JP5605202B2 - Composite girders and steel - Google Patents

Composite girders and steel Download PDF

Info

Publication number
JP5605202B2
JP5605202B2 JP2010277901A JP2010277901A JP5605202B2 JP 5605202 B2 JP5605202 B2 JP 5605202B2 JP 2010277901 A JP2010277901 A JP 2010277901A JP 2010277901 A JP2010277901 A JP 2010277901A JP 5605202 B2 JP5605202 B2 JP 5605202B2
Authority
JP
Japan
Prior art keywords
strain
stress
steel
girder
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010277901A
Other languages
Japanese (ja)
Other versions
JP2012127078A5 (en
JP2012127078A (en
Inventor
淳 岡田
真志 加藤
章夫 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2010277901A priority Critical patent/JP5605202B2/en
Publication of JP2012127078A publication Critical patent/JP2012127078A/en
Publication of JP2012127078A5 publication Critical patent/JP2012127078A5/en
Application granted granted Critical
Publication of JP5605202B2 publication Critical patent/JP5605202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Bridges Or Land Bridges (AREA)

Description

本発明は、鋼桁と、コンクリート床版あるいは鋼コンクリート合成床版とをずれ止めを用いて合成した合成桁に関し、特に曲げ耐荷力性能に優れた合成桁に関する。   The present invention relates to a composite girder obtained by synthesizing a steel girder and a concrete slab or a steel concrete composite slab using a slip stopper, and particularly relates to a synthetic girder excellent in bending load bearing performance.

現在、我が国では、鋼材の降伏までの弾性域を対象とした許容応力度設計法による合成桁が主流となっている。しかしながら、更なる合理化、コストダウンを実現するため、鋼材降伏後の性能を考慮した設計法が模索されつつある。   At present, in Japan, composite girders using the allowable stress design method for the elastic range up to the yield of steel are the mainstream. However, in order to realize further rationalization and cost reduction, a design method that considers the performance after yielding steel is being sought.

鋼材降伏後の性能を考慮した合成桁の曲げ耐荷力の算定方法として、塑性理論を用いる方法がある(非特許文献1)。この方法は、図8に示した3つの断面、すなわち、
a) コンパクト断面:全塑性曲げモーメントに到達することができる断面
b) ノンコンパクト断面:圧縮域の最縁端で降伏に到達することができるが、局部座屈の発生により、全塑性には至らない断面
c) スレンダー断面:局部座屈の発生により圧縮状態で降伏に至らない断面
のうち、a) コンパクト断面を対象とするもので、全塑性曲げモーメントが曲げ耐荷力に等しいとして曲げ耐荷力を算定する(図9、図においてbeffは床版の有効幅,f 'cdはコンクリートの圧縮強度,f ydは鋼部材の降伏強度,Muは合成桁の曲げ耐荷力,Mpは全塑性曲げモーメント,Nc,fは床版の塑性軸力,Npl (+)は鋼部材の塑性軸力(引張側)を表す)。
As a method for calculating the bending load capacity of a composite girder in consideration of the performance after yielding, there is a method using plastic theory (Non-patent Document 1). This method consists of the three cross sections shown in FIG.
a) Compact cross-section: a cross-section that can reach the all-plastic bending moment
b) Non-compact cross section: A cross section that can reach yield at the extreme edge of the compression zone but does not reach full plasticity due to the occurrence of local buckling.
c) Slender cross section: Of cross sections that do not yield in compression due to the occurrence of local buckling, a) For compact cross sections, the bending load capacity is calculated assuming that the total plastic bending moment is equal to the bending load capacity. (In Fig. 9 and Fig. B eff is the effective width of the slab, f 'Cd compressive strength of the concrete, f yd is the yield strength of the steel member, M u synthesis digits bending load-bearing capacity, M p is the full plastic bending moment, N c, f the plastic axial force deck, N pl ( +) Represents the plastic axial force (tensile side) of the steel member).

一方、鋼材分野で、鋼材降伏後の性能を考慮したものとして、特許文献1に加工硬化を開始した後、6%までのひずみ範囲において、加工硬化指数が0.2以上で、降伏応力YPに対する一様ひずみにおける塑性変形応力YBの比である応力上昇率(YB/YP)が1.33以上である鋼材からなるフランジを具備した耐震性に優れたH形鋼が開示されている。   On the other hand, in the steel material field, considering the performance after steel material yielding, after work hardening is started in Patent Document 1, the work hardening index is 0.2 or more and uniform with respect to the yield stress YP in the strain range up to 6%. An H-shaped steel excellent in earthquake resistance having a flange made of a steel material having a stress increase rate (YB / YP) which is a ratio of plastic deformation stress YB in strain to 1.33 or more is disclosed.

