JP5604521B2 - アダプティブコアエンジンの運転方法 - Google Patents

アダプティブコアエンジンの運転方法 Download PDF

Info

Publication number
JP5604521B2
JP5604521B2 JP2012531055A JP2012531055A JP5604521B2 JP 5604521 B2 JP5604521 B2 JP 5604521B2 JP 2012531055 A JP2012531055 A JP 2012531055A JP 2012531055 A JP2012531055 A JP 2012531055A JP 5604521 B2 JP5604521 B2 JP 5604521B2
Authority
JP
Japan
Prior art keywords
compressor
rear block
block
power mode
pressure ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012531055A
Other languages
English (en)
Other versions
JP2013506080A (ja
Inventor
ギフィン,ローリン・ジョージ
パウウェル,ブランドン・フラワーズ
ハリングトン,マーク
ジョンソン,ジェームズ・エドワード
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2013506080A publication Critical patent/JP2013506080A/ja
Application granted granted Critical
Publication of JP5604521B2 publication Critical patent/JP5604521B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/075Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type controlling flow ratio between flows
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/32Application in turbines in gas turbines
    • F05D2220/323Application in turbines in gas turbines for aircraft propulsion, e.g. jet engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Control Of Positive-Displacement Air Blowers (AREA)
  • Control Of Turbines (AREA)

