【0007】
【課題を解決するための手段】
有孔板状のフラッタ停止板を供試模型の下流側位置に配置すると共に、測定室の両壁からスライド自在の形態で設置し、開口部のないのフラッタ停止部材は、端部面が平坦な壁面部材で形成され、該フラッタ停止板が前記測定室の両壁に格納された状態では該端部面が風洞壁面に揃い凹凸を有しないように形成されている。また、供試模型が半裁模型の場合には片側のフラッタ停止板が用いられ、全機模型の場合には両側のフラッタ停止板が用いられると共に、測定室の両壁からスライド突出量が個々の模型に応じて可変とされる機能を備える。
【0008】
【発明の実施の形態】
最近の試験から、フラッタ停止部材の上流側ではマッハ数と動圧の低下量は設計通りであるが、下流側領域ではフラッタ停止部材が多孔フラッタ停止板の場合には位置に応じて低下量が回復すること、また、孔のない板の場合は逆に気流の変動とそれに伴ってフラッタ停止板の下流位置では一層低下するすることが分かってきた。以下に抽気室を有する遷音速風洞測定室内のマッハ数分布とマッハ数低下の関係を示す実験結果を図6に示す。このグラフは縦軸がマッハ数を、横軸が気流方向測定室位置を示しており、0点がフラッタ停止部材の設置位置である。マッハ0.8の気流が流れる風洞内において、●は有孔板状(開口比20%)のフラッタ停止板を気流に対し45°の角度で突出させたときの遷音速風洞測定室内のマッハ数分布を示し、▲は孔なし(開口比0%)のフラッタ停止板を気流に対し90°の角度で突出させたときの遷音速風洞測定室内のマッハ数分布を示している。このグラフからフラッタ停止部材の設置位置から上流側は、有孔板状のフラッタ停止板の場合も孔なしフラッタ停止板の場合も、設計値[△M=M×1.1√(Fp/Fw):ここでFpは停止板の有効断面積、Fwは風洞の断面積である。]どおりマッハ0.8の気流がマッハ0.62程度に低下した状態で安定しているのに対し、下流側は有孔板状のフラッタ停止板の場合はマッハ数の上昇現象が見られ、孔なしのフラッタ停止板の場合は更なる低下現象が見られる。
【0009】
また、図4に多孔フラッタ停止板を風洞測定室内に配置したときのマッハ数低下量△M分布を、図5に孔なしフラッタ停止板を風洞測定室内に配置したときのマッハ数低下量△M分布を示す。図4はその下段に示したようなペンシル形状のH−IIロケットフェアリング模型を配置し、その上流側にホームベース形状をした五角形の多孔フラッタ停止板(開口比20%)を風洞測定室の横壁から気流に対して45°の角度で突出させたときのマッハ数低下量△Mを上段のグラフに示している。図中下段の3つの丸は風洞側壁に設けられた観察用のシュリーレン窓である。このグラフは縦軸にマッハ数低下量△Mをとり、横軸は気流方向の測定室の位置情報を示し、下段のフラッタ停止板と模型との位置関係が対応されている。圧力センサを風洞測定室の下壁に多数アレー状に配置し、該センサによって検出した圧力値からマッハ数に換算しマッハ数低下量△Mを算出して上段グラフにプロットした。フラッタ停止板を退避させた状態での気流がマッハ0.6,0.7,0.8,0.9の4状態におけるデータを示した。このグラフから分かるように多孔フラッタ停止板の場合には、下流側において徐々にマッハ数低下量△Mが減少し、マッハ数が回復している。
【0010】
これに対し、図5はその下段に示したような円錐模型を配置し、その上流側にホームベース形状をした五角形の孔なしフラッタ停止板(開口比0%)を風洞測定室の横壁から気流に対して90°の角度で突出させたときのマッハ数低下量△Mを上段のグラフに示している。図中下段の3つの丸は風洞側壁に設けられた観察用のシュリーレン窓であり、グラフの縦軸がマッハ数低下量△M、横軸が気流方向の測定室の位置情報を示し、下段のフラッタ停止板と模型との位置関係が対応されており、圧力センサを風洞測定室の下壁に多数アレー状に配置し、該センサによって検出した圧力値からマッハ数に換算しマッハ数低下量△Mを算出して上段グラフにプロットした点は図4と同様である。フラッタ停止板を退避させた状態での気流がマッハ0.6,0.7,0.8,0.9の4状態におけるデータを示した。このグラフから分かるように孔なしフラッタ停止板の場合には、下流側においてマッハ数低下量△Mが増加し、その後大きな変化はない。
このような現象に鑑み、フラッタ停止部材の下流側に供試模型を配置するのは、安全と効率上好ましくないという知見を得て、本発明ではフラッタ停止部材の上流側に供試模型を配置することに想到した。
【0011】
上下多溝壁と左右固定壁とで形成された気流特性に優れた全機模型用測定部では、抽気作用は上下多溝壁でのみ行い、固定壁は平面を保ち、風洞本来の気流特性を維持するためには、フラッタ停止部材の収納時には開口部がなく、測定部壁面に凹凸のできないフラッタ停止装置であることが望ましい。また、全機模型のフラッタ試験に有効な方式でもなければならない。そこで、本発明は抽気室を有する遷音速風洞の気流特性の良い上下多溝壁・左右固定壁用の全機模型用測定部に、開口部や壁面に凹凸を有しないフラッタ停止装置を全機模型用に開発したものである。図1に本発明を適用する風洞測定部の概要を示す。全機模型11が模型支持手段12に取付けられ、上下多溝壁1'、左右の固定壁1に囲まれた測定部内に設置されている。フラッタ停止装置は不作動時には停止板が壁内に格納され、作動時には測定部内に突出するスライド方式を採り、多孔フラッタ停止板の断面を小さくして、該停止板と壁との間隙を最小にし、先端面は格納状態では壁面となる部材で構成する。この構造は不作動時には停止板が壁内に格納され開口部が無いため固定壁1での抽気作用は全くない。従って、抽気作用は本来の設計通り上下多溝壁でのみ行われる。また、フラッタ停止板を格納した状態では先端の壁面部材が壁面と連続面になるため凹凸がなく、その部分での気流の変動を生じないため、設計通りの気流特性の良い状態を保つことができる。フラッタ停止装置の設置位置は模型11の下流側としている。
【0012】
フラッタを検出した時はアクチュエータ8を作動させてフラッタ停止板を測定部内に突出させるが、その変位量は供試模型の種類・形状をはじめとする試験条件に応じて設定することが好ましく、事前に適正値を求めておきアクチュエータ8の駆動を調整する。また、フラッタ停止装置は風洞設備においてかなりの場所を占拠するため、使用しない実験においては全体を風洞設備から着脱できる構成を採用すると好適である。その場合にはフラッタ停止装置を撤去した後の開口部に固定壁1と同質のメクラ蓋を取り付けるようにし、固定壁の連続平滑性を確保する。このフラッタ停止装置は左右固定壁に左右一対とし、半裁模型の場合には一方のみを使用し、全機模型の場合には左右一対のフラッタ停止装置を用いるなど試験に応じて適宜使い分ける。全機模型のフラッタ試験にはフラッタ停止部材を両翼に対して両方向から測定部内に挿入し、気流遮蔽効果によって翼のフラッタを安全に抑止する。半裁模型のフラッタ試験では左右どちらか一方のフラッタ停止装置を使用しても良い。また、両方のフラッタ停止装置を使用する場合はフラッタ停止部材の測定部内に出す量を相互に半分の量にすることが出来る。この場合はフラッタ停止部材の作動時間が逆比例して短くなるため安全性が増す。
フラッタ停止装置が不作動状態では本来の固定壁と同様で気流への影響を及ぼすことがないようにした上記構成は、それ自体で試験部内の気流安定効果をもつものであるが、模型の下流側に設置したことと重なって相乗的効果を奏する。
【0013】
【実施例1】
図2にフラッタ停止装置の実施例を示す。イはフラッタ停止装置の側断面図であり、ロは平断面図、ハは図イのA−A部断面図であり、ニは図イのB−B断面図である。イ、ロは停止板が測定部に突出した作動時の形態を示している。1は測定部の固定壁であり、ケーシング10に収納されたフラッタ停止装置は、固定部材7によって風洞測定部固定壁1の開口部外側に取付けられ、不作動時には停止板は固定壁1に格納された形態を採る。作動時に測定室内に突出するフラッタ停止板は、格納時には固定壁1と連続性を保つための壁面部材3からなる先端面と、剛性の板状体6からなる後端面と、該壁面部材3と該板状体6間を繋ぐ上下二枚の強度部材4と、該上下二枚の強度部材4間に亘り両側面に取付けられた二枚の多孔板2とからなり、遷音速気流に対する必要な強度をもたせるため堅固な構成とされている。このフラッタ停止板は不作動時にはケーシング10内に収納された形態を取り、フラッタが検出された時にはアクチュエータ8が稼動し、前記板状体6に固定されたスライドロッド9を介して図に示す突出形態をとる。このスライド機構はハに示すA−A断面図から分かるように、ケーシング10の内部上下の位置に二本づつ摺動方向に張渡された四本の案内竿5と該案内竿5と嵌合すべく板状体6に設けられた四つの貫通孔の接触、及びニに示すB−B断面図から分かるようにケーシング10の上下開口壁10a の端部と前記強度部材4との接触によって、摺動自在であると共に堅固で安定した機構を構成している。不作動時は壁面部材3の裏面とケーシング10の上下開口壁10a とが当接し、該壁面部材3が固定壁1の開口部に隙間なく嵌合され、固定壁1と連続した平滑面を形成する。アクチュエータ8によって停止板をスライドさせる変位量は調節可能で、模型の種類や実験条件等に応じ事前に取得した量に設定される。模型に設置されたフラッタ検出センサーからの出力信号をコントローラで受信すると、該コントローラから作動信号をアクチュエータ8に出力する。また図に示したポテンショメータはフラッタ停止板の出し入れ量を表示する。
本実施例のフラッタ停止装置は図3に示すよう風洞内に上下多溝壁左右固定壁からなる測定部に、例えば前記模型の下流側左右の固定壁に設置する形態で配備され遷音速領域のフラッタ試験に供される。
【0014】
【発明の効果】
遷音速風洞の測定部において供試模型の下流側壁面に配置するようにした本発明のフラッタ停止装置は、模型を上流側の安定したマッハ数低下領域に置くこととなり、安定確実にフラッタを停止させることができる。
また抽気室を有する遷音速風洞の測定部固定壁面に配置され、フラッタ停止板は測定部内に突出できるように摺動自在に設けられ、不作動時壁内に格納された状態では開口部のない形態を採った本発明のフラッタ停止装置は、開口部からの抽気が防げるので本来の試験部と同様の気流特性を確保できる。更にフラッタ停止板の先端面が固定壁面開口部と同形で平坦な壁面部材で形成され、不作動時壁内に格納された状態では該先端面が固定壁面に揃う構成を採った本発明のフラッタ停止装置は、固定壁と連続した平滑面を形成するので、尚一層本来の試験部と同様の気流特性を確保できる。
【0015】
先端壁面板と後端板状体、両者間を繋ぐ上下二枚の強度部材と、該上下二枚の強度部材間に亘り両側面に取付けられた二枚の多孔板とからなるフラッタ停止板であって、案内竿と嵌合する前記板状体及びケーシング開口壁端部と前記強度部材との接触関係をもつようにした本発明のフラッタ停止装置は、フラッタ停止板が測定部内に直角に突出した時、上記構成により遷音速気流に対する必要な強度をもたせられる。
