JP5601515B2 - Structure for improving friction of wood materials - Google Patents

Structure for improving friction of wood materials Download PDF

Info

Publication number
JP5601515B2
JP5601515B2 JP2010202888A JP2010202888A JP5601515B2 JP 5601515 B2 JP5601515 B2 JP 5601515B2 JP 2010202888 A JP2010202888 A JP 2010202888A JP 2010202888 A JP2010202888 A JP 2010202888A JP 5601515 B2 JP5601515 B2 JP 5601515B2
Authority
JP
Japan
Prior art keywords
friction
sand
test
wood
wooden
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010202888A
Other languages
Japanese (ja)
Other versions
JP2012057381A (en
Inventor
修 貞広
誠 木村
銘崇 劉
武 河内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2010202888A priority Critical patent/JP5601515B2/en
Publication of JP2012057381A publication Critical patent/JP2012057381A/en
Application granted granted Critical
Publication of JP5601515B2 publication Critical patent/JP5601515B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、木質材料の摩擦力向上構造に関する。   The present invention relates to a structure for improving the frictional force of a wood material.

従来、社寺建築等に代表される我が国の伝統的な木造建物は、柱と貫による木造軸組を主体に構成されている(例えば、特許文献1参照)。
この種の木造軸組は、図18及び図19(a)に示すように、左右の柱1の間に、例えば桧材からなる横長帯板状の壁板2を多段に積み重ねて板壁3を形成し、特に壁板2として貫2aと力板2bを交互に組み付けて構成されている。また、図19(b)に示すように、貫2aは、その両端部が柱1に形成したほぞ穴1aに楔を嵌合して係止され、力板2bは、その両端部が柱1に形成した縦溝1bに単に差し込まれた状態で装着されている。
Conventionally, traditional wooden buildings in Japan, represented by shrines and temples, etc., are mainly composed of wooden frames with pillars and pierces (see, for example, Patent Document 1).
As shown in FIGS. 18 and 19 (a), this type of wooden frame assembly is formed by stacking horizontally long strip-like wall plates 2 made of eaves, for example, in multiple stages between left and right pillars 1. In particular, the wall plate 2 is constructed by alternately assembling the through holes 2a and the force plates 2b. Further, as shown in FIG. 19B, the through-hole 2a is locked by fitting a wedge into a mortise 1a formed at both ends of the pillar 1 and the force plate 2b is fixed at both ends of the pillar 1. It is mounted in a state where it is simply inserted into the vertical groove 1b formed in the above.

また、各壁板2間、すなわち、貫2aと力板2bの間に形成される各段の横目地部Sには、所定の間隔で木製ダボ4が介装され、この木製ダボ4によって上下の壁板2間の水平方向(横方向T1)の相対変位(横ずれ)が規制される。木製ダボ4は、一般に高剛性の欅材等が用いられ、図19(c)に示すように角柱状ないし角棒状に加工されている。   Further, wooden dowels 4 are interposed at predetermined intervals in the horizontal joint portions S formed between the wall plates 2, that is, between the through holes 2a and the force plates 2b. The relative displacement (lateral deviation) in the horizontal direction (lateral direction T1) between the wall plates 2 is regulated. The wooden dowel 4 is generally made of a highly rigid saddle or the like, and is processed into a prismatic shape or a square bar shape as shown in FIG.

このように構成した板壁3は、地震時に、柱1を転倒する方向に回転させ、各段の壁板2同士を水平方向(横方向T1)にずらすように変形させる水平力を受けることになる。これに対し、木製ダボ4は、めり込み強度に依存する粘り強い変形性能を有しており、木造軸組は、その木製ダボ4によって上下の壁板2(板壁3)が拘束されているため、その変形が抑制され、優れた水平耐力を発揮する。   The plate wall 3 configured as described above receives a horizontal force that causes the column 1 to rotate in the direction of falling and to deform the wall plates 2 of each step so as to shift in the horizontal direction (lateral direction T1) during an earthquake. . On the other hand, the wooden dowel 4 has a tenacious deformation performance depending on the indentation strength, and the wooden shaft assembly has its upper and lower wall plates 2 (plate walls 3) restrained by the wooden dowel 4, so that Deformation is suppressed and excellent horizontal strength is demonstrated.

特開2009−2042号公報JP 2009-2042 A

しかしながら、木製ダボ4は、繰り返し荷重を受けると(繰り返しせん断力を受けると)、めり込み変形が生じて潰れ、さらにダボ孔との間に隙間が生じて、その復元力特性(減衰特性)がスリップ的な復元力特性に変わってしまう。すなわち、復元力特性を表すQ−δループ(荷重−変位ループ)が、全体的に横長のパターンとなり、履歴減衰が小さくなってしまう。このため、木製ダボ4だけでは、必ずしも十分な減衰性能(耐震性能)が得られるとはいえず、さらなる減衰性能の向上を図る手法が求められており、その点で改良の余地があった。   However, when the wooden dowel 4 is subjected to repeated loads (repeatedly receiving shearing force), it undergoes indentation deformation and collapses, and a gap is formed between the dowel holes and the restoring force characteristics (damping characteristics) slip. It will change to a natural resilience characteristic. That is, the Q-δ loop (load-displacement loop) representing the restoring force characteristic becomes a horizontally long pattern as a whole, and the hysteresis attenuation becomes small. For this reason, the wooden dowel 4 alone does not necessarily provide sufficient damping performance (seismic performance), and a technique for further improving damping performance is required, and there is room for improvement in that respect.

本発明は、上述する問題点に鑑みてなされたもので、上記のような木造軸組に適用可能であり、簡単な構造で木質材料どうしの摩擦力を向上させることができる木質材料の摩擦力向上構造を提供することを目的とする。   The present invention has been made in view of the above-described problems, and can be applied to the wooden frame as described above, and the frictional force of the wooden material that can improve the frictional force between the wooden materials with a simple structure. The object is to provide an improved structure.

上記目的を達成するため、本発明に係る木質材料の摩擦力向上構造では、木質材料どうしの摩擦力を向上させるための木質材料の摩擦力向上構造であって、木質材料どうしの間の摩擦面に木質材料より硬い粒状物質を介在させ、少なくとも一方の木質材料の摩擦面には、目荒らし部が形成され、粒状物質は、目荒らし部の溝に噛み込み可能な粒径であることを特徴としている。 In order to achieve the above object, the structure for improving the frictional force of the wood material according to the present invention is a structure for improving the frictional force of the wood material for improving the friction force between the wood materials, and the friction surface between the wood materials. A particulate material that is harder than the wood material is interposed, and a roughening portion is formed on the friction surface of at least one of the wood material, and the granular material has a particle size that can be bitten into a groove of the roughening portion. It is said.

本発明では、木質材料どうしの間の摩擦面に砂粒などの粒状物質が介在されているので、木質材料どうしの間にせん断方向の相対変位が生じ、互いの接触面(摩擦面)に摩擦が生じたとき、その木質材料よりも硬質な粒状物質が木質材料の木目などに噛み込んで係止した状態となる。この係止した粒状物質は摩擦面に不定形な凸部を形成することになり、摩擦抵抗となることから、木質材料どうしの間の摩擦面における摩擦係数を大きくすることができる。しかも、例えば地震などによって、木質材料が繰り返し荷重(繰り返しせん断力)を受けたときでも、木質材料よりも硬質な粒状物質と木質材料との摩擦では粒状物質の磨耗が小さくなるため、摩擦係数の安定性の向上を図ることができる。   In the present invention, since particulate materials such as sand grains are interposed between the friction surfaces between the wooden materials, a relative displacement in the shear direction occurs between the wooden materials, and friction occurs between the contact surfaces (friction surfaces). When this occurs, the particulate material harder than the wood material is in a state of being engaged with and locked into the grain of the wood material. This locked granular material forms an irregular convex portion on the friction surface and becomes a frictional resistance, so that the friction coefficient on the friction surface between the wood materials can be increased. Moreover, even when a wooden material is subjected to repeated loads (repetitive shearing force) due to, for example, an earthquake, the friction between the granular material harder than the wooden material and the wooden material reduces the wear of the granular material. Stability can be improved.

これにより、伝統的な木造建物は勿論、一般住宅などの木造建物など、木質材料どうしの接合部分、接触部分、或いは木材制震構造として広範囲に本発明の摩擦力向上構造を適用することが可能となる。   This makes it possible to apply the frictional force improving structure of the present invention to a wide range of joints, contact parts, or wood vibration control structures between wooden materials such as traditional wooden buildings as well as wooden buildings such as ordinary houses. It becomes.