Description

本発明は概してジェット推進エンジンに関し、特に、アダプティブコアエンジンと、これらのエンジンを可変流量条件下でほぼ一定な全体圧力比を維持しながら運転する方法とに関する。
将来的な多目的モーフィング航空機と、推力/重量比が高い比較的旧式の多目的軍用システムは、推進システムに関する多くの課題を提起している。これらは、多様な飛行速度及び高度において、特に、従来のエンジン設計では部分出力効率が低下しかねなかった低出力設定において、効率的な推進運転を必要とする。
多目的用途向けの従来式エンジンサイクル及びエンジン構造を定める際、エンジンを亜音速と超音速とのいずれの飛行条件でも効果的に動作させるためには、ファン圧力比、バイパス比、及び全体圧力比の選択において妥協を余儀なくされる。特に、戦闘機動及び超音速作動に必要な推力を生じ得るエンジンを得るために必要なファン圧力比及び関連のバイパス比の選択は、従来設計のエンジンが高い全体圧力比を維持できない効率的な低出力亜音速飛行には最適ではない。
当該技術分野において、マルチコアエンジンで研究されているコア概念はかなり複雑であり、複数のコアと複数の圧縮機とを有する。これらの複数の圧縮機間における運転の遷移には、複雑な切換えダクトと弁の使用が必要になる。更に、これらのエンジンは、高出力モードから低出力モードへの遷移又はその逆の遷移中のあらゆる動作点で動作できる必要がある。更に、あらゆる中間点において、エンジンが最小SFC(燃料消費率)レベル又はその近辺で動作することが望ましい。冷却空気の圧縮機出口温度に関する制限により、エンジンは高出力モードの全体圧力比以下の全体圧力比で動作することが望ましい。
米国特許第5623823号
そこで、比較的従来的なフレーミング、シーリング、及び軸受設計を維持しながら、可変流量においてほぼ一定の圧力比で動作可能な、単純なコア設計を有するアダプティブコアエンジンを有することが望ましい。アダプティブコアエンジンでは、複数の圧縮機ブロックを動作させることにより、アダプティブコアエンジンを高出力モードと低出力モードとの間で遷移させ、いずれのモードでもバイパスダクト内に逆流を創出することなく、実質的に高い全体圧力比を維持する方法を有することが望ましい。
上記の要求は、本明細書に開示の実施例により満たされる。本明細書に開示の実施例では、アダプティブコアエンジンの圧縮機の運転方法であって、高出力モード運転時に前側ブロック圧縮機を動作させて流体の圧力を第1の圧力比に高めるステップと、前側ブロック圧縮機と後側ブロック圧縮機が同じ物理的速度で動作するように、前側ブロック圧縮機に結合される後側ブロックの圧縮機を動作させるステップと、後側ブロック静翼を閉じて、後側ブロック圧縮機に流入する流体流を実質的に遮断するステップと、高出力モード運転中は、ブロッカードアを開いたままにし、前側ブロック圧縮機により加圧される流体の実質的に全量がバイパス流路を通るようにするステップとを含む方法を提供する。アダプティブコアエンジンの運転モードを高出力モードから低出力モードに遷移させると、後側ブロック圧縮機が前側ブロック圧縮機から流入する流体の少なくとも一部分を受け取って、エンジンの全体圧力比を維持できる。
本発明の態様に従って構成されたアダプティブコアガスタービンエンジンの一部分を示す概略断面図である。 図1に示す典型的なアダプティブコアガスタービンエンジンの運転中の前側ブロック圧縮機及び後側ブロック圧縮機の圧縮機特性図の一例である。 2つの運転モードと、これらの2つの運転モード間の遷移を示す、図1の典型的なアダプティブコアガスタービンエンジンの圧縮機全体の動作特性の一例を示す図である。 ブロッカードアを有するアダプティブコアエンジンの一実施形態の、コア圧縮機の一部分を示す概略断面図である。 ブロッカードアが開いた状態の、図4に示す圧縮機の概略断面図である。 ブロッカードアが閉じた状態の、図4に示す圧縮機の概略断面図である。 図1に示す典型的なアダプティブコアガスタービンエンジンの後側ブロック圧縮機の動作特性の一例を示す図である。 図1に示す典型的なアダプティブコアガスタービンエンジンの前側ブロック圧縮機の動作特性の一例を示す図である。
本明細書の結びの部分において、本発明とみなされる主題を特記し、明確にクレームする。しかし、添付図面に対応する下記の発明を実施するための形態を参照することにより、本発明を最もよく理解できよう。
様々な図面を通して同一の参照符号で同じ要素を示す図面を参照すると、図1は、本発明の態様に従って構成されたアダプティブコアガスタービンエンジンの一部分を示す概略断面図である。図1に示す典型的なアダプティブコアガスタービンエンジン10は、前側ブロック圧縮機30と後側ブロック圧縮機40とを有するアダプティブコア20を含む。前側ブロック圧縮機30は、各段がエンジン中心線軸11の周りに周方向に配置される列状の動翼36を有する1つ以上の圧縮段を含む。列状の動翼36はディスク34又はスプールにより適切に支持される。列状の静翼38は、列状の動翼36から軸方向前方に配置される。しばしば入口案内翼(IGV)132とよばれる列状の静翼134は、前側ブロック圧縮機30の第1のロータ段130から軸方向前方に配置される。前側ブロック圧縮機30のIGV132は、図1に概略的に示すように可変式である。前側ブロック圧縮機30のその他の静翼38も、図1に概略的に示すように可変ステータであってよい。可変ステータでは、非設計点動作時に、例えば段整合等のために圧縮段を通る空気の基本的な流れとその方向とを変動させることができる。入口案内翼(IGV)132は、アクチュエータ133を用いることにより、自身の食違い(取付け角)を選択的に変更できる。当該目的のために、周知の適当なアクチュエータを用いることができる。任意で、一部の段間静翼38が、アクチュエータ39を用いることにより自身の食違い(取付け角)を変更できる。この場合も、当該目的のために、周知の適当なアクチュエータを用いることができる。