また、測定部の左右固定壁に設置された一対からなる本発明のフラッタ停止装置において、半裁模型、全機模型等の供試模型の種類、試験条件に対応するフラッタ停止板の適正突出量を予め求めておけば、フラッタ試験に際してはいずれのフラッタ停止板をどれだけ突出させるかを適宜使い分けて適正なフラッタ停止動作を実行することができる。
本発明のフラッタ停止装置を測定部の固定壁に取り外し可能な形態で設置すると共に、固定壁開口部を塞ぐメクラ蓋を備えておけば、フラッタ試験を行なわないときには場所を取ってしまうフラッタ停止装置を取り外し、後の開口部の壁面には前記メクラ蓋を取り付けることで、実験に必要なスペースを十分にとることができるだけでなく、本来の測定部の気流特性を損なうことがない。
【図面の簡単な説明】
【図1】本発明を適用する風洞測定部の概要を示す図である。
【図2】本発明のフラッタ停止装置の1実施例を示す図である。
【図3】本実施例のフラッタ停止装置が上下多溝壁・左右固定壁からなる測定部に設置された形態を示す図である。
【図4】多孔フラッタ停止板を風洞測定室内に配置したときのマッハ数低下量△M分布を示す図である。
【図5】孔なしフラッタ停止板を風洞測定室内に配置したときのマッハ数低下量△M分布を示す図である。
【図6】抽気室を有する遷音速風洞測定室内のマッハ数分布とマッハ数低下の関係を示す図である。
【図7】従来の遷音速フラッタ停止装置を説明する図である。
【符号の説明】
1 測定部固定壁 8 アクチュエータ
2 多孔板 9 スライドロッド
3 壁面部材 10 ケーシング
4 強度部材 10a 開口壁
5 案内竿 11 模型
6 板状体 12 模型支持手段
7 固定部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wind tunnel experiment technique used for research and development of an aircraft, and more particularly to a flutter stop device.
[0002]
[Prior art]
When performing aeroelastic tests in the transonic region, it is well known that the wind tunnel test model installed in the wind tunnel produces flutter due to micro disturbances caused by the air flow. There is a risk of splashing inside. Therefore, in order to perform high-speed flutter wind tunnel tests in the transonic region safely and reliably, with high accuracy and high efficiency without breaking the model, the above-mentioned automatic flutter stop does not occur. A device is required as an incidental facility for a wind tunnel. In a large wind tunnel facility with good airflow characteristics, it is particularly important to avoid such a destructive phenomenon when testing using a large and expensive model. Such a flutter stop device must be able to be installed without changing the basic structure and performance of the wind tunnel body. When flutter occurs in the wing, the Mach number and dynamic pressure are automatically set to the limit values. Must be lowered to:
A transonic wind tunnel measuring cart that performs aeroelasticity tests is generally made of a perforated plate with four walls on the top, bottom, left, and right. It was. Since then, a measuring cart with good airflow characteristics has been developed, which has a structure in which the upper and lower sides are made of a multi-groove wall and the left and right are fixed walls, and air is extracted from the groove of the multi-groove wall. In a recent transonic wind tunnel facility having a bleed chamber, several types of wind tunnel measuring units that are generally selected and used according to the purpose of the wind tunnel test are prepared in the wind tunnel.
[0003]
In order to perform a high-speed flutter wind tunnel test in the transonic region safely and reliably with high accuracy and high efficiency without destroying the model, an automated flutter stop device is required as ancillary equipment for the wind tunnel. Such a flutter stop device is preferably installed without changing the basic structure and performance of the wind tunnel body, and immediately when flutter occurs on the wing, the Mach number and dynamic pressure are automatically lowered below the limit values. Must. Under such circumstances, the present applicant previously filed an application for Japanese Patent No. 2099140 (Japanese Patent Publication No. 8-23517: Patent Document 1) “Transonic Flutter Stop Device in Wind Tunnel Test”. As shown in FIG. 7, this flutter stop device has a flutter stop member 2 having an air flow shielding effect in a wind tunnel having a bleed chamber 8 for a flutter test in a transonic region. The flutter stop member 2 is inserted into the measurement unit 1 by a flutter generation signal from a flutter detection device at a position not hitting 3. The flutter stop member 2 stored at an arbitrary position on the measurement unit wall surface of the transonic wind tunnel having the bleed chamber immediately activates the actuator 6 in response to the signal of the sensor 5 attached to the wing model 3 and automatically flutters. The stop member 2 is inserted into the measurement unit 1. Depending on the ratio of the cross-sectional area of the flutter stop member 2 inserted into the measuring section 1 and the cross-sectional area of the measuring section of the wind tunnel, the Mach number and the dynamic pressure are caused by the energy loss of the wind tunnel due to the resistance and the extraction action circulating in the extraction chamber 8. It instantaneously drops below the flutter limit. As a result, the flutter of the wing can be stopped safely and reliably.
[0004]
