JP5603444B2 - Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility - Google Patents

Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility Download PDF

Info

Publication number
JP5603444B2
JP5603444B2 JP2013010285A JP2013010285A JP5603444B2 JP 5603444 B2 JP5603444 B2 JP 5603444B2 JP 2013010285 A JP2013010285 A JP 2013010285A JP 2013010285 A JP2013010285 A JP 2013010285A JP 5603444 B2 JP5603444 B2 JP 5603444B2
Authority
JP
Japan
Prior art keywords
phase
voltage
insulation
solar cell
insulation resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013010285A
Other languages
Japanese (ja)
Other versions
JP2014062883A (en
Inventor
渉二 宮脇
正人 梅村
延行 桑原
Original Assignee
一般財団法人中部電気保安協会
マルチ計測器株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人中部電気保安協会, マルチ計測器株式会社 filed Critical 一般財団法人中部電気保安協会
Priority to JP2013010285A priority Critical patent/JP5603444B2/en
Publication of JP2014062883A publication Critical patent/JP2014062883A/en
Application granted granted Critical
Publication of JP5603444B2 publication Critical patent/JP5603444B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Photovoltaic Devices (AREA)

Description

本発明は、発電状態のままで絶縁測定(ないし診断:以下「測定」として表記する。)ができるようにした太陽光発電設備の絶縁測定装置及び太陽光発電設備の絶縁測定方法に関するものである。   The present invention relates to an insulation measuring device for a photovoltaic power generation facility and an insulation measuring method for the photovoltaic power generation facility that can perform insulation measurement (or diagnosis: hereinafter referred to as “measurement”) while the power generation state is maintained. .

従来、太陽光電池パネルと、この太陽光電池パネルから出力される直流電圧が入力される中継端子箱及びパワーコンディショナとを備えた太陽光発電設備が提案されている。   Conventionally, a photovoltaic power generation facility including a photovoltaic panel, a relay terminal box to which a DC voltage output from the photovoltaic panel is input, and a power conditioner has been proposed.

このような太陽光発電設備においては、太陽光電池パネルからパワーコンディショナに至る直流回路において漏電が発生すると、正常な発電ができないほか、漏電火災、感電事故に至ることがあるため、直流回路の絶縁測定を行う必要がある。   In such a photovoltaic power generation facility, if a leakage occurs in the DC circuit from the photovoltaic panel to the power conditioner, normal power generation may not be possible, and an earth leakage fire or electric shock accident may occur. It is necessary to make a measurement.

このような絶縁測定は、例えば特許文献1に記載されているように、太陽光発電パネルに覆いを施すか、または、短絡させてから、サージアブソーバを外して行う必要がある。   For example, as described in Patent Document 1, it is necessary to perform such insulation measurement by covering the solar power generation panel or by short-circuiting and then removing the surge absorber.

特開2011−127983号公報JP 2011-122793 A

ところで、前述したような絶縁測定には、危険を伴うばかりか、大きな手間がかかっていた。今後の太陽光発電設備の普及のためには、絶縁測定が簡便に行えるようにすることが望まれる。すなわち、サージアブソーバを外して覆いを施したり、短絡させることなく、発電状態のままで、直流回路の絶縁測定が可能な太陽光発電設備の絶縁測定装置及び太陽光発電設備の絶縁測定方法の開発が望まれている。   By the way, the insulation measurement as described above is not only dangerous but also takes a lot of work. In order to spread solar power generation equipment in the future, it is desirable to make it possible to easily perform insulation measurement. In other words, the development of an insulation measurement device for photovoltaic power generation equipment and an insulation measurement method for photovoltaic power generation equipment that can measure the insulation of a DC circuit in the power generation state without removing the surge absorber and covering or short-circuiting. Is desired.

そこで、本発明は、上述の実情に鑑みて提案されるものであって、絶縁抵抗計のような測定前の処置を要せずに、発電状態のままで、抵抗間の電圧を測定することによって、絶縁測定ができるようにした太陽光発電設備の絶縁測定装置及び太陽光発電設備の絶縁測定方法を提供することを目的とする。   Therefore, the present invention is proposed in view of the above-described circumstances, and measures the voltage between the resistors in the power generation state without requiring a pre-measurement process such as an insulation resistance meter. It is an object of the present invention to provide an insulation measuring device for a photovoltaic power generation facility and an insulation measuring method for the photovoltaic power generation facility that enable insulation measurement.

本発明は、上記課題を解決するために提案されたものであって、第1の発明(請求項1記載の発明)に係る太陽光発電設備の絶縁測定装置は、以下の構成を有するものである。   This invention is proposed in order to solve the said subject, Comprising: The insulation measuring apparatus of the photovoltaic power generation equipment which concerns on 1st invention (invention of Claim 1) has the following structures. is there.

〔構成1〕
複数の太陽電池モジュールが接続されてなる太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧とを切替えて測定する測定手段と、測定手段を制御するとともに測定手段による測定結果に関する演算を行う制御手段とを備え、太陽光電池パネルが発電状態のままで、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出し、P相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別することを特徴とするものである。
の発明(請求項記載の発明)に係る太陽光発電設備の絶縁測定装置は、以下の構成を有するものである。
〔構成
複数の太陽電池モジュールが接続されてなる太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧とを切替えて測定する測定手段と、測定手段を制御するとともに、測定手段による測定結果に関する演算を行う制御手段とを備え、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出することにより、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相の絶縁抵抗の低下と、直流回路におけるN相の絶縁抵抗の低下とを、太陽光電池パネルが発電状態のままで、区別して検出するとともにP相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別することを特徴とするものである。
[Configuration 1]
The voltage output from the photovoltaic panel to which a plurality of photovoltaic modules are connected is input, and the power supply side that opens the circuit breaker in the relay terminal box or power conditioner with a built-in circuit breaker is installed. The generated voltage between the P phase and the N phase and the generated voltage between the P phase and the N phase on the power source side which opens the circuit breaker and the ground voltage via the measuring resistor of the P phase terminal and the N phase terminal A measuring means for switching and measuring the ground voltage via the measuring instrument resistance, and a control means for controlling the measuring means and performing an operation related to the measurement result by the measuring means, with the photovoltaic panel remaining in the power generation state, The insulation resistance is calculated by performing an operation including the difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable, the insulation resistance of the P phase is Rgp, the insulation resistance of the N phase is Rgn, and β = Rgp / Rgn When the generated voltage of each solar cell module is V, the voltage when the ground is viewed from the N-phase terminal is V NE , the voltage when the P-phase terminal is viewed from the ground is V PE, and V PE : V NE = α If the value of β does not match any of the possible values of α determined by the number of connected solar cell modules, both the P-phase and N-phase in the DC circuit from the solar cell panel to the circuit breaker for wiring are used. It is determined that the insulation resistance of the phase is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced .
The insulation measuring apparatus for photovoltaic power generation facilities according to the second invention (the invention according to claim 2 ) has the following configuration.
[Configuration 2 ]
The voltage output from the photovoltaic panel to which a plurality of photovoltaic modules are connected is input, and the power supply side that opens the circuit breaker in the relay terminal box or power conditioner with a built-in circuit breaker is installed. The generated voltage between the P phase and the N phase and the generated voltage between the P phase and the N phase on the power source side which opens the circuit breaker and the ground voltage via the measuring resistor of the P phase terminal and the N phase terminal Measuring means for switching and measuring the ground voltage via the measuring instrument resistance, and a control means for controlling the measuring means and performing calculation related to the measurement result by the measuring means, and the measurement result of the generated voltage and the ground voltage By calculating the insulation resistance by performing a calculation including the difference from the measurement result as a variable, the decrease in the P-phase insulation resistance in the DC circuit from the photovoltaic panel to the circuit breaker and the DC circuit A reduction in the insulation resistance of the N-phase in, while solar cell panel is in the power generation state, and detects distinguished, the insulation resistance of the P phase Rgp, and Rgn the insulation resistance of the N phase, and beta = Rgp / Rgn When the generated voltage of each solar cell module is V, the voltage when the ground is viewed from the N-phase terminal is V NE , the voltage when the P-phase terminal is viewed from the ground is V PE, and V PE : V NE = α If the value of β does not match any of the possible values of α determined by the number of connected solar cell modules, both the P-phase and N-phase in the DC circuit from the solar cell panel to the circuit breaker for wiring are used. It is determined that the insulation resistance of the phase is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced .

また、第の発明(請求項記載の発明)に係る太陽光発電設備の絶縁測定方法は、以下の構成を有するものである。 The insulating method of measuring the solar power generation facility according to the third invention (invention described in claim 3) are those having the following structure.