ところで、塑性理論を用いる方法では、コンパクト断面を採用しても、図10に示すように、破壊して床版の圧壊が生じ、全塑性曲げモーメントに到達しないケースのあることが問題となる。   By the way, in the method using plastic theory, even if a compact cross section is adopted, as shown in FIG. 10, there is a case where the floor slab is destroyed and the slab is collapsed and the total plastic bending moment is not reached.

これに対し、Eurocode 4 (非特許文献2)では、図11に示すように、Dpを床版上面から塑性中立軸までの距離、Dtを合成桁断面の全高、Mpを全塑性曲げモーメント、Muを曲げ耐荷力、b を曲げ耐荷力の低減係数としたときに、0.15≦Dp / Dt ≦0.40の範囲において、合成桁の曲げ耐荷力MuをbMpに低減することとし、曲げ耐荷力が最大15%低減されるため、大きなディメリットとなる。なお、Eurocode 4ではDp / Dt > 0.40の場合には、弾性はり理論など他の方法により曲げ耐荷力を算定することとしており、鋼材の塑性化を許容しない領域となっている。 In contrast, in Eurocode 4 (Non-Patent Document 2), as shown in FIG. 11, D p is the distance from the floor slab upper surface to the plastic neutral axis, D t is the total height of the composite girder section, and M p is the total plastic bending. 0.15 ≦ D p / where moment, Mu is the bending load capacity, and b is the reduction factor of the bending load capacity In the range of D t ≦ 0.40, the bending load bearing capacity M u synthesis digits and be reduced to bM p, since the bending load bearing capacity is reduced up to 15%, a great demerit. In Eurocode 4, D p / In the case of D t > 0.40, the bending load capacity is calculated by other methods such as elastic beam theory, which is a region in which plasticization of the steel material is not allowed.

特許文献1記載のH形鋼は、加工硬化を開始した後6%までの大きなひずみ範囲を対象として、地震時の耐座屈性および塑性変形能力を向上させるもので、H形鋼すなわち鋼部材が単独で塑性変形する現象を扱うが、一方、合成桁では、鋼桁と床版が一体となって変形するため、このような大きなひずみが生じない。   The H-section steel described in Patent Document 1 is intended to improve the buckling resistance and plastic deformation ability during an earthquake for a large strain range of up to 6% after work hardening starts. However, in the composite girder, the steel girder and the floor slab are deformed integrally, so that such a large strain does not occur.

合成桁の場合、最大でも3%程度のひずみに到達する前に床版が圧壊することになり、対象とする破壊モードやひずみレベルが異なる特許文献1の考え方を適用することはできない。   In the case of a composite girder, the floor slab is crushed before reaching a strain of about 3% at the maximum, and the concept of Patent Document 1 having a different target fracture mode and strain level cannot be applied.

本発明は、鋼材降伏後の性能を考慮した設計法に基づき製造された曲げ耐荷力性能に優れた合成桁を提供することを目的とする。   An object of this invention is to provide the composite girder excellent in the bending load bearing capacity manufactured based on the design method in consideration of the performance after yielding of steel materials.

本発明の課題は以下の手段で達成可能である。
1.ウェブとフランジを有する鋼桁と、コンクリート床版あるいは鋼コンクリート合成床版とをずれ止めを用いて合成し、Dp / Dt≦0.4を満足する合成桁であって、前記鋼桁が、降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ降伏応力σyに対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σ1.0%/σy)が1.08以上である鋼材からなるウェブとフランジを具備すること特徴とする合成桁。
但し、Dt:合成桁断面の全高、Dp:合成桁断面の床版上面から塑性中立軸までの距離
2.橋軸方向において、全塑性曲げモーメントに到達することができる断面(コンパクト断面)として断面決定した領域に1記載の合成桁を用いたことを特徴とする合成桁。
3.1または2の合成桁に含まれる、ウェブとフランジを具備する鋼桁に用いられる鋼材であって、
降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ降伏応力σ y に対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σ 1.0% /σ y )が1.08以上である鋼材。
The object of the present invention can be achieved by the following means.
1. A steel girder having a web and a flange, and a concrete slab or a steel-concrete composite floor slab are synthesized using slip stoppers, and the composite girder satisfies D p / D t ≦ 0.4. Stress increase rate (σ 1.0% / σ) which is the ratio of stress σ 1.0% at 1.0% strain to yield stress σ y with a positive gradient of nominal stress / nominal strain at any strain from point to 3.0% strain A composite girder comprising a web and a flange made of a steel material having y ) of 1.08 or more.
Where D t is the total height of the composite girder section, D p is the distance from the top surface of the composite girder section to the plastic neutral axis. A composite girder characterized in that the composite girder described in 1 is used in a region determined as a cross section (compact cross section) capable of reaching a total plastic bending moment in a bridge axis direction.
3. A steel material used for a steel girder having a web and a flange, which is included in the composite girder of 1 or 2,
Stress increase rate (σ 1.0%), which is the ratio of the stress σ1.0% at 1.0% strain to the yield stress σ y with a positive nominal stress / nominal strain gradient at any strain from the yield point to 3.0% strain / Σ y ) Steel material with 1.08 or more.