また、本発明の摩擦力向上構造では、適量の砂粒などの粒状物質を木質材料の摩擦面に撒くという簡便な作業によって摩擦力向上構造を形成することができるので、木造建物などの構築作業の容易化を図ることができる。   Further, in the frictional force improving structure of the present invention, the frictional force improving structure can be formed by a simple operation of spreading an appropriate amount of particulate matter such as sand grains on the friction surface of the wooden material. Simplification can be achieved.

また、この場合には、木質材料の摩擦面に形成した目荒らし部の溝に粒状物質が噛み込み易くなり、摩擦面に対する粒状物質の取り付きが良くなる。そのため、木質材料どうしの間に相対変位が生じたときであっても、粒状物質が摩擦面で回転することなく係止状態が確実となることから、摩擦力をさらに高めることができる。
そして、粒状物質が目荒らし部に噛み込んでいるので、木質材料に繰り返し荷重が加わった場合でも、粒状物質が移動により分散して数量が減少することがなく、これにより摩擦係数の高い状態を維持することがきる。
また、木質材料に対する目荒らし部は、例えば剣山などで罫書きすることにより簡単に形成することができる。
さらに、例えば目荒らし部の溝幅よりも小さい粒径の粒状物質を採用することで、粒状物質を溝に確実に噛み込ませて係止させることができる。
Further, in this case, the particulate matter is easily bitten into the groove of the roughening portion formed on the friction surface of the wood material, and the attachment of the particulate matter to the friction surface is improved. For this reason, even when relative displacement occurs between the wood materials, since the locked state is ensured without the particulate matter rotating on the friction surface, the frictional force can be further increased.
And since the particulate matter is caught in the roughening portion, even when a load is repeatedly applied to the wood material, the particulate matter is not dispersed due to the movement and the quantity is not reduced. It can be maintained.
Further, the roughening portion for the wood material can be easily formed, for example, by marking with a sword mountain.
Furthermore, for example, by adopting a granular material having a particle size smaller than the groove width of the roughening portion, the granular material can be surely caught in the groove and locked.

また、本発明に係る木質材料の摩擦力向上構造では、粒状物質は、摩擦面に付着されていることが好ましい。   Moreover, in the frictional force improving structure for a wood material according to the present invention, it is preferable that the particulate matter is adhered to the friction surface.

この場合には、粒状物質が木質材料の摩擦面に対して付着されて係止状態となっているので、木質材料どうしの間に相対変位が生じたときであっても、粒状物質が摩擦面で回転することなく係止状態が確実となることから、摩擦力をさらに高めることができる。
そして、粒状物質の付着は、例えば噴射により粒状物質の上から定着剤を吹き掛けることで簡単に形成することができる。
In this case, since the particulate matter is attached to the friction surface of the wooden material and is in a locked state, even if relative displacement occurs between the wooden materials, the particulate matter is Since the locked state is ensured without rotating at, the frictional force can be further increased.
The adhesion of the particulate material can be easily formed by spraying the fixing agent on the particulate material by spraying, for example.

本発明の木質材料の摩擦力向上構造によれば、粒状物質を木材表面に撒いて介在させるだけの簡単な構造で、木質材料よりも硬質な粒状物質が木質材料の木目などに噛み込んで係止した状態となり、摩擦抵抗となることから、木質材料どうしの間の摩擦面における摩擦係数を大きくすることができ、摩擦力を向上させることができる。   According to the structure for improving the frictional force of the wood material according to the present invention, the particulate material harder than the wood material is caught in the grain of the wood material, etc. with a simple structure in which the particulate material is interposed on the surface of the wood. Since it becomes a stopped state and becomes a frictional resistance, the friction coefficient on the friction surface between the wood materials can be increased, and the frictional force can be improved.

本発明の実施の形態による木質材料の摩擦力向上構造を備えた耐震板壁構造を示す正面図である。It is a front view which shows the earthquake-resistant board wall structure provided with the frictional force improvement structure of the wooden material by embodiment of this invention. 図1に示す耐震板壁構造の分解斜視図である。It is a disassembled perspective view of the earthquake-resistant board wall structure shown in FIG. 図1に示す制震構造の拡大正面図であって、一部壁板を省略した図である。FIG. 2 is an enlarged front view of the vibration control structure shown in FIG. 1, in which some wall plates are omitted. 図3に示すX1−X1線断面図である。It is the X1-X1 sectional view taken on the line shown in FIG. 楔嵌入溝を形成した摩擦減衰部材を示す正面図、上面図、側面図である。It is the front view which shows the friction damping member which formed the wedge insertion groove | channel, a top view, and a side view. 図3に示すX2−X2線断面図である。It is the X2-X2 sectional view taken on the line shown in FIG. 摩擦力向上構造を説明するための側面図である。It is a side view for demonstrating a frictional force improvement structure. 摩擦力向上構造の摩擦面を示す斜視図である。It is a perspective view which shows the friction surface of a frictional force improvement structure. 図7に示す摩擦力向上構造の摩擦面を拡大した図である。It is the figure which expanded the friction surface of the frictional force improvement structure shown in FIG. 耐震板壁構造が水平力を受けて変形した状態を示す正面図である。It is a front view which shows the state which the earthquake-resistant board wall structure received the horizontal force and deform | transformed. 実施例による摩擦試験装置の構成を示す側面図である。It is a side view which shows the structure of the friction test apparatus by an Example. 摩擦試験で得られた荷重と変位との関係を示す図である。It is a figure which shows the relationship between the load and displacement which were obtained by the friction test. 摩擦試験の結果であって、静摩擦係数の分布を示すグラフである。It is a graph which is a result of a friction test and shows distribution of a static friction coefficient. 摩擦試験の結果であって、動摩擦係数の分布を示すグラフである。It is a result of a friction test, Comprising: It is a graph which shows distribution of a dynamic friction coefficient. 摩擦試験の結果であって、静動摩擦係数の比較したグラフである。It is the result of a friction test, Comprising: It is the graph which compared the static friction coefficient. 試験7における試験片の摩擦面の試験前の状態を示す写真である。It is a photograph which shows the state before the test of the friction surface of the test piece in Test 7. FIG. 試験8における試験片の摩擦面の試験前の状態を示す写真である。It is a photograph which shows the state before the test of the friction surface of the test piece in Test 8. FIG. 従来の板壁構造(木造軸組)を示す正面図である。It is a front view which shows the conventional board wall structure (wooden frame). 従来の板壁構造(木造軸組)を示す斜視図である。It is a perspective view which shows the conventional board wall structure (wooden frame).

以下、本発明の実施の形態による木質材料の摩擦力向上構造について、図面に基づいて説明する。   Hereinafter, a structure for improving the frictional force of a wood material according to an embodiment of the present invention will be described with reference to the drawings.

図1に示す耐震板壁構造Aは、木造建物の木造軸組に適用され、本実施の形態による木質材料の摩擦力向上構造Cを備えている。すなわち、耐震板壁構造Aは、従来の板壁3と同様、左右の柱1間に、例えば桧材からなる横長帯状の壁板2を多段に積み重ねて形成され、壁板2として、貫2aと力板2bを交互に組み付けて構成されている。
ここで、摩擦力向上構造Cは、木質材料(図2に示す壁板2、摩擦減衰部材7、および楔9)どうしが摩擦接触する構造であり、本実施の形態では、後述する制震構造Bに組み込まれている。
A seismic plate wall structure A shown in FIG. 1 is applied to a wooden frame of a wooden building, and includes a frictional force improving structure C of a wooden material according to the present embodiment. That is, the seismic plate wall structure A is formed by stacking horizontally long strip-like wall plates 2 made of eaves, for example, in multiple stages between the left and right pillars 1 as in the conventional plate wall 3. The plate 2b is assembled alternately.
Here, the frictional force improving structure C is a structure in which wood materials (the wall plate 2, the friction damping member 7, and the wedge 9 shown in FIG. 2) are in frictional contact with each other. B is incorporated.