〔構成
複数の太陽電池モジュールが接続されてなる太陽光電池パネルと、太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナとを備えた太陽光発電設備の絶縁測定方法であって、太陽光電池パネルが発電状態のままで、中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定し、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出し、P相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別することを特徴とするものである。
の発明(請求項記載の発明)に係る太陽光発電設備の絶縁測定方法は、以下の構成を有するものである。
〔構成
複数の太陽電池モジュールが接続されてなる太陽光電池パネルと、太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナとを備えた太陽光発電設備の絶縁測定方法であって、太陽光電池パネルが発電状態のままで、中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定し、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出することにより、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相の絶縁抵抗の低下と、直流回路におけるN相の絶縁抵抗の低下とを、区別して検出するとともにP相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別することを特徴とするものである。
[Configuration 3 ]
Photovoltaic power generation comprising a solar cell panel to which a plurality of solar cell modules are connected, and a relay terminal box or power conditioner in which a voltage output from the solar cell panel is input and a circuit breaker for wiring is incorporated A method for measuring insulation of equipment, wherein a photovoltaic panel remains in a power generation state and a power generation voltage between a P phase and an N phase on the power source side in which a circuit breaker in a relay terminal box or a power conditioner is opened, and A ground voltage via the resistance of the P-phase terminal, a generated voltage between the P-phase and the N-phase on the power source side where the circuit breaker is opened, and a ground voltage via the resistance of the N-phase terminal. The insulation resistance is calculated by performing a calculation including the difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable, and the insulation resistance of the P phase is Rgp and the insulation resistance of the N phase is Rgn And β = and gp / Rgn, V the voltage generated by the solar cell modules, N phase voltage seen the earth from the terminal V NE, the voltage viewed P-phase terminal from the earth and V PE, V PE: and V NE = alpha If the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, the P phase in the DC circuit from the solar cell panel to the circuit breaker It is determined that the insulation resistance of both phases of the N phase is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between solar cell modules is reduced. Is.
An insulation measurement method for a photovoltaic power generation facility according to a fourth invention (invention of claim 4 ) has the following configuration.
[Configuration 4 ]
Photovoltaic power generation comprising a solar cell panel to which a plurality of solar cell modules are connected, and a relay terminal box or power conditioner in which a voltage output from the solar cell panel is input and a circuit breaker for wiring is incorporated A method for measuring insulation of equipment, wherein a photovoltaic panel remains in a power generation state and a power generation voltage between a P phase and an N phase on the power source side in which a circuit breaker in a relay terminal box or a power conditioner is opened, and A ground voltage via the resistance of the P-phase terminal, a generated voltage between the P-phase and the N-phase on the power source side where the circuit breaker is opened, and a ground voltage via the resistance of the N-phase terminal. To measure the insulation resistance by calculating the difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable, from the photovoltaic panel to the circuit breaker for wiring And reduction in the insulation resistance of the P-phase in the flow circuit, and a reduction in the insulation resistance of the N-phase in the DC circuit, and thereby detected separately, Rgp the insulation resistance of the P-phase, and Rgn the insulation resistance of the N-phase, beta = Rgp / Rgn, the generated voltage of each solar cell module is V, the voltage when the ground is viewed from the N-phase terminal is V NE , the voltage when the P-phase terminal is viewed from the ground is V PE, and V PE : V NE = α If the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, the P phase in the DC circuit from the solar cell panel to the circuit breaker It is determined that the insulation resistance of both phases of the N phase is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between solar cell modules is reduced. Is.

上記第1の発明(請求項1記載の発明)に係る太陽光発電設備の絶縁測定装置においては、上記構成1を有することにより、太陽光電池パネルが発電状態のままで、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出し、P相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別するので、発電状態のままで、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と、太陽電池モジュール間の絶縁抵抗の低下とを、区別して検出することができる。
上記第2の発明(請求項2記載の発明)に係る太陽光発電設備の絶縁測定装置においては、上記構成2を有することにより、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出することにより、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相の絶縁抵抗の低下と、直流回路におけるN相の絶縁抵抗の低下とを、太陽光電池パネルが発電状態のままで、区別して検出するとともにP相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別するので、発電状態のままで、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と、太陽電池モジュール間の絶縁抵抗の低下とを、区別して検出することができる。
In the insulation measuring apparatus of the photovoltaic power generation facility according to the first invention (the invention according to claim 1), by having the configuration 1, the photovoltaic panel remains in the power generation state and the measurement result of the generated voltage The insulation resistance is calculated by performing a calculation including the difference from the measurement result of the ground voltage as a variable. The insulation resistance of the P phase is Rgp, the insulation resistance of the N phase is Rgn, and β = Rgp / Rgn. When the generated voltage of the module is V, the voltage when the ground is seen from the N-phase terminal is V NE , the voltage when the P-phase terminal is seen from the ground is V PE, and V PE : V NE = α, it is connected in series. If the value of β does not match any of the possible values of α determined by the number of solar cell modules, the insulation resistance of both the P-phase and N-phase in the DC circuit from the solar cell panel to the circuit breaker for wiring It is determined that the If the value of β matches any of the possible values, it is determined that the insulation resistance between the solar cell modules is reduced. Therefore, in the DC circuit from the solar cell panel to the circuit breaker in the power generation state A decrease in the insulation resistance of both the P phase and the N phase and a decrease in the insulation resistance between the solar cell modules can be detected separately .
In the insulation measuring apparatus for a photovoltaic power generation facility according to the second invention (the invention described in claim 2), by having the configuration 2, the difference between the measurement result of the generated voltage and the measurement result of the ground voltage is a variable. By calculating the insulation resistance by performing an operation including: a decrease in the P-phase insulation resistance in the DC circuit from the photovoltaic panel to the circuit breaker for wiring, and a decrease in the N-phase insulation resistance in the DC circuit, while photovoltaic panels of the power generation state, and detects distinguished, Rgp the insulation resistance of the P phase, and Rgn the insulation resistance of the N-phase, beta = a Rgp / Rgn, the generated voltage of the solar cell modules V, the voltage seen the earth from N-phase terminal V NE, the voltage viewed P-phase terminal from the earth and V PE, V PE: when the V NE = alpha, the number of solar cell modules connected in series If the value of β does not match any of the possible values of α, it is determined that the insulation resistance of both the P-phase and the N-phase in the DC circuit from the photovoltaic panel to the circuit breaker is reduced, If the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced. Therefore, the direct current from the photovoltaic panel to the circuit breaker is maintained in the power generation state. A decrease in the insulation resistance of both the P-phase and N-phase in the circuit and a decrease in the insulation resistance between the solar cell modules can be detected separately .

また、上記第の発明(請求項5記載の発明)に係る太陽光発電設備の絶縁測定方法においては、構成を有することにより、太陽光電池パネルが発電状態のままで、中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定し、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出し、P相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別するので、発電状態のままで、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と、太陽電池モジュール間の絶縁抵抗の低下とを、区別して検出することができる。
上記第の発明(請求項6記載の発明)に係る太陽光発電設備の絶縁測定方法においては、構成を有することにより、太陽光電池パネルが発電状態のままで、中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定し、発電電圧の測定結果と対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出することにより、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相の絶縁抵抗の低下と、直流回路におけるN相の絶縁抵抗の低下とを、区別して検出するとともにP相の絶縁抵抗をRgp、N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、各太陽電池モジュールの発生電圧をV、N相端子から大地を見た電圧をV NE 、大地からP相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、太陽電池モジュール間の絶縁抵抗の低下と判別するので、発電状態のままで、太陽光電池パネルから配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と、太陽電池モジュール間の絶縁抵抗の低下とを、区別して検出することができる。
Moreover, in the insulation measuring method of the photovoltaic power generation facility according to the third invention (invention of claim 5), by having the configuration 3 , the photovoltaic panel remains in the power generation state and the relay terminal box or power The generated voltage between the P-phase and N-phase on the power supply side that opened the circuit breaker in the conditioner and the ground voltage via the measuring instrument resistance of the P-phase terminal, and the power-supply side that opened the circuit breaker Measures by switching between the generated voltage between the P phase and the N phase and the ground voltage via the measuring instrument resistance of the N phase terminal, and includes the difference between the measured result of the generated voltage and the measured result of the ground voltage as a variable. By calculating, the insulation resistance is calculated , the insulation resistance of the P phase is Rgp, the insulation resistance of the N phase is Rgn, β = Rgp / Rgn, the generated voltage of each solar cell module is V, the ground from the N phase terminal look at the P-phase terminal of the voltage seen by the V NE, from the earth The voltage and V PE, V PE: when the V NE = alpha, unless the value of to both β of possible values of alpha determined by the number of solar cell modules connected in series are matched, solar batteries It is determined that the insulation resistance of both the P-phase and N-phase in the DC circuit from the panel to the circuit breaker is lowered, and if the value of β matches one of the possible values of α, the solar cell module Since it is determined that the insulation resistance between the two is reduced, the insulation resistance between the P-phase and the N-phase in the DC circuit from the photovoltaic panel to the circuit breaker in the power generation state is reduced. A decrease in insulation resistance can be detected separately .
In the insulation measuring method of the photovoltaic power generation facility according to the fourth invention (invention of claim 6), by having the configuration 4 , the photovoltaic panel remains in the power generation state, and the relay terminal box or the power conditioner is provided. The power generation voltage between the P-phase and N-phase on the power supply side with the open circuit breaker inside and the ground voltage via the measuring instrument resistance of the P-phase terminal, and the P-phase on the power supply side with the wiring breaker open The calculation includes the difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable by switching between the generated voltage between the N-phase and the ground voltage via the measuring instrument resistance of the N-phase terminal. by calculating the insulation resistance by making the reduction in the insulation resistance of the P-phase in the DC circuit from the solar battery panel in MCCB, a decrease in the insulation resistance of the N-phase in the DC circuit and detected separately Along with the P phase The insulation resistance is Rgp, the N-phase insulation resistance is Rgn, β = Rgp / Rgn, the generated voltage of each solar cell module is V, the voltage seen from the N-phase terminal is V NE , and the ground-to-P phase terminal is When the observed voltage is V PE and V PE : V NE = α, if the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, It is determined that the insulation resistance of both the P-phase and N-phase in the DC circuit from the photovoltaic panel to the circuit breaker is reduced, and if the value of β matches one of the possible values of α, Since it is determined that the insulation resistance between the battery modules is reduced, the insulation resistance of both the P-phase and the N-phase in the DC circuit from the photovoltaic panel to the circuit breaker in the power generation state is reduced, and the solar cell module Distinguishing the decrease in insulation resistance between It can be out.

