JP5604756B2 - Data collection system by geostationary satellite - Google Patents

Data collection system by geostationary satellite Download PDF

Info

Publication number
JP5604756B2
JP5604756B2 JP2011086005A JP2011086005A JP5604756B2 JP 5604756 B2 JP5604756 B2 JP 5604756B2 JP 2011086005 A JP2011086005 A JP 2011086005A JP 2011086005 A JP2011086005 A JP 2011086005A JP 5604756 B2 JP5604756 B2 JP 5604756B2
Authority
JP
Japan
Prior art keywords
sensor
signal
gps
geostationary satellite
sensor signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011086005A
Other languages
Japanese (ja)
Other versions
JP2012221206A (en
Inventor
洋一 小石
隆 塚島
昭夫 辻畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Japan Aerospace Exploration Agency JAXA
NEC Space Technologies Ltd
Original Assignee
NEC Corp
Japan Aerospace Exploration Agency JAXA
NEC Space Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Japan Aerospace Exploration Agency JAXA, NEC Space Technologies Ltd filed Critical NEC Corp
Priority to JP2011086005A priority Critical patent/JP5604756B2/en
Priority to CN201210093053.3A priority patent/CN102737483B/en
Priority to KR1020120035940A priority patent/KR20120115139A/en
Publication of JP2012221206A publication Critical patent/JP2012221206A/en
Application granted granted Critical
Publication of JP5604756B2 publication Critical patent/JP5604756B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/001Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems for modifying the directional characteristic of an aerial
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Remote Sensing (AREA)
  • Tourism & Hospitality (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Signal Processing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Description

本発明は、衛星によるデータ収集システムに関する。   The present invention relates to a satellite data collection system.

山岳や海洋等からの環境観測データ収集は、これまで、海洋の場合について言えば、海洋に置かれた大型のブイなどに設置された各種センサからの発信信号によりデータ収集を行っていた。このようなデータ収集を実現する既存システムとして、衛星を用いたデータ収集システムがある(特許文献1)。このデータ収集システムではブイに設置されたセンサからの発信信号を衛星で中継して地上局に伝送する。地上局では、衛星からのデータを受信してデータ収集を行い、収集したデータの解析/分析を行う。   Up to now, environmental observation data from mountains, oceans, etc. has been collected from signals sent from various sensors installed on large buoys in the ocean. As an existing system for realizing such data collection, there is a data collection system using a satellite (Patent Document 1). In this data collection system, a transmission signal from a sensor installed in a buoy is relayed by a satellite and transmitted to a ground station. The ground station receives data from satellites, collects data, and analyzes / analyzes the collected data.

しかし、これまでの衛星によるデータ収集では、衛星アンテナのカバーするエリアからの信号検出ができるのみで、センサを搭載したブイの位置は特定できないという短所があった。また、衛星の受信能力が不十分で、大きな送信電力がブイ側に必要であり、システム構築上の障害となるとともに、ブイの大型化によりコスト高となっていた。   However, the conventional data collection by satellites has the disadvantage that only the signal from the area covered by the satellite antenna can be detected, and the position of the buoy equipped with the sensor cannot be specified. In addition, the reception capability of the satellite is insufficient, and a large transmission power is required on the buoy side, which becomes an obstacle to system construction and increases in cost due to the increase in size of the buoy.

これらの理由により、衛星を利用したこれまでのデータ収集システムは改善すべき課題を有していた。   For these reasons, conventional data collection systems using satellites have problems to be improved.

特開2004−21778JP2004-21778

本発明の課題は、これまでのデータ収集システムの欠点を改善すべく、一般に流布しつつあるGPS付き携帯電話クラスの小型軽量な小型端末機能を持つセンサからの発信信号により、早急かつ確実な衛星によるデータ収集システムを提供しようとするものである。   An object of the present invention is to improve the shortcomings of conventional data collection systems by using a signal transmitted from a sensor having a small, lightweight and small terminal function of a mobile phone class with GPS, which has been widely disseminated. It intends to provide a data collection system.