図1に概略的に示すアダプティブコア20は、後側ブロック圧縮機40を含む。図1に示す実施例において、後側ブロック圧縮機40は、各段がエンジン中心線軸11の周りに周方向に配置される列状の動翼46を有する1つ以上の段を含む軸流圧縮機である。この列状の動翼は、ディスク又はスプール44により適切に支持される。列状の静翼48が列状の動翼46から軸方向前方に配置される。しばしば後側ブロック入口案内翼(IGV)142とよばれる列状の静翼は、後側ブロック圧縮機40の第1のロータ段140から軸方向前方に配置される。後側ブロック圧縮機40の後側ブロックIGV142は、図1に概略的に示すように可変式である。後側ブロック圧縮機40のその他の静翼も可変ステータ(図1には示さない)であってよい。可変ステータでは、(空気の基本的な流れとその方向とを変動させるために)圧縮段において食違い角を変動させることが可能である。後側ブロック圧縮機40において、入口案内翼(IGV)は、周知のアクチュエータ143を用いることにより、空気流に対する自身の迎え角と自身の開放流路面積とを選択的に変更できる。任意で、段間静翼は、周知の種類のアクチュエータ(図1には示さない)を用いることにより、自身の食違い(取付け角)を選択的に変更可能である。運転中に、アクチュエータ143を用いて後側ブロックIGV142の少なくとも一部分を遷移させることにより、多少のパージ空気流(例えば符号122)を除く、後側ブロック圧縮機40に流入する空気の流れを実質的に阻止できる。後側ブロック40は、パージ空気流122を除く空気流を通さないように、IGVシステム142とアクチュエータ143とを用いてほぼ完全に閉鎖可能であるという点で、「格納可能」である。図1に示す実施例では、前側ブロック圧縮機30及び後側ブロック圧縮機40は、タービン軸42に結合される高圧タービン60により駆動され、タービン軸42は更に圧縮機軸に結合される。
図1には後側ブロック圧縮機40用軸流圧縮機を示すが、本発明の代替実施形態として、後側ブロック圧縮機が遠心圧縮機又は軸流遠心圧縮機であってよい。本明細書に記載する(と共に図1に示す)アダプティブコアの原理及び運転方法は、これらの代替実施形態にも適用可能である。
本明細書に記載するアダプティブコアエンジンは、軸方向前方ブロック(前側ブロック)圧縮機30と後側ブロック圧縮機40とを含むコア圧縮機24を有する。高出力モードの特徴は、コア圧縮機24の前方ブロック30が流れを圧縮し、後側ブロック40が実質的に閉鎖された状態で動作することである。低出力モードの特徴は、前側ブロック30の動作はその最大限のポテンシャルをはるかに下回っているものの、後側ブロック40の動作はその最大限のポテンシャルであることである。後側ブロック40が動作休止状態にあるモードでは、エンジン性能は実質的に従来のターボファンエンジンの性能と同様である。運転モードが切り替わると、後側ブロック40が動作し、前側ブロック30の部分出力運転による前側ブロック30の圧力比の低下によって生じた全体圧力比の不足を補う。後側ブロック40の動作によりモードが変わると、前側ブロック30が動作線に沿って更に遷移すると共に、後側ブロック40において動作線が適切なスケジュールで遷移することにより、エンジン推力が更に低下する。一部の運転モード時(例えば低出力モード時)には、後側ブロック圧縮機40の後の圧力が、後側ブロック圧縮機の前の圧力よりも実質的に高くなって、潜在的な逆流のメカニズムが創出される。このような逆流を防ぐために、バイパス流路154にバイパスドア150を用いる。
後側ブロック圧縮機40に流入する流量について言えば、この流量を制御するメカニズムには、後側ブロック圧縮機の補正速度と、後側ブロック40内の可変ステータ142、48の取付け(食違い)とが含まれる。HP(高圧)圧縮機軸(図1の符号32参照)の物理的速度が一定のときは、前側ブロック30に流入する流量及び前側ブロック圧力比が低下すると、後側ブロック40の補正速度が増加する。その理由は、前側ブロック圧縮機30全体の温度上昇が、前側ブロック圧力比の低下に伴って小さくなるためである。物理的速度が一定の場合、後側ブロックへの流入温度が低下すると、後側ブロック40の補正速度が増加する。高出力モードと低出力モードとの間の遷移は、前側ブロック圧縮機30の可変静翼(図1の符号132、38参照)と後側ブロック圧縮機40の可変静翼(図1の符号142、48参照)とにより促進される。場合によっては、前側ブロックステータがこの遷移の準備として或るスケジュールを辿り、この準備が完了すると、コア圧縮機のモードが遷移し、前側ブロックステータはそれ以上変化しない。
ファンが単一バイパス式から二重バイパス式に既に遷移しているものとして、エンジン10の典型的な過渡運転を以下に説明する。まずコア圧縮機24の高出力モードを出発点として、コア圧縮機24は、低下したコア出口温度及び低下した速度で動作していると仮定する(ファンが二重バイパス式に既に遷移しているため)。しかし、コアは依然として高出力モードにある。このことが意味するのは、高出力モード時には、後側ブロック圧縮機40が、自身の入口案内翼142が完全に閉鎖することにより、運転ループから「外れた」状態に維持されることである。バイパスドア150は、高出力モード時と同様、全開状態で、最初のうちはその状態に保たれる。その後、後側ブロックステータ142、48が開き、後側ブロック40への流入が開始する。後側ブロック40に流入する流れは、バイパスダクトの流れを「奪って」、前側ブロック圧縮機30の動作線を必要に応じて下降又は上昇させることが相俟って、連続となる。遷移のこの時点では、コア圧縮機24の下流の流れ関数がほぼ一定に保たれているため、エンジンの全体圧力比はほぼそのままになっている。この時点では、バイパスドア150が依然として大きく開いており、前側ブロック30の動作線を調節してエンジンの全体圧力比を概ね維持できることがわかる。後側ブロック40は、自身の出発点から高出力モードではなく低出力運転状態で閉塞されたため、遷移のこの時点では、後側ブロック40の動作圧力比は約1.0である。遷移のこの時点では、後側ブロック40からの吐出し圧力は前側ブロック30の吐出し圧力にほぼ等しく、後側ブロック40のステータ142、48は既に開いた状態で、前側ブロック30から到来する流れの全量を取り込む。したがって、バイパスダクト154の正味流量は零となり、エンジン運転に影響を及ぼすことなく安全にバイパスドアを閉じることができる。次に、下流の流れ関数を小さくすることで、後側ブロック40の動作線を上昇させ、エンジン10の全体圧力比を回復する。下流の流れ関数を変えるには、可変高圧タービンノズル64、可変低圧タービンノズル65、及び/又は排気ノズル80を操作する。これで、エンジンの運転状態は、全体設計全圧力比において低出力モードとなる。