すなわち、本発明は、絶縁抵抗計のような測定前の処置を要せずに、発電状態のままで、抵抗間の電圧を測定することによって、絶縁測定ができるようにした太陽光発電設備の絶縁測定装置及び太陽光発電設備の絶縁測定方法を提供することができるものである。   That is, the present invention does not require a pre-measurement treatment such as an insulation resistance meter, and is a photovoltaic power generation facility that can measure insulation by measuring the voltage between the resistors while in the power generation state. It is possible to provide an insulation measuring device and an insulation measuring method for a photovoltaic power generation facility.

本発明に係る太陽光発電設備の絶縁測定装置及び太陽光発電設備の構成を示す回路図である。It is a circuit diagram which shows the structure of the insulation measuring apparatus of solar power generation equipment which concerns on this invention, and solar power generation equipment. 本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、P相の絶縁低下による漏電が起こった状態を示す回路図である。It is a circuit diagram which shows the state in which the electric leakage by the insulation fall of P phase occurred in the solar power generation equipment to which the insulation measuring apparatus of the solar power generation equipment which concerns on this invention was connected. 本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、N相の絶縁低下による漏電が起こった状態を示す回路図である。It is a circuit diagram which shows the state in which the electric leakage by the N-phase insulation fall occurred in the solar power generation equipment to which the insulation measuring apparatus of the solar power generation equipment which concerns on this invention was connected. 本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、P相及びN相の絶縁低下による漏電が起こった状態を示す回路図である。It is a circuit diagram which shows the state in which the electric leakage by the insulation fall of P phase and N phase occurred in the solar power generation equipment to which the insulation measuring apparatus of the solar power generation equipment which concerns on this invention was connected. 本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、太陽電池モジュール間にて絶縁低下による漏電が起こった状態を示す回路図である。It is a circuit diagram which shows the state in which the electrical leakage by the insulation fall occurred between solar cell modules in the photovoltaic power generation equipment to which the insulation measuring apparatus of the photovoltaic power generation equipment which concerns on this invention was connected. 太陽光電池パネルの構成例(9直列×3並列)を示す平面図である。It is a top view which shows the structural example (9 series x 3 parallel) of a photovoltaic cell panel. 本発明に係る太陽光発電設備の絶縁測定方法による絶縁抵抗測定の手順を示すフローチャートである。It is a flowchart which shows the procedure of the insulation resistance measurement by the insulation measuring method of the photovoltaic power generation equipment which concerns on this invention.

以下、本発明に係る太陽光発電設備の絶縁測定装置及び太陽光発電設備の絶縁測定方法の実施の形態について、図面を参照しながら説明する。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of an insulation measuring device for a photovoltaic power generation facility and an insulation measuring method for a photovoltaic power generation facility according to the present invention will be described with reference to the drawings.

図1は、本発明に係る太陽光発電設備の絶縁測定装置及び太陽光発電設備の構成を示す回路図である。   FIG. 1 is a circuit diagram showing a configuration of an insulation measuring apparatus for a photovoltaic power generation facility and a photovoltaic power generation facility according to the present invention.

本発明に係る太陽光発電設備の絶縁測定装置は、本発明に係る太陽光発電設備の絶縁測定方法を実行するものである。本発明に係る太陽光発電設備の絶縁測定装置が接続される太陽光発電設備は、図1に示すように、複数の太陽電池モジュールが接続されてなる太陽光電池パネル1と、太陽光電池パネル1から出力される電圧が入力される中継端子箱2とを備えている。太陽光電池パネル1のP側(+側)端子1pは、中継端子箱2内において、ダイオード3を経て、MCCB(Molded Case Circuit
Breaker:配線用遮断器)4のP相端子4pに接続されている。太陽光電池パネル1のN側(−側)端子1nは、中継端子箱2内において、MCCB4のN相端子4nに接続されている。
なお、MCCBは、パワーコンディショナ内に内蔵されている場合もある。この場合にも、太陽光電池パネル1のP側(+側)端子1pは、パワーコンディショナ内のMCCBのP相端子に接続され、太陽光電池パネル1のN側(−側)端子1nは、パワーコンディショナ内のMCCBのN相端子に接続されている。
The insulation measuring apparatus for photovoltaic power generation facilities according to the present invention executes the insulation measuring method for photovoltaic power generation facilities according to the present invention. As shown in FIG. 1, a solar power generation facility to which an insulation measuring device for a solar power generation facility according to the present invention is connected includes a solar cell panel 1 to which a plurality of solar cell modules are connected, and a solar cell panel 1. And a relay terminal box 2 to which an output voltage is input. The P side (+ side) terminal 1p of the photovoltaic cell panel 1 passes through the diode 3 in the relay terminal box 2, and is then connected to the MCCB (Molded Case Circuit).
Breaker (wiring circuit breaker) 4 is connected to the P-phase terminal 4p. The N-side (-side) terminal 1n of the solar battery panel 1 is connected to the N-phase terminal 4n of the MCCB 4 in the relay terminal box 2.
The MCCB may be built in the power conditioner. Also in this case, the P side (+ side) terminal 1p of the solar cell panel 1 is connected to the P phase terminal of MCCB in the power conditioner, and the N side (− side) terminal 1n of the solar cell panel 1 is connected to the power. It is connected to the MCCB N-phase terminal in the conditioner.

そして、本発明に係る太陽光発電設備の絶縁測定装置においては、MCCB4を開放した電源側のP相とN相との間の電圧(太陽光電池パネル1の発電電圧)と、P相端子4pの測定器抵抗Rを介した対地電圧と、MCCB4を開放した電源側のN相端子4nの測定器抵抗Rを介した対地電圧とを測定する測定手段となる測定部5を備えている。この測定部5は、P相とN相との間の電圧を測定する発電電圧測定部8を有している。また、この測定部5は、測定器抵抗Rの一端側をP相端子4pに接続させる状態と、測定器抵抗Rの一端側をN相端子4nに接続させる状態とを切替える切替スイッチ6を有するとともに、測定器抵抗Rの両端間の電圧を測定する対地間電圧測定部を有している。測定器抵抗Rの他端側は、接地されている。
なお、MCCBがパワーコンディショナ内に内蔵されている場合には、測定部5は、パワーコンディショナ内のMCCBを開放した電源側のP相とN相との間の電圧と、P相端子の測定器抵抗Rを介した対地電圧と、MCCBを開放した電源側のN相端子の測定器抵抗Rを介した対地電圧とを測定する。
And in the insulation measuring apparatus of the photovoltaic power generation facility according to the present invention, the voltage (power generation voltage of the photovoltaic panel 1) between the P phase and the N phase on the power source side where the MCCB 4 is opened, and the P phase terminal 4p A measuring unit 5 is provided as a measuring means for measuring the ground voltage via the measuring instrument resistance R and the ground voltage via the measuring instrument resistance R of the N-phase terminal 4n on the power supply side with the MCCB 4 open. The measuring unit 5 includes a generated voltage measuring unit 8 that measures a voltage between the P phase and the N phase. The measuring unit 5 also includes a changeover switch 6 for switching between a state in which one end of the measuring instrument resistor R is connected to the P-phase terminal 4p and a state in which one end of the measuring instrument resistor R is connected to the N-phase terminal 4n. In addition, it has a ground-to-ground voltage measuring unit that measures the voltage across the measuring instrument resistor R. The other end side of the measuring instrument resistance R is grounded.
When the MCCB is built in the power conditioner, the measurement unit 5 measures the voltage between the P phase and the N phase on the power source side where the MCCB in the power conditioner is opened, and the P phase terminal. The ground voltage via the measuring instrument resistance R and the ground voltage via the measuring instrument resistance R of the N-phase terminal on the power source side with the MCCB opened are measured.