本発明は衛星通信回線を利用したセンサ情報収集システムであって、衛星に受信感度の大きい大型反射鏡アンテナを搭載し、GPS付き携帯電話(GPS付き携帯端末)クラスの大きさ及び送信能力を有する小型端末の機能を持つセンサからのセンサ信号の受信を可能とし、センサネットワーク構築の成立性、利便性、低コスト化を大幅に向上させたものであり、以下の構成、機能を含む。   The present invention is a sensor information collection system using a satellite communication line, which is equipped with a large reflector antenna having high reception sensitivity on a satellite and has a size and transmission capability of a GPS mobile phone (GPS mobile terminal) class. The sensor signal can be received from a sensor having the function of a small terminal, and the feasibility, convenience, and cost reduction of the construction of the sensor network are greatly improved, and includes the following configurations and functions.

a.衛星に搭載した大型反射鏡アンテナにより、GPS付き携帯電話クラスの小型端末の機能(送受信機能)及び温度、圧力等の所定の環境データ観測機能を持つセンサからのセンサ信号が受信可能であること。
b.センサ信号はGPS機能により得られたセンサの位置情報を含むこと。
c.センサ信号はGPS機能により得られたセンサのGPS時刻を含むこと。
d.センサ信号の受理等の状況を通知するセンサへの逆方向通信回線を含むこと。
e.センサへの逆方向通信には、センサからの間欠的送信を指定する発信タイミング情報を含むこと。
a. The large reflector antenna mounted on the satellite is capable of receiving sensor signals from a sensor having a function (transmission / reception function) of a small cellular phone-class terminal with GPS and a function of observing predetermined environmental data such as temperature and pressure.
b. The sensor signal should include sensor position information obtained by the GPS function.
c. The sensor signal shall include the GPS time of the sensor obtained by the GPS function.
d. Including a reverse communication line to the sensor to notify the status of sensor signal acceptance.
e. The backward communication to the sensor should include transmission timing information that specifies intermittent transmission from the sensor.

本発明によれば、GPS付き携帯電話クラスと同程度の大きさ及び送受信機能と所定の環境データ観測機能を持つ端末として機能する小型軽量なセンサからの発信により、センサの製作、設置に関する負担を大幅に軽減化すると共に、センサの高精度位置情報により、早急かつ確実な衛星によるデータ収集システムを提供することができる。   According to the present invention, the burden on the manufacture and installation of a sensor is achieved by transmission from a small and lightweight sensor that functions as a terminal having the same size and transmission / reception function as a GPS mobile phone class and a predetermined environmental data observation function. It is possible to provide a data collection system using satellites quickly and reliably by using highly accurate position information of sensors while greatly reducing the number of sensors.

本発明の実施の形態によるデータ収集システムの構成を説明するための図である。It is a figure for demonstrating the structure of the data collection system by embodiment of this invention. 図1の静止衛星に搭載される、本発明の実施の形態による大型反射鏡アンテナの一例を示した図である。It is the figure which showed an example of the large sized reflector antenna by embodiment of this invention mounted in the geostationary satellite of FIG. GPS付き携帯電話クラスの大きさ及び送受信能力を有する小型端末としての機能を持つ地球環境観測センサの実施の形態を示した図である。It is the figure which showed embodiment of the earth environment observation sensor which has a function as a small terminal which has the magnitude | size of a mobile telephone class with GPS, and a transmission / reception capability. 図3に示された地球環境観測センサの概略構成の一例を示した図である。It is the figure which showed an example of schematic structure of the global environment observation sensor shown by FIG. 本発明の実施の形態において地球環境観測センサと静止衛星との間でやり取りされるセンサ信号、センサ信号確達信号のデータ構造の例を示した図である。It is the figure which showed the example of the data structure of the sensor signal and sensor signal acquisition signal exchanged between a global environment observation sensor and a geostationary satellite in embodiment of this invention. サービス事業者が、本発明の実施の形態によるデータ収集システムにより得られた観測データをユーザに提供するサービスを展開する場合について説明するための図である。It is a figure for demonstrating the case where a service provider develops the service which provides the observation data obtained by the data collection system by embodiment of this invention to a user.