In a transonic wind tunnel with a bleed chamber, a Mach number and dynamic pressure are instantaneously reduced below the flutter limit value by providing a resistance member against the airflow in the measurement section, and the flutter of the test model is safely suppressed. However, since the structure has an opening and a perforated plate between the side wall of the wind tunnel and the flutter stop member, the air flow enters and exits from this part, and the air flow drifts and fluctuates. It was. This drift and fluctuation of the air current affect the air current, and the test model is irregularly excited by flowing at an angle of attack different from the original angle of attack for the test model. For this reason, this irregular excitation caused a decrease in test accuracy, and was regarded as a problem. This phenomenon is not a big problem in the case of a 4-wall perforated wind tunnel wall, because the porous flutter stop member originally bleeds from the wall surface. If there is a gap between the opening and the wall surface of the porous flutter stop member and the tip member, the above-mentioned problems occur due to the occurrence of drift or bleed on the fixed wall that should be flat unlike the original design. It was pointed out.
[0005]
[Patent Document 1]
Japanese Examined Patent Publication No. 8-23517 [0006]
[Problems to be solved by the invention]
An object of the present invention is to provide a flutter stop device that does not cause drift and fluctuation of airflow in a wind tunnel system having a flutter stop function that automatically reduces the Mach number and dynamic pressure to below a limit value as soon as flutter occurs. By providing, it is to prevent the test model from being irregularly excited and to prevent a decrease in test accuracy.
[0007]
[Means for Solving the Problems]
A perforated plate-like flutter stop plate is placed at the downstream side of the model to be tested, and is installed in such a way that it can be slid from both walls of the measurement chamber. In the state where the flutter stop plates are stored on both walls of the measurement chamber, the end surface is aligned with the wind tunnel wall surface and has no unevenness. In addition, when the model under test is a half-cut model, a flutter stop plate on one side is used, and when it is an all-machine model, a flutter stop plate on both sides is used, and the amount of slide protrusion from each wall of the measurement chamber It has a function that can be changed according to the model.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
From recent tests, the decrease in Mach number and dynamic pressure on the upstream side of the flutter stop member is as designed, but in the downstream region, if the flutter stop member is a porous flutter stop plate, the decrease amount depends on the position. It has been found that, in the case of a plate without a hole, the airflow fluctuates and concomitantly decreases at the downstream position of the flutter stop plate. FIG. 6 shows the experimental results showing the relationship between the Mach number distribution in the transonic wind tunnel measurement chamber having the bleed chamber and the Mach number decrease. In this graph, the vertical axis indicates the Mach number, the horizontal axis indicates the airflow direction measurement chamber position, and the zero point is the installation position of the flutter stop member. In the wind tunnel where the air flow of Mach 0.8 flows, ● indicates the Mach number in the transonic wind tunnel measurement chamber when a perforated plate-like (opening ratio 20%) flutter stop plate is projected at an angle of 45 ° to the air flow. A distribution ▲ indicates a Mach number distribution in a transonic wind tunnel measurement chamber when a flutter stop plate without holes (opening ratio 0%) is projected at an angle of 90 ° with respect to the air flow. From this graph, the design value [ΔM = M 2 × 1.1√ (Fp / Fw) for the perforated plate-like flutter stop plate and the holeless flutter stop plate on the upstream side from the installation position of the flutter stop member. Where Fp is the effective sectional area of the stop plate and Fw is the sectional area of the wind tunnel. ] As shown in the figure, the Mach 0.8 airflow is stable in a state of decreasing to about 0.62 while the Mach number rises in the case of a perforated plate-like flutter stop plate on the downstream side. In the case of a flutter stop plate without holes, a further decrease phenomenon is observed.
[0009]