また、貫2aは、その両端部が柱1に形成したほぞ穴1aに楔を嵌合して係止され、力板2bは、その両端部が柱1に形成した縦溝1bに単に差し込まれた状態で装着されている。さらに、上下に隣り合う壁板2(2a、2b)の間、すなわち貫2aと、力板2bの間の各段の横目地部Sには、所定の間隔で木製ダボ4が介装されている。   Further, the through hole 2a is locked by fitting a wedge into a mortise 1a formed at both ends of the pillar 1 and the force plate 2b is simply inserted into a longitudinal groove 1b formed at the both ends of the pillar 1. It is installed in the state. Further, wooden dowels 4 are interposed at predetermined intervals between the upper and lower adjacent wall plates 2 (2a, 2b), that is, in the horizontal joint portions S of each step between the through plate 2a and the force plate 2b. Yes.

そして、耐震板壁構造Aにおいては、木製ダボ4に加えて、横目地部Sに上述した摩擦力向上構造をなす制震構造Bが設けられている。この制震構造Bは、互いに隣り合う上下一対の壁板2(上下に隣り合う貫2aと力板2b)にそれぞれ形成された一対の嵌合溝5、6と、摩擦減衰部材7と、この摩擦減衰部材7に形成された楔嵌入溝8に係合される楔9とを備えて構成されている。   In addition, in the seismic plate wall structure A, in addition to the wooden dowel 4, a seismic control structure B that forms the above-described frictional force improving structure is provided in the horizontal joint portion S. This damping structure B includes a pair of fitting grooves 5 and 6 formed in a pair of upper and lower wall plates 2 adjacent to each other (a through 2a and a force plate 2b adjacent to each other in the vertical direction), a friction damping member 7, And a wedge 9 engaged with a wedge fitting groove 8 formed in the friction damping member 7.

一対の対向する嵌合溝5、6の一方の第1嵌合溝5は、図2〜図4に示すように、上方の壁板2の下端から上方に凹み、横方向T1に延びて方形状に形成されている。また、他方の第2嵌合溝6は、下方の壁板2の上端から下方に凹み、横方向T1に延びて方形状に形成されている。そして、これら一対の嵌合溝5、6は、上下一対の壁板2(2a、2b)を積み重ねて所定位置に設置した状態で、互いに連通するように設けられている。さらに、本実施の形態では、第1嵌合溝5と第2嵌合溝6が深さ及び厚さを略同等にして形成されるとともに、第1嵌合溝5が第2嵌合溝6よりも幅(横方向T1の長さ)を大きくして形成されている。   As shown in FIGS. 2 to 4, one first fitting groove 5 of the pair of opposing fitting grooves 5, 6 is recessed upward from the lower end of the upper wall plate 2 and extends in the lateral direction T <b> 1. It is formed into a shape. The other second fitting groove 6 is recessed downward from the upper end of the lower wall plate 2 and is formed in a square shape extending in the lateral direction T1. The pair of fitting grooves 5 and 6 are provided so as to communicate with each other in a state where the pair of upper and lower wall plates 2 (2a and 2b) are stacked and installed at predetermined positions. Furthermore, in the present embodiment, the first fitting groove 5 and the second fitting groove 6 are formed with substantially the same depth and thickness, and the first fitting groove 5 is the second fitting groove 6. The width (the length in the horizontal direction T1) is made larger than that.

図4〜図6に示すように、摩擦減衰部材7は、木製で、方形平板状に形成されている。また、摩擦減衰部材7は、第1嵌合溝5と第2嵌合溝6の厚さと略同等の厚さを備えて形成されるとともに、第2嵌合溝6の幅と略同等の幅を備えて形成されている。そして、この摩擦減衰部材7は、高さ方向(上下方向T2)中央を境に、上端側を第1嵌合溝5に、下端側を第2嵌合溝6に嵌め込んで設けられている。また、このとき、摩擦減衰部材7は、図4に示すように、一面7a及び他面7bが第1嵌合溝5と第2嵌合溝6の内面5a、6aにそれぞれ密着するように設置されている。
つまり、上述したように第1嵌合溝5が第2嵌合溝6よりも幅を大きくして形成されているため、図3に示すように、摩擦減衰部材7の上端側の横方向T1外側に、この摩擦減衰部材7の上端側が嵌め込まれていない第1嵌合溝5の空隙Hを残した状態で摩擦減衰部材7が設置されている。
As shown in FIGS. 4 to 6, the friction damping member 7 is made of wood and has a rectangular flat plate shape. The friction damping member 7 is formed to have a thickness substantially equal to the thickness of the first fitting groove 5 and the second fitting groove 6, and a width substantially equal to the width of the second fitting groove 6. It is formed with. The friction damping member 7 is provided by fitting the upper end side into the first fitting groove 5 and the lower end side into the second fitting groove 6 with the center in the height direction (vertical direction T2) as a boundary. . At this time, as shown in FIG. 4, the friction damping member 7 is installed so that the one surface 7a and the other surface 7b are in close contact with the inner surfaces 5a and 6a of the first fitting groove 5 and the second fitting groove 6, respectively. Has been.
That is, as described above, since the first fitting groove 5 is formed with a width larger than that of the second fitting groove 6, as shown in FIG. 3, the lateral direction T1 on the upper end side of the friction damping member 7 is used. On the outside, the friction damping member 7 is installed in a state where the gap H of the first fitting groove 5 in which the upper end side of the friction damping member 7 is not fitted is left.

さらに、図4〜図6に示すように、摩擦減衰部材7には、端部(上端)から内側に凹む楔嵌入溝8が形成され、この楔嵌入溝8に地獄楔などの楔9を打ち込んで摩擦減衰部材7の一面7aと他面7bがそれぞれ嵌合溝5、6の内面5a、6aに密着されている。この場合においては、楔9を楔嵌入溝8に打ち込むことによって、摩擦減衰部材7を外側に拡幅させることができ、この摩擦減衰部材7の一面7aと他面7bをそれぞれ第1嵌合溝5の内面5aにより強固に密着させることが可能になる。   Further, as shown in FIGS. 4 to 6, the friction damping member 7 is formed with a wedge fitting groove 8 recessed inward from the end (upper end), and a wedge 9 such as a hell wedge is driven into the wedge fitting groove 8. The one surface 7a and the other surface 7b of the friction damping member 7 are in close contact with the inner surfaces 5a and 6a of the fitting grooves 5 and 6, respectively. In this case, the friction damping member 7 can be widened outward by driving the wedge 9 into the wedge fitting groove 8, and the one surface 7 a and the other surface 7 b of the friction damping member 7 are respectively formed in the first fitting groove 5. It becomes possible to make it closely adhere to the inner surface 5a.

ここで、楔9は、図3及び図6に示すように、横方向T1の寸法が摩擦減衰部材7よりも長く、摩擦減衰部材7の楔嵌入溝8内に打ち込んだ状態で摩擦減衰部材7の横方向T1外側の空隙Hを埋める幅寸法となっている。そのため、繰り返し荷重(繰り返しせん断力)を受けた際に、第1嵌合溝5内で摩擦減衰部材7を空隙Hの分だけ横方向にスライド移動させることができるのに対し、楔9は第1嵌合溝5内で固定されることになる。   Here, as shown in FIGS. 3 and 6, the wedge 9 has a dimension in the lateral direction T <b> 1 longer than that of the friction damping member 7 and is driven into the wedge insertion groove 8 of the friction damping member 7. The width dimension fills the gap H outside the horizontal direction T1. Therefore, when a repeated load (repeated shearing force) is applied, the friction damping member 7 can be slid laterally within the first fitting groove 5 by the gap H, whereas the wedge 9 It will be fixed in one fitting groove 5.

さらにまた、第1嵌合溝5の内面5a、第1嵌合溝5に係合される摩擦減衰部材7の両面7a、7b、楔嵌入溝8の溝側面8a、8b、及び楔9の側面9a、9bのそれぞれ摩擦面Kには、前記摩擦力向上構造Cが形成されている。
図7〜図9に示すように、摩擦力向上構造Cは、双方の木質材料(ここでは符号5、7)の摩擦面Kに例えば剣山などで罫書きして溝状の目荒らし部10が形成され、その目荒らしされた表面に木材より硬い砂11(粒状物質)がばら撒かれた状態で定着剤12によって固着(付着)されている。
Furthermore, the inner surface 5 a of the first fitting groove 5, both surfaces 7 a and 7 b of the friction damping member 7 engaged with the first fitting groove 5, the groove side surfaces 8 a and 8 b of the wedge fitting groove 8, and the side surface of the wedge 9. The frictional force improving structure C is formed on each of the friction surfaces K of 9a and 9b.
As shown in FIGS. 7 to 9, the frictional force improving structure C has a groove-shaped roughening portion 10 formed by scoring the friction surfaces K of both wood materials (here, reference numerals 5 and 7) with, for example, Kenzan. The sand 11 (particulate matter) harder than wood is dispersed (fixed) by the fixing agent 12 on the formed and roughened surface.