本発明によれば、Eurocode 4の曲げ耐荷力低減領域(0.15<Dp / Dt ≦0.4)においても、全塑性曲げモーメントに到達可能な合成桁が得られ、産業上極めて有用である。 According to the present invention, the bending load reduction region of Eurocode 4 (0.15 <D p / Even in the case of D t ≦ 0.4), a composite girder that can reach the total plastic bending moment is obtained, which is extremely useful in industry.

合成桁の曲げ耐荷力特性を評価するための解析モデル例(非線形FEM解析モデル例)を示し(a)は斜視図、(b)は断面図。An example of an analysis model (example of a non-linear FEM analysis model) for evaluating a bending load bearing property of a composite girder is shown (a) is a perspective view, and (b) is a cross-sectional view. 鋼材モデルの応力−ひずみ関係を示す図。The figure which shows the stress-strain relationship of a steel material model. Mu / MpとDp / Dt の関係を示す図。M u / M p and D p / Diagram showing the relationship of D t. Mu / Mpと鋼材の応力上昇率の関係(床版幅470mmでコンクリートの圧縮強度変化)で、(a)は応力上昇率(σ1.0%/σy)、(b)は応力上昇率(σ2.0%/σy)、(c)は応力上昇率(σ3.0%/σy)の場合を示す図。M u / The relationship between the stress increase rate of M p and the steel material (change in compressive strength of concrete when the slab width is 470 mm), (a) is the stress increase rate (σ 1.0% / σ y ), (b) is the stress increase rate (σ 2.0 % / Σ y ), (c) is a graph showing the case of stress increase rate (σ 3.0% / σ y ). Mu / Mpと鋼材の応力上昇率(σ1.0%/σy)の関係にDp / Dt = 0.4(推定値) 追加した図。M u / M p and the stress increase rate of the steel material D in relations (σ 1.0% / σ y) p / D t = 0.4 (estimated value) Added figure. 合成桁のフランジ、ウェブ、横桁への適用例図。Application example of the composite girder flange, web, and horizontal girder. コンパクト断面への適用例図。Application example to a compact cross section. 合成桁曲げモーメントと断面の分類(先行文献1)の関係を示す図。The figure which shows the relationship between a composite girder bending moment and the classification of a cross section (prior art reference 1). コンパクト断面における全塑性モーメント時の応力分布の仮定および曲げ耐荷力の算定(先行文献1)を説明する図。The figure explaining the assumption of the stress distribution at the time of all plastic moments in a compact section, and calculation of bending load capacity (prior literature 1). 曲げモーメントの作用による床版の圧壊を説明する図。The figure explaining the collapse of the floor slab by the action of a bending moment. 曲げ耐荷力の低減図(Eurocode 4)。Bending load reduction diagram (Eurocode 4).

本発明は合成桁の鋼桁に用いる鋼材の引張特性を規定して、Eurocode 4 (非特許文献2)で、合成桁の曲げ耐荷力MuをbMpに低減するとされてきた領域であってもMu / Mp ≧1.0とし、優れた曲げ耐荷力性能を備えた合成桁とすることを特徴とする。Mu / Mpは、曲げ耐荷力Muを全塑性曲げモーメントMpで無次元化した値で1.0以上であれば、全塑性曲げモーメントに到達、1.0未満であれば、全塑性曲げモーメントに未到達であることを意味している。 The present invention defines the tensile properties of the steel used in the synthesis of digits of steel girder, with Eurocode 4 (Non-Patent Document 2), the bending load bearing capacity M u synthetic digit a region which has been a reduction in bM p M u / M p ≧ 1.0, and a composite girder having excellent bending load bearing performance is characterized. M u / M p is the bending load bearing capacity M u If 1.0 or more is in the full plastic bending moment M p in dimensionless values, it reached full plastic bending moment, if it is less than 1.0, in not reached the full plastic bending moment It means that there is.