4 shows the Mach number decrease amount ΔM distribution when the porous flutter stop plate is arranged in the wind tunnel measurement chamber, and FIG. 5 shows the Mach number decrease amount ΔM distribution when the holeless flutter stop plate is arranged in the wind tunnel measurement chamber. Show the distribution. Fig. 4 shows a pencil-shaped H-II rocket fairing model as shown in the lower part of the figure, and a pentagonal porous flutter stop plate (opening ratio 20%) with a home base shape on the upstream side of the model. The upper graph shows the Mach number reduction amount ΔM when protruding from the horizontal wall at an angle of 45 ° with respect to the airflow. The three circles at the bottom in the figure are schlieren windows for observation provided on the side wall of the wind tunnel. In this graph, the vertical axis indicates the Mach number decrease amount ΔM, the horizontal axis indicates the position information of the measurement chamber in the airflow direction, and the positional relationship between the lower flutter stop plate and the model is associated. A large number of pressure sensors were arranged in an array on the lower wall of the wind tunnel measurement chamber, and the Mach number reduction amount ΔM was calculated from the pressure value detected by the sensor, and plotted in the upper graph. The data in the four states Mach 0.6, 0.7, 0.8, and 0.9 are shown when the flutter stop plate is retracted. As can be seen from this graph, in the case of the porous flutter stop plate, the Mach number decrease amount ΔM gradually decreases on the downstream side, and the Mach number is recovered.
[0010]
On the other hand, in FIG. 5, a cone model as shown in the lower stage is arranged, and a pentagonal holeless flutter stop plate (aperture ratio 0%) having a home base shape on the upstream side is flown from the side wall of the wind tunnel measurement chamber. The upper graph shows the amount of decrease in Mach number ΔM when projected at an angle of 90 ° to the angle. The lower three circles in the figure are schlieren windows for observation provided on the side wall of the wind tunnel. The vertical axis of the graph indicates the Mach number decrease amount ΔM, the horizontal axis indicates the position information of the measurement chamber in the airflow direction, Corresponding to the positional relationship between the flutter stop plate and the model, a number of pressure sensors are arranged in an array on the lower wall of the wind tunnel measurement chamber, and the pressure value detected by the sensor is converted to a Mach number to reduce the Mach number Δ The point where M is calculated and plotted in the upper graph is the same as in FIG. The data in the four states Mach 0.6, 0.7, 0.8, and 0.9 are shown when the flutter stop plate is retracted. As can be seen from this graph, in the case of the holeless flutter stop plate, the Mach number decrease amount ΔM increases on the downstream side, and there is no significant change thereafter.
In view of such a phenomenon, it has been found that placing the test model downstream of the flutter stop member is not preferable in terms of safety and efficiency. In the present invention, the test model is placed upstream of the flutter stop member. I came up with the idea.
[0011]
In the measuring part for all models, which is formed by the upper and lower multi-groove walls and the left and right fixed walls, and has excellent airflow characteristics, the bleed operation is performed only on the upper and lower multi-groove walls, the fixed walls are kept flat, and the airflow characteristics inherent to the wind tunnel are maintained. In order to maintain the flutter stop member, it is desirable that the flutter stop device has no opening when the flutter stop member is accommodated and the measurement unit wall surface is not uneven. It must also be an effective method for flutter testing of all models. Accordingly, the present invention provides a flutter stop device that does not have irregularities in the openings and wall surfaces in the measuring unit for all model models for upper and lower multi-groove walls and left and right fixed walls with good airflow characteristics of a transonic wind tunnel having a bleed chamber. It was developed for a model. FIG. 1 shows an outline of a wind tunnel measuring unit to which the present invention is applied. The whole machine model 11 is attached to the model support means 12 and is installed in a measuring section surrounded by the upper and lower multi-groove walls 1 ′ and the left and right fixed walls 1. The flutter stop device adopts a slide method in which the stop plate is stored in the wall when it is not operating, and protrudes into the measuring section when it is operated, so that the cross section of the perforated flutter stop plate is reduced to minimize the gap between the stop plate and the wall. The tip surface is formed of a member that becomes a wall surface in the retracted state. In this structure, the stop plate is housed in the wall when there is no operation, and there is no opening, so there is no bleed action on the fixed wall 1. Therefore, the bleed operation is performed only on the upper and lower multi-groove walls as originally designed. In addition, when the flutter stop plate is retracted, the wall member at the tip becomes a continuous surface with the wall surface, so there is no unevenness and there is no fluctuation of the air flow in that part, so that the air flow characteristics as designed are kept good. it can. The installation position of the flutter stop device is on the downstream side of the model 11.