測定部5における測定結果(太陽光電池パネル1の発電電圧値及び測定器抵抗Rの両端間の電圧値)は、制御手段となる演算・表示部7に送られる。演算・表示部7は、測定部5を制御するとともに、測定部5から送られた測定結果を記憶し、この測定結果(電圧値)に基づいて、後述する演算を行い、その演算結果に応じた表示を行う。   The measurement result in the measurement unit 5 (the generated voltage value of the solar cell panel 1 and the voltage value between both ends of the measuring instrument resistance R) is sent to the calculation / display unit 7 serving as control means. The calculation / display unit 7 controls the measurement unit 5, stores the measurement result sent from the measurement unit 5, performs calculation described later based on the measurement result (voltage value), and according to the calculation result Display.

この太陽光発電設備の絶縁測定装置においては、測定部5における測定結果に基づいて、太陽光電池パネル1からMCCB4に至る直流回路におけるP相の絶縁抵抗の低下と、この直流回路におけるN相の絶縁抵抗の低下とを、区別して検出し、もしくは、該直流回路におけるP相とN相の両相または太陽電池モジュール間の絶縁抵抗の低下との何れかを検出することができる。この測定は、直流回路が活線である状態で行うことができる。   In this solar power generation equipment insulation measuring apparatus, based on the measurement result in the measurement unit 5, the P-phase insulation resistance decreases in the DC circuit from the solar cell panel 1 to the MCCB 4, and the N-phase insulation in this DC circuit. The decrease in resistance can be detected separately, or either the P-phase and N-phase in the DC circuit or the decrease in insulation resistance between the solar cell modules can be detected. This measurement can be performed in a state where the DC circuit is live.

太陽光電池パネル1からMCCB4に至る直流回路において絶縁抵抗が低下した場合には、P相端子4p、または、N相端子4nと測定器抵抗Rを介した対地間には、電圧Vrが生ずる。したがって、この対地間電圧Vrと、太陽光電池パネル1の発電電圧Vとを測定することにより、直流回路の絶縁抵抗を知ることができる。太陽光電池パネル1の発電電圧Vは、太陽光電池パネル1に照射される光量によって変動するので、随時測定する。   When the insulation resistance decreases in the DC circuit extending from the solar cell panel 1 to the MCCB 4, a voltage Vr is generated between the P phase terminal 4p or the N phase terminal 4n and the ground via the measuring instrument resistance R. Therefore, by measuring the ground-to-ground voltage Vr and the power generation voltage V of the solar battery panel 1, it is possible to know the insulation resistance of the DC circuit. Since the power generation voltage V of the solar cell panel 1 varies depending on the amount of light applied to the solar cell panel 1, it is measured as needed.

この太陽光発電設備においては、(1)P相の絶縁低下、(2)N相の絶縁低下、(3)両相が同時の絶縁低下、または、(4)太陽電池モジュール間における絶縁低下のいずれかが発生する可能性があり、P相またはN相の測定器抵抗Rを介した対地電圧の発生を知ることにより、これらを区別して検出することができる。   In this solar power generation facility, (1) P-phase insulation degradation, (2) N-phase insulation degradation, (3) Simultaneous insulation degradation of both phases, or (4) Insulation degradation between solar cell modules Any one of them may occur, and by knowing the generation of the ground voltage via the P-phase or N-phase measuring instrument resistance R, these can be distinguished and detected.

図2は、本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、P相の絶縁低下による漏電が起こった状態を示す回路図である。   FIG. 2 is a circuit diagram showing a state in which leakage has occurred due to a decrease in P-phase insulation in the photovoltaic power generation facility to which the insulation measuring apparatus for the photovoltaic power generation facility according to the present invention is connected.

この太陽光発電設備において、P相の絶縁低下による漏電が起こった場合には、図2中の(a)に示すように、切替スイッチ6をP相端子4pに切り替えたときには、測定器抵抗Rの両端に電圧は発生しない。そして、図2中の(b)に示すように、切替スイッチ6をN相端子4nに切り替えたときには、測定器抵抗Rの両端に、電圧Vnrが発生する。   In this solar power generation facility, when leakage occurs due to a decrease in P-phase insulation, when the changeover switch 6 is switched to the P-phase terminal 4p, as shown in FIG. No voltage is generated at both ends. As shown in FIG. 2B, when the changeover switch 6 is switched to the N-phase terminal 4n, a voltage Vnr is generated at both ends of the measuring instrument resistance R.

ここで、太陽光電池パネル1の発電電圧の測定値をVとし、P相の絶縁抵抗の測定値をRgp、N相の絶縁抵抗の測定値をRgn、切替スイッチ6をN相端子4nに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVnr、切替スイッチ6をP相端子4pに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVprとする。すると、以下が成立する。
Rgp=Rgn{R(V−Vnr)/Vnr(R+Rgn)}
Rgn=Rgp{R(V−Vpr)/Vpr(R+Rgp)}
Switching Here, the measured value of the generated voltage of the solar battery panel 1 and V 1, the measurement of the insulation resistance of the P-phase Rgp, a measurement of the insulation resistance of the N-phase Rgn, the selector switch 6 to the N-phase terminal 4n The measured value of the voltage at both ends of the measuring instrument resistance R is Vnr, and the measured value of the voltage at both ends of the measuring instrument resistance R when the changeover switch 6 is switched to the P-phase terminal 4p is Vpr. Then, the following holds.
Rgp = Rgn {R (V 1 -Vnr) / Vnr (R + Rgn)}
Rgn = Rgp {R (V 1 -Vpr) / Vpr (R + Rgp)}

したがって、P相のみが絶縁低下した場合には、以下が成立する。
Rgp=R〔{(V−Vpr)/Vnr}−1〕 ・・・・(ただし、Vpr≒0)
Therefore, when only the P phase is insulation-reduced, the following holds.
Rgp = R [{(V 1 −Vpr) / Vnr} −1] (where Vpr≈0)

図3は、本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、N相の絶縁低下による漏電が起こった状態を示す回路図である。   FIG. 3 is a circuit diagram showing a state in which leakage has occurred due to a decrease in N-phase insulation in the photovoltaic power generation facility to which the insulation measuring apparatus for the photovoltaic power generation facility according to the present invention is connected.

この太陽光発電設備において、N相の絶縁低下による漏電が起こった場合には、図3中の(a)に示すように、切替スイッチ6をP相端子4pに切り替えたときには、測定器抵抗Rの両端に、電圧Vprが発生する。そして、図3中の(b)に示すように、切替スイッチ6をN相端子4nに切り替えたときには、測定器抵抗Rの両端に電圧は発生しない。   In this solar power generation facility, when a leakage occurs due to a decrease in N-phase insulation, when the changeover switch 6 is switched to the P-phase terminal 4p, as shown in FIG. A voltage Vpr is generated at both ends. Then, as shown in FIG. 3B, when the changeover switch 6 is switched to the N-phase terminal 4n, no voltage is generated across the measuring instrument resistance R.

ここで、太陽光電池パネル1の発電電圧の測定値をVとし、P相の絶縁抵抗の測定値をRgp、N相の絶縁抵抗の測定値をRgn、切替スイッチ6をN相端子4nに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVnr、切替スイッチ6をP相端子4pに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVprとする。すると、N相のみが絶縁低下した場合には、以下が成立する。
Rgn=R〔{(V−Vnr)/Vpr}−1〕 ・・・・(ただし、Vnr≒0)
Switching Here, the measured value of the generated voltage of the solar battery panel 1 and V 2, a measurement of the insulation resistance of the P-phase Rgp, a measurement of the insulation resistance of the N-phase Rgn, the selector switch 6 to the N-phase terminal 4n The measured value of the voltage at both ends of the measuring instrument resistance R is Vnr, and the measured value of the voltage at both ends of the measuring instrument resistance R when the changeover switch 6 is switched to the P-phase terminal 4p is Vpr. Then, when only the N phase is insulation-reduced, the following holds.
Rgn = R [{(V 2 −Vnr) / Vpr} −1] (where Vnr≈0)

図4は、本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、P相及びN相の絶縁低下による漏電が起こった状態を示す回路図である。   FIG. 4 is a circuit diagram showing a state in which leakage occurs due to a decrease in insulation of the P phase and the N phase in the photovoltaic power generation facility to which the insulation measuring apparatus for the photovoltaic power generation facility according to the present invention is connected.