以下の説明では、まず、非線形FEM解析により合成桁の曲げ耐荷力Muに及ぼす鋼材モデル、コンクリートの強度および合成桁の断面諸元の影響を明らかとする。その際、Dp / Dtを鋼材の応力−ひずみ関係、コンクリートの応力−ひずみ関係、床版の断面諸元を変化させることにより、0.067≦Dp / Dt ≦0.443の範囲とし、次に、Mu / MpとDp / Dt の関係を示す図を基に、Mu / Mpに及ぼす鋼材特性(鋼材の応力上昇率)の影響を求める。
[非線形FEM解析]
非線形FEM解析を行う合成桁の解析モデル例を図1に示す。対称性を考慮した1/2モデルとし、床版と支点部板材についてはソリッド要素でモデル化し、それ以外の上下フランジ、ウェブ、水平・垂直補剛材についてはシェル要素でモデル化した。支点部に関しては、上下から支点部板材で挟み込むようなモデルとした.載荷点に関しては、等分布荷重による載荷とした.床版と鋼桁は完全付着を想定し、剛体要素で連結した。
[鋼材モデル]
図2に鋼材モデルの応力−ひずみ関係を示す。土木学会 鋼構造新技術小委員会(非特許文献3)で提案された式(1)を用い、表1のパラメータを代入して求めた。
In the following description, first, a steel material model on Bending load bearing capacity M u synthetic digit by nonlinear FEM analysis, which revealed the strength and synthetic digit sectional specifications of the influence of the concrete. At that time, D p / By changing D t to the stress-strain relationship of steel, the stress-strain relationship of concrete, and the cross-sectional dimensions of the slab, 0.067 ≦ D p / D t ≦ 0.443, then M u / M p and D p / Based on the diagram showing the relationship of D t , M u / Determine the effect of steel properties (stress increase rate of steel) on M p .
[Nonlinear FEM analysis]
Figure 1 shows an example of a composite digit analysis model for nonlinear FEM analysis. A half model that takes symmetry into account was used, and the floor slab and fulcrum plate were modeled as solid elements, and the other upper and lower flanges, webs, horizontal and vertical stiffeners were modeled as shell elements. For the fulcrum part, a model was adopted in which the fulcrum part plate was sandwiched from above and below. The loading point was assumed to be a load with uniform distribution. The floor slab and steel girders were connected by rigid elements, assuming complete adhesion.
[Steel model]
Fig. 2 shows the stress-strain relationship of the steel material model. Using the formula (1) proposed by the Japan Society of Civil Engineers Steel Structure New Technology Subcommittee (Non-patent Document 3), the parameters shown in Table 1 were substituted.

図2においてSM570モデルはSM570鋼材を模擬したもの、鋼材A〜鋼材Cモデルは、基本スペックをSM570モデルに合わせて、σy = 450 N/mm2、 YR(降伏比)= 79%とし、降伏後の応力−ひずみ曲線を変化させたもので、降伏後の応力上昇が大きい順に鋼材A、鋼材B、鋼材Cとした。 In Fig. 2, the SM570 model simulates the SM570 steel, and the steel A to steel C models match the basic specifications with the SM570 model, σ y = 450 N / mm 2 , YR (yield ratio) = 79%, yield The steel material A, steel material B, and steel material C were changed in descending order of the stress increase after yielding.

また、降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配を正とする。ここで、公称応力/公称ひずみの勾配を正とするひずみの範囲を降伏点から3.0%までとした理由は、複数の解析を実施した結果、鋼桁に生じるひずみの最大値が3%程度であったことに基づく。   The nominal stress / nominal strain gradient is positive for any strain from the yield point to 3.0% strain. Here, the reason why the range of strain with a positive nominal stress / nominal strain gradient is set to 3.0% from the yield point is that, as a result of performing multiple analyses, the maximum value of strain generated in steel girders is about 3%. Based on what happened.

このように、SM570のスペックを満足するように同一の降伏強度で同一のYRとした場合でも、降伏後に様々な経路をたどることが可能である。なお、鋼材Aは、3.0%より大きいひずみ領域では公称応力/公称ひずみの勾配がほぼゼロとなるため、式(1)を用い、かつ降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正となる条件で、降伏後の応力上昇が最大限に大きいものとなっている。   Thus, even when the same yield strength and the same YR are used so as to satisfy the specifications of SM570, it is possible to follow various paths after yielding. Steel A has a nominal stress / nominal strain gradient of almost zero in the strain region greater than 3.0%. Therefore, using equation (1), the nominal stress at any strain from the yield point to 3.0% strain is used. / Under the condition that the gradient of the nominal strain is positive, the stress increase after yielding is maximized.