本発明に係るデータ収集システムは、衛星に搭載した受信性能の優れた大型反射鏡アンテナにより、海洋、山岳等に配備された地球環境観測センサからのセンサ信号を受信する。衛星は受信したセンサ信号を地上局に送信する。地上局では、受信信号に含まれる地球環境観測データのほか、GPS測位による地球環境観測センサの位置情報、取得GPS時刻等の情報に基づき、有用性が高く、効率的な観測データを収集する。すなわち、環境観測データが地球環境観測センサの配備される位置情報及び取得時刻情報に対応したデータとして取得される。   The data collection system according to the present invention receives sensor signals from global environment observation sensors deployed in the ocean, mountains, etc. by a large reflector antenna with excellent reception performance mounted on a satellite. The satellite transmits the received sensor signal to the ground station. The ground station collects highly useful and efficient observation data based on the global environment observation data included in the received signal, information on the position of the global environment observation sensor by GPS positioning, acquired GPS time, and the like. That is, environmental observation data is acquired as data corresponding to position information and acquisition time information where the global environmental observation sensor is deployed.

なお、センサ信号として、例えば従来の406MHz帯の信号を使用することは必須ではなく、衛星移動体通信に割り当てられている周波数帯の利用が可能である。センサ信号の送信は、衛星から地球環境観測センサに向けて送信されるセンサ信号確達信号により地球環境観測センサに対して指示するタイミングで間欠的に行うことができるので、多数の地球環境観測センサが存在していても情報が輻輳(衝突)することはないように制御される。このような制御は、地上局の制御部からの指示を衛星で中継しセンサ確達信号として地球観測センサに送信することで実行される。   For example, it is not essential to use a conventional 406 MHz band signal as the sensor signal, and it is possible to use a frequency band assigned to satellite mobile communication. Since the sensor signal can be transmitted intermittently at the timing instructed to the global environment observation sensor by the sensor signal acquisition signal transmitted from the satellite to the global environment observation sensor, a large number of global environment observation sensors Control is performed so that information does not become congested (collision) even in the presence of. Such control is executed by relaying an instruction from the control unit of the ground station via a satellite and transmitting it as a sensor acquisition signal to the earth observation sensor.

本発明は、海洋、山岳等に配備されGPS付き携帯電話(携帯端末)クラスの大きさ及び送信電力並びに受信機能を持つGPS付き小型端末(携帯端末)としての機能を持つ地球環境観測センサからのセンサ信号(観測信号)を受信するために、衛星に大型反射鏡アンテナを搭載したデータ収集システムであり、以下の構成要件を備える。   The present invention is based on a global environment observation sensor having a function as a small GPS terminal (mobile terminal) having a GPS mobile phone (mobile terminal) class size, transmission power, and reception function, which is deployed in the ocean, mountains and the like. In order to receive a sensor signal (observation signal), this is a data collection system in which a large reflector antenna is mounted on a satellite and has the following configuration requirements.

(1)衛星にセンサ信号の受信性能向上のための、大型反射鏡アンテナを備える。   (1) The satellite has a large reflector antenna for improving the reception performance of sensor signals.

大型反射鏡アンテナは、数m級のものではなく、10m以上、好ましくは10〜30m級の大型反射鏡を備える。このような大型反射鏡は、衛星と共にロケットにより打ち上げられ、ロケットへの収納時は、衛星と共にフェアリング内に収まるように折り畳んで収納され、宇宙空間の所定軌道に到達後、軌道上で所望の形状(パラボラ)に展開される。展開後、大型反射鏡アンテナは、地球環境観測センサが存在する地球上の所望の領域を指向するようにされる。   The large reflector antenna is not of the several meter class, but has a large reflector of 10 m or more, preferably 10 to 30 m. Such a large reflector is launched by a rocket together with a satellite, and when stored in the rocket, it is folded and stored so that it fits within the fairing together with the satellite. After reaching a predetermined orbit in outer space, a desired orbit is obtained on the orbit. Expanded into a shape (parabolic). After deployment, the large reflector antenna is directed to a desired region on the earth where the earth environment observation sensor exists.

(2)海洋、山岳に配備される地球環境観測センサは、これを搭載するためのブイとしてこれまでのような大型のものを必要とせず、GPS付き携帯電話クラスの小型端末程度の大きさと送信電力及び温度、圧力等の所定の環境データ観測機能を有する。   (2) The global environment observation sensor deployed in the ocean and mountains does not require a large buoy for mounting it, and is as large as a small mobile phone class terminal with GPS and transmission. It has a function for observing predetermined environmental data such as electric power, temperature and pressure.