この太陽光発電設備において、P相及びN相の両相にて絶縁低下による漏電が起こった場合には、図4中の(a)に示すように、切替スイッチ6をP相端子4pに切り替えたときには、測定器抵抗Rの両端に、電圧Vprが発生する。そして、図4中の(b)に示すように、切替スイッチ6をN相端子4nに切り替えたときには、測定器抵抗Rの両端に、電圧Vnrが発生する。
ここで、太陽光電池パネル1の発電電圧の測定値をVとし、P相の絶縁抵抗の測定値をRgp、N相の絶縁抵抗の測定値をRgn、切替スイッチ6をN相端子4nに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVnr、切替スイッチ6をP相端子4pに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVprとする。
In this solar power generation facility, when leakage occurs due to insulation reduction in both the P-phase and N-phase, the changeover switch 6 is switched to the P-phase terminal 4p as shown in (a) of FIG. The voltage Vpr is generated across the measuring instrument resistance R. As shown in FIG. 4B, when the changeover switch 6 is switched to the N-phase terminal 4n, a voltage Vnr is generated at both ends of the measuring instrument resistance R.
Switching Here, the measured value of the generated voltage of the solar battery panel 1 and V 3, the measurement of the insulation resistance of the P-phase Rgp, a measurement of the insulation resistance of the N-phase Rgn, the selector switch 6 to the N-phase terminal 4n The measured value of the voltage at both ends of the measuring instrument resistance R is Vnr, and the measured value of the voltage at both ends of the measuring instrument resistance R when the changeover switch 6 is switched to the P-phase terminal 4p is Vpr.

P相及びN相の両相にて絶縁低下した場合には、以下が成立する。
Rgp=R〔{(V−Vpr)/Vnr}−1〕
Rgn=R〔{(V−Vnr)/Vpr}−1〕
Rg=(Rgp・Rgn)/(Rgp+Rgn)=R〔{V/(Vpr+Vnr)}−1〕
The following holds when the insulation drops in both the P and N phases.
Rgp = R [{(V 3 -Vpr) / Vnr } -1 ]
Rgn = R [{(V 3 -Vnr) / Vpr } -1 ]
Rg = (Rgp · Rgn) / (Rgp + Rgn) = R [{V 3 / (Vpr + Vnr)} − 1]

図5は、本発明に係る太陽光発電設備の絶縁測定装置が接続された太陽光発電設備において、太陽電池モジュール間にて絶縁低下による漏電が起こった状態を示す回路図である。   FIG. 5 is a circuit diagram showing a state in which leakage occurs due to a decrease in insulation between the solar cell modules in the photovoltaic power generation facility to which the insulation measuring apparatus for the photovoltaic power generation facility according to the present invention is connected.

この太陽光発電設備において、太陽電池モジュール間にて絶縁低下による漏電が起こった場合には、図5中の(a)に示すように、切替スイッチ6をP相端子4pに切り替えたときには、測定器抵抗Rの両端に、電圧Vprが発生する。そして、図5中の(b)に示すように、切替スイッチ6をN相端子4nに切り替えたときには、測定器抵抗Rの両端に、電圧Vnrが発生する。   In this solar power generation facility, when leakage occurs due to a decrease in insulation between the solar cell modules, measurement is performed when the changeover switch 6 is switched to the P-phase terminal 4p as shown in (a) of FIG. A voltage Vpr is generated across the resistor R. As shown in FIG. 5B, when the changeover switch 6 is switched to the N-phase terminal 4n, a voltage Vnr is generated at both ends of the measuring instrument resistance R.

つまり、測定器電圧Vpr,VnrがP相及びN相の両相にて発生する場合は、P相及びN相の両相にて絶縁低下しているか、または、太陽電池モジュール間にて絶縁低下している場合である。
ここで、太陽光電池パネル1の発電電圧の測定値をVとし、P相の絶縁抵抗の測定値をRgp、N相の絶縁抵抗の測定値をRgn、切替スイッチ6をN相端子4nに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVnr、切替スイッチ6をP相端子4pに切り替えたときの測定器抵抗Rの両端の電圧の測定値をVprとする。
That is, when the measuring instrument voltages Vpr and Vnr are generated in both the P phase and the N phase, the insulation is lowered in both the P phase and the N phase, or the insulation is lowered between the solar cell modules. This is the case.
Switching Here, the measured value of the generated voltage of the solar battery panel 1 and V 4, the measurement of the insulation resistance of the P-phase Rgp, a measurement of the insulation resistance of the N-phase Rgn, the selector switch 6 to the N-phase terminal 4n The measured value of the voltage at both ends of the measuring instrument resistance R is Vnr, and the measured value of the voltage at both ends of the measuring instrument resistance R when the changeover switch 6 is switched to the P-phase terminal 4p is Vpr.

太陽電池モジュール間にて絶縁低下した場合には、以下が成立する。
Rg=R〔{V/(Vpr+Vnr)}−1〕
The following holds true when insulation is reduced between solar cell modules.
Rg = R [{V 4 / (Vpr + Vnr)}-1]

このように、本発明に係る太陽光発電設備の絶縁測定装置においては、測定器抵抗Rの両端電圧Vrと、太陽光電池パネル1の発電電圧Vとを測定することにより、絶縁抵抗Rgを知ることができる。また、測定器抵抗Rの両端電圧Vrの発生状況(P相発生、N相発生、P相及びN相の両相発生)を知ることにより、絶縁低下している区間を判別することができる。
ここで、測定器電圧Vpr,VnrがP相及びN相の両相にて発生した場合について、P相及びN相の両相にて絶縁低下しているのか、または、太陽電池モジュール間にて絶縁低下しているのかを判別する方法について説明する。
図6は、太陽光電池パネルの構成例(9直列×3並列)を示す平面図である。
ここでは、図6に示すように、太陽電池モジュール11が9個直列に接続されたものを3列備えた太陽光電池パネル1を考える。この太陽光電池パネル1においては、太陽電池モジュール11が直列に接続されたものは、それぞれに対応する断路器12の負荷側において、並列接続されている。
なお、太陽電池モジュール11とは,数十枚の太陽電池セルを直列接続したものをいう。太陽電池モジュール11は、一般的には、受光面となるガラスなどの透明基板を支持板とし、この支持板の下に透明な充填材料及び裏面シートにより数十枚の太陽電池セルを封止し、周囲を枠により密封した構造となっている。太陽電池セル同士は、インナーコネクタを介して、半田付けにより接続されている。インナーコネクタの接続不良(断線)は起こり得るが、太陽電池セルは封止されているので、地絡の虞はない。太陽電池モジュール11の端子は、各太陽電池モジュール11の外部に設けられた端子ボックス内に設けられている。
ここで、図6に示すように、太陽電池モジュール11間(太陽電池モジュール11の端子と他の太陽電池モジュール11の端子との間)で絶縁不良が生じている場合を考える。図6には、第1列の3番目の太陽電池モジュール11の端子と同列4番目の太陽電池モジュール11の端子との間で絶縁不良が生じている状態を示している。この状態において、各太陽電池モジュール11の発生電圧をV、N相端子4nから大地Eを見た電圧をVNE、大地EからP相端子4pを見た電圧をVPEとし、VPE:VNE=αとすると、次式が得られる。
α=|VPE/VNE|=|(9V−3V)/3V|=6/3=2
なお,図6に示すように、太陽電池モジュール11が9個直列に接続されている場合には、起こり得るαは、次式の数値になる。
α=1:8=0.125
α=2:7=0.2857
α=3:6=0.50
α=4:5=0.80
α=5:4=1.25
α=6:3=2.00
α=7:2=3.50
α=8:1=8.00
起こり得るαの値は、直列接続されている太陽電池モジュール11の数によって決まる。本発明においては、直列接続されている太陽電池モジュール11の数は既知であり、起こり得るαの値も予め既知であるとする。
次に,P相の絶縁抵抗Rgp及びN相の絶縁抵抗Rgnと太陽電池モジュール11の数との関係を検討する。N相端子4nから大地Eを見た電圧をVNE、大地EからP相端子4pを見た電圧をVPEとし、Rgp,Rgn間を流れる電流をIpとする。VPEとVNEとの比をβとすると、βは次式で表せる。
β=VPE/VNE=(Rgp・Ip)/(Rgn・Ip)=Rgp/Rgn
抵抗値Rgp,Rgnが得られているとき、β≠αならば、電路の絶縁不良は、太陽電池モジュール11間の地絡ではなく、P相及びN相の両相にて絶縁低下している場合である。 そして、抵抗値Rgp,Rgnが得られているとき、β=αならば、電路の絶縁不良は、P相及びN相の両相における絶縁低下ではなく、太陽電池モジュール11間の地絡である。
Thus, in the insulation measuring apparatus for photovoltaic power generation equipment according to the present invention, the insulation resistance Rg is known by measuring the voltage Vr across the measuring instrument resistance R and the power generation voltage V of the photovoltaic panel 1. Can do. Further, by knowing the generation state of the voltage Vr across the measuring instrument resistance R (P-phase generation, N-phase generation, both P-phase and N-phase generation), it is possible to determine the section where the insulation is lowered.
Here, in the case where the instrument voltages Vpr and Vnr are generated in both the P phase and the N phase, the insulation is lowered in both the P phase and the N phase, or between the solar cell modules. A method for determining whether the insulation is lowered will be described.
FIG. 6 is a plan view showing a configuration example (9 series × 3 parallel) of the solar battery panel.
Here, as shown in FIG. 6, a solar cell panel 1 having three rows of nine solar cell modules 11 connected in series is considered. In this solar cell panel 1, the solar cell modules 11 connected in series are connected in parallel on the load side of the disconnector 12 corresponding to each.
In addition, the solar cell module 11 means what connected several dozen solar cells in series. In general, the solar cell module 11 uses a transparent substrate such as glass serving as a light receiving surface as a support plate, and several tens of solar cells are sealed under the support plate with a transparent filling material and a back sheet. The structure is sealed around a frame. The photovoltaic cells are connected by soldering via an inner connector. Although the connection failure (disconnection) of the inner connector may occur, there is no possibility of a ground fault because the solar battery cell is sealed. The terminals of the solar cell module 11 are provided in a terminal box provided outside each solar cell module 11.
Here, as shown in FIG. 6, a case is considered in which insulation failure occurs between the solar cell modules 11 (between the terminals of the solar cell module 11 and the terminals of the other solar cell modules 11). FIG. 6 shows a state in which an insulation failure has occurred between the terminal of the third solar cell module 11 in the first row and the terminal of the fourth solar cell module 11 in the same row. In this state, the generated voltage of each solar cell module 11 is V, the voltage when the ground E is viewed from the N-phase terminal 4n is V NE , the voltage when the P-phase terminal 4p is viewed from the ground E is V PE, and V PE : V When NE = α, the following equation is obtained.
α = | VPE / VNE | = | (9V-3V) / 3V | = 6/3 = 2
As shown in FIG. 6, when nine solar cell modules 11 are connected in series, α that can occur is a numerical value of the following equation.
α = 1: 8 = 0.125
α = 2: 7 = 0.2857
α = 3: 6 = 0.50
α = 4: 5 = 0.80
α = 5: 4 = 1.25
α = 6: 3 = 2.00
α = 7: 2 = 3.50
α = 8: 1 = 8.00
The possible value of α is determined by the number of solar cell modules 11 connected in series. In the present invention, it is assumed that the number of solar cell modules 11 connected in series is known, and a possible value of α is also known in advance.
Next, the relationship between the P-phase insulation resistance Rgp and the N-phase insulation resistance Rgn and the number of solar cell modules 11 will be examined. The voltage seen by the earth E from N-phase terminal 4n V NE, the voltage viewed P-phase terminal 4p from the earth E and V PE, Rgp, the current flowing between Rgn and Ip. When the ratio of V PE and V NE and beta, beta is expressed by the following equation.
β = V PE / V NE = (Rgp · Ip) / (Rgn · Ip) = Rgp / Rgn
When the resistance values Rgp and Rgn are obtained, if β ≠ α, the insulation failure of the electric circuit is not caused by a ground fault between the solar cell modules 11, but is reduced in both the P phase and N phase. Is the case. When the resistance values Rgp and Rgn are obtained, if β = α, the insulation failure of the electric circuit is not a decrease in insulation in both the P phase and the N phase, but a ground fault between the solar cell modules 11. .