砂11は、撒き量がとくに限定されることはないが、所定領域の全面にわたって均一にばら撒かれた状態となっている。この砂11としては、例えば豊浦砂などの標準砂(0.1〜0.3mm)や、サンドペーパー♯40を削り落とした削り砂(0.63mm)などを用いることができる。また、定着剤12は、接着性を有するスプレー材料であって、砂11の上から噴射させることで、砂11を摩擦減衰部材7の各表面7a、7b、8a、8bに固着させている。   The sanding amount of the sand 11 is not particularly limited, but is in a state of being uniformly dispersed over the entire surface of the predetermined region. As this sand 11, for example, standard sand (0.1 to 0.3 mm) such as Toyoura sand, shaving sand (0.63 mm) obtained by scraping sandpaper # 40, or the like can be used. The fixing agent 12 is a spray material having adhesiveness, and the sand 11 is fixed to the respective surfaces 7 a, 7 b, 8 a, and 8 b of the friction damping member 7 by being sprayed from above the sand 11.

次に、上述した耐震板壁構造Aの作用について、図面に基づいて説明する。   Next, the effect | action of the earthquake-resistant board wall structure A mentioned above is demonstrated based on drawing.

図10に示すように、本実施の形態の木造建物の耐震板壁構造Aにおいては、木製ダボ4に加えて摩擦減衰部材7が設けられているため、地震時に、繰り返し荷重(水平力、繰り返しせん断力)を受けると、図4及び図6に示すように摩擦減衰部材7と第1嵌合溝5との間の摩擦面に摩擦が生じるとともに、摩擦減衰部材7と楔9との間の摩擦面にも有効な相対変形が生じて摩擦が生じ、これらの摩擦によって振動エネルギー(地震エネルギー)が吸収される。このように、制震構造Bに形成される摩擦面が2倍に増えるため、制震構造Bの1カ所あたりの摩擦力を倍増させることが可能になる。   As shown in FIG. 10, in the seismic plate wall structure A of the wooden building of the present embodiment, the friction damping member 7 is provided in addition to the wooden dowel 4, so that a repeated load (horizontal force, repeated shear) is generated during an earthquake. 4 and 6, friction is generated on the friction surface between the friction damping member 7 and the first fitting groove 5, and the friction between the friction damping member 7 and the wedge 9 is received. Effective relative deformation also occurs on the surface and friction is generated, and vibration energy (earthquake energy) is absorbed by these frictions. Thus, since the friction surface formed in the damping structure B doubles, it becomes possible to double the frictional force per location of the damping structure B.

すなわち、耐震板壁構造Aにおいては、上下一対の壁板2(2a、2b)の横目地部Sに、従来の木製ダボ4だけでなく、嵌合溝5、6に嵌め込んで摩擦減衰部材7を設けることによって、地震による水平力を受けた際に、摩擦減衰部材7の一面7a及び他面7bと嵌合溝5の内面5aの摩擦、及び摩擦減衰部材7の楔嵌入溝8と楔9の摩擦で振動エネルギーを吸収することが可能になる。   That is, in the seismic plate wall structure A, the friction damping member 7 is fitted into the horizontal grooves S of the pair of upper and lower wall plates 2 (2a, 2b) in the fitting grooves 5, 6 as well as the conventional wooden dowels 4. When the horizontal force due to the earthquake is received, the friction between the one surface 7a and the other surface 7b of the friction damping member 7 and the inner surface 5a of the fitting groove 5, and the wedge insertion groove 8 and the wedge 9 of the friction damping member 7 are provided. The vibration energy can be absorbed by the friction.

そして、本制震構造Bでは、楔9を楔嵌入溝8に打ち込むことによって、摩擦減衰部材7を外側に拡幅させることができ、この摩擦減衰部材7の一面7aと他面7bをそれぞれ第1嵌合溝5の内面5aに強固に密着させることが可能になる。これにより、摩擦減衰部材7の一面7a及び他面7bと第1嵌合溝5の内面5aの摩擦によって、より確実且つ効果的に振動エネルギーを吸収することが可能になる。   In the present vibration damping structure B, the friction damping member 7 can be widened outward by driving the wedge 9 into the wedge fitting groove 8, and the one surface 7a and the other surface 7b of the friction damping member 7 are respectively set to the first one. It is possible to firmly adhere to the inner surface 5a of the fitting groove 5. Accordingly, vibration energy can be absorbed more reliably and effectively by friction between the one surface 7a and the other surface 7b of the friction damping member 7 and the inner surface 5a of the first fitting groove 5.

また、図7〜図9に示すように、摩擦力向上構造Cにおいて、木質材料どうしの間(すなわち、図4に示す摩擦減衰部材7と第1嵌合溝5との間、摩擦減衰部材7と楔9との間)の摩擦面に砂11が介在されているので、木質材料どうしの間にせん断方向の相対変位が生じ、互いの接触面(摩擦面K)に摩擦が生じたとき、木質材料よりも硬質な砂11が木質材料の木目などに噛み込んで係止した状態となる。この係止した砂11は摩擦面Kに不定形な凸部を形成することになり、摩擦抵抗となることから、木質材料どうしの間の摩擦面Kにおける摩擦係数を大きくすることができる。しかも、例えば地震などによって、木質材料が繰り返し荷重(繰り返しせん断力)を受けたときでも、木質材料よりも硬質な砂11と木質材料との摩擦では粒状物質の磨耗が小さくなるため、摩擦係数の安定性の向上を図ることができる。   Further, as shown in FIGS. 7 to 9, in the frictional force improving structure C, between the wood materials (that is, between the friction damping member 7 and the first fitting groove 5 shown in FIG. Since sand 11 is interposed on the friction surface between the wedge 9 and the wedge 9, relative displacement in the shear direction occurs between the wood materials, and friction occurs on the contact surfaces (friction surface K). Sand 11 that is harder than the wood material is in a state of being engaged with and locked in the wood of the wood material. The locked sand 11 forms an irregular convex portion on the friction surface K and becomes a frictional resistance, so that the friction coefficient on the friction surface K between the wood materials can be increased. Moreover, even when the wood material is subjected to repeated loads (repeated shearing force) due to, for example, an earthquake, the friction between the sand 11 and the wood material, which is harder than the wood material, reduces the wear of the particulate material. Stability can be improved.

これにより、本実施の形態のような伝統的な木造建物は勿論、一般住宅などの木造建物など、木質材料どうしの接合部分、接触部分、或いは木材制震構造として広範囲に本発明の摩擦力向上構造を適用することが可能となる。   As a result, the friction force of the present invention can be widely improved as a joint part, a contact part, or a wood vibration control structure between wooden materials such as a traditional wooden building as in the present embodiment as well as a wooden building such as a general house. The structure can be applied.

また、適量の砂11を木質材料の摩擦面Kに撒くという簡便な作業によって摩擦力向上構造を形成することができるので、木造建物などの構築作業の容易化を図ることができる。   In addition, since the structure for improving the frictional force can be formed by a simple operation of spreading an appropriate amount of sand 11 on the friction surface K of the wooden material, it is possible to facilitate the construction work of a wooden building or the like.

また、本実施の形態の摩擦力向上構造Cでは、木質材料の摩擦面Kには、目荒らし部10が形成されているので、木質材料の摩擦面Kに形成した目荒らし部10の溝に砂11が噛み込み易くなり、摩擦面Kに対する砂11の取り付きが良くなる。そのため、木質材料どうしの間に相対変位が生じたときであっても、砂11が摩擦面Kで回転することなく係止状態が確実となることから、摩擦力をさらに高めることができる。
そして、砂11が目荒らし部10に噛み込んでいるので、木質材料に繰り返し荷重が加わった場合でも、砂11が移動により分散して数量が減少することがなく、これにより摩擦係数の高い状態を維持することがきる。
また、木質材料に対する目荒らし部10は、例えば剣山などで罫書きすることにより簡単に形成することができる。
Further, in the frictional force improving structure C of the present embodiment, the roughening portion 10 is formed on the friction surface K of the wood material, so that the groove of the roughening portion 10 formed on the friction surface K of the wood material is formed. Sand 11 becomes easy to bite, and attachment of sand 11 to friction surface K is improved. Therefore, even when relative displacement occurs between the wood materials, the engagement state is ensured without the sand 11 rotating on the friction surface K, so that the frictional force can be further increased.
And since the sand 11 is biting into the roughening part 10, even when a load is repeatedly applied to the wood material, the sand 11 is not dispersed by the movement and the quantity is not reduced, and this causes a high friction coefficient. Can be maintained.
Moreover, the roughening part 10 with respect to a wooden material can be easily formed, for example by scribbling with a sword mountain etc.