(3)地球環境観測センサは、小型端末と同様の通信機能のほか、GPS受信機能、測位機能、GPS補強信号受信機能を有する。   (3) The global environment observation sensor has a GPS reception function, a positioning function, and a GPS reinforcement signal reception function in addition to a communication function similar to that of a small terminal.

(4)地球環境観測センサから送信されるセンサ信号はアップリンク回線により大型反射鏡アンテナで受信されこれを搭載した衛星を経由して地上局で受信・収集される。なお、衛星と地球環境観測センサとの間の通信は、センサ信号を受信したことを示すセンサ信号確達情報を含む信号を逆方向の回線(ダウンリンク回線)により、地球環境観測センサに送信する機能を含む。このセンサ信号確達情報は、衛星におけるセンサ信号受信完了を報知する情報のほか、地球環境観測センサに対する送信タイミングの指示情報などを含む。   (4) The sensor signal transmitted from the earth environment observation sensor is received by the large reflector antenna through the uplink line, and is received and collected by the ground station via the satellite on which it is mounted. In communication between the satellite and the earth environment observation sensor, a signal including sensor signal acquisition information indicating that the sensor signal has been received is transmitted to the earth environment observation sensor via a reverse line (downlink line). Includes functionality. This sensor signal acquisition information includes transmission timing instruction information for the global environment observation sensor, in addition to information for notifying completion of sensor signal reception in the satellite.

以下に本発明の実施の形態を理論面と実際面について説明する。   The theoretical and actual aspects of the embodiment of the present invention will be described below.

[理論面での説明]
海洋、山岳に配備された地球環境観測センサからのセンサ信号が衛星で受信される信号レベルSは、下記の式(1)で表すことができる。
[Theoretical explanation]
A signal level S at which a sensor signal from a global environment observation sensor deployed in the ocean or mountains is received by a satellite can be expressed by the following equation (1).

S=P・G・Gs・{(λ/4)・π・L} (1)
式(1)において、Pは地球環境観測センサの送信電力、Gは地球環境観測センサ側のアンテナ利得である。Lはセンサ信号の伝搬距離、λはセンサ信号の送信信号波長、Gsは衛星のアンテナ利得である。
S = P · G · Gs · {(λ / 4) · π · L} 2 (1)
In Equation (1), P is the transmission power of the earth environment observation sensor, and G is the antenna gain on the earth environment observation sensor side. L is the propagation distance of the sensor signal, λ is the transmission signal wavelength of the sensor signal, and Gs is the antenna gain of the satellite.

地球環境観測センサ側を軽量化するために、送信電力P及びアンテナ利得Gを小さくすると、同一受信電力を得るためには、衛星側のアンテナ利得Gsを大幅に向上させる必要がある。一般衛星のアンテナ利得はアンテナ開口径の2乗に比例し、アンテナ利得増加のためには大型アンテナを搭載することが必要である。   If the transmission power P and the antenna gain G are reduced in order to reduce the weight of the earth environment observation sensor side, the satellite side antenna gain Gs needs to be significantly improved in order to obtain the same reception power. The antenna gain of a general satellite is proportional to the square of the antenna aperture diameter, and it is necessary to mount a large antenna in order to increase the antenna gain.

大型反射鏡アンテナは、衛星の打ち上げ時には、反射鏡を折り畳み状態にしてロケットのフェアリングに収納し、折り畳み状態の反射鏡を衛星軌道上で展開する形式が一般的である。反射鏡には、展開に適したメッシュタイプを用いる。これまでのデータ収集システムでは、その構築時に衛星に搭載する大型反射鏡の実現性が確立されておらず、(1)式のアンテナ利得Gsが小さいものであったために、地球環境観測センサの送信系を大型化せざるを得ない状況にあった。   When launching a satellite, a large reflector antenna is generally in a form in which the reflector is folded and stored in the fairing of the rocket, and the folded reflector is deployed on the satellite orbit. A mesh type suitable for deployment is used for the reflecting mirror. In previous data collection systems, the feasibility of a large reflector mounted on a satellite was not established at the time of construction, and the antenna gain Gs in equation (1) was small, so transmission of the earth environment observation sensor The system had to be enlarged.