[0012]
When flutter is detected, the actuator 8 is activated to cause the flutter stop plate to protrude into the measuring section. The amount of displacement is preferably set according to the test conditions including the type and shape of the model to be tested. Then, an appropriate value is obtained and the drive of the actuator 8 is adjusted. In addition, since the flutter stop device occupies a considerable place in the wind tunnel facility, it is preferable to adopt a configuration in which the whole can be detached from the wind tunnel facility in an experiment that is not used. In such a case, a mekra lid of the same quality as the fixed wall 1 is attached to the opening after the flutter stop device is removed to ensure continuous smoothness of the fixed wall. This flutter stop device is a pair of left and right fixed walls, and only one is used in the case of a half-cut model, and a pair of left and right flutter stop devices is used in the case of an all-machine model. For flutter testing of all aircraft models, a flutter stop member is inserted into the measurement unit from both directions with respect to both wings, and the flutter of the wings is safely suppressed by the airflow shielding effect. In the flutter test of the half-cut model, either the left or right flutter stop device may be used. When both flutter stop devices are used, the amount of the flutter stop member put out into the measuring section can be halved. In this case, since the operation time of the flutter stop member is reduced in inverse proportion, the safety is increased.
While the flutter stop device is not activated, it is the same as the original fixed wall so that it does not affect the airflow. There is a synergistic effect that overlaps with the installation on the side.
[0013]
[Example 1]
FIG. 2 shows an embodiment of the flutter stop device. (A) is a sectional side view of the flutter stop device, (b) is a plane sectional view, (c) is a sectional view taken along the line AA in FIG. (A), and (d) is a sectional view taken along the line BB in FIG. (B) and (b) show the configuration when the stop plate protrudes into the measuring section. Reference numeral 1 denotes a fixed wall of the measurement unit. The flutter stop device housed in the casing 10 is attached to the outside of the opening of the wind tunnel measurement unit fixed wall 1 by a fixing member 7, and the stop plate is stored in the fixed wall 1 when not operating. Take the form. The flutter stop plate that protrudes into the measurement chamber during operation includes a front end surface composed of a wall surface member 3 for maintaining continuity with the fixed wall 1 during storage, a rear end surface composed of a rigid plate-like body 6, It consists of two upper and lower strength members 4 connecting between the plate-like bodies 6 and two perforated plates 2 attached to both sides across the two upper and lower strength members 4 and is necessary for transonic airflow. It has a solid structure to give strength. The flutter stop plate takes a form accommodated in the casing 10 when it is not in operation, and when the flutter is detected, the actuator 8 is operated, and the protrusion shown in the figure is shown through the slide rod 9 fixed to the plate-like body 6. Takes form. As can be seen from the A-A cross-sectional view shown in C, this slide mechanism is fitted with four guide rods 5 extending in the sliding direction two at the upper and lower positions inside the casing 10 and the guide rods 5. As can be seen from the contact of the four through holes provided in the plate-like body 6 and the cross-sectional view taken along the line BB shown in D, the contact between the end of the upper and lower opening walls 10a of the casing 10 and the strength member 4 It is slidable and constitutes a solid and stable mechanism. When not in operation, the back surface of the wall member 3 and the upper and lower opening walls 10a of the casing 10 come into contact with each other, and the wall member 3 is fitted into the opening of the fixed wall 1 without a gap to form a smooth surface continuous with the fixed wall 1. To do. The amount of displacement by which the stop plate is slid by the actuator 8 can be adjusted, and is set to an amount acquired in advance according to the type of model, experimental conditions, and the like. When the controller receives an output signal from the flutter detection sensor installed in the model, the controller outputs an operation signal to the actuator 8. Further, the potentiometer shown in the figure displays the amount of the flutter stop plate that is taken in and out.