図7は、本発明に係る太陽光発電設備の絶縁測定方法による絶縁抵抗測定の手順を示すフローチャートである。   FIG. 7 is a flowchart showing the procedure of measuring the insulation resistance by the insulation measurement method of the photovoltaic power generation facility according to the present invention.

本発明に係る太陽光発電設備の絶縁測定装置により本発明に係る太陽光発電設備の絶縁測定方法を実行して、太陽光発電設備における絶縁抵抗を測定するには、図7に示すように、演算・表示部7(制御手段)は、ステップst1で処理を開始すると、ステップst2に進み、測定部5のスイッチが投入されていると、ステップst3に進む。ステップst3では、太陽光電池パネル1の発電電圧Vを測定し、測定器抵抗Rの自動測定を行い、ステップst4に進む。ステップst4では、切替スイッチ6をP相側に切り替えて、測定器抵抗Rの両端電圧Vrを測定し、ステップst5に進む。   In order to measure the insulation resistance in the photovoltaic power generation facility by executing the insulation measurement method for the photovoltaic power generation facility according to the present invention with the insulation measuring apparatus for the photovoltaic power generation facility according to the present invention, as shown in FIG. The calculation / display unit 7 (control unit) proceeds to step st2 when the process starts in step st1, and proceeds to step st3 when the switch of the measurement unit 5 is turned on. In step st3, the generated voltage V of the photovoltaic panel 1 is measured, the measuring instrument resistance R is automatically measured, and the process proceeds to step st4. In step st4, the selector switch 6 is switched to the P-phase side, the voltage Vr across the measuring instrument resistance R is measured, and the process proceeds to step st5.

ステップst5では、測定器抵抗Rの両端電圧Vrが測定されるか否かを判別し、電圧が測定されれば、ステップst6に進み、電圧が測定されなければ、ステップst12に進む。   In step st5, it is determined whether or not the voltage Vr across the measuring instrument resistance R is measured. If the voltage is measured, the process proceeds to step st6. If the voltage is not measured, the process proceeds to step st12.

ステップst6では、切替スイッチ6をN相側に切り替えて、測定器抵抗Rの両端電圧Vrを測定し、ステップst7に進む。ステップst7では、測定器抵抗Rの両端電圧Vrが測定されるか否かを判別し、電圧が測定されれば、ステップst7Aに進み、電圧が測定されなければ、ステップst10に進む。   In step st6, the selector switch 6 is switched to the N-phase side, the voltage Vr across the measuring instrument resistance R is measured, and the process proceeds to step st7. In step st7, it is determined whether or not the voltage Vr across the measuring instrument resistance R is measured. If the voltage is measured, the process proceeds to step st7A, and if the voltage is not measured, the process proceeds to step st10.

ステップst7Aでは、P相及びN相の両相における絶縁抵抗Rgp,Rgnを演算し、ステップst7Bに進む。ステップst7Bでは、β=(Rgp/Rgn)が、α=|VPE/VNE|がとり得るいずれかの値に一致しているか否かを判別する。βがαがとり得るいずれかの値に一致していればステップst7Cに進み、一致していなければステップst8に進む。
ステップst7Cでは、太陽電池モジュール間の絶縁抵抗を演算し、絶縁抵抗が1MΩ未満であるかを判別し、1MΩ未満であれば、ステップst7Dに進み、1MΩ未満でなければ、ステップst16に進む。
ステップst7Dでは、太陽電池モジュール間において絶縁低下が生じていること及び絶縁低下位置を表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。ステップst16では、絶縁状態が良好であることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。
ステップst8では、P相及びN相の両相における絶縁抵抗RgpとRgnを演算し、絶縁抵抗が1MΩ未満であるかを判別し、RgpとRgnともに1MΩ未満であれば、ステップst9に進み、ともに1MΩ未満でなければステップst8Aに進む。
ステップst9では、P相及びN相の両相において絶縁低下が生じていることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。
ステップst8Aでは、N相の絶縁抵抗を判別して、絶縁抵抗が1MΩ未満であればステップst11に進み、1MΩ未満でなければステップst8Bに進む。ステップst11では、N相において絶縁低下が生じていることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。
ステップst8Bでは、P相の絶縁抵抗を判別して、絶縁抵抗が1MΩ未満であればステップst15に進み、1MΩ未満でなければステップst16に進む。
ステップst15ではP相において絶縁低下が生じていることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。
ステップst16では、絶縁状態が良好であることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。
In step st7A, the insulation resistances Rgp and Rgn in both the P phase and the N phase are calculated, and the process proceeds to step st7B. In step st7B, it is determined whether or not β = (Rgp / Rgn) matches any value that α = | V PE / V NE | If β matches any value that α can take, the process proceeds to step st7C, and if not, the process proceeds to step st8.
In step st7C, the insulation resistance between the solar cell modules is calculated to determine whether the insulation resistance is less than 1 MΩ. If less than 1 MΩ, the process proceeds to step st7D, and if not less than 1 MΩ, the process proceeds to step st16.
In step st7D, the insulation lowering between the solar cell modules and the insulation lowering position are displayed, the process proceeds to step st17, the process is terminated, and the process returns to step st2. In step st16, it is displayed that the insulation state is good, the process proceeds to step st17, the process is terminated, and the process returns to step st2.
In step st8, the insulation resistances Rgp and Rgn in both the P phase and the N phase are calculated to determine whether the insulation resistance is less than 1 MΩ. If both Rgp and Rgn are less than 1 MΩ, the process proceeds to step st9. If it is not less than 1 MΩ, the process proceeds to step st8A.
In step st9, it is displayed that insulation degradation has occurred in both the P phase and the N phase, the process proceeds to step st17, the process is terminated, and the process returns to step st2.
In step st8A, the N-phase insulation resistance is determined. If the insulation resistance is less than 1 MΩ, the process proceeds to step st11, and if not less than 1 MΩ, the process proceeds to step st8B. In step st11, it is displayed that an insulation decrease has occurred in the N phase, the process proceeds to step st17, the process is terminated, and the process returns to step st2.
In step st8B, the P-phase insulation resistance is determined. If the insulation resistance is less than 1 MΩ, the process proceeds to step st15, and if not less than 1 MΩ, the process proceeds to step st16.
In step st15, it is displayed that a decrease in insulation has occurred in the P phase, the process proceeds to step st17, the process is terminated, and the process returns to step st2.
In step st16, it is displayed that the insulation state is good, the process proceeds to step st17, the process is terminated, and the process returns to step st2.