例えば本明細書の図示のようなアダプティブコアエンジンの動作時は、最大流量での運転状態において、前側ブロック圧縮機30(図1参照)が、設計速度及び圧力比で動作する。これを図2に概略的に示す(符号200参照)。図2はそれぞれ、例えば図1に示すような典型的なアダプティブコアガスタービンエンジンの運転時の、前側ブロック圧縮機30と後側ブロック圧縮機40の典型的な圧縮機特性図200、210である。図2を参照すると、本例では、前側ブロック圧力比(「PR」)がP2(例えば8.5)の値に設定されており、基準圧縮機流量(「W2」)は約100%(図2の符号204参照)である。後側ブロックIGV142は実質的に閉鎖されており(図2の符号212参照)、制御パージ流122のみが後側ブロック圧縮機40の当該部分を通過する。
この運転モード(即ち、最大流量状態)では、前側ブロック圧縮機流110は、バイパス流路154を通って後側ブロック圧縮機40をバイパスした後、燃焼器58に流入する。一部の用途では、例えば図1に示すような制御面積(可変面積)ディフューザを任意で用いることができる。図1に示す任意の可変面積ディフューザはバッフル120を含み、このバッフル120で、蝶番121の周りで動作し、圧縮機30、40からの流れの拡散を制御できる。アダプティブコアエンジンは、高圧タービン(HPT)60を含む。HPTは、HPタービン動翼61から軸方向前方に配置されるHPT静翼62を含む。HPT静翼62(本明細書ではノズルともいう)は、例えば図1に示すような可変面積式(VATN)のものであってよい。この可変HPT静翼62を用いると、エンジン10の運転中に、周知のアクチュエータ63を使用して流れ形状と流れ関数を変動させることができる。或いは、別の周知の流れ関数変更手段を用いてもよい。図1に示す実施例及び図2で説明する運転時において、HPタービン静翼は、最大圧縮機流量運転時に全開位置にある。推力を低下させるためには、IGV132とその他の前側ブロック圧縮機可変ステータ38とを部分的に閉じることによりロータ速度(rpm)の低下を最小限に抑えて、前側ブロック流量を低下させる。この組み合わせによって、前側ブロック圧縮機30の流量が少ない運転時に、後側ブロック圧縮機40を高速に保って後側ブロック圧縮機の圧力比ポテンシャルを最大限に高めることができる。また、後側ブロック圧縮機40の圧力比を高めるために、後側ブロック圧縮機40の補正設計速度は、前側ブロック圧縮機が低い圧力比レベルで動作している時の前側ブロック圧縮機排気の過給温度に基づく。図2に示す典型的な運転方法において、前側ブロック圧縮機30の運転補正流量は「W1」%(例えば60%)、圧力比は「P1」(例えば4.7)となる。後側ブロック圧縮機40の設計圧力比が「P4」(例えば1.8)であり、そのIGV142が実質的に全開状態(図2の符号214参照)のとき、前側ブロック圧縮機流は、後側ブロック圧縮機を通って(図1の符号124参照)、「W1」(本例では60%)の補正流量で「P2」(本例では4.7×1.8=8.5)に近い全体コア圧力比を生じる。このように圧力比がほぼ一定である一方で可変流量を有する動作モードでは、可変HPT静翼62を部分的に閉じることがある。
図3に、図1に示す典型的なアダプティブコアガスタービンエンジン10の、典型的なアダプティブコア圧縮機20の動作特性の一例を示す。図3は、全体圧縮機流量をX軸に、全体圧力比をY軸に示す動作特性図である。図3は、本明細書の実施例に示す2ブロック式コア圧縮システムに特有の圧縮機動作特性/運転を示す。図3は、一方のモードでは後側ブロック圧縮機40が「開放状態」(前側ブロック圧縮機30は部分閉鎖)にあり、他方のモードでは後側ブロック圧縮機40が「閉鎖状態」(前側ブロック30は規準状態)にある2つのモードにおける圧縮機特性を示す図である。動作線302、312及びストール線300、310は、図3に示すように変化し、例えば図のような遷移線304が得られる。等速線(例えば符号311参照)は、実質的に同じ速度であるが、異なるステータスケジュールを有する。
本明細書で既に述べたように、図2及び3は、本発明に従ったアダプティブコアエンジンの一般的な動作特性を示す図である。高出力モードの特徴は、コア圧縮機24の前側ブロック(FB)30が流れを圧縮し、実質的に閉鎖された状態で後側ブロック(RB)40が動作することである。低出力モードの特徴は、前側ブロック30が自身のポテンシャルをはるかに下回って動作するが、後側ブロック40は自身の最大限のポテンシャルで動作することである。本明細書で用いる場合、「前側ブロック」及び「前方ブロック」という用語は互換的に用いられており、後側ブロック圧縮機40から軸方向前方に配置される前側ブロック圧縮機(図1に符号30として示す)を指す。図4は、例えば図1に符号10として示すようなアダプティブコアエンジンのコア圧縮機24領域の一部分の概念的な概略断面図である。図4に、高出力及び低出力モード運転を重ね合わせた状態で示す。高出力と低出力モード運転との間の遷移は、ブロッカードア150を操作して前側ブロック圧縮機30からの流れの一部を、バイパス流路154を介して後側ブロック圧縮機40の周りにバイパスさせることによって行われる。可変ステータを用いて後側ブロック圧縮機40の流れを制御し、バイパスドア(ブロッカードア)150が一部の動作状態におけるバイパス流路154の逆流を防ぐことがわかる。典型的な設計のひとつにおいて、ブロッカードア150は蝶番151を有し、この蝶番151の周りでブロッカードア150を揺動させることで該ドア150を開放又は閉鎖できる。ブロッカードア150の操作は、周知のアクチュエータを用いて可能である。図5は、図4に示したコア圧縮機24の概略断面図と同じであるが、ブロッカードア150が開き、流れがバイパス流路154に流入する高出力モード運転のみを示す図である。図6は、ブロッカードア150を閉じてバイパス流路154の逆流を防ぎ、前側ブロック圧縮機30からの流れが後側ブロック圧縮機40に流入する低出力モード運転を示す図である。両図には、圧縮機の前側ブロック(FB)30の後段のみ示す。本明細書で用いる場合、「ステータ」及び「静翼」という用語は互換的に用いられており、図1の符号38、132、134、142及び本明細書のその他の図の同様の符号として示すような圧縮機静翼及び入口案内翼等のステータ部品を指す。
図5に示す運転モードでは、前側ブロックステータ132(図1参照)は基準状態にあり、後側ブロックステータ142、48は実質的に閉じている。流路のパージが可能な程度の少量の空気流(図1の符号122参照)のみが後側ブロック40を通過可能である。また、バイパスドア150は完全に開いている。高出力モードでは、前側ブロック30は、空気流と圧力比とのいずれにおいても、その最大限のポテンシャルで動作している。