センサ信号による情報収集の確実性を高めるには、地球環境観測センサの位置特定が重要である。本実施の形態によるデータ収集システムでは、地球環境観測センサから発信するセンサ信号には、GPSによる測位情報(地球環境観測センサの位置情報)や時刻情報(データ取得時刻)等が含まれる。これにより、地球環境観測センサの位置計測は約1〜5mのオーダーで可能となり、地上局での地球環境監視情報と地理的情報との対応付けが可能となる。   In order to increase the certainty of information collection using sensor signals, it is important to locate the global environment observation sensor. In the data collection system according to the present embodiment, the sensor signal transmitted from the global environment observation sensor includes GPS positioning information (position information of the global environment observation sensor), time information (data acquisition time), and the like. Thereby, the position measurement of the global environment observation sensor can be performed on the order of about 1 to 5 m, and the global environment monitoring information and the geographical information in the ground station can be associated with each other.

これまでのデータ収集方式ではGPSによる測位情報がなく、計測された位置に大きな誤差があり収集されたデータの解析/分析を困難なものとしていた。これに対し、場所が既知であるGPSモニタ局からの情報に基づき、測位精度を向上させるためにGPS補強信号を利用することが知られている。そこで、本実施の形態によるデータ収集システムにおける地球環境観測センサは、このGPS補強信号を利用して高精度の測位情報を得ることができるようにしている。   Conventional data collection methods have no positioning information by GPS, and there is a large error in the measured position, making it difficult to analyze / analyze the collected data. On the other hand, it is known that a GPS reinforcement signal is used to improve positioning accuracy based on information from a GPS monitor station whose location is known. Therefore, the global environment observation sensor in the data collection system according to the present embodiment can obtain highly accurate positioning information using the GPS reinforcement signal.

さらに、GPS補強信号を重畳することのできる、後述するセンサ信号確達信号を用いることにより、衛星でのセンサ信号の受理確認を地球環境観測センサ側に送信したり、地球環境観測センサ側にセンサ信号発信のタイミングを指定したりすることができるため、効率的、高信頼性のデータ収集ネットワークを構築できる。   Further, by using a sensor signal acquisition signal, which will be described later, on which a GPS reinforcement signal can be superimposed, the reception confirmation of the sensor signal from the satellite is transmitted to the earth environment observation sensor side, or the sensor is sent to the earth environment observation sensor side. Since the timing of signal transmission can be specified, an efficient and highly reliable data collection network can be constructed.

[実際面での説明]
図1に本発明の実施の形態によるデータ収集システムの概略構成を示す。本データ収集システムは、地球環境観測センサ11、静止衛星12、静止衛星12に搭載される大型反射鏡アンテナ13(図2)、地球環境観測地上局14、GPS管制局15から構成されている。図1では、地球環境観測センサ11を1個のみ示しているが、1個以上の地球環境観測センサが海洋や山岳に配備される。海洋に配備する場合には、ブイ等に設置されるが、これまでのような大型のブイを必要としない。
[Practical explanation]
FIG. 1 shows a schematic configuration of a data collection system according to an embodiment of the present invention. The data collection system includes a global environment observation sensor 11, a geostationary satellite 12, a large reflector antenna 13 (FIG. 2) mounted on the geostationary satellite 12, a global environment observation ground station 14, and a GPS control station 15. Although only one global environment observation sensor 11 is shown in FIG. 1, one or more global environment observation sensors are provided in the ocean or mountains. When deployed in the ocean, it is installed on a buoy or the like, but it does not require a large buoy.

地球環境観測センサ11で計測され送信された、温度、その他の計測情報を含むセンサ信号、その他の地球環境観測センサからのセンサ信号は、静止衛星12に搭載された大型反射鏡アンテナ13で逐次受信され、静止衛星12経由でまとめて地球環境観測地上局14に送信される。地球環境観測地上局14では受信したセンサ信号を処理して観測データを作成する。この観測データは、天気予報、災害予測、その他の各種サービス提供に利用される。GPS管制局15はGPS信号を送信する。   Sensor signals including temperature and other measurement information measured and transmitted by the global environment observation sensor 11 and sensor signals from other global environment observation sensors are sequentially received by the large reflector antenna 13 mounted on the geostationary satellite 12. Then, they are collectively transmitted to the earth environment observation ground station 14 via the geostationary satellite 12. The earth environment observation ground station 14 processes the received sensor signal and creates observation data. This observation data is used for providing weather forecasts, disaster predictions, and other various services. The GPS control station 15 transmits a GPS signal.