As shown in FIG. 3, the flutter stop device of the present embodiment is arranged in a measurement unit composed of upper and lower multi-groove walls and left and right fixed walls in a wind tunnel, for example, in a form installed on the left and right fixed walls downstream of the model, Subject to flutter testing.
[0014]
【The invention's effect】
The flutter stop device of the present invention, which is arranged on the downstream side wall surface of the model under test in the transonic wind tunnel measurement section, places the model in a stable Mach number lowering region on the upstream side, and stops the flutter stably and reliably. Can be made.
In addition, it is placed on the measuring unit fixed wall of the transonic wind tunnel with the bleed chamber, and the flutter stop plate is slidably provided so that it can protrude into the measuring unit, and there is no opening when it is stored in the wall when not in operation. Since the flutter stop device of the present invention adopting the form can prevent air from being extracted from the opening, it can ensure the same airflow characteristics as the original test section. Further, the flutter stop plate according to the present invention adopts a configuration in which the front end surface of the flutter stop plate is formed of a flat wall member having the same shape as the fixed wall opening, and the front end surface is aligned with the fixed wall surface when stored in the wall during non-operation. Since the stop device forms a smooth surface that is continuous with the fixed wall, the airflow characteristics similar to those of the original test section can be secured.
[0015]
A flutter stop plate comprising a front wall plate and a rear plate, two upper and lower strength members connecting the two, and two perforated plates attached to both sides across the two upper and lower strength members. The flutter stop device according to the present invention has a contact relationship between the plate member and the casing opening wall end fitted to the guide rod and the strength member, and the flutter stop plate projects at right angles into the measurement unit. In this case, the above structure can provide the necessary strength against the transonic airflow.
In addition, in the flutter stop device of the present invention consisting of a pair installed on the left and right fixed walls of the measuring unit, the type of the test model such as a half-cut model, a full-scale model, and the appropriate protrusion amount of the flutter stop plate corresponding to the test conditions are set. If it is obtained in advance, an appropriate flutter stop operation can be executed by appropriately using which one of the flutter stop plates protrudes in the flutter test.
When the flutter stop device of the present invention is installed in a removable form on the fixed wall of the measurement unit and is provided with a cover for closing the fixed wall opening, the flutter stop device takes up space when the flutter test is not performed. By attaching the mecha lid to the wall surface of the subsequent opening, not only can a sufficient space required for the experiment be taken, but also the air flow characteristics of the original measurement part will not be impaired.
[Brief description of the drawings]
FIG. 1 is a diagram showing an outline of a wind tunnel measuring unit to which the present invention is applied.
FIG. 2 is a diagram showing an embodiment of a flutter stop device of the present invention.
FIG. 3 is a diagram showing a form in which the flutter stop device of the present embodiment is installed in a measurement unit including upper and lower multi-groove walls and left and right fixed walls.
FIG. 4 is a view showing a Mach number decrease amount ΔM distribution when a porous flutter stop plate is arranged in a wind tunnel measurement chamber.
FIG. 5 is a diagram showing a Mach number reduction amount ΔM distribution when a holeless flutter stop plate is arranged in a wind tunnel measurement chamber;
FIG. 6 is a diagram showing a relationship between a Mach number distribution in a transonic wind tunnel measurement chamber having a bleed chamber and a decrease in Mach number.
FIG. 7 is a diagram illustrating a conventional transonic flutter stop device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Measurement part fixed wall 8 Actuator 2 Porous plate 9 Slide rod 3 Wall member 10 Casing 4 Strength member 10a Opening wall 5 Guide rod 11 Model 6 Plate-like body 12 Model support means 7 Fixing member