図6において、前側ブロック静翼38、134は更に閉じた位置にあり、前側ブロック入口補正流量を低減しつつ、補正速度を自身(前側ブロック圧縮機)の設計レベル又はその近辺に維持する。高いスプール速度を維持することで、コアエンジンの低出力モード時に生じる後側ブロック40の配置が促される。低出力モード(図6参照)では、後側ブロックステータ142が実質的に開位置にセットされ、バイパスドア150が実質的に完全に閉じている。後側ブロック40は、低出力モード時の前側圧縮ブロック流の実質的に全量を取り込む。この運転モードでは、前側ブロックステータ38、134が更に閉じるので、後側ブロック40に取り込まれる物理的流量は、高出力モードにおいて後側ブロック40をバイパスする流量レベルよりも少なくなる。しかし、前側ブロックが更に閉じることによって前側ブロック30の圧力比が低下するため、前側ブロック30からの排気補正流量は、下流スロットル領域で測定するとほぼ一定に維持されている。後側ブロック40は、低出力モードにおいてコア圧縮機24の出口圧力を所定のレベルの高出力モードサイクル全体圧力比に戻せる程度の十分な設計圧力比を有する。バイパスドア150の表側又は前方側152の圧力は、前側ブロック30の出口の圧力レベル及びマッハ数で決まる。また、バイパスダクト154には差圧を受ける流体が存在しないため、バイパスドア150の裏側153に対する圧力レベルは、混合面155の静圧によって決まる。一部の動作状態では、ドア150を挟んで、該ドアを閉じる方向の大きな差圧が存在することもある(例えば図6参照)。
(本明細書で図示及び説明するような)アダプティブコアエンジンの典型的な運転方法を、図7及び8を参照して以下に説明する。図7は、後側ブロック圧縮機40の後側ブロック補正流量(RB Wc%)を横軸に、後側ブロック圧力比(RB PR)を縦軸に示した典型的な動作特性図である。図8は、前側ブロック圧縮機30の前側ブロック補正流量(FB Wc%)を横軸に、後側ブロック圧力比(FB PR)を縦軸に示した典型的な動作特性図である。高出力モードで運転を開始した場合(図7の符号172及び図8の符号181に示す動作点を参照)、前側ブロック30は高出力モードで動作し(図8の符号181)、前側ブロックステータ132、134、38(図1参照)が実質的に開いている。図8に符号181として示す動作点は、高推力モードにおける最大出力運転を表す。これは、エンジンが単一バイパスモードにある時である。前側ファンが単一バイパスモードから二重バイパスモードに遷移するときは、前側ブロック圧縮機30が動作点181から動作点182に遷移する。前側ブロック30のステータ(静翼38、132)は幾分閉じるものの、ブロッカードア(バイパスドア)150は開位置のままである。スロットルフックのこの部分では、後側ブロック40は点172(図7参照)で動作し、上記のようにバイパスドア150は開いたままに維持される。後側ブロック圧縮機40のステータ142、48は完全に閉じたままにである。次に、遷移が開始すると、後側ブロックステータ142、48が開いて、最終的に前側ブロック30から到来する流れの全量が後側ブロック40を通り抜けるので、バイパス流路154内のバイパス流はほぼ零まで減少する。この時点で、バイパスドア150が閉じる。後側ブロック40は、この時点で、点172とほぼ同じ圧力比であるが流量は点171とほぼ同じである点173(図7参照)で動作している。その後、下流の流れ関数が低下し(例えば下流タービンノズル63、65面積又は排気ノズル80面積を小さくすることにより)、これによって後側ブロックの動作線が点171に上昇する。バイパス流路の流量は、後側ブロックステータ142、48が点172から173へと開くにつれて低下していく(図7参照)。点172及び点173は、図3に示す全体的な圧縮機動作特性図では1つの動作点272(図3)となる。上述したように、高出力モードでは、パージ流122を通すことを例外として、後側ブロックステータ142(図5参照)が実質的に閉じる。この高出力モードから低出力モードへとエンジン運転モードを遷移させるにあたり、後側ブロックステータ142が徐々に開き、後側ブロック40内の流量が増加する。後側ブロック40をバイパスする流量が実質的に零に達すると、バイパスドア150が閉じる(図6参照)。このプロセスの間、下流の可変面積タービンノズル64(図1参照)は実質的に固定状態に保たれて、後側ブロック圧力比がほぼ一定に維持される。
バイパスドア150が閉じると、後側ブロックの再循環を防止し、下流ノズル62(図1参照)面積が縮小するので、後側ブロック40の圧力比を増加させることができる。HP(高圧タービンシステム)流れ関数とLP(低圧タービンシステム)流れ関数と排気ノズル80の面積「A8」との組合せによって、流れ関数を低減して後側ブロック40の圧力比を増加させることができる。コア圧縮機24の全体圧力比は、前側ブロック30のステータを部分的に閉じて、後側ブロック40の圧力比の増加に比例して前側ブロックの圧力比を低下させることにより、出力を高い設計レベルに維持できる。なお、前側ブロックステータ134、38が部分的に閉鎖した後、後側ブロック40が動き始めるので、航空機が推力を更に低下させることを必要とするまで前側ブロックステータ134、38を更に調節する必要はない。前側ブロックステータ134、38及び後側ブロックステータ142、48が最終的な低出力モード位置に達すると、後側ブロックに必要なより高い圧力比を得るために後側ブロック出口流れ関数が低減され、これで高出力モードから低出力モードへの遷移が完了する。それぞれ後側ブロック40及び前側ブロック30の動作特性図を示す図7及び8を参照されたい。本明細書に記載の前側及び後側ブロック圧縮機の可変静翼/スタータの運転には、単なるIGV(入口案内翼)の操作以上のものが含まれることに注意されたい。IGVに加えて、各圧縮機ブロックの1つ以上の静翼列を、全部が一斉に遷移する可変式としてもよい。図7及び8において、速度線は一定であり、静翼の取付け(食違い)は変動する。