[コンクリートの強度]
合成桁の曲げ耐荷力は、コンクリートの強度の影響を受ける。ここでは、コンクリートの圧縮強度fcのパラメータとして、fc30:fc = 30 N/mm2、fc40:fc = 40 N/mm2、fc50:fc = 50 N/mm2、fc60:fc = 60 N/mm2の4種類とし、土木学会 コンクリート標準示方書(非特許文献4)に示される応力−ひずみ関係を適用した。
[Concrete strength]
The bending capacity of composite girders is affected by the strength of concrete. Here, as parameters for compression strength fc of the concrete, fc30: fc = 30 N / mm 2, fc40: fc = 40 N / mm 2, fc50: fc = 50 N / mm 2, fc60: fc = 60 N / mm The stress-strain relationship shown in the Japan Society of Civil Engineers Concrete Standard Specification (Non-Patent Document 4) was applied.

[合成桁の断面諸元]
合成桁の曲げ耐荷力は、合成桁の断面諸元、とくに、床版と鋼桁の断面積の比の影響を受ける。ここでは、鋼桁断面を一定とし、床版幅bcを350 mm、470 mm、1340 mmに変化させた。合成桁断面の全高に対する床版上面から塑性中立軸までの距離の比であるDp / Dt は0.067≦Dp / Dt ≦0.443の範囲で解析を行なった。
[Cross section of composite girder]
The bending load capacity of the composite girder is affected by the cross-sectional dimensions of the composite girder, especially the ratio of the cross-sectional area of the floor slab and steel girder. Here, the steel girder cross section was constant, and the floor slab width b c was changed to 350 mm, 470 mm, and 1340 mm. D p / which is the ratio of the distance from the top of the slab to the plastic neutral axis to the total height of the composite girder section D t is 0.067 ≦ D p / Analysis was performed in the range of D t ≦ 0.443.

[解析結果(降伏後の応力−ひずみ曲線の勾配が合成桁の曲げ耐荷力Muに及ぼす影響)]
図3に解析結果をMu / MpとDp / Dt の関係で示す。図中にEurocode 4の低減図を合わせて示す。今回の解析では、破壊モードはすべて床版の圧壊となった。
[Analysis results (stress after yielding - Effect of the slope of the strain curves on Bending load bearing capacity M u Synthesis digits)
Figure 3 shows the analysis results Mu / M p and D p / Showing the relationship of D t. The figure also shows the Eurocode 4 reduction diagram. In this analysis, the failure mode was all slab collapse.

図3より、降伏後の応力上昇が大きい鋼材ほど、Mu / Mpは大きくなる。また、鋼材A、鋼材Bの場合には、Eurocode 4の曲げ耐荷力低減領域(0.15<Dp / Dt ≦0.4)でMu / Mp >1.0であり、全塑性曲げモーメントに到達している。 From Fig. 3, it can be seen that the higher the stress increase after yield, the more M u / M p increases. In the case of steel A and steel B, the bending load reduction area of Eurocode 4 (0.15 <D p / D t ≤0.4) and M u / M p > 1.0, reaching the all-plastic bending moment.

また、鋼材Cの場合は、Dp / Dt = 0.4でMu / Mp ≒1.0であり、Eurocode 4の曲げ耐荷力低減領域のほぼ全域において、全塑性曲げモーメントに到達している。 For steel C, D p / M u / at D t = 0.4 M p ≈1.0, and the almost plastic bending moment has been reached in almost all of the bending load reduction region of Eurocode 4.

一方、SM570モデルの場合は、Dp / Dt > 0.17でMu / Mp < 1.0となり、全塑性曲げモーメント未到達となることが分かる。 On the other hand, for the SM570 model, D p / D t > 0.17 and Mu / It can be seen that M p <1.0 and the total plastic bending moment is not reached.