さらに、摩擦力向上構造Cは、砂11が定着剤12によって摩擦面Kに固着されており、すなわち砂11が木質材料の摩擦面Kに対して固着されて係止状態となっているので、木質材料どうしの間に相対変位が生じたときであっても、砂11が摩擦面Kで回転することなく係止状態が確実となることから、摩擦力をさらに高めることができる。
そして、砂11の定着剤12による固着は、例えば噴射により粒状物質の上から定着剤を吹き掛けることで簡単に形成することができる。
Furthermore, in the frictional force improving structure C, the sand 11 is fixed to the friction surface K by the fixing agent 12, that is, the sand 11 is fixed to the friction surface K of the wood material and is in a locked state. Even when relative displacement occurs between the wood materials, since the sand 11 does not rotate on the friction surface K and the locked state is ensured, the frictional force can be further increased.
Then, the fixing of the sand 11 with the fixing agent 12 can be easily formed by spraying the fixing agent on the particulate material by spraying, for example.

さらにまた、例えば目荒らし部10の溝に噛み込み可能で、目荒らし部10の溝幅よりも小さい粒径の砂11を採用することで、その砂11を溝に確実に噛み込ませて係止させることができる。   Furthermore, for example, by adopting sand 11 having a particle diameter smaller than the groove width of the roughening portion 10, the sand 11 can be surely bitten into the groove by engaging with the groove of the roughening portion 10. Can be stopped.

上述のように本実施の形態による木質材料の摩擦力向上構造では、砂11を摩擦減衰部材7と第1嵌合溝5との間、摩擦減衰部材7と楔9との間の木材表面に撒いて介在させるだけの簡単な構造で、木質材料よりも硬質な砂11が木質材料の木目などに噛み込んで係止した状態となり、摩擦抵抗となることから、木質材料どうしの間の摩擦面Kにおける摩擦係数を大きくすることができ、摩擦力を向上させることができる。   As described above, in the structure for improving the frictional force of the wood material according to the present embodiment, the sand 11 is placed on the surface of the wood between the friction damping member 7 and the first fitting groove 5 and between the friction damping member 7 and the wedge 9. Since the sand 11 harder than the wood material is engaged and locked in the grain of the wood material, etc., with a simple structure that can only be crushed and intervened, it becomes a frictional resistance, so the friction surface between the wood materials The coefficient of friction at K can be increased, and the frictional force can be improved.

[実施例]
次に、上述した実施の形態による木質材料の摩擦力向上構造Cの効果を裏付けるために行った実施例について以下説明する。
[Example]
Next, examples carried out to support the effect of the wood material friction force improving structure C according to the above-described embodiment will be described below.

本実施例では、図11に示す摩擦試験装置20を用いて木材と木材との間の静動摩擦係数を求め、木材に施す条件を変えて比較検討した。
先ず、摩擦試験装置20は、第1試験片M1を固定する基台21と、互いに一定の距離を開けて配置された一対の第2試験片M2、M2を第1試験片M1の上面に接触させて保持するとともに、水平方向(図11の矢印E方向)にスライド移動させることが可能な支持台22と、を備えた構成となっている。支持台22には、基台21の上方に対向して配置させるとともに、板状の錘23を適宜数重ねることで所定重量を支持台22に載荷することが可能であり、この荷重によって第1試験片M1と第2試験片M2との間に面圧を与え、摩擦力が生じるようになっている。
In the present example, the static friction coefficient between the timbers was obtained using the friction test apparatus 20 shown in FIG. 11, and the comparison was made by changing the conditions applied to the timbers.
First, the friction test apparatus 20 contacts a base 21 for fixing the first test piece M1 and a pair of second test pieces M2 and M2 arranged at a certain distance from the upper surface of the first test piece M1. And a support base 22 that can be slid and moved in the horizontal direction (the direction of arrow E in FIG. 11). It is possible to place a predetermined weight on the support table 22 on the support table 22 by placing the plate-shaped weights 23 on the support table 22 so as to be opposed to each other above the base table 21. A surface pressure is applied between the test piece M1 and the second test piece M2, and a frictional force is generated.

また、支持台22は、図示しないジャッキの伸縮によりロードセル24を備えたワイヤー25を介して水平方向へ移動される構成となっている。つまり、ロードセル24により前記ジャッキによる引張荷重が測定される。さらに、本摩擦試験装置20には、図示しない変位計が設けられており、基台21に対する支持台22の移動量(すなわち、第1試験片M1に対する第2試験片M2の移動量)が計測されるようになっている。
なお、第1試験片M1及び第2試験片M2において、摩擦試験装置20にセットされた状態で双方が接触する面をそれぞれ摩擦面Ma、Mbとして以下説明する。
The support base 22 is configured to be moved in the horizontal direction via a wire 25 provided with a load cell 24 by expansion and contraction of a jack (not shown). That is, the load load by the jack is measured by the load cell 24. Further, the friction test apparatus 20 is provided with a displacement meter (not shown), and the movement amount of the support base 22 with respect to the base 21 (that is, the movement amount of the second test piece M2 with respect to the first test piece M1) is measured. It has come to be.
In addition, in the 1st test piece M1 and the 2nd test piece M2, the surface which both contact in the state set to the friction test apparatus 20 is demonstrated as friction surfaces Ma and Mb, respectively.

図11に示す摩擦試験装置20において、下側に位置する第1試験片M1は、高さ寸法45mm、幅寸法150mm、長さ寸法300mmの形状であり、上側に位置する一対の第2試験片M2、M2は、それぞれ高さ寸法50mm、幅寸法25mm、長さ寸法50mmの形状である。第1試験片M1および第2試験片M2は、それぞれ桧からなる木質材料である。   In the friction test apparatus 20 shown in FIG. 11, the first test piece M1 located on the lower side has a height dimension of 45 mm, a width dimension of 150 mm, and a length dimension of 300 mm, and a pair of second test pieces located on the upper side. M2 and M2 are shapes having a height dimension of 50 mm, a width dimension of 25 mm, and a length dimension of 50 mm, respectively. The first test piece M1 and the second test piece M2 are wood materials made of firewood, respectively.

本実施例では、表1に示すように、試験片M1、M2の摩擦面Ma、Mbにおいて、目荒らしの有無、二種の砂(サンドペーパー#40の削り砂、標準砂)の有無、定着剤の有無の4つの条件(摩擦面条件1〜4)を変えた8パターンの組み合わせによる試験(試験1〜試験8)を行い、それぞれの結果を比較するとともに、これら摩擦面条件の無い従来例との比較も行った。   In this example, as shown in Table 1, on the friction surfaces Ma and Mb of the test pieces M1 and M2, the presence or absence of roughening, the presence or absence of two types of sand (sand sand of sandpaper # 40, standard sand), fixing The test (test 1 to test 8) was performed by combining eight patterns with different four conditions (friction surface conditions 1 to 4) of the presence or absence of the agent, the results were compared, and conventional examples without these friction surface conditions Comparison was also made.

表1に示す摩擦面条件1の目荒らしは、剣山を使用して試験片M1、M2の摩擦面Ma、Mbに対して3回の罫書きをすることにより表面粗さを作成するものである。
摩擦面条件2、3は、それぞれ第1試験片M1と第2試験片M2との間の摩擦面Ma、Mbに砂粒を介在させるものであって、摩擦面条件2は♯40の粗さのサンドペーパーの表面を削り取った粒径が略0.63mmの砂粒(削り砂)であり、摩擦面条件3は0.1〜0.3mmの範囲に調整された天然けい砂(標準砂)である。
摩擦面条件4は、市販の接着剤スプレーにより定着剤を摩擦面Ma、Mbに散布するものである。
The roughening of the friction surface condition 1 shown in Table 1 is to create the surface roughness by scoring the friction surfaces Ma and Mb of the test pieces M1 and M2 three times using Kenzan. .
The friction surface conditions 2 and 3 are those in which sand particles are interposed on the friction surfaces Ma and Mb between the first test piece M1 and the second test piece M2, respectively. The friction surface condition 2 is a roughness of # 40. The surface of sandpaper is sand particles (shaving sand) having a particle size of about 0.63 mm, and friction surface condition 3 is natural silica sand (standard sand) adjusted to a range of 0.1 to 0.3 mm. .
The friction surface condition 4 is to spray the fixing agent on the friction surfaces Ma and Mb by a commercially available adhesive spray.