ステップst10では、N相における絶縁抵抗Rgnを演算し、合成抵抗が1MΩ未満であるかを判別し、1MΩ未満であれば、ステップst11に進み、1MΩ未満でなければ、ステップst16に進む。ステップst11では、N相において絶縁低下が生じていることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。ステップst16では、絶縁状態が良好であることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。   In step st10, the insulation resistance Rgn in the N phase is calculated to determine whether the combined resistance is less than 1 MΩ. If less than 1 MΩ, the process proceeds to step st11, and if not less than 1 MΩ, the process proceeds to step st16. In step st11, it is displayed that an insulation decrease has occurred in the N phase, the process proceeds to step st17, the process is terminated, and the process returns to step st2. In step st16, it is displayed that the insulation state is good, the process proceeds to step st17, the process is terminated, and the process returns to step st2.

ステップst12では、切替スイッチ6をN相側に切り替えて、測定器抵抗Rの両端電圧Vrを測定し、ステップst13に進む。ステップst13では、測定器抵抗Rの両端電圧Vrが測定されるか否かを判別し、電圧が測定されれば、ステップst14に進み、電圧が測定されなければ、ステップst16に進む。ステップst16では、絶縁状態が良好であることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。   In step st12, the changeover switch 6 is switched to the N-phase side, the voltage Vr across the measuring instrument resistance R is measured, and the process proceeds to step st13. In step st13, it is determined whether or not the voltage Vr across the measuring instrument resistance R is measured. If the voltage is measured, the process proceeds to step st14, and if the voltage is not measured, the process proceeds to step st16. In step st16, it is displayed that the insulation state is good, the process proceeds to step st17, the process is terminated, and the process returns to step st2.

ステップst14では、P相における絶縁抵抗Rgpを演算し、合成抵抗が1MΩ未満であるかを判別し、1MΩ未満であれば、ステップst15に進み、1MΩ未満でなければ、ステップst16に進む。ステップst15では、P相において絶縁低下が生じていることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。ステップst16では、絶縁状態が良好であることを表示して、ステップst17に進み、処理を終了し、ステップst2に戻る。   In step st14, the insulation resistance Rgp in the P phase is calculated to determine whether the combined resistance is less than 1 MΩ. If less than 1 MΩ, the process proceeds to step st15, and if not less than 1 MΩ, the process proceeds to step st16. In step st15, it is displayed that a decrease in insulation has occurred in the P phase, the process proceeds to step st17, the process is terminated, and the process returns to step st2. In step st16, it is displayed that the insulation state is good, the process proceeds to step st17, the process is terminated, and the process returns to step st2.

本発明は、発電状態のままで絶縁測定ができるようにした太陽光発電設備の絶縁測定装置及び太陽光発電設備の絶縁測定方法に適用される。   The present invention is applied to an insulation measuring device for a photovoltaic power generation facility and an insulation measuring method for the photovoltaic power generation facility that can perform insulation measurement in a power generation state.

1 太陽電池パネル
2 中継端子箱
4 MCCB(配線用遮断器)
4p P相端子
4n N相端子
5 測定部
6 切替スイッチ
1 Solar Panel 2 Relay Terminal Box 4 MCCB (Circuit Breaker)
4p P-phase terminal 4n N-phase terminal 5 Measuring section 6 Changeover switch

Claims (4)