以上より、基本スペックをσy = 450 N/mm2、 YR(降伏比)= 79%でSM570モデルに合わせた場合でも、降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ、降伏後の応力−ひずみ曲線の勾配が大きいほど合成桁の曲げ耐荷力が大きくなる。
[解析結果(降伏後の応力上昇が合成桁の曲げ耐荷力Muに及ぼす影響)]
次に、降伏後の応力上昇を数値化するための検討を行なった。図4にMu / Mpと降伏後の応力上昇率の関係を示す。図4において、縦軸は、Mu / Mp(FEM解析で得られた曲げ耐荷力Muを全塑性曲げモーメントMpで除して無次元化した値)、横軸は、各鋼材モデルから算出し、図4(a)は降伏応力σyに対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σ1.0%/σy)、図4(b)は降伏応力σyに対する2.0%ひずみにおける応力σ2.0%の比である応力上昇率(σ2.0%/σy)、図4(c)は降伏応力σyに対する3.0%ひずみにおける応力σ3.0%の比である応力上昇率(σ3.0%/σy)である。各鋼材モデルの応力上昇率を表2に示す。
From the above, even when the basic specifications are σ y = 450 N / mm 2 , YR (yield ratio) = 79% and the SM570 model is matched, the nominal stress / nominal strain at any strain from the yield point to 3.0% strain The greater the slope of, and the greater the slope of the stress-strain curve after yielding, the greater the bending load capacity of the composite girder.
[Analysis results (effects of stress increase after breakdown on the bending load bearing capacity M u of synthetic digit)]
Next, a study was conducted to quantify the stress increase after yielding. Figure 4 shows M u / It shows a relationship between the stress increase rate after the surrender and M p. In FIG. 4, the vertical axis represents M u / M p (bending load bearing capacity M u obtained in FEM analysis is divided by the full plastic bending moment M p value dimensionless), the horizontal axis is calculated from the steel model, FIG. 4 (a) Yield stress increase rate is stress sigma of 1.0% of the ratio in the strain of 1.0% with respect to the stress σ y (σ 1.0% / σ y), 4 (b) is in stress sigma of 2.0% of the ratio in the strain of 2.0% with respect to the yield stress sigma y there stress increase rate (σ 2.0% / σ y) , a diagram 4 (c) stress increase rate is stress sigma 3.0% of the ratio in the strain of 3.0% with respect to the yield stress sigma y is (σ 3.0% / σ y) . Table 2 shows the stress increase rate of each steel material model.

図4より、横軸にσ2.0%/σyおよびσ3.0%/σyを用いた場合には、fc30〜fc60のコンクリートの強度ごとにMu / Mpとの関係が非線形となるのに対し、横軸にσ1.0%/σyを用いた場合には、Mu / Mpとの関係がほぼ線形となり、Mu / Mpと応力上昇率との関係が明確となる。この結果より、各鋼材モデルの応力上昇率の指標としてσ1.0%/σyを用いる。
[解析結果(Mu / Mpと鋼材の応力上昇率(σ1.0%/σy)の関係 )]
図3において、各鋼材の曲線がDp / Dt = 0.4と交わる点を線形補間により算出し、図4のMu / Mpと鋼材の応力上昇率(σ1.0%/σy)の関係に追加したものを図5に示す.図5より、σ1.0%/σyが1.08以上であれば、Dp / Dt ≦0.4でMu / Mp ≧1.0となり、Eurocode 4の曲げ耐荷力低減領域(0.15<Dp / Dt ≦0.4)においても、全塑性曲げモーメントに到達可能となることが分かる。
From FIG. 4, in the case of using the σ 2.0% / σ y and σ 3.0% / σ y in the horizontal axis, for each strength concrete fc30~fc60 M u / When σ 1.0% / σ y is used for the horizontal axis, while the relationship with M p is nonlinear, M u / The relationship with M p is almost linear and M u / The relationship between M p and the stress increase rate becomes clear. From this result, σ 1.0% / σ y is used as an index of the stress increase rate of each steel material model.
[Relationship between analysis results (M u / M p and steel stress increase rate (σ 1.0% / σ y ) ]]
In Fig. 3, the curve of each steel material is D p / Figure 5 shows the point where D t = 0.4 is calculated by linear interpolation and added to the relationship between Mu / M p and the stress increase rate of steel (σ 1.0% / σ y ) in Fig. 4. From FIG. 5, when σ 1.0% / σ y is 1.08 or more, D p / D t ≦ 0.4 at M u / M p ≧ 1.0, Eurocode 4 bending load reduction area (0.15 <D p / It can be seen that even when D t ≦ 0.4), the total plastic bending moment can be reached.

以上の結果より、本発明に係る合成桁は、鋼桁が、降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ降伏応力σyに対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σ1.0%/σy)が1.08以上である鋼材からなるウェブとフランジを具備し、その結果、Dp / Dt ≦0.4でMu / Mp ≧1.0を満足し、曲げ耐荷力性能に優れる。 From the above results, in the composite girder according to the present invention, the steel girder has a positive nominal stress / nominal strain gradient at any strain from the yield point to 3.0% strain, and 1.0% strain with respect to the yield stress σ y . stress increase rate which is the ratio of stress sigma 1.0% in (σ 1.0% / σ y) is provided with a web and flanges made of steel material is 1.08 or more, as a result, D p / D t ≦ 0.4 at M u / Satisfies M p ≧ 1.0 and excels in bending load bearing performance.