試験1は、目荒らしのみを木材表面に施した条件によるものである。試験2は、目荒らしを施した表面に削り砂を定着剤で固着させた条件によるものである。試験3は、定着剤のみを木材表面に吹き掛けた条件によるものである。試験4は、目荒らしと定着剤の組み合わせによる条件によるものである。試験5は、目荒らしと削り砂であるが、その削り砂はばら撒いた後に布で木材表面の砂を拭き落とした条件によるものである。試験6は、目荒らしの無い表面に削り砂を撒き、定着剤で固着させた条件のものである。試験7は、目荒らしをした表面に標準砂を撒いて定着剤で固着した条件によるものである。試験8は、前記試験2と同様に目荒らしを施した木材表面に削り砂を定着剤で固着させた条件であり、試験7と同一木材から採取した試験片であり、密度や含水率が同じ条件の木材を使用している。   Test 1 is based on conditions where only roughening is applied to the wood surface. Test 2 is based on conditions in which shaving sand is fixed to the surface subjected to roughening with a fixing agent. Test 3 is based on conditions where only the fixing agent was sprayed on the wood surface. Test 4 is based on conditions based on a combination of roughening and fixing agent. Test 5 is roughening and shaving sand, and the shaving sand is based on the condition that the sand on the wood surface was wiped off with a cloth after being scattered. Test 6 is a condition in which shaving sand is spread on a surface without roughening and fixed with a fixing agent. Test 7 is based on conditions in which standard sand was spread on the roughened surface and fixed with a fixing agent. Test 8 is a condition in which shaving sand is fixed to the surface of the roughened wood surface with a fixing agent in the same manner as in Test 2 above, and is a test piece taken from the same wood as Test 7 and has the same density and moisture content. The condition wood is used.

各試験1〜8は、図11に示す摩擦試験装置20を使用し、基台21に第1試験片M1を固定すると共に、支持台22に一対の第2試験片M2、M2を保持させる。このとき下側の第1試験片M1の摩擦面Maと上側の第2試験片M2の摩擦面Mbとが所定の面圧を受けた状態で接触させておく。そして、前記ジャッキを制御してワイヤー25を引っ張り、錘23を載せた支持台22を水平方向に所定速度で移動させることにより行う。このときの錘23の積載重量は、1856Nとした。
つまり、支持台22を1回あたり20mm移動させ、第1試験片M1と第2試験片M2との摩擦面Ma、Mbに摩擦力を発生させ、このときの静摩擦係数μ1と動摩擦係数μ2とをロードセル24による引張荷重と、図示しない変位計による支持台22の移動量との計測値に基づいて算出した。そして、この1回あたり20mmの移動を、複数回繰り返して行った。
Each test 1-8 uses the friction test apparatus 20 shown in FIG. 11, fixes the 1st test piece M1 to the base 21, and makes a support stand 22 hold | maintain a pair of 2nd test pieces M2 and M2. At this time, the friction surface Ma of the lower first test piece M1 and the friction surface Mb of the upper second test piece M2 are brought into contact with each other while receiving a predetermined surface pressure. Then, the jack is controlled to pull the wire 25, and the support base 22 on which the weight 23 is placed is moved in the horizontal direction at a predetermined speed. The load weight of the weight 23 at this time was 1856N.
That is, the support base 22 is moved 20 mm per time to generate a frictional force on the friction surfaces Ma and Mb between the first test piece M1 and the second test piece M2, and the static friction coefficient μ1 and the dynamic friction coefficient μ2 at this time are obtained. It calculated based on the measured value of the tensile load by the load cell 24, and the moving amount | distance of the support stand 22 by the displacement meter which is not shown in figure. Then, the movement of 20 mm per one time was repeated a plurality of times.

ここで、静摩擦係数μ1と動摩擦係数μ2の計算方法について、具体的に説明する。
図12は、各試験により得た引張荷重(摩擦力)と変位計での変位との関係を示している。静摩擦係数μ1は、図12に示す静摩擦力fa(fa1、fa2、fa3)を試験時の積載重量Gで除した平均的な値とし、(1)式で表すことができる。
Here, the calculation method of the static friction coefficient μ1 and the dynamic friction coefficient μ2 will be specifically described.
FIG. 12 shows the relationship between the tensile load (frictional force) obtained by each test and the displacement by the displacement meter. The static friction coefficient μ1 is an average value obtained by dividing the static friction force fa (fa1, fa2, fa3) shown in FIG. 12 by the loaded weight G at the time of the test, and can be expressed by the equation (1).

また、動摩擦係数μ2は、図12に示す動摩擦力fbと変位とから計算で得られた斜線面積(s1、s2、s3)を試験片の変位δ(δ0、δ1、δ2、δ3)で除した平均的な値とし、(2)式で表すことができる。   The dynamic friction coefficient μ2 is obtained by dividing the hatched area (s1, s2, s3) obtained by calculation from the dynamic friction force fb and displacement shown in FIG. 12 by the displacement δ (δ0, δ1, δ2, δ3) of the test piece. The average value can be expressed by the equation (2).

次に、上述した試験1〜8の結果より確認できた点について、図13〜図15に基づいて以下説明する。   Next, points that can be confirmed from the results of tests 1 to 8 described above will be described below with reference to FIGS.

(1)摩擦面条件が有る場合
図13および図14に示す算出結果によると、試験1において、目荒らしを施すだけで、目荒らしが無い試験3の結果に比べて図13に示す静摩擦係数μ1は略0.3から略0.45になり、動摩擦係数μ2は略0.2から略0.32となった。すなわち、試験1は、試験3と比較して略1.5倍程度大きくなっていることから、目荒らしをすることで摩擦係数μが大きくなることが確認できた。そして、このときの摩擦係数の変動は、摩擦面条件を施さない比較例に比べてやや小さくなる程度であり、摩擦音があった。
(1) When there is a friction surface condition According to the calculation results shown in FIGS. 13 and 14, the static friction coefficient μ1 shown in FIG. 13 is compared with the result of Test 3 in which only roughening is performed in Test 1 and there is no roughening. From about 0.3 to about 0.45, and the dynamic friction coefficient μ2 from about 0.2 to about 0.32. That is, since Test 1 is about 1.5 times larger than Test 3, it was confirmed that the friction coefficient μ was increased by roughing. And the fluctuation | variation of the friction coefficient at this time is a grade which becomes a little small compared with the comparative example which does not give a friction surface condition, and there was a friction sound.

砂(削り砂、標準砂)を定着剤によって固着させる試験2、6、7、8では、目荒らしの有無に関わらず、目荒らし無しの試験3の結果より、静摩擦係数μ1は略0.3から略0.7、動摩擦係数は略0.2から略0.6程度になり、略2.5〜3倍程度大きくなることを確認した。なお、定着剤のみの試験3による効果は、ほとんどなく、摩擦係数μを上昇させた効果は、砂による効果であるものといえる。
また、砂の効果は、目荒らしの効果よりも大きいことが確認できた。これは、試験片の摩擦面より砂を払い落とした試験5の結果に比べて大きいことからも確認できる。
さらに、砂が有る場合(試験2、6、7、8)の摩擦係数の変動は、無い場合(試験3)と比較して摩擦係数の変動が小さくなっており、その際の摩擦音も小さくなった。
In Tests 2, 6, 7, and 8 in which sand (shaving sand, standard sand) is fixed with a fixing agent, the static friction coefficient μ1 is approximately 0.3 from the result of Test 3 without roughening regardless of whether or not roughing occurs. Thus, it was confirmed that the dynamic friction coefficient was about 0.2 to about 0.6 and about 2.5 to 3 times larger. Note that there is almost no effect of Test 3 using only the fixing agent, and it can be said that the effect of increasing the friction coefficient μ is the effect of sand.
Moreover, it was confirmed that the effect of sand was larger than the effect of roughening the eyes. This can also be confirmed from the fact that it is larger than the result of Test 5 in which the sand was removed from the friction surface of the test piece.
Further, when there is sand (Test 2, 6, 7, 8), the coefficient of friction changes less than when there is no (Test 3), and the friction noise at that time also decreases. It was.