複数の太陽電池モジュールが接続されてなる太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、前記配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定する測定手段と、
前記測定手段を制御するとともに、前記測定手段による測定結果に関する演算を行う制御手段と
を備え、
前記太陽光電池パネルが発電状態のままで、前記発電電圧の測定結果と前記対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出し、前記P相の絶縁抵抗をRgp、前記N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、前記各太陽電池モジュールの発生電圧をV、前記N相端子から大地を見た電圧をV NE 、大地から前記P相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、
直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、前記太陽光電池パネルから前記配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、前記太陽電池モジュール間の絶縁抵抗の低下と判別する
ことを特徴とする太陽光発電設備の絶縁測定装置。
The voltage output from the photovoltaic panel to which a plurality of photovoltaic modules are connected is input, and the power supply side that opens the circuit breaker in the relay terminal box or power conditioner with a built-in circuit breaker is installed. The generated voltage between the P phase and the N phase and the ground voltage via the measuring instrument resistance of the P phase terminal, the generated voltage between the P phase and the N phase on the power source side where the wiring breaker is opened, and N Measuring means for switching and measuring the ground voltage via the measuring instrument resistance of the phase terminal,
Control means for controlling the measurement means, and for performing a calculation related to a measurement result by the measurement means,
An insulation resistance is calculated by performing an operation including a difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable while the photovoltaic panel is in a power generation state, and the insulation resistance of the P phase is calculated as Rgp. The insulation resistance of the N phase is Rgn, β = Rgp / Rgn, the generated voltage of each solar cell module is V, the voltage when the ground is viewed from the N phase terminal is V NE , and the P phase terminal is connected from the ground When the voltage seen is V PE and V PE : V NE = α,
If the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, the P phase and N in the DC circuit from the solar cell panel to the wiring breaker It is determined that the insulation resistance of both phases is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced. Insulation measuring device for solar power generation equipment.
複数の太陽電池モジュールが接続されてなる太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、前記配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定する測定手段と、
前記測定手段を制御するとともに、前記測定手段による測定結果に関する演算を行う制御手段と
を備え、
前記発電電圧の測定結果と前記対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出することにより、前記太陽光電池パネルから前記配線用遮断器に至る直流回路におけるP相の絶縁抵抗の低下と、前記直流回路におけるN相の絶縁抵抗の低下とを、前記太陽光電池パネルが発電状態のままで、区別して検出するとともに前記P相の絶縁抵抗をRgp、前記N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、前記各太陽電池モジュールの発生電圧をV、前記N相端子から大地を見た電圧をV NE 、大地から前記P相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、
直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、前記太陽光電池パネルから前記配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、前記太陽電池モジュール間の絶縁抵抗の低下と判別する
ことを特徴とする太陽光発電設備の絶縁測定装置。
The voltage output from the photovoltaic panel to which a plurality of photovoltaic modules are connected is input, and the power supply side that opens the circuit breaker in the relay terminal box or power conditioner with a built-in circuit breaker is installed. The generated voltage between the P phase and the N phase and the ground voltage via the measuring instrument resistance of the P phase terminal, the generated voltage between the P phase and the N phase on the power source side where the wiring breaker is opened, and N Measuring means for switching and measuring the ground voltage via the measuring instrument resistance of the phase terminal,
Control means for controlling the measurement means, and for performing a calculation related to a measurement result by the measurement means,
By calculating the insulation resistance by performing an operation including the difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable, the P phase in the DC circuit from the photovoltaic panel to the circuit breaker and lowering of the insulation resistance, and a reduction in the insulation resistance of the N-phase in the DC circuit, while the solar cell panel is in the power generation state, and detects distinguished, Rgp insulation resistance of the P phase, the N-phase Is set to Rgn, β = Rgp / Rgn, the generated voltage of each solar cell module is V, the voltage when the ground is viewed from the N-phase terminal is V NE , and the voltage when the P-phase terminal is viewed from the ground is When V PE and V PE : V NE = α,
If the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, the P phase and N in the DC circuit from the solar cell panel to the wiring breaker It is determined that the insulation resistance of both phases is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced. Insulation measuring device for solar power generation equipment.
複数の太陽電池モジュールが接続されてなる太陽光電池パネルと、前記太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナとを備えた太陽光発電設備の絶縁測定方法であって、
前記太陽光電池パネルが発電状態のままで、前記中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、前記配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定し、
前記発電電圧の測定結果と前記対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出し、前記P相の絶縁抵抗をRgp、前記N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、前記各太陽電池モジュールの発生電圧をV、前記N相端子から大地を見た電圧をV NE 、大地から前記P相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、
直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、前記太陽光電池パネルから前記配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、前記太陽電池モジュール間の絶縁抵抗の低下と判別する
ことを特徴とする太陽光発電設備の絶縁測定方法。
Solar light comprising a solar battery panel to which a plurality of solar battery modules are connected, and a relay terminal box or a power conditioner into which a voltage output from the solar battery panel is input and a circuit breaker for wiring is incorporated A method for measuring insulation of power generation equipment,
While the photovoltaic panel remains in the power generation state, the power generation voltage between the P-phase and the N-phase on the power source side where the wiring breaker in the relay terminal box or the power conditioner is opened and the measurement resistance of the P-phase terminal And switching between the ground voltage via the power supply voltage between the P phase and the N phase on the power source side which opened the circuit breaker and the ground voltage via the measuring instrument resistance of the N phase terminal,
An insulation resistance is calculated by performing an operation including a difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable, the insulation resistance of the P phase is Rgp, the insulation resistance of the N phase is Rgn, β = Rgp / Rgn, the generated voltage of each solar cell module is V, the voltage when the ground is viewed from the N-phase terminal is V NE , the voltage when the P-phase terminal is viewed from the ground is V PE, and V PE : When V NE = α,
If the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, the P phase and N in the DC circuit from the solar cell panel to the wiring breaker It is determined that the insulation resistance of both phases is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced. Insulation measurement method for photovoltaic power generation equipment.
複数の太陽電池モジュールが接続されてなる太陽光電池パネルと、前記太陽光電池パネルから出力される電圧が入力されるとともに配線用遮断器が内蔵された中継端子箱またはパワーコンディショナとを備えた太陽光発電設備の絶縁測定方法であって、
前記太陽光電池パネルが発電状態のままで、前記中継端子箱またはパワーコンディショナ内の配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びP相端子の測定器抵抗を介した対地電圧と、前記配線用遮断器を開放した電源側のP相とN相との間の発電電圧及びN相端子の測定器抵抗を介した対地電圧と、を切替えて測定し、
前記発電電圧の測定結果と前記対地電圧の測定結果との差を変数として含む演算を行うことによって絶縁抵抗を算出することにより、前記太陽光電池パネルから前記配線用遮断器に至る直流回路におけるP相の絶縁抵抗の低下と、前記直流回路におけるN相の絶縁抵抗の低下とを、区別して検出するとともに前記P相の絶縁抵抗をRgp、前記N相の絶縁抵抗をRgnとし、β=Rgp/Rgnとし、前記各太陽電池モジュールの発生電圧をV、前記N相端子から大地を見た電圧をV NE 、大地から前記P相端子を見た電圧をV PE とし、V PE :V NE =αとしたとき、
直列接続されている太陽電池モジュールの数によって決まるαのとり得る値のいずれにもβの値が一致していなければ、前記太陽光電池パネルから前記配線用遮断器に至る直流回路におけるP相とN相の両相の絶縁抵抗の低下と判別し、αのとり得る値のいずれかにβの値が一致していれば、前記太陽電池モジュール間の絶縁抵抗の低下と判別する
ことを特徴とする太陽光発電設備の絶縁測定方法。
Solar light comprising a solar battery panel to which a plurality of solar battery modules are connected, and a relay terminal box or a power conditioner into which a voltage output from the solar battery panel is input and a circuit breaker for wiring is incorporated A method for measuring insulation of power generation equipment,
While the photovoltaic panel remains in the power generation state, the power generation voltage between the P-phase and the N-phase on the power source side where the wiring breaker in the relay terminal box or the power conditioner is opened and the measurement resistance of the P-phase terminal And switching between the ground voltage via the power supply voltage between the P phase and the N phase on the power source side which opened the circuit breaker and the ground voltage via the measuring instrument resistance of the N phase terminal,
By calculating the insulation resistance by performing an operation including the difference between the measurement result of the generated voltage and the measurement result of the ground voltage as a variable, the P phase in the DC circuit from the photovoltaic panel to the circuit breaker and lowering of the insulation resistance, and a reduction in the insulation resistance of the N-phase in the direct current circuit, as well as detected separately, the insulation resistance of the P-phase Rgp, and Rgn insulation resistance of the N-phase, beta = Rgp / Let Rgn be the generated voltage of each of the solar cell modules as V, the voltage when the ground is viewed from the N-phase terminal is V NE , the voltage when the P-phase terminal is viewed from the ground is V PE, and V PE : V NE = α When
If the value of β does not match any of the possible values of α determined by the number of solar cell modules connected in series, the P phase and N in the DC circuit from the solar cell panel to the wiring breaker It is determined that the insulation resistance of both phases is reduced, and if the value of β matches one of the possible values of α, it is determined that the insulation resistance between the solar cell modules is reduced. Insulation measurement method for photovoltaic power generation equipment.
JP2013010285A 2012-08-28 2013-01-23 Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility Active JP5603444B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013010285A JP5603444B2 (en) 2012-08-28 2013-01-23 Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2012187147 2012-08-28
JP2012187147 2012-08-28
JP2013010285A JP5603444B2 (en) 2012-08-28 2013-01-23 Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility

Publications (2)

Publication Number Publication Date
JP2014062883A JP2014062883A (en) 2014-04-10
JP5603444B2 true JP5603444B2 (en) 2014-10-08

Family

ID=50618240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010285A Active JP5603444B2 (en) 2012-08-28 2013-01-23 Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility

Country Status (1)

Country Link
JP (1) JP5603444B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6448946B2 (en) * 2014-08-11 2019-01-09 東北電力株式会社 Solar panel abnormality detection system
CN112540225B (en) * 2020-11-06 2024-08-02 广西电网有限责任公司南宁供电局 Testing device for secondary circuit insulation resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006343267A (en) * 2005-06-10 2006-12-21 Chugoku Electric Power Co Inc:The Insulation resistance measuring instrument of dc circuit, electrostatic capacitance measuring instrument, insulation resistance measuring method and electrostatic capacitance measuring method
JP5196589B2 (en) * 2009-12-11 2013-05-15 株式会社システム・ジェイディー Failure diagnosis system, failure diagnosis apparatus, failure diagnosis method, program, and storage medium
JP5819602B2 (en) * 2010-11-29 2015-11-24 Jx日鉱日石エネルギー株式会社 Ground fault detection device, ground fault detection method, solar power generation system, and ground fault detection program

Also Published As

Publication number Publication date
JP2014062883A (en) 2014-04-10

Similar Documents

Publication Publication Date Title
US20120043988A1 (en) Solar combiner with integrated string current monitoring
US8773156B2 (en) Measurement of insulation resistance of configurable photovoltaic panels in a photovoltaic array
EP3404433B1 (en) Active and passive monitoring system for installed photovoltaic strings, substrings, and modules
JP4780416B2 (en) Solar cell array fault diagnosis method
KR101326253B1 (en) Photovoltaic power generator connection board and its control method
WO2012169496A1 (en) Fault diagnostic system, fault diagnostic device, fault diagnostic method, program, storage medium, and object to be diagnosed
US20130257440A1 (en) Relay Welding Detector of Battery System and Battery System Which Uses the Detector
JP6390359B2 (en) Inspection method and inspection apparatus for photovoltaic power generation system
US20110227584A1 (en) Insulation test method for large-scale photovoltaic systems
EP2725372B1 (en) System and method of determination of connectivity resistance of power generating component
CN104049150A (en) Device and method for detecting photovoltaic module-to-ground insulativity and photovoltaic grid-connected power generation system
JP5619410B2 (en) Inspection method and inspection apparatus
CN108028625B (en) Solar power generation system and use method thereof
JP5926857B2 (en) Method for inspecting photovoltaic inverter separator and photovoltaic inverter
CN109314488A (en) The method for diagnosing faults and trouble-shooter of solar battery string
KR20130047898A (en) Photovoltaic monitoring device that can be default diagnosis each module and method of diagnosing photovoltaic power generator
WO2015015835A1 (en) Solar power generation system
JP5603444B2 (en) Insulation measuring device for photovoltaic power generation facility and insulation measuring method for photovoltaic power generation facility
JP2013175662A (en) Photovoltaic power generation system and diagnostic method therefor
WO2016199445A1 (en) Method and device for testing photovoltaic generation system
JP6611435B2 (en) Abnormality detection system for photovoltaic power generation facilities
WO2016031269A1 (en) Ground fault detection device and ground fault detection method
JP6665767B2 (en) Inspection support apparatus and its control method, inspection system, and control program
US11125833B1 (en) Method for testing a disconnection point of a photovoltaic inverter, and a photovoltaic inverter of this type
KR101582825B1 (en) Monitoring apparatus for solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140130

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140305

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140502

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140821

R150 Certificate of patent or registration of utility model

Ref document number: 5603444

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250