Claims (6)

遷音速風洞の測定部において、供試模型の下流側壁面に配置されたことを特徴とするフラッタ停止装置。  A flutter stop device, which is disposed on a downstream side wall surface of a test model in a measurement part of a transonic wind tunnel. 抽気室を有する遷音速風洞の測定部固定壁面に配置され、フラッタ停止板は測定部内に突出できるように摺動自在に設けられ、不作動時壁内に格納された状態では開口部のないことを特徴とする請求項1に記載のフラッタ停止装置。Located on the measuring unit fixed wall of the transonic wind tunnel with the bleed chamber, the flutter stop plate is slidably provided so that it can protrude into the measuring unit, and there is no opening when stored in the wall when not in operation The flutter stop device according to claim 1 . フラッタ停止板は、先端面が固定壁面開口部と同形で平坦な壁面部材で形成され、不作動時壁内に格納された状態では該先端面が固定壁面に揃い連続平滑面を形成することを特徴とする請求項2に記載のフラッタ停止装置。The flutter stop plate is formed of a flat wall member whose tip surface is the same shape as the fixed wall opening, and when the flutter stop plate is stored in the wall during non-operation, the tip surface is aligned with the fixed wall surface to form a continuous smooth surface. The flutter stop device according to claim 2, wherein フラッタ停止板は先端壁面板と後端板状体、両者間を繋ぐ上下二枚の強度部材と、該上下二枚の強度部材間に亘り両側面に取付けられた二枚の多孔板とからなり、案内竿と嵌合する前記板状体及びケーシング開口壁端部と前記強度部材との接触関係により、フラッタ停止板が測定部内に直角に突出した時、遷音速気流に対する必要な強度をもたせたことを特徴とする請求項2又は3に記載のフラッタ停止装置。The flutter stop plate consists of a front wall plate and a rear plate, two upper and lower strength members connecting the two, and two perforated plates attached on both sides across the two upper and lower strength members. When the flutter stop plate protrudes at right angles into the measuring part due to the contact relationship between the plate member and the casing opening wall end fitted to the guide rod and the strength member, the necessary strength against the transonic airflow is given. The flutter stop device according to claim 2 or 3, wherein 測定部の左右固定壁に設置された一対からなるフラッタ停止装置において、半裁模型、全機模型等の供試模型の種類、試験条件に対応するフラッタ停止板の適正突出量を予め求めておき、フラッタ試験に際してはいずれのフラッタ停止板をどれだけ突出させるかを適宜使い分ける請求項2乃至4のいずれかに記載のフラッタ停止装置の使用方法。In the flutter stop device consisting of a pair installed on the right and left fixed walls of the measurement unit, the appropriate projection amount of the flutter stop plate corresponding to the type of test model such as half-cut model, all-machine model, test conditions, The method of using a flutter stop device according to any one of claims 2 to 4, wherein, in the flutter test, how many of the flutter stop plates protrude is properly used. フラッタ停止板は、測定部の固定壁に取り外し可能な形態で設置すると共に、固定壁開口部を塞ぐメクラ蓋を備え、フラッタ試験を行なわないときには取り外し、後の開口部の壁面には前記メクラ蓋を取り付けることが出来ることを特徴とする請求項2乃至4のいずれかに記載のフラッタ停止装置。 The flutter stop plate is installed in a removable form on the fixed wall of the measurement unit, and has a mech lid that closes the fixed wall opening, and is removed when the flutter test is not performed. The flutter stop device according to any one of claims 2 to 4, wherein the flutter stop device can be attached.
JP2002275527A 2002-09-20 2002-09-20 Transonic flutter stop device Expired - Lifetime JP3772212B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002275527A JP3772212B2 (en) 2002-09-20 2002-09-20 Transonic flutter stop device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002275527A JP3772212B2 (en) 2002-09-20 2002-09-20 Transonic flutter stop device