図3にGPS付き携帯電話クラスの大きさ及び送受信能力を有する小型端末としての機能を持つ地球環境観測センサの実施の形態を示す。本地球環境観測センサ20は、携帯電話機として提供されているものと同様の機器で実現することができる。それゆえ、地球環境観測センサ20と静止衛星26との間でやり取りされるセンサ信号、センサ信号確達信号はそれぞれ図5に示すデータ構造を持つ。   FIG. 3 shows an embodiment of a global environment observation sensor having a function as a small terminal having a size of a cellular phone class with GPS and a transmission / reception capability. The global environment observation sensor 20 can be realized by a device similar to that provided as a mobile phone. Therefore, the sensor signal and the sensor signal acquisition signal exchanged between the earth environment observation sensor 20 and the geostationary satellite 26 have a data structure shown in FIG.

図5(a)に示すように、センサ信号は、プレアンブルと、ターミナルID(Identification Data)と、GPSによる位置情報や時刻情報と、温度、その他の計測情報と、ポストアンブルと、からなるデータ構造を持つ。   As shown in FIG. 5A, the sensor signal has a data structure including a preamble, a terminal ID (Identification Data), position information and time information by GPS, temperature, other measurement information, and a postamble. have.

一方、図5(b)に示すように、センサ信号確達信号は、プレアンブルと、ターミナルIDと、測位精度向上のためのGPS補強信号と、暗号化されたセンサ信号確達情報と、ポストアンブルと、からなるデータ構造を持つ。前述したように、センサ信号確達情報は、衛星におけるセンサ信号受信を知らせるほか、地球環境観測センサに対する送信タイミングの指示情報などを含む。なお、センサ信号確達情報だけでなく、図5(a)、(b)の各情報も必要に応じて暗号化されても良いことは言うまでも無い。   On the other hand, as shown in FIG. 5 (b), the sensor signal acquisition signal includes a preamble, a terminal ID, a GPS reinforcement signal for improving positioning accuracy, encrypted sensor signal acquisition information, and a postamble. And has a data structure consisting of As described above, the sensor signal acquisition information includes not only the reception of the sensor signal on the satellite but also the transmission timing instruction information for the global environment observation sensor. Needless to say, not only the sensor signal acquisition information but also the information in FIGS. 5A and 5B may be encrypted as necessary.

図4は図3に示された地球環境観測センサ20の概略構成の一例を示す。地球環境観測センサ20は、センサ部21、送受信部22、アンテナ部23、分岐部24のほか、バッテリー(図示省略)を内蔵する。送受信部22は、GPS信号受信部22−1、センサ信号送信部22−2、確達信号受信部22−3からなる。センサ部21は、計測機能だけでなく、GPS信号、確達信号の解読機能、計測情報を送信に必要な形式に変換、構成する機能、送受信部22を制御する機能、バッテリーセービング機能等を有する。   FIG. 4 shows an example of a schematic configuration of the global environment observation sensor 20 shown in FIG. The global environment observation sensor 20 incorporates a battery (not shown) in addition to the sensor unit 21, the transmission / reception unit 22, the antenna unit 23, and the branching unit 24. The transmission / reception unit 22 includes a GPS signal reception unit 22-1, a sensor signal transmission unit 22-2, and an advance signal reception unit 22-3. The sensor unit 21 has not only a measurement function, but also a GPS signal and an accuracy signal decoding function, a function for converting and configuring measurement information into a format necessary for transmission, a function for controlling the transmission / reception unit 22, a battery saving function, and the like. .

図6は、サービス事業者が、本データ収集システムにより得られた観測データをユーザに提供するサービスを展開する場合について説明するための図である。   FIG. 6 is a diagram for explaining a case where a service provider develops a service that provides observation data obtained by the data collection system to a user.

インフラ提供事業者31は、衛星の発注、維持管理、運用を行うインフラを提供し、サービス提供事業者32は、このインフラに基づきセンサ情報収集を行う。GPS補強信号生成事業者33は、サービス提供事業者32に対してGPS補強信号の生成、発信、管理を行う。ユーザ34は、サービス提供事業者32から地球環境観測データの提供サービスを受けるために、サービス提供事業者32に対し、本機能を有する自分のIDを登録し、サービス料を支払う。サービス提供事業者32はこれを管理する。   The infrastructure provider 31 provides infrastructure for ordering, maintaining, and operating satellites, and the service provider 32 collects sensor information based on this infrastructure. The GPS reinforcement signal generator 33 generates, transmits, and manages GPS reinforcement signals to the service provider 32. In order to receive the service for providing the global environment observation data from the service provider 32, the user 34 registers his / her ID having this function and pays a service fee to the service provider 32. The service provider 32 manages this.

11、20 地球環境観測センサ
12 静止衛星
14 地球環境観測地上局
15 GPS管制局
21 センサ部
22 送受信部
23 アンテナ部
24 分岐部
31 インフラ提供事業者
32 サービス提供事業者
33 GPS補強信号生成事業者
34 ユーザ
DESCRIPTION OF SYMBOLS 11, 20 Earth environment observation sensor 12 Geostationary satellite 14 Earth environment observation ground station 15 GPS control station 21 Sensor part 22 Transmission / reception part 23 Antenna part 24 Branch part 31 Infrastructure provider 32 Service provider 33 GPS reinforcement signal generator 34 User

Claims (4)

GPS信号の受信部とセンサ信号確達信号の受信部とを備えてGPS付き携帯電話端末と同様の大きさ及び送信能力を有し、GPS機能を有すると共に所定の環境データ観測機能を有し、観測した環境データを含む信号をセンサ信号として送信するセンサ信号送信部を有する環境観測センサと、
10mを超える反射鏡アンテナによる送受信機能を備え、前記環境観測センサと地球局との間で通信を行なう静止衛星と、
前記静止衛星を経由して送られてくる1つ以上の前記環境観測センサからの環境データを収集する地球局と、を含み、
前記静止衛星から前記環境観測センサに対して送信され、前記環境観測センサからのセンサ信号の受信完了を報知する情報と、測位精度向上のためのGPS補強信号を含む前記センサ信号確達信号を、前記センサ信号確達信号の受信部で受信するようにした、静止衛星によるデータ収集システム。
It has a GPS signal receiver and a sensor signal acquisition signal receiver, has the same size and transmission capability as a GPS mobile phone terminal, has a GPS function and a predetermined environmental data observation function, An environmental observation sensor having a sensor signal transmission unit for transmitting a signal including the observed environmental data as a sensor signal ;
A geostationary satellite having a transmission / reception function by a reflector antenna exceeding 10 m and communicating between the environmental observation sensor and the earth station;
See containing and a earth station for collecting environmental data from one or more of the environmental monitoring sensors transmitted via the geostationary satellite,
Information transmitted from the geostationary satellite to the environmental observation sensor and informing completion of reception of the sensor signal from the environmental observation sensor, and the sensor signal acquisition signal including a GPS reinforcement signal for improving positioning accuracy, A data acquisition system using a geostationary satellite , which is received by the sensor signal acquisition signal receiver .
前記反射鏡アンテナは折り畳み式であることを特徴とする請求項1に記載の静止衛星によるデータ収集システム。   The data collection system using a geostationary satellite according to claim 1, wherein the reflector antenna is a foldable type. 前記センサ信号にはGPS受信に基づく測位情報及びGPS時刻が載せられることを特徴とする請求項1又は2に記載の静止衛星によるデータ収集システム。   3. The data collection system using a geostationary satellite according to claim 1, wherein positioning information based on GPS reception and GPS time are placed on the sensor signal. 前記センサ信号確達信号は更に、前記環境観測センサにおけるセンサ信号の送信タイミングを指示する情報を含むことを特徴とする請求項に記載の静止衛星によるデータ収集システム。 2. The data collection system using a geostationary satellite according to claim 1 , wherein the sensor signal acquisition signal further includes information indicating a transmission timing of the sensor signal in the environmental observation sensor.
JP2011086005A 2011-04-08 2011-04-08 Data collection system by geostationary satellite Active JP5604756B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011086005A JP5604756B2 (en) 2011-04-08 2011-04-08 Data collection system by geostationary satellite
CN201210093053.3A CN102737483B (en) 2011-04-08 2012-03-31 Satellite-based data gathering system
KR1020120035940A KR20120115139A (en) 2011-04-08 2012-04-06 System for collecting data using satellites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011086005A JP5604756B2 (en) 2011-04-08 2011-04-08 Data collection system by geostationary satellite