図4、5及び6に安全弁160を概略的に示す。この安全弁160は、何らかの理由で圧縮機動作線の、よって燃焼器58の入口圧力の適正な制御が困難になった場合に用いられる。燃焼器58の入口圧力を制御するためには、安全弁160を開いて流量の一部がバイパス流路154から抽出されるようにする。弁160が開くと、これを通る流れがファンバイパスダクト内に放出され、圧縮機の動作線は下降する。弁160を開くことにより実質的に圧縮機の下流の流れ関数を増加させることができる。
最大推力モードにおいて、アダプティブコアエンジン10は通常、単一及び/又は二重バイパスファンモードで動作する。推力の低下が求められると、燃焼器の出口ガス温度(「T4」)がエンジン排気ノズル80の面積(「A8」)の拡大に伴って低下する。その間、コア圧縮機の補正流量は低下し、前側ブロックステータ38、132はそのスケジュールに従って調節される。コア圧縮機24の運転は依然として高出力モードであるが、推力レベルは低下する。推力が更に低下すると、ファンが二重バイパスモード運転に遷移する。この遷移に伴って、温度「T4」が更に低下する。この間、ステータの変化と共にコア圧縮機補正流量が減少していく一方で、コア圧縮機速度は高速に保たれる。エンジン10は依然として高推力コアモードにあるが、温度T4は既に低下し、コア圧縮機前側ブロック30のステータ38、132はステータスケジュールにより定められるように既に部分的に閉じている。この時点で、コア圧縮機24の高出力モード(後側ブロック圧縮機40をバイパスするモード)から、低出力モードへの遷移を開始することができ、低出力モードでは、後側ブロック40が全ポテンシャルで動作し、バイパス流路154の内側バイパス流が減少するか又は零となる。
要約すると、本発明に従ったガスタービンエンジンの典型的な運転方法は以下のとおりである。この方法は、(1)高出力モード運転時に前側ブロック圧縮機30を動作させて流体の圧力を第1の圧力比に増加させるステップ(図2の符号204参照)と、(2)前側ブロック圧縮機30に結合される後側ブロック圧縮機40を動作させて(図1参照)、前側ブロック圧縮機30と後側ブロック圧縮機40とを同じ物理的速度で動作させるステップと、(3)後側ブロック静翼142、48(図1、4〜6参照)を閉じて、高出力モード運転中は、パージ流(図1の符号122参照)を除く、後側ブロック圧縮機40に流入する流体流を実質的に遮断するステップと、(4)高出力モード運転中は、ブロッカードア150(図4〜6参照)を開いたままで、前側ブロック圧縮機30により加圧される流体の実質的に全量がバイパス流路154を通るようにするステップとを含む。この運転中は、静翼132、134、38をスケジューリングして補正速度をほぼ一定に維持しておくことができる。ガスタービンエンジンが高出力モードで動作している時は、ある一定のステップを行ってエンジン運転を高出力モードから低出力モードに遷移できる。この遷移の準備として、前側ブロック静翼132、134、38を部分的に閉じるステップを実施してもよい。次に、後側ブロック静翼142、48を開くステップを実施して、後側ブロック圧縮機40が前側ブロック圧縮機30から流入する流体の少なくとも一部分を受けるようにする。このステップ中に、後側ブロック静翼142、48が開く。上記のステップを慎重に行い、ブロッカードアを操作して閉位置につけることで、バイパス流路154内の逆流又は後側ブロック圧縮機40での流れの再循環が生じないようにする。更に、例えば可変タービンノズル静翼62、65及び/又は排気ノズル80を用いて、低出力モードにおいて後側ブロック圧縮機40の動作線が上昇して圧力が第2の圧力に増加するように、コア圧縮機の下流の流れ関数を調節する。
エンジン運転モードを高出力モードから低出力モードに遷移させる、この典型的な方法では、ブロッカードア150及び後側ブロック静翼142、48を操作して、遷移後の低出力モードにおける全体圧力比を、遷移前の高出力モードにおける全体圧力比と実質的に同じにする。後側ブロック40の低出力モードへの遷移の準備として、コアは既に最大ポテンシャル圧力比運転(例えば図2のP2)から離脱している。この初期ステップ中は、コア流量が減少(例えば前側ブロック静翼132、38の部分閉鎖)するだけでなく、その圧力比も低下する(図8に符号182で示す点を参照)。後側ブロック40の「低出力」モードへの遷移が開始する動作点は、図8の点182である。後側ブロック圧縮機の高出力モードから低出力モードへの過渡運転中は、可変面積タービンノズル64(図1参照)は実質的に固定位置に維持される。低出力モードへの遷移が完了し、ブロッカードア150が実質的に閉鎖すると、(例えば後側ブロック圧縮機の下流に配置される可変タービンノズル64、65の面積を小さくするステップ等の)後側ブロック圧縮機の下流の流れ関数を小さくするステップを実施することによって、後側ブロック圧力比を増加させることができる。コア圧縮機24の高出力モードから低出力モードへの遷移が完了すると、前側ブロック30は、自身の最大設計能力を下回る点で動作する一方で、後側ブロック40は自身の最大設計能力で動作する。本明細書に記載のアダプティブコア機能及び運転方法は、従来のエンジンにおける部分出力運転に伴う全体圧力比の低下を克服する。上述のように、この方法は、燃焼器に流入する流体の圧力を制御するために必要であれば、安全弁160を開いてバイパス流路154内の流れの一部分を別の場所に逃がす付加的ステップを含んでよい。
本明細書に記載の典型的な遷移プロセスの説明では、最初はエンジンは高出力モードにあり、最後にエンジンは低出力モードとなる。エンジンが低出力モードから遷移を開始して最後にエンジンが高出力モードになる逆の遷移プロセスも同様に可能である。この逆の遷移プロセスのステップは、本明細書に記載のステップを単純に逆にしたものである。
本明細書は、最適な態様を含めた例を用いて本発明を開示しているが、これによって更に、当業者が本発明を構成し使用することができる。本発明の特許請求の範囲は、請求項により定義されるが、当業者に想到可能なその他の例も包含する。こうしたその他の例は、請求項の文言に相違ない構成要素を含む場合、又は請求項の文言と実質的に同等の構成要素を含む場合、特許請求の範囲に含まれるものとする。
単数名詞及び冠詞を伴って列挙された要素又はステップは、別途明記しない限り、複数の要素又はステップを排除するものと解釈されるべきではない。また、本発明の「一実施形態」とは、列挙した特徴を組み込んだ更なる実施形態の存在を排除するものとみなされるべきではない。本明細書に記載の発明を実施するための形態及び図面は、限定ではなく例示を目的とする。