鋼材の応力上昇率(σ1.0%/σy)は、材料試験などにより算出すればよい.この際、降伏応力σyは、対象とする構造物に応じて、例えば、0.2%オフセットひずみの値とすればよい。図6、7に本発明に係る合成桁の具体的適用例を示す。 The stress increase rate of steel (σ 1.0% / σ y ) can be calculated by material tests. At this time, the yield stress σ y may be a value of 0.2% offset strain, for example, depending on the target structure. 6 and 7 show specific application examples of the composite girder according to the present invention.

図6は降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ降伏応力σyに対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σ1.0%/σy)が1.08以上である鋼材をフランジとウェブに適用した合成桁の一例を示す。必要に応じて、横桁や補剛材(図示せず)など他の部材に対して適用しても良い。 Figure 6 shows the rate of increase in stress (σ as the ratio of the stress σ 1.0% at 1.0% strain to the yield stress σ y with a positive nominal stress / nominal strain gradient at any strain from the yield point to 3.0% strain. An example of a composite girder in which a steel material having 1.0% / σ y ) of 1.08 or more is applied to a flange and a web is shown. You may apply with respect to other members, such as a cross beam and a stiffener (not shown), as needed.

図7は、本発明に係る合成桁を橋軸方向において、全塑性曲げモーメントに到達することができる断面(コンパクト断面)として断面決定した領域に用いた場合の一例を示す。   FIG. 7 shows an example of the case where the composite girder according to the present invention is used in a region where the cross section is determined as a cross section (compact cross section) that can reach the total plastic bending moment in the bridge axis direction.

曲げモーメントが正となる正曲げ域を全塑性曲げモーメントに到達することができる断面(コンパクト断面)として断面決定し、この領域に本発明に係る合成桁を用いる。これにより、Dp / Dt がEurocode 4の曲げ耐荷力低減領域(0.15<Dp / Dt ≦0.4)にある場合でも、全塑性曲げモーメントに到達可能となる。 A positive bending region in which the bending moment is positive is determined as a cross section (compact cross section) that can reach the total plastic bending moment, and the composite girder according to the present invention is used in this region. This allows D p / D t is the Eurocode 4 bending load reduction area (0.15 <D p / Even in the case of D t ≦ 0.4), the total plastic bending moment can be reached.

特開2002−88974号公報JP 2002-88974 A

土木学会、「鋼・合成構造標準示方書 総則編・構造計画編・設計編」、P244−250、2007.3Japan Society of Civil Engineers, “Steel / Synthetic Structure Standard Specification, General Rules / Structure Planning / Design”, P244-250, 2007.3 European Committee for Standardization (CEN)(2003): Eurocode 4、 Design of composite steel and concrete structures、 1994-2European Committee for Standardization (CEN) (2003): Eurocode 4, Design of composite steel and concrete structures, 1994-2 土木学会 鋼構造新技術小委員会 最終報告書(耐震設計研究)、pp.61-62、 1996.5Japan Society of Civil Engineers Steel Structure New Technology Subcommittee Final Report (Research on Seismic Design), pp.61-62, May 1996 土木学会 コンクリート標準示方書[構造性能照査編]、 2002.Japan Society of Civil Engineers Standard Specification for Concrete [Structural Performance Review], 2002.

Claims (3)

ウェブとフランジを有する鋼桁と、コンクリート床版あるいは鋼コンクリート合成床版とをずれ止めを用いて合成し、Dp / Dt≦ 0.4を満足する合成桁であって、前記鋼桁が、降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ降伏応力σyに対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σ1.0%/σy)が1.08以上である鋼材からなるウェブとフランジを具備すること特徴とする合成桁。
但し、Dt:合成桁断面の全高、Dp:合成桁断面の床版上面から塑性中立軸までの距離
A steel girder with a web and flanges were synthesized using the stop shift a concrete slab or the steel-concrete composite deck, a synthetic digit satisfies D p / D t ≦ 0.4, said steel girder is yield Stress increase rate (σ 1.0% / σ) which is the ratio of stress σ 1.0% at 1.0% strain to yield stress σ y with a positive gradient of nominal stress / nominal strain at any strain from point to 3.0% strain A composite girder comprising a web and a flange made of a steel material having y ) of 1.08 or more.
Where D t is the total height of the composite girder section, D p is the distance from the top surface of the composite girder section to the plastic neutral axis.
橋軸方向において、全塑性曲げモーメントに到達することができる断面(コンパクト断面)として断面決定した領域に請求項1記載の合成桁を用いたことを特徴とする合成桁。   A composite girder using the composite girder according to claim 1 in a region determined as a cross section (compact cross section) capable of reaching a total plastic bending moment in a bridge axis direction. 請求項1または2の合成桁に含まれる、ウェブとフランジを具備する鋼桁に用いられる鋼材であって、A steel material used for a steel girder comprising a web and a flange, which is included in the composite girder according to claim 1 or 2,
降伏点から3.0%ひずみまでのいずれのひずみにおいても公称応力/公称ひずみの勾配が正で、かつ降伏応力σ  Nominal stress / nominal strain gradient is positive and yield stress σ at any strain from the yield point to 3.0% strain yy に対する1.0%ひずみにおける応力σ1.0%の比である応力上昇率(σThe rate of increase in stress (σ 1.0%1.0% /σ/ Σ yy )が1.08以上である鋼材。) Is a steel material of 1.08 or more.
JP2010277901A 2010-12-14 2010-12-14 Composite girders and steel Active JP5605202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010277901A JP5605202B2 (en) 2010-12-14 2010-12-14 Composite girders and steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010277901A JP5605202B2 (en) 2010-12-14 2010-12-14 Composite girders and steel