Publications (2)

Publication Number Publication Date
JP2004109067A JP2004109067A (en) 2004-04-08
JP3772212B2 true JP3772212B2 (en) 2006-05-10

Family

ID=32271704

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002275527A Expired - Lifetime JP3772212B2 (en) 2002-09-20 2002-09-20 Transonic flutter stop device

Country Status (1)

Country Link
JP (1) JP3772212B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354660B2 (en) * 2009-04-08 2013-11-27 独立行政法人 宇宙航空研究開発機構 Substation support interference correction method in subsonic half model wind tunnel test
JP5237192B2 (en) * 2009-05-19 2013-07-17 川崎重工業株式会社 Scatter collection device for wind tunnel
JP5605537B2 (en) * 2009-10-29 2014-10-15 独立行政法人 宇宙航空研究開発機構 Supersonic wind tunnel start / stop load reduction method and supersonic wind tunnel
CN102235937B (en) * 2010-05-06 2013-09-25 中国商用飞机有限责任公司 Flutter suppression device for airplane model
CN103994873B (en) * 2014-04-17 2016-08-24 中国航空工业集团公司沈阳飞机设计研究所 A kind of flutter model trailing edge rudder face protection stop mechanism
CN104913899B (en) * 2015-06-23 2017-09-29 中国航空工业集团公司西安飞机设计研究所 A kind of wind-tunnel supporting and limiting device and the wind tunnel test system with it
CN105509946A (en) * 2015-12-03 2016-04-20 成都飞机工业(集团)有限责任公司 Method for recognizing efficiency of aircraft elevator
CN108362468B (en) * 2018-05-25 2023-11-17 中国空气动力研究与发展中心高速空气动力研究所 Model vibration suppression device for supersonic starting and closing of wind tunnel
CN109870289B (en) * 2019-04-11 2024-04-09 中国空气动力研究与发展中心高速空气动力研究所 T-shaped horizontal tail flutter model protection device and application thereof
CN113092052B (en) * 2021-04-09 2023-04-07 中国空气动力研究与发展中心设备设计与测试技术研究所 Hole wall opening-closing ratio continuous adjustable device applied to transonic wind tunnel test section
CN114414196B (en) * 2022-03-28 2022-06-03 中国空气动力研究与发展中心高速空气动力研究所 Continuous variable speed pressure control method for sub-transonic flutter test
CN115655637B (en) * 2022-12-15 2023-03-21 中国空气动力研究与发展中心超高速空气动力研究所 Lifting mechanism of large hypersonic high-temperature wind tunnel model feeding system

Also Published As

Publication number Publication date
JP2004109067A (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP3772212B2 (en) Transonic flutter stop device
Alonso et al. Galloping stability of triangular cross-sectional bodies: a systematic approach
Crouch et al. Variable N-factor method for transition prediction in three-dimensional boundary layers
Metzger et al. The influence of turbine clearance gap leakage on passage velocity and heat transfer near blade tips: Part I—sink flow effects on blade pressure side
Costantini et al. Nonadiabatic surface effects on transition measurements using temperature-sensitive paints
KR101378378B1 (en) Wind Tunnel For Education
Le Fouest et al. The dynamics and timescales of static stall
Boutilier Experimental investigation of transition over a NACA 0018 airfoil at a low reynolds number
Aldheeb et al. Aerodynamics of porous airfoils and wings
Roger Airfoil turbulence-impingement noise reduction by porosity or wavy leading-edge cut: experimental investigations
Andreou et al. Aeroacoustic study of airfoil leading edge high-lift devices
Holst et al. Experimental analysis of a NACA 0021 airfoil under dynamic angle of attack variation and low Reynolds numbers
Mack et al. Experimental investigation of separation and separation control on a laminar airfoil
Perraud et al. Effects of steps and gaps on 2D and 3D transition
Coley et al. Correlation of weapon bay resonance and store unsteady force and moment loading
Ben-Hamou et al. Generic transport aft-body drag reduction using active flow control
Zhang et al. Impedance prediction of three-dimensional honeycomb liners with laminar/turbulent boundary layers using DNS
Hahn et al. Experimental evaluation of the stall characteristics of a two-element high-lift airfoil
CN207114133U (en) A kind of experimental provision for assessing dielectric barrier discharge plasma flat board turbulent flow drag reduction
KR102325901B1 (en) Module type wind tunnel testing apparatus
Smith et al. Development and testing of a novel acoustic wind tunnel concept
JP5237192B2 (en) Scatter collection device for wind tunnel
Imamura et al. 3D Unsteady Flow Computations in a Slat Cove Using Large Eddy Simulation
Heine et al. On the effects of leading edge vortex generators on an OA209 airfoil
Morice et al. Detection of Boundary Layer Separation and Implementation of Autonomous Vortex Generators

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051018

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051130

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051130

TRDD Decision of grant or rejection written
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060110

R150 Certificate of patent or registration of utility model

Ref document number: 3772212

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term