また、砂を定着剤で固着させた場合において、目荒らしの無い試験6では、目荒らしを行っている試験2、7、8より、繰り返しの回数が増えることにより、動摩擦係数μ2の減少が大きくなる傾向が見られた。これは、試験6の場合、砂が木材の表面に定着されたのみで、砂が目荒らしによる溝に埋まった状態で留まっていないため、繰り返しの回数が増えることに伴って、木材表面(摩擦面)に対する砂の定着力が低下し、その砂が摩擦面から移動して減少するためによるものと考えられる。これは、目荒らしを施すことで、砂が木材表面の目荒らしによって止まって移動することがなく、そのため摩擦面に撒いた砂数が減少しないことによる効果と考えられる。したがって、高い動摩擦係数を維持するには、目荒らしを施す必要がある。   Further, when sand is fixed with a fixing agent, the decrease in the dynamic friction coefficient μ2 is larger in Test 6 without roughening than in Tests 2, 7, and 8 in which roughening is performed. The tendency to become was seen. This is because, in the case of Test 6, since the sand is only fixed on the surface of the wood and does not remain in a state where the sand is buried in the groove due to roughening, the surface of the wood (friction is increased as the number of repetitions increases. This is thought to be due to the fact that the fixing force of sand to the surface) decreases and the sand moves away from the friction surface and decreases. This is considered to be due to the effect that the sanding does not stop and move due to the roughening of the surface of the wood by applying the roughing, so that the number of sand on the friction surface does not decrease. Therefore, it is necessary to roughen the surface in order to maintain a high dynamic friction coefficient.

さらに、定着剤のみを木材表面の摩擦面に吹き掛けた試験3の場合には、摩擦係数を高める効果が無いことが確認できた。しかし、定着剤は、目荒らしのように、砂を木材の表面に定着させることができるので、上述したように繰り返し回数が増えると定着剤による固着力がなくなるものの、摩擦面から減少しないようにする一定の効果があることがいえる。   Furthermore, in Test 3 in which only the fixing agent was sprayed on the friction surface of the wood surface, it was confirmed that there was no effect of increasing the friction coefficient. However, since the fixing agent can fix the sand to the surface of the wood like roughening, if the number of repetitions increases as described above, the fixing force by the fixing agent disappears, but it does not decrease from the friction surface. It can be said that there is a certain effect.

続いて、砂の種類による効果の影響について、試験7と試験8を比較すると、試験7の標準砂よりも粒径の大きな試験8のサンドペーパー#40の削り砂の摩擦係数は、繰り返し回数の増加に伴って小さくなっている。これに対して、粒径の小さな標準砂の試験7の摩擦係数は、繰り返し回数の増加に伴って大きくなっていることが確認できた。   Subsequently, when the test 7 and the test 8 are compared with respect to the effect of the sand type effect, the friction coefficient of the sand of the sandpaper # 40 of the test 8 having a particle size larger than that of the standard sand of the test 7 is the number of repetitions. It becomes smaller with the increase. On the other hand, it was confirmed that the friction coefficient of the test 7 of standard sand having a small particle size was increased as the number of repetitions was increased.

(2)摩擦面条件が無い場合
図15において、摩擦条件有りは上記の試験2、7、8を示しており、摩擦条件無しは比較例を示している。
図15に示すように、静摩擦係数に対しても、動摩擦係数に対して樹種、繊維方向、木目、積載重量、載荷速度の影響は少ないことが確認できた。ここで、静摩擦係数は約0.24程度、動摩擦係数は約0.18程度で、動摩擦係数は静摩擦係数の0.75倍程度であった。
静摩擦係数に対しても、動摩擦係数に対して1回目の値は、2回目以降よりも大きかったが、これは載荷履歴の影響があるものと考えられる。2回目は、大体1回目の9割程度で、3〜4回繰り返したら、静摩擦係数も動摩擦係数も安定した値となり、略1回目の8割程度であった。
(2) When there is no friction surface condition In FIG. 15, the presence of the friction condition indicates the tests 2, 7, and 8 above, and the absence of the friction condition indicates a comparative example.
As shown in FIG. 15, it was confirmed that the influence of the tree type, the fiber direction, the grain, the loaded weight, and the loading speed was small with respect to the dynamic friction coefficient as well as the static friction coefficient. Here, the static friction coefficient was about 0.24, the dynamic friction coefficient was about 0.18, and the dynamic friction coefficient was about 0.75 times the static friction coefficient.
As for the static friction coefficient, the first value for the dynamic friction coefficient was larger than that for the second and subsequent times, which is considered to have an influence of the loading history. The second time was about 90% of the first time, and when it was repeated 3 to 4 times, both the static friction coefficient and the dynamic friction coefficient became stable, and about 80% of the first time.

(3)試験2、7、8と比較例との比較
図15の結果より、静摩擦係数は、摩擦条件有り(試験2、7、8)で略0.7〜0.73であり、摩擦条件無し(比較例)で略0.18〜0.25となっている。また、動摩擦係数は、摩擦条件有りで略0.6〜0.65であり、摩擦条件無しで略0.15〜0.2となっている。そのため、静摩擦係数および動摩擦係数とも、摩擦条件有りが摩擦条件無しよりも略3倍となり、目荒らしを施し、撒いた砂を定着剤で固着させることで、これらを施さない木材に対して摩擦力が向上されることが確認できた。
(3) Comparison between Tests 2, 7, and 8 and Comparative Example From the results shown in FIG. 15, the coefficient of static friction is approximately 0.7 to 0.73 when there is a friction condition (Tests 2, 7, and 8). None (comparative example) is approximately 0.18 to 0.25. The dynamic friction coefficient is approximately 0.6 to 0.65 with a friction condition, and approximately 0.15 to 0.2 without a friction condition. For this reason, both the static friction coefficient and the dynamic friction coefficient are approximately three times greater when there is a friction condition than when there is no friction condition, and the frictional force is applied to wood that is not subjected to roughening and fixing the crushed sand with a fixing agent. Was confirmed to be improved.

なお、図16は、試験7における木材表面の拡大写真を示しており、標準砂(符号11)が目荒らし部10に係止した状態が確認できる。
図17には、試験8における木材表面の拡大写真を示しており、サンドペーパーによる削り砂(符号11)が目荒らし部10に係止した状態が確認できる。
In addition, FIG. 16 has shown the enlarged photograph of the wood surface in Test 7, and can confirm the state which the standard sand (code | symbol 11) latched to the roughening part 10. FIG.
FIG. 17 shows an enlarged photograph of the wood surface in Test 8, and it can be confirmed that the sand sand (reference numeral 11) by sandpaper is locked to the roughening portion 10.

以上、本発明による木質材料の摩擦力向上構造の実施の形態について説明したが、本発明は上記の実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。
例えば、本実施の形態では摩擦力向上構造Cを耐震板壁構造Aの制震構造Bに適用しているが、このような構造に採用することに限定されることなく、木造建物や木造構造物の組み合わせ部や下地処理として摩擦力向上構造Cを適用することが可能である。例えば、柱と梁の接合部に摩擦力向上構造を用いることができる。
As mentioned above, although embodiment of the frictional force improvement structure of the wooden material by this invention was described, this invention is not limited to said embodiment, In the range which does not deviate from the meaning, it can change suitably.
For example, in the present embodiment, the frictional force improving structure C is applied to the vibration control structure B of the seismic plate wall structure A. However, the present invention is not limited to adopting such a structure, but a wooden building or a wooden structure. It is possible to apply the frictional force improving structure C as a combination part or a base treatment. For example, a frictional force improving structure can be used at the joint between the column and the beam.

また、本実施の形態では、摩擦力向上構造Cとして、木材表面に目荒らし部10を形成し、砂11を撒いてからその砂11を定着剤12で固着させる構成としているが、このような形態に限定されることはなく、目荒らし部10や定着剤12を省略することもできる。そして、撒いた砂11に対して定着剤12をスプレー等によって吹き掛ける方法であることに限らず、例えば漆や顔料などの液体に粒状物質を混ぜ込んだものを刷毛で塗る方法によるものでもよい。要は、定着剤は、摩擦面に粒状物質を初期状態として固着させることが目的であり、摩擦力の向上に直接寄与することをねらう必要はない。
また、目荒らし部10は、摩擦面を構成する一対の木質材料のうち両方に形成される必要はなく、うち少なくとも一方の木質材料の摩擦面に形成されていればよい。
Further, in the present embodiment, the frictional force improving structure C is configured such that the roughening portion 10 is formed on the surface of the wood and the sand 11 is crushed and then the sand 11 is fixed with the fixing agent 12. The shape is not limited, and the roughening portion 10 and the fixing agent 12 can be omitted. The method is not limited to the method in which the fixing agent 12 is sprayed on the crushed sand 11 but may be a method in which a liquid obtained by mixing a particulate material in a liquid such as lacquer or pigment is applied with a brush. . In short, the purpose of the fixing agent is to fix the particulate material to the friction surface as an initial state, and it is not necessary to directly contribute to the improvement of the frictional force.
Moreover, the roughening part 10 does not need to be formed in both of a pair of wooden materials which comprise a friction surface, and should just be formed in the friction surface of at least one wooden material.