Publications (3)

Publication Number Publication Date
JP2012127078A JP2012127078A (en) 2012-07-05
JP2012127078A5 JP2012127078A5 (en) 2013-12-26
JP5605202B2 true JP5605202B2 (en) 2014-10-15

Family

ID=46644411

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010277901A Active JP5605202B2 (en) 2010-12-14 2010-12-14 Composite girders and steel

Country Status (1)

Country Link
JP (1) JP5605202B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113722831B (en) * 2021-09-06 2023-11-17 吉林大学 Beam bending energy absorption analysis method for multi-cell thin wall of two-end fixedly supported Z-direction rib plate

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3454670B2 (en) * 1997-06-02 2003-10-06 Jfeスチール株式会社 Steel members with excellent buckling resistance
JP3797080B2 (en) * 2000-09-12 2006-07-12 Jfeスチール株式会社 H-shaped steel with excellent earthquake resistance and steel structure using the same
JP3775395B2 (en) * 2003-03-14 2006-05-17 大成建設株式会社 Synthetic beam design method

Also Published As

Publication number Publication date
JP2012127078A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
Sundarraja et al. Experimental study on CFST members strengthened by CFRP composites under compression
Yan et al. Design and behavior of steel–concrete–steel sandwich plates subject to concentrated loads
Keo et al. Behavior of a new shear connector for U-shaped steel-concrete hybrid beams
JP2012127077A (en) Estimation method of bending load bearing capacity of composite girder
Shi et al. Monotonic loading tests on semi-rigid end-plate connections with welded I-shaped columns and beams
He et al. Experimental study on inelastic mechanical behaviour of composite girders under hogging moment
Gil et al. Shear buckling strength of trapezoidally corrugated steel webs for bridges
Halicka et al. Shear failure mechanism of composite concrete T-shaped beams
Lawson et al. Serviceability performance of steel–concrete composite beams
Elkhabeery et al. Flexural strength of steel I-beams reinforced with CFRP sheets at tension flange
Arrayago et al. Experimental investigation on ferritic stainless steel composite slabs
Ali et al. Finite element analysis of cold-formed steel connections
Wang et al. Influence of bond property of longitudinal bars on seismic behaviour of reinforced-concrete columns
Huo et al. Experimental study on impact behaviour of stud shear connectors in composite beams with profiled steel sheeting
Kim et al. Behavior of Y-type perfobond rib shear connection under different cyclic loading conditions
Qazi et al. Strut-and-tie model for a reinforced concrete wall strengthened with carbon fibre-reinforced polymers
JP5605202B2 (en) Composite girders and steel
Degtyarev Computational study of elastic buckling and post-buckling strength of steel decks in bending
Ebadi Jamkhaneh et al. Progressive collapse resistance of a composite steel and concrete structural frame
Ahn et al. Fatigue behavior and statistical evaluation of the stress category for a steel–concrete composite bridge deck
Mohsen et al. The effective width in composite steel concrete beams at ultimate loads
Shalaby et al. Parametric study of shear strength of CFRP strengthened end-web panels
Kim et al. Experimental investigation of double composite twin-girder railway bridges
Gkantou Response and design of high strength steel structures employing square and rectangular hollow sections
Oliva et al. FRP stay-in-place formwork and reinforcing for concrete highway bridge decks

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131111

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140811

R150 Certificate of patent or registration of utility model

Ref document number: 5605202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250