Claims (13)

  1. 圧縮機の運転方法であって、
    高出力モード運転時に前側ブロック圧縮機を動作させて流体の圧力を第1の圧力比に増加させるステップと、
    前記前側ブロック圧縮機に結合される後側ブロック圧縮機を、前記前側ブロック圧縮機と前記後側ブロック圧縮機とが同じ物理的速度で動作するように動作させるステップと、
    後側ブロック静翼を閉じて、前記高出力モード運転中は、パージ流を除く、前記後側ブロック圧縮機に流入する前記流体流を実質的に遮断するステップと、
    前記高出力モード運転中は、ブロッカードアを開いたままにして、前記前側ブロック圧縮機により加圧される前記流体の実質的に全量がパイパス流路を通るようにするステップと、を含む方法。
  2. 前側ブロック圧縮機静翼を実質的に開いたままに保つステップを更に含む、請求項1に記載の方法。
  3. 前記前側ブロック圧縮機静翼が、前記前側ブロックの補正速度をほぼ一定に保つようにスケジューリングされる、請求項2に記載の方法。
  4. 後側ブロック静翼を開いて、前記後側ブロック圧縮機で前記前側ブロック圧縮機から流入する前記流体の少なくとも一部分を受けることにより、前記後側ブロック圧縮機の運転を前記高出力モードから低出力モードに遷移させるステップを更に含む、請求項1に記載の方法。
  5. 前記遷移させるステップが、前記ブロッカードアを実質的に閉じるステップを含む、請求項に記載の方法。
  6. 前記ブロッカードアを操作して閉位置につけることで、前記バイパス流路内の逆流をなくす、請求項5に記載の方法。
  7. 前記ブロッカードアを操作して閉位置につけることで、前記後側ブロック圧縮機内での流れの再循環をなくす、請求項3に記載の方法。
  8. 遷移後の前記低出力モード時の全体圧力比が前記遷移前の前記高出力モード時の前記全体圧力比と実質的に同じになるように、前記ブロッカードアと後側ブロック静翼と前側ブロック静翼とを操作する、請求項5に記載の方法。
  9. 前記高出力モードから前記低出力モードへの前記遷移中は、可変面積タービンノズルが実質的に固定位置に維持される、請求項4に記載の方法。
  10. 前記後側ブロック圧縮機の下流に配置される可変面積高出力タービンノズルの面積を縮小することにより、前記後側ブロックの圧力比を増加させるステップを更に含む、請求項5に記載の方法。
  11. 前記後側ブロック圧縮機の下流に配置される可変面積低出力タービンノズルの面積を縮小することにより、前記後側ブロックの圧力比を増加させるステップを更に含む、請求項5に記載の方法。
  12. 前記後側ブロック圧縮機の下流に配置される排気ノズルの面積を縮小することにより、前記後側ブロックの圧力比を増加させるステップを更に含む、請求項5に記載の方法。
  13. 安全弁を開いて前記バイパス流路内の流れの一部分を逃がすステップを更に含む、請求項1に記載の方法。
JP2012531055A 2009-09-25 2010-09-24 アダプティブコアエンジンの運転方法 Expired - Fee Related JP5604521B2 (ja)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US24607809P 2009-09-25 2009-09-25
US61/246,078 2009-09-25
US24775209P 2009-10-01 2009-10-01
US61/247,752 2009-10-01
US12/871,073 2010-08-30
US12/871,073 US8622687B2 (en) 2009-09-25 2010-08-30 Method of operating adaptive core engines
PCT/US2010/050149 WO2011038196A1 (en) 2009-09-25 2010-09-24 Method of operating adaptive core engines