Publications (2)

Publication Number Publication Date
JP2012221206A JP2012221206A (en) 2012-11-12
JP5604756B2 true JP5604756B2 (en) 2014-10-15

Family

ID=46992894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011086005A Active JP5604756B2 (en) 2011-04-08 2011-04-08 Data collection system by geostationary satellite

Country Status (3)

Country Link
JP (1) JP5604756B2 (en)
KR (1) KR20120115139A (en)
CN (1) CN102737483B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062065A1 (en) 2016-09-30 2018-04-05 Kddi株式会社 Communication terminal, communication method, program for communication, communication system, management device, management method, and communication control method
CN116545498B (en) * 2023-04-14 2023-11-07 北京和德宇航技术有限公司 Satellite data acquisition system, method, equipment and storage medium

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3323447B2 (en) * 1993-01-08 2002-09-09 古野電気株式会社 Data transmission buoy
JP3352964B2 (en) * 1998-12-28 2002-12-03 株式会社近計システム Communication control unit and portable observation device using the same
JP3589193B2 (en) * 2001-05-09 2004-11-17 日本電気株式会社 Meteorological observation device
JP2005291806A (en) * 2004-03-31 2005-10-20 Mitsubishi Electric Corp Radar device
CN101075752A (en) * 2006-05-19 2007-11-21 上海航天卫星应用有限公司 Satellite controlling system of photovoltaic power station
JP2011515725A (en) * 2008-02-05 2011-05-19 ソニー エリクソン モバイル コミュニケーションズ, エービー Communication terminal including graphical bookmark manager
CN201555854U (en) * 2009-12-18 2010-08-18 杭州电子科技大学 Oceanic float sensing monitoring net

Also Published As

Publication number Publication date
KR20120115139A (en) 2012-10-17
CN102737483A (en) 2012-10-17
JP2012221206A (en) 2012-11-12
CN102737483B (en) 2016-07-06

Similar Documents

Publication Publication Date Title
RU2590903C2 (en) Method and system for radio beacon geolocalisation in alarm and rescue system
US7830305B2 (en) Locator beacon system having global communication capability
US9985720B2 (en) Method and system for an internet protocol LNB supporting sensors
ES2607466T3 (en) Accurate absolute time transfer system from a satellite
US9213103B2 (en) Cells obtaining timing and positioning by using satellite systems with high power signals for improved building penetration
JP4582256B2 (en) Communications system
JP6103496B2 (en) Data relay system and data relay method using satellite
US10775495B2 (en) Ground control point device and SAR geodetic system
KR101671516B1 (en) Method for Collecting Position Information for WiFi Positioning System Information and Mobile Communication Terminal for Collecting Position Information
JP2016181862A (en) Radio sensor network system using satellite
JP5604756B2 (en) Data collection system by geostationary satellite
JP6709882B2 (en) Flight information collection system, wireless communication device, repeater, flight information collection method
KR101042961B1 (en) Method and system for monitoring and control of the position of ship
KR20070052066A (en) Gps signal repeater apparatus and gps receiver apparatus of stationary orbit satellite, and method for positioning determination of stationary orbit satellite using it
US9692497B2 (en) Tethered airborne device
Xue et al. A two-tier wireless sensor network infrastructure for large-scale real-time groundwater monitoring
KR20040070847A (en) Automatic identification system and method using pseudo-satellite
JPH08181643A (en) Communication enable time notice system for satellite communication
Lessing et al. Use of the automatic identification system (AIS) on autonomous weather buoys for maritime domain awareness applications
CN111092649B (en) Single big dipper location fairway buoy based on global low orbit satellite communication
JP7477792B2 (en) Antenna direction determination method, wireless communication system and communication device
JP2000332670A (en) Communication system and receiving device for communication in the same system and communication terminal
JP4621977B2 (en) Mobile terminal, communication method and program
Shao et al. Taiwan AIS CubeSat tracking system for marine safety
CN215678790U (en) Navigation scene monitoring system based on GNSS mobile positioning

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140326

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140521

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140723

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5604756

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250