さらに、本実施の形態では木質材料の樹種として桧を採用しているが、樹種に限定されることはなく、例えば、米ヒバ、ヒバ、マツ、ケヤキなどの木質系材料であればよい。
さらにまた、目荒らし部10の溝幅や荒さなどの構成も粒状物質の粒径などに応じて適宜設定することが可能であり、また目荒らし方法も剣山によるものに限定されることはない。
また、本実施の形態では、粒状物質としてサンドペーパーによる削り砂や標準砂を対象としているが、これに限定されることはい。要は、摩擦対象となる木質材料よりも硬い材質の粒状物質であれば良いのである。
Furthermore, although this embodiment employs cocoons as the tree species of the wood material, it is not limited to tree species, and may be any wood-based material such as rice hiba, hiba, pine, and zelkova.
Furthermore, the configuration such as the groove width and roughness of the roughening portion 10 can be set as appropriate according to the particle size of the granular material, and the roughening method is not limited to that by Kenzan.
Moreover, in this Embodiment, although the sand and the sand with sandpaper are object as a granular material, it is not limited to this. In short, any granular material that is harder than the wood material to be rubbed may be used.

その他、粒状物質の粗粒度を目的の摩擦係数になるように調整することも可能であり、また粒状物質の撒布量を目的の摩擦係数になるように調整することも可能である。
ところで、上記実施の形態において、粒状物質の摩擦面への固定であるが、必ずしも粒状物質が動かないように固着する必要はなく、例えば粘着剤で粒状物質を摩擦面に付着させたり、水で一時的に粒状物質を摩擦面に付着させるだけでもよい。本実施の形態における固着は付着の下位概念で用いている。さらに、摩擦面への粒状物質の付着は、一方の摩擦面に付着させるが他方の摩擦面には付着させず、それらの摩擦面を向かい合わせることでもよいし、双方の摩擦面に付着させて、それらの摩擦面を向かい合わせることでもよい。
In addition, it is possible to adjust the coarse particle size of the granular material so as to have a target friction coefficient, and it is also possible to adjust the amount of distribution of the granular material so as to have a target friction coefficient.
By the way, in the above embodiment, the granular material is fixed to the friction surface, but it is not always necessary to fix the granular material so that it does not move. For example, the granular material is adhered to the friction surface with an adhesive, or with water. It is only necessary to temporarily attach the particulate material to the friction surface. Adhesion in this embodiment is used in the subordinate concept of adhesion. Furthermore, the particulate matter may adhere to the friction surface, but it may adhere to one friction surface but not to the other friction surface, and the friction surfaces may face each other, or may adhere to both friction surfaces. The friction surfaces may be opposed to each other.

1 柱
2 壁板
4 木製ダボ
5 第1嵌合溝
5a 内面
6 第2嵌合溝
6a 内面
7 摩擦減衰部材
7a 一面
7b 他面
8 楔嵌入溝
8a、8b 溝側面
9 楔
10 目荒らし部
11 砂(粒状物質)
12 定着剤
20 摩擦試験装置
21 基台
22 支持台
A 耐震板壁構造
B 制震構造
C 摩擦力向上構造
T1 横方向(水平方向)
T2 上下方向
1 pillar 2 wall plate 4 wooden dowel 5 first fitting groove 5a inner surface 6 second fitting groove 6a inner surface 7 friction damping member 7a one surface 7b other surface 8 wedge fitting groove 8a, 8b groove side surface 9 wedge 10 roughening portion 11 sand (Granular material)
12 Fixing agent 20 Friction test device 21 Base 22 Support base A Seismic plate wall structure B Damping structure C Friction force improving structure T1 Lateral direction (horizontal direction)
T2 vertical direction

Claims (2)

木質材料どうしの摩擦力を向上させるための木質材料の摩擦力向上構造であって、
前記木質材料どうしの間の摩擦面に木質材料より硬い粒状物質を介在させ
少なくとも一方の前記木質材料の摩擦面には、目荒らし部が形成され、
前記粒状物質は、前記目荒らし部の溝に噛み込み可能な粒径であることを特徴とする木質材料の摩擦力向上構造。
A structure for improving the frictional force of a wooden material to improve the frictional force between the wooden materials,
Interposing a particulate material harder than the wood material on the friction surface between the wood materials ,
A roughening portion is formed on the friction surface of at least one of the wooden materials,
The structure for improving the frictional force of a woody material, wherein the granular material has a particle size capable of being bitten in the groove of the roughening portion .
前記粒状物質は、前記摩擦面に付着されていることを特徴とする請求項1に記載の木質材料の摩擦力向上構造。 2. The structure for improving the frictional force of a woody material according to claim 1, wherein the particulate matter is adhered to the friction surface .
JP2010202888A 2010-09-10 2010-09-10 Structure for improving friction of wood materials Active JP5601515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010202888A JP5601515B2 (en) 2010-09-10 2010-09-10 Structure for improving friction of wood materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010202888A JP5601515B2 (en) 2010-09-10 2010-09-10 Structure for improving friction of wood materials

Publications (2)

Publication Number Publication Date
JP2012057381A JP2012057381A (en) 2012-03-22
JP5601515B2 true JP5601515B2 (en) 2014-10-08

Family

ID=46054804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010202888A Active JP5601515B2 (en) 2010-09-10 2010-09-10 Structure for improving friction of wood materials

Country Status (1)

Country Link
JP (1) JP5601515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019106602A1 (en) * 2019-03-15 2020-09-17 Adolf Würth Gmbh & Co Kg Friction plate for a wood connection

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4592145B2 (en) * 2000-04-12 2010-12-01 清水建設株式会社 Damping damper and manufacturing method thereof
JP4060311B2 (en) * 2003-12-04 2008-03-12 孝典 佐藤 Bolt fastening structure
JP5071915B2 (en) * 2008-02-19 2012-11-14 国立大学法人 鹿児島大学 Joining bracket and joining method for wooden column beam members
JP2010084503A (en) * 2008-09-02 2010-04-15 Shimizu Corp Structure and method for joining concrete column and steel-frame beam

Also Published As

Publication number Publication date
JP2012057381A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
JP2010500493A (en) Engineered wood building system for high performance structures.
US8622169B2 (en) Sound-insulating and vibration-isolating rubber pad and method for installing a sound-insulating and vibration-isolating floor using same
US9631360B2 (en) Insulating wall system for a building structure
JP5601515B2 (en) Structure for improving friction of wood materials
KR101670177B1 (en) Apparatus of complex damper for construction
EP2644478A1 (en) A panel comprising plywood
JP2019065482A (en) Wooden bearing wall
JP6610968B2 (en) Brace connecting bracket for suspended ceiling and suspended ceiling structure provided with the same
JP2009002042A (en) Structure of earthquake resisting board wall
JP5766929B2 (en) Double floor structure
JP2013036314A (en) Joint metal of cradling material or the like
JP5311533B2 (en) Joint reinforcement structure and opening reinforcement structure in wooden frame construction
CN111315945A (en) Floating floor
JP6243074B1 (en) Damping structure
JP2019214923A (en) Bearing wall and construction method thereof
AU2020201812B2 (en) Friction Plate for a Timber Joint
KR102336057B1 (en) Ceiling reinforcement of Wind pressure and Construction method
JP5152908B2 (en) Damping structure
JP7031818B2 (en) Glulam and fixed structure of laminated lumber
JP4385382B2 (en) Inorganic fiber insulation for building materials
JP6110005B1 (en) A trapezoidal column collapse prevention device for a wooden frame and its construction method.
JP2005090090A (en) Sound insulation flooring
JP4121303B2 (en) Floor structure and skirting board used for floor structure
WO2020050276A1 (en) Floor structure
Rozanska et al. Antique wooden floor construction solutions and the possibilities of using them in reconstructions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5601515

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150