Publications (2)

Publication Number Publication Date
JP2013506080A JP2013506080A (ja) 2013-02-21
JP5604521B2 true JP5604521B2 (ja) 2014-10-08

Family

ID=43780598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012531055A Expired - Fee Related JP5604521B2 (ja) 2009-09-25 2010-09-24 アダプティブコアエンジンの運転方法

Country Status (5)

Country Link
US (1) US8622687B2 (ja)
EP (1) EP2480769B1 (ja)
JP (1) JP5604521B2 (ja)
CA (1) CA2775142A1 (ja)
WO (1) WO2011038196A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015069334A2 (en) * 2013-08-07 2015-05-14 United Technologies Corporation Variable area turbine arrangement for a gas turbine engine
US9869190B2 (en) 2014-05-30 2018-01-16 General Electric Company Variable-pitch rotor with remote counterweights
US10072510B2 (en) 2014-11-21 2018-09-11 General Electric Company Variable pitch fan for gas turbine engine and method of assembling the same
US10100653B2 (en) 2015-10-08 2018-10-16 General Electric Company Variable pitch fan blade retention system
US10253648B2 (en) 2016-03-04 2019-04-09 General Electric Company Modulated hybrid variable area turbine nozzle for gas turbine engine
US10137981B2 (en) * 2017-03-31 2018-11-27 General Electric Company Electric propulsion system for an aircraft
CN112392628B (zh) * 2019-08-15 2022-07-12 中国航发商用航空发动机有限责任公司 航空发动机核心机、控制方法和航空发动机
FR3101671B1 (fr) * 2019-10-04 2022-05-06 Safran Aircraft Engines Turbomachine comportant des moyens de réduction du débit d’air de la veine primaire pilotés par des moteurs électriques
US11674435B2 (en) 2021-06-29 2023-06-13 General Electric Company Levered counterweight feathering system
US11795964B2 (en) 2021-07-16 2023-10-24 General Electric Company Levered counterweight feathering system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3296800A (en) 1967-01-10 Gas turbine power plant
CA1020365A (en) 1974-02-25 1977-11-08 James E. Johnson Modulating bypass variable cycle turbofan engine
US4010608A (en) * 1975-06-16 1977-03-08 General Electric Company Split fan work gas turbine engine
DE2834860A1 (de) * 1978-08-09 1980-03-13 Motoren Turbinen Union Verstellbarer stroemungsteiler fuer stroemungsmaschinen, insbesondere gasturbinenstrahltriebwerke
US5775092A (en) * 1995-11-22 1998-07-07 General Electric Company Variable size gas turbine engine
US5623823A (en) * 1995-12-06 1997-04-29 United Technologies Corporation Variable cycle engine with enhanced stability
US5809772A (en) 1996-03-29 1998-09-22 General Electric Company Turbofan engine with a core driven supercharged bypass duct
US6981842B2 (en) * 2003-07-22 2006-01-03 Honeywell International, Inc. Bleed valve system
US7140174B2 (en) 2004-09-30 2006-11-28 General Electric Company Methods and apparatus for assembling a gas turbine engine
US7926290B2 (en) * 2006-12-18 2011-04-19 General Electric Company Turbine engine with modulated flow fan and method of operation
US7877980B2 (en) * 2006-12-28 2011-02-01 General Electric Company Convertible gas turbine engine

Also Published As

Publication number Publication date
EP2480769A1 (en) 2012-08-01
WO2011038196A1 (en) 2011-03-31
US20110076158A1 (en) 2011-03-31
US8622687B2 (en) 2014-01-07
CA2775142A1 (en) 2011-03-31
JP2013506080A (ja) 2013-02-21
EP2480769B1 (en) 2015-06-03

Similar Documents

Publication Publication Date Title
JP5604521B2 (ja) アダプティブコアエンジンの運転方法
JP5681721B2 (ja) 適応コアエンジン
JP5514354B2 (ja) 流量調節ファンを備えたタービンエンジンとその動作方法
US20110167791A1 (en) Convertible fan engine
US20110167792A1 (en) Adaptive engine
JP5121440B2 (ja) コンバーチブルガスタービンエンジン
EP2589777B1 (en) Gas turbine engine with intercooling turbine section
EP2587027B1 (en) Gas turbine engine with intercooling turbine section
EP2157305A2 (en) Gas turbine engine with variable area fan nozzle
US20170058783A1 (en) Gas turbine engine hybrid variable bleed valve
US8777554B2 (en) Intermediate fan stage
JP2008163947A (ja) 流れ再循環を備えた圧縮システムの操作線制御
US5680754A (en) Compressor splitter for use with a forward variable area bypass injector
US20110150627A1 (en) Method of operating a fan system
EP2336522B1 (en) Intermediate fan stage
US8596076B1 (en) Variable pressure ratio gas turbine engine
JP6059861B2 (ja) ガスタービンエンジン、及び、ガスタービンエンジンを作動させる方法
JP2011127598A (ja) 動力抽出システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140825

R150 Certificate of patent or registration of utility model

Ref document number: 5604521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees