JP5071915B2 - Joining bracket and joining method for wooden column beam members - Google Patents

Joining bracket and joining method for wooden column beam members Download PDF

Info

Publication number
JP5071915B2
JP5071915B2 JP2008037783A JP2008037783A JP5071915B2 JP 5071915 B2 JP5071915 B2 JP 5071915B2 JP 2008037783 A JP2008037783 A JP 2008037783A JP 2008037783 A JP2008037783 A JP 2008037783A JP 5071915 B2 JP5071915 B2 JP 5071915B2
Authority
JP
Japan
Prior art keywords
column
deformation
joint
bending
wooden
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008037783A
Other languages
Japanese (ja)
Other versions
JP2009197416A (en
Inventor
晋一 塩屋
和彦 松木
Original Assignee
国立大学法人 鹿児島大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人 鹿児島大学 filed Critical 国立大学法人 鹿児島大学
Priority to JP2008037783A priority Critical patent/JP5071915B2/en
Publication of JP2009197416A publication Critical patent/JP2009197416A/en
Application granted granted Critical
Publication of JP5071915B2 publication Critical patent/JP5071915B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Description

本発明は木造構造部材、特にラーメンを構成する柱及び梁の接合部にプレストレスを生じさせて、相互に接合する木造部材の接合方法及びこの方法に好適に用いられる接合金具に関する。   The present invention relates to a method for joining wooden members, in which pre-stress is generated at a joint portion of a wooden structure member, in particular, a column and a beam constituting a ramen, and joined to each other, and a joint fitting suitably used in this method.

木造ラーメンに対する期待は大きく、柱と梁の接合部(以下単に、「接合部」という)のモーメント抵抗接合に関する研究が多く行われ、種々の接合方法が提案されている(非特許文献等々)。   There are great expectations for wooden ramen, and many studies have been made on moment resistance joining of column-to-beam joints (hereinafter simply referred to as “joints”), and various joining methods have been proposed (non-patent documents, etc.).

日本建築学会、「木質構造設計ノート」、P184−P221、1996年Architectural Institute of Japan, “Wood Structure Design Notes”, P184-P221, 1996

しかしながら、実用的な範囲では、それらの接合強度を母材の強度に近づけることは難しく、また接合部の変形が架構の全体変形に占める割合が大きくなるため、設計では接合部を半剛接合として煩雑な応力と変形の計算を行っている。
本発明者らは、部材同士の接合部の曲げ耐力を、母材の基準曲げ耐力に効率よく近づける引張接合の方法を研究し、その補強効果を部材の曲げせん断加力の破壊実験で実証している。
However, in the practical range, it is difficult to make the joint strength close to the strength of the base material, and the proportion of deformation of the joint to the total deformation of the frame becomes large. Complicated calculations of stress and deformation.
The present inventors have studied a method of tensile joining that effectively brings the bending strength of the joint between the members close to the reference bending strength of the base material, and demonstrated the reinforcement effect in a fracture test of the bending shear force of the member. ing.

本発明は、その方法を利用して接合部に大きなプレストレスを導入することで接合部の回転剛性と耐力を増大させて剛節に近づけることを目的とする。   An object of the present invention is to increase the rotational rigidity and proof stress of the joint by introducing a large prestress to the joint using the method, and to bring the joint closer to a rigid joint.

本発明による木造柱梁部材の接合金具は、木造構造を構成する柱及び梁を含む接合部において両部材を相互に接合する接合金具であって、前記梁方向に沿って前記柱内に定着された受圧部材と、前記梁方向に沿って前記柱を貫通し前記梁内に延出する締結部材とを有し、前記締結部材を緊締することにより前記受圧部材にプレストレスを導入するようにしたことを特徴とする。   The metal column beam member joint metal fitting according to the present invention is a metal fitting for joining both members to each other at a joint part including a column and a beam constituting a wooden structure, and is fixed in the column along the beam direction. A pressure receiving member and a fastening member extending through the column along the beam direction and extending into the beam, and prestress is introduced into the pressure receiving member by tightening the fastening member. It is characterized by that.

また、本発明による木造柱梁部材の接合方法は、木造構造を構成する柱及び梁を含む接合部において両部材を相互に接合する接合方法であって、前記柱の接合部内部に受圧部材を定着し、前記梁方向に沿って前記柱を貫通する締結部材を緊締することにより、前記受圧部材にプレストレスを導入するようにしたことを特徴とする。   Further, a method for joining wooden column beam members according to the present invention is a joining method in which both members are joined to each other in a joint portion including a column and a beam constituting a wooden structure, and a pressure receiving member is provided inside the joint portion of the pillar. Prestress is introduced into the pressure receiving member by fixing and tightening a fastening member penetrating the column along the beam direction.

本発明によれば、典型的には木造ラーメンの水平剛性と水平耐力が増大する。また、応力・変形の計算において接合部を剛節として計算することができるようになり、これを極めて簡潔かつ的確に行うことができる。
具体的には骨組の層の水平耐力の70%まで剛節としてラーメンの応力と変形の計算ができた。その接合部の剛節の程度は、RC架構と同程度まで改善される。
また、プレストレスを導入することにより、接合部の回転剛性は増大し、例えば梁の母材の基準曲げ耐力の約60%のモーメントまでは有効である等の効果ある。
According to the present invention, the horizontal rigidity and horizontal strength of the wooden frame are typically increased. Further, in the calculation of stress / deformation, the joint can be calculated as a rigid joint, which can be performed very simply and accurately.
Specifically, it was possible to calculate the stress and deformation of the ramen as rigid joints up to 70% of the horizontal strength of the frame layer. The degree of rigid joint at the joint is improved to the same level as the RC frame.
In addition, by introducing prestress, the rotational rigidity of the joint is increased, and for example, it is effective up to a moment of about 60% of the standard bending strength of the base material of the beam.

以下、図面に基づき、本発明による木造柱梁部材の接合金具及び接合方法の好適な実施の形態を説明する。
接合方法と応力の伝達
ここで先ず、本発明による接合方法(以下、本接合法という)における応力の伝達のしくみについて説明する。
本発明の接合方法は、図1に示される。立体ラーメンヘの応用も想定して柱1と梁2の組み方は柱勝ちとする。
DESCRIPTION OF EMBODIMENTS Hereinafter, preferred embodiments of a joining member and joining method for wooden column beam members according to the present invention will be described based on the drawings.
Bonding method and stress transmission Here, first of bonding method according to the present invention (hereinafter, referred to as the present joining method) describes how the transmission of stresses in the.
The joining method of the present invention is shown in FIG. Assuming the application of solid ramen, the method of assembling the pillar 1 and the beam 2 is the pillar win.

引張接合は、在来工法の引張ボルト接合を改良したものである。図2に示すように梁2の角穴3に深い長溝4を追加し、そこに平鋼をU字型に折り曲げた金物5(以下、U字型金物という)を接着剤6で接着する。そのU字型金物5は底部にボルト穴5aをあけ、脚部5bを母材(梁2)にせん断接着する。平鋼のため、脚部5bは引張軸断面に対する側面の接着面の割合が極めて大きく、脚部5bの長さが短くても容易に接着面積が確保できる。接合部内には後述するように、めり込み防止とプレストレス導入のために鉄筋を挿入して接着剤で定着する。   Tensile bonding is an improvement of the conventional method of tension bolt bonding. As shown in FIG. 2, a deep long groove 4 is added to the square hole 3 of the beam 2, and a metal object 5 (hereinafter referred to as a U-shaped metal object) obtained by bending a flat steel into a U-shape is bonded thereto with an adhesive 6. The U-shaped metal piece 5 has a bolt hole 5a at the bottom, and the leg portion 5b is shear bonded to the base material (beam 2). Since the leg portion 5b is a flat steel, the ratio of the side adhesive surface to the cross section of the tensile shaft is extremely large, and the adhesion area can be easily secured even if the length of the leg portion 5b is short. As will be described later, reinforcing bars are inserted into the joints to prevent penetration and introduce prestress, and are fixed with an adhesive.

接合は図1(b)に示すように柱1にPC棒鋼7(締結部材)を挿入して梁2を組み、ナット8を締めてプレストレスを導入する。ナット8とU字型金物5の底部の間には角座金9が付設される。本接合法は、ナット8を外すことにより骨組の力学的性能を低下させることなく解体できるので、建物の移設や部材の再利用が容易である。また、大地震時にはPC棒鋼7を降伏させて、地震後はナットを締め戻して耐震性能を初期状態に復活させ、建物の残留変形を戻すことも可能になる。本接合法では積極的に大きなプレストレスを導入すると共に、PC棒鋼7を降伏させて大変形域でエネルキー吸収量を明確に確保する。   As shown in FIG. 1B, the joining is performed by inserting a PC bar 7 (fastening member) into the column 1 and assembling the beam 2 and tightening the nut 8 to introduce prestress. A square washer 9 is attached between the nut 8 and the bottom of the U-shaped hardware 5. Since this joining method can be dismantled by removing the nut 8 without deteriorating the mechanical performance of the frame, it is easy to relocate the building and reuse the members. It is also possible to yield the PC bar 7 in the event of a large earthquake, retighten the nuts after the earthquake, restore the earthquake resistance to the initial state, and restore the residual deformation of the building. In this joining method, a large prestress is positively introduced, and the PC bar 7 is yielded to clearly secure an energy absorption amount in a large deformation region.

次に、接合部での内力の伝達と力学的効果について説明する。
接合部と梁2の境界面(以下、梁端面という)が部材の分離面となり、この面の補強が必要となる。図3に内力の伝達の模式図を示す。
曲げ引張力pTは図3(a)に示すようにPC棒鋼とU字型金物を介して母材の曲げ引張域へ伝達させる。PC棒鋼は接合部内に定着しないので、左右の梁同士で引き合うことになる。曲げ圧縮力は、梁側では角穴以外の母材残存部とU字型金物で、母材の曲げ圧縮域へ伝達させる。接合部では図3(b)に示すように梁の曲げ圧縮力を、角座金10を介して定着する鉄筋11(受圧部材)が受けて、接着剤を介して柱のせん断力と釣り合う。
Next, internal force transmission and mechanical effects at the joint will be described.
A boundary surface between the joint and the beam 2 (hereinafter referred to as a beam end surface) serves as a separation surface of the member, and it is necessary to reinforce this surface. FIG. 3 shows a schematic diagram of internal force transmission.
Bending tension p T is to transmit to the bending tensile range of the base material via the PC steel bars and the U-shaped fittings as shown in FIG. 3 (a). Since the PC bar is not fixed in the joint, it is attracted by the left and right beams. The bending compression force is transmitted to the bending compression area of the base material by the base material remaining portion other than the square hole and the U-shaped metal part on the beam side. At the joint, as shown in FIG. 3B, the bending compressive force of the beam is received by the reinforcing bar 11 (pressure receiving member) that is fixed via the square washer 10, and is balanced with the shearing force of the column via the adhesive.

この例では図1あるいは図5等に示すように4本の鉄筋11を用い、柱1の通し孔12に挿通する。なお、角座金10にはPC棒鋼7を挿通させるための通し孔13が形成されている。
また、梁2の端面にそれぞれ3つのほぞ14を設けると共に、柱1の両側面にほぞ14と嵌合するほぞ穴15を形成する。なお、角座金10には図5に示すように、PC棒鋼7を挿通させるための通し孔16が形成されている。
In this example, as shown in FIG. 1 or FIG. 5 or the like, four reinforcing bars 11 are used and inserted into the through hole 12 of the column 1. The square washer 10 is formed with a through hole 13 through which the PC bar 7 is inserted.
In addition, three tenons 14 are provided on the end face of the beam 2, and tenon holes 15 for fitting with the tenons 14 are formed on both side faces of the column 1. As shown in FIG. 5, the square washer 10 is formed with a through hole 16 through which the PC bar 7 is inserted.

梁のせん断力は、梁端面に設けるほぞと梁端面の曲げ圧縮域の摩擦力で伝達させる。本接合法では、プレストレスを導入するため、梁断面は全面圧縮になり、初期荷重の段階から摩擦力が大きく、せん断すべりは生じない。   The shearing force of the beam is transmitted by the frictional force of the tenon provided on the beam end face and the bending compression region of the beam end face. In this joining method, since prestress is introduced, the cross section of the beam is entirely compressed, the frictional force is large from the initial load stage, and shear slip does not occur.

接合部の梁端面の回転剛性は、梁からモーメントを受けてもプレストレスにより梁端面が全面圧縮の状態であれば、接合部内の水平方向の軸剛性によって決まる。そこに定着させる鉄筋量の調整により大きな回転剛性を発揮させる。本接合法によれば、これらにより接合部の回転剛性と曲げ耐力を増大させ、梁に母材の基準曲げ耐力に近い曲げ耐力を発揮させる。   The rotational rigidity of the beam end face of the joint is determined by the axial rigidity in the horizontal direction in the joint if the beam end face is in a fully compressed state due to prestress even when a moment is received from the beam. Large rotational rigidity is exhibited by adjusting the amount of reinforcing bars to be fixed there. According to the present joining method, the rotational rigidity and bending strength of the joint are increased by these, and the bending strength close to the reference bending strength of the base material is exerted on the beam.

実験概要
本発明に使用する試験体について説明する。
図4及び図5に試験体の形状と寸法を示す。反曲点で柱と梁を切断した十字型骨組であり、縮尺は実大の約2/3とした。この実施形態において試験体は2体である。No.1試験体は、図2(a)に示すように引張接合の金物だけを設けたものである。接合部のめり込みで剛性と耐力が決定し、No.2試験体の比較用試験体である。
Outline of Experiment A specimen used in the present invention will be described.
4 and 5 show the shape and dimensions of the test specimen. It is a cruciform frame with pillars and beams cut at the inflection points, and the scale is about 2/3 of the actual size. In this embodiment, there are two specimens. No. As shown in FIG. 2 (a), one test body is provided with only a tensile joint metal. The rigidity and proof stress are determined by the penetration of the joint. It is a comparative test body of 2 test bodies.

No.2試験体は、接合部にめり込み防止の高強度鉄筋(4−D13)を接着剤で定着し、梁側の梁端面に角座金を接着剤で接着している。めり込みに対して十分な補強を行った。接着剤はエポキシ系を用いた。柱と梁は異等級対称構成集成材E65−F225を用いた。金物と座金の材質はSS400で、U字型金物は平鋼を冷間折り曲げ加工した。曲げ引張側は、No.2試験体で梁の母材が曲げ引張破壊する以前にPC棒鋼を引張降伏させて、延性的な曲げ性状を示すように設計した。U字型金物で伝達できる母材面積(50×105mm2)の曲げ引張耐力wby(=116.6kN)に対して、PC棒鋼1本の降伏耐力pyを90kNとした。pyは、ねじ山で降伏する耐力である。 No. In the two specimens, a high-strength reinforcing bar (4-D13) for preventing penetration was fixed to the joint with an adhesive, and a square washer was adhered to the beam end surface on the beam side with an adhesive. Sufficient reinforcement was provided against penetration. The adhesive used was an epoxy system. For the columns and beams, different grades of symmetric laminated G65-F225 were used. The material of the hardware and the washer was SS400, and the U-shaped hardware was obtained by cold-bending flat steel. The bending tension side is No. Before the base material of the beam was bent and tensile-fractured in two specimens, the PC bar was designed to exhibit ductile bending properties by tensile yielding. Against bending tensile strength w T By the matrix area can be transmitted at a U-shaped hardware (50 × 105mm 2) (= 116.6kN), the yield strength p T y of PC steel bar one was 90 kN. p T y is a strength to surrender in the thread.

図6は、加力方法と、梁と柱の曲げせん断変形の測定状況を示している。図6及び図7はこの実施形態における測定装置100の概略構成を示している。図において、101は支持ピン、102はオイルジャッキ、103は荷重測定用ロードセル、104はピン、105は鉛直ローラ、106はユニバーサルピン、107,107A,107Bは変位計である。   FIG. 6 shows a method of applying force and a measurement state of bending shear deformation of a beam and a column. 6 and 7 show a schematic configuration of the measuring apparatus 100 in this embodiment. In the figure, 101 is a support pin, 102 is an oil jack, 103 is a load cell for load measurement, 104 is a pin, 105 is a vertical roller, 106 is a universal pin, and 107, 107A and 107B are displacement meters.

柱頭と柱脚をピン支持し、左右の梁の先端に繰り返しの鉛直荷重を作用させた。各加力サイクルの梁の最大変形角を1/600,1/300,1/200,1/150,1/100,1/50,1/40,3/100,4/100,5/100rad.の順で漸増させた。図7は、接合部の変形の測定状況を示す。変位計Aにより梁端面の回転角を、変位計Bにより接合部のめり込み変形をそれぞれ測定した。   The column head and column base were supported by pins, and repeated vertical loads were applied to the ends of the left and right beams. The maximum deformation angle of the beam in each force cycle is 1/600, 1/300, 1/200, 1/150, 1/100, 1/50, 1/40, 3/100, 4/100, 5/100 rad. . It was gradually increased in this order. FIG. 7 shows the measurement status of the deformation of the joint. The rotation angle of the beam end face was measured with the displacement meter A, and the indentation deformation of the joint was measured with the displacement meter B.

PC棒鋼へのプレストレスの導入はナットを締めて行い、締め付けのトルク値から、その元張力Toを換算した。換算は別途行ったPC棒鋼のトルク−張力試験の結果を用いた。No.1試験体の元張力Toは10kNで、降伏耐力pyに対する比(以下、Topyという)は、0.11であった。No.2試験体では初期加力の段階で、Topyを0.33,0.44,0.94の3段階に変化させて、各段階で1サイクルの加力を行い、梁端面の回転剛性を調べた。 The introduction of pre-stress to the PC steel bars is carried out by tightening the nut, from the torque value of tightening, it was converted to its original tension T o. For the conversion, the result of the torque-tension test of PC bar steel separately performed was used. No. Original tension T o of 1 specimen is 10 kN, the ratio of yield strength p T y (hereinafter, referred to as T o / p T y) was 0.11. No. In 2 specimens at the stage of initial force application, by changing the T o / p T y into three levels 0.33,0.44,0.94 performs pressurizing force of 1 cycle at each stage, beam end face The rotational rigidity of was investigated.

実験結果
次に、破壊状況と層せん断力−層間変形角関係について説明する。
図8は、層せん断力−層間変形角関係を示している。層せん断力は、左右の梁の先端の鉛直荷重と、上下の柱の水平反力のモーメントの釣り合いより算出した。層間変形角Rは柱の曲げせん断変形に、梁による変形成分を加算して求めた。実際の架構の変形状態に合わせて、梁先端が水平移動するとした場合に生じる層間変形とした。層高さHは2034mmである。No.2試験体は、Topyを0.94とした以降の関係である。図8のNo.2試験体中にはNo.1試験体の包絡線も破線で示している。
Experimental Results Next, the fracture state and the relationship between the layer shear force and the interlayer deformation angle will be described.
FIG. 8 shows the relationship between the layer shear force and the interlayer deformation angle. The laminar shear force was calculated from the balance between the vertical load at the ends of the left and right beams and the moment of the horizontal reaction force between the upper and lower columns. The interlaminar deformation angle R was determined by adding the deformation component due to the beam to the bending shear deformation of the column. Interlayer deformation that occurs when the beam tip moves horizontally according to the actual deformation state of the frame. The layer height H is 2034 mm. No. 2 test body is the relationship later was 0.94 T o / p T y. No. of FIG. No. 2 in the specimen. The envelope of one specimen is also indicated by a broken line.

No.1試験体は接合部へ梁端面の梁側の曲げ圧縮域がめり込み、降伏してそれ以降の剛性が決定した。めり込み以外の破壊は生じなかった。プレストレスを導入しているため、初期すべりは全く生じなかった。No.2試験体ではNo.1試験体で生じた接合部へのめり込み変形は、目視では全く確認されなかった。Q−R関係は最大耐力の約90%までは、巨視的には直線的なものになっている。それ以降は、左右の梁のプレストレス効果が消滅し、剛性が低下してRが約±1/50rad.で最大耐力に達している。   No. One specimen had a bending compression zone on the beam side of the beam end face in the joint, yielded, and the subsequent stiffness was determined. No destruction other than penetration occurred. Due to the introduction of prestress, no initial slip occurred. No. No. 2 in the test body. The indentation deformation to the joint part which arose in 1 test body was not confirmed at all visually. The QR relationship is macroscopically linear up to about 90% of the maximum yield strength. After that, the prestress effect of the left and right beams disappears, the rigidity decreases, and R is about ± 1/50 rad. The maximum proof strength has been reached.

次に、層間変形における各変形成分と剛節の程度について説明する。
層間変形は柱、梁、接合部の変形成分に分けられる。図9は、層せん断力と各変形成分の関係を示している。横軸は変形角とし、包絡線で示す。
図9において、−●−は全体の層間変形角Rである。破線は柱の変形角成分であり、点線はそれに梁の変形角成分を加算したものである。点線と−●−の変形角の差が、接合部の変形による層間変形角成分である。接合部による層間変形角成分は図7の変位計A(又は図15)による梁端面の回転角による。回転角は曲げ圧縮変形による成分と曲げ引張変形による成分に分かれる。前者は主に接合部のめり込みであり、後者は主にPC棒鋼の伸びによる抜けだしによる。点線の変形角に曲げ引張変形による層間変形角成分を加算したものを太実線で示す。−●−と太実線が一致すると、接合部のめり込み変形は全く生じないと判断できる。
Next, each deformation component and the degree of rigid joint in interlayer deformation will be described.
Interlayer deformation is divided into deformation components of columns, beams and joints. FIG. 9 shows the relationship between the layer shear force and each deformation component. The horizontal axis represents the deformation angle and is indicated by an envelope.
In FIG. 9, − ● − is the entire interlayer deformation angle R. The broken line is the deformation angle component of the column, and the dotted line is the sum of the deformation angle component of the beam. The difference in deformation angle between the dotted line and − ● − is an interlayer deformation angle component due to deformation of the joint. The inter-layer deformation angle component due to the joint depends on the rotation angle of the beam end face by the displacement meter A (or FIG. 15) in FIG. The rotation angle is divided into a component due to bending compression deformation and a component due to bending tensile deformation. The former is mainly due to penetration of the joint, and the latter is mainly due to pulling out due to elongation of the PC bar. A thick solid line is obtained by adding an interlayer deformation angle component due to bending tensile deformation to the dotted deformation angle. When − ● − and the thick solid line coincide with each other, it can be determined that no indentation deformation of the joint portion occurs.

No.1試験体は全体の層間変形角Rが1/100rad.の時を示し、柱の変形の割合は4.2%、梁は13.1%、接合部の曲げ引張変形は49.0%、接合部の曲げ圧縮変形は33.7%であり、接合部としては全体の82.7%を占めて大きくなった。
No.2試験体はRが1/100rad.の時を示し、柱の変形の割合は34.3%、梁は52.5%、接合部の曲げ引張変形は8.2%、接合部の曲げ圧縮変形は5.0%で、めり込みによる変形は無視でき、接合部としては全体の13.2%に留まった。
No. One specimen has an overall interlayer deformation angle R of 1/100 rad. The rate of deformation of the column is 4.2%, the beam is 13.1%, the bending tensile deformation of the joint is 49.0%, and the bending compressive deformation of the joint is 33.7%. As a department, it accounted for 82.7% of the total.
No. 2 specimens have an R of 1/100 rad. The rate of deformation of the column is 34.3%, the beam is 52.5%, the bending tensile deformation of the joint is 8.2%, and the bending compressive deformation of the joint is 5.0%. Deformation was negligible, and the joint was only 13.2% of the total.

図11は、柱と梁を剛節として接合部内に剛域を設けて、梁理論により計算した弾性剛性による関係と実験結果を比較して示している。図10に示すように、計算Iは接合部内を全て剛域とした関係、計算IIは剛域を設けなかった関係、計算IIIは鉄筋コンクリート構造(以下、RCという)でよく用いられる剛城までの距離を、部材せいDの1/4とした関係である。柱と梁のヤング係数は母材の基準値を用いた。   FIG. 11 shows a comparison between the relationship of the elastic stiffness calculated by the beam theory and the experimental result by providing a rigid zone in the joint with the column and the beam as a rigid joint. As shown in FIG. 10, calculation I is a relationship in which all the joints are rigid regions, calculation II is a relationship in which no rigid region is provided, and calculation III is to a castle that is often used in reinforced concrete structures (hereinafter referred to as RC). The distance is set to 1/4 of the member D. The base value of the base material was used for the Young's modulus of columns and beams.

No.1試験体は計算IIよりかなり剛性が小さく、剛節ラーメンとして架構の応力と変形を計算することが不可能であることが確認できる。一方、No.2試験体は最大耐力の70%までは計算IIIで推定できている。その変形角は1/120rad.で設計の変形制限の1/120rad.の範囲内では剛節ラーメンとして応力と変形の計算が可能である。従って、本接合法による接合部において、RC架構と同程度の剛節が実現されたことになる。   No. One specimen is much less rigid than Calculation II, and it can be confirmed that it is impossible to calculate the stress and deformation of the frame as a rigid frame. On the other hand, no. Two specimens can be estimated by calculation III up to 70% of the maximum yield strength. The deformation angle is 1/120 rad. Of 1/120 rad. Within this range, it is possible to calculate stress and deformation as rigid ramen. Therefore, the same degree of rigid joint as that of the RC frame is realized at the joint by this joining method.

次に、接合部と梁の挙動について説明する。
ここでは、mとθを用いて接合部の剛性と耐力を説明する。先ず、mとθの定義に関連して、(1)式に示す梁母材の基準曲げ耐力Mfbに対する、梁端面(接合部と梁の境界面)の曲げモーメントMBの比(MB/Mfb)をmとする。MBは梁先端の鉛直荷重に梁端までの距離(1070mm)を乗じた値とした。
fb=Z・Fb (1)
ここに、Z:梁母材の断面係数、Fb:木材の曲げ基準強度(=22.2N/mm2)。
Next, the behavior of the joint and the beam will be described.
Here, the rigidity and proof stress of the joint will be described using m and θ. First, in relation to the definitions of m and θ, the ratio (M B ) of the bending moment M B of the beam end face (boundary surface between the joint and the beam) to the reference bending strength M fb of the beam base material shown in the equation (1). / M fb ) is m. M B is a value obtained by multiplying the distance (1070 mm) to beam end to vertical load beam tip.
M fb = Z · F b (1)
Here, Z: section modulus of beam base material, F b : bending bending strength of wood (= 22.2 N / mm 2 ).

ラーメンにおいて接合部の剛節の程度は、接合部内の柱軸に対する梁端面の角度で表される。この角度を梁端面の回転角θと定義する。ここでは、図7と図15に示す変位計Aの変形量から算出される回転角を用いた。その回転角には接合部内の変形と、梁端面近傍の一部の梁変形(図15のL2の区間)も含む。 In the rigid frame, the degree of rigid joint at the joint is expressed by the angle of the beam end face with respect to the column axis in the joint. This angle is defined as the rotation angle θ of the beam end face. Here, the rotation angle calculated from the deformation amount of the displacement meter A shown in FIGS. 7 and 15 was used. The rotation angle includes deformation in the joint and partial beam deformation in the vicinity of the end face of the beam (section L 2 in FIG. 15).

梁端面の回転剛性に寄与するプレストレス効果に関して、プレストレスを段階的に変化させたNo.2試験体の梁端面のm−θ関係を、図12に示す。右側にモーメントの絶対値の補助軸を示し、図の副題として前述したTopyとする。剛性が急激に低下する時点を○で示す。これはプレストレス効果が消滅する時点である。原因は、プレストレスにより圧縮状態になった接合部内の鉄筋が、梁のモーメントにより引張状態に転じて抵抗しなくなるためである。 With regard to the prestress effect that contributes to the rotational rigidity of the beam end face, the prestress was changed in stages. FIG. 12 shows the m-θ relationship between the beam end faces of the two specimens. Right side shows the auxiliary shaft of the absolute value of the moment, and T o / p T y, are employed as the subtitle of FIG. The point at which the stiffness rapidly decreases is indicated by a circle. This is the point when the pre-stress effect disappears. This is because the rebar in the joint that has been compressed due to pre-stress changes to a tensile state due to the moment of the beam and does not resist.

図中にプレストレス効果が消滅するモーメントMoを水平の一点鎖線で示す。なお、これについては、後述する方法によるものとする。プレストレスの元張力Toを大きくすることにより、大きな剛性を期待できるモーメントの範囲が大きくなることが確認できる。図中にはNo.1試験体の包絡線を点線で示している。Topyが0.94でプレストレス効果が消滅する時の回転角で剛性を比較すると、No.2試験体はNo.1試験体の13倍で、本接合法の有効性が確認できた。 In the figure, the moment Mo at which the prestress effect disappears is indicated by a horizontal alternate long and short dash line. This is based on the method described later. It can be confirmed that by increasing the pre-stress original tension T o , the range of moments for which high rigidity can be expected increases. In the figure, no. The envelope of one test body is indicated by a dotted line. Comparing the rigidity rotation angle when T o / p T y is the pre-stress effect disappears at 0.94, No. 2 Specimen No. The effectiveness of this joining method could be confirmed at 13 times that of one specimen.

梁端面のモーメント−回転角関係に関して、図13にm−θ関係を示す。No.2試験はプレストレス比Topyを0.94とした関係である。No.1試験体又はNo.2試験体の包絡線も点線で示している。
No.1試験体はθが2.0×10-3rad.で降伏するが、その時のmは5.5%であり、最終変形時でもmは15%となりNo.2に較べて極めで小さい。
Regarding the moment-rotation angle relationship of the beam end face, FIG. 13 shows the m-θ relationship. No. 2 test is relationship 0.94 prestressing ratio T o / p T y. No. No. 1 specimen or No. 1 The envelope of the two specimens is also indicated by a dotted line.
No. One specimen has a θ of 2.0 × 10 −3 rad. At that time, the m was 5.5%, and even at the final deformation, the m was 15%. Compared to 2, it is extremely small.

これに対してNo.2試験体はθが約13×10-3rad.の時に、左右の梁端の曲げ圧縮域で梁木部の圧縮降伏による膨れが確認された。特に図24に示すように左梁の正加力時の曲げ圧縮域は顕著であった。この部分は完全に圧縮降伏しており、大変形時には圧縮強度が低下していたものと判断できる状況であった。また負加力時には図13(b)左梁に▲で示す時点で、図27に示すような梁の横座屈が確認され始めた。このため図13(b)左梁の負加力時では、耐力に達する直前のサイクル以降で、各サイクルのループ間に変形の開きが生じている。 In contrast, no. 2 specimens have a θ of about 13 × 10 −3 rad. At that time, the bulge due to the compression yielding of the beam wood was confirmed in the bending compression zone of the left and right beam ends. In particular, as shown in FIG. 24, the bending compression range when the left beam was positively applied was remarkable. This part was completely compressed and yielded, and it could be judged that the compressive strength had decreased at the time of large deformation. In addition, when the negative force was applied, lateral buckling of the beam as shown in FIG. For this reason, at the time of the negative force of the left beam in FIG. 13 (b), the deformation opens between the loops of each cycle after the cycle immediately before reaching the proof stress.

No.2試験体の左梁の助力では曲げ耐力に達して、θが8.9×10-3rad.となった以降で耐力低下が生じて回転角の増加も小さくなっている。これは前述したように左梁の曲げ圧縮域の圧縮降伏が顕著であったことによる。耐力低下は、曲げ圧縮特性が劣化して、曲げ圧縮合力と曲げ応力中心間距離jが減少したことによると考えられる。図13(b)の左梁の回転角増分の減少は図15及び図25に示すように、変形を測定しているL2区間の外側のL3区間まで圧縮降伏が拡がり、加力中に制御している梁先端の変形に対応する梁端面近傍の曲げ変形がL2とL3に分散したためである。図14にNo.2試験体のm−R関係を示す。図において、Rは梁の部材角である。左右の梁では同じ変形角を生じさせている。 No. 2 The bending strength was reached with the help of the left beam of the specimen, and θ was 8.9 × 10 −3 rad. After that, the yield strength is reduced and the increase in the rotation angle is also reduced. This is because the compression yielding in the bending compression zone of the left beam was remarkable as described above. It is considered that the decrease in yield strength is due to the deterioration of the bending compression characteristics and the decrease in the bending compression resultant force and the bending stress center distance j. As shown in Figure 13 reduces the rotational angle increments of left beams (b) is 15 and 25, deformed to have L 2 section outer L 3 compressive yield spreads up interval measurements during the force This is because the bending deformation in the vicinity of the beam end surface corresponding to the deformation of the beam tip being controlled is dispersed in L 2 and L 3 . In FIG. The m-R relationship of 2 test bodies is shown. In the figure, R is the member angle of the beam. The left and right beams have the same deformation angle.

図13(b)のNo.2試験体の正加力側でも曲げ耐力に達してθが13.9×10-3rad.となった以降では耐力低下が生じているが、前述の左梁の正加力時ほど低下していない。図26は、実験終了後の左右の梁の曲げ圧縮域を示している。図3(a)で示したように、左梁の下端の圧縮合力wCは上下のPC棒鋼の引張力2・pTと釣り合うので、曲げ耐力時のwCが低下すると、右梁の曲げ引張力pTも低下する。しかし、右梁では曲げ圧縮域はほとんど劣化しなかったので距離jが減少しないで、その分だけ曲げ耐力の低下が緩やかになったと考えられる。 In FIG. 2 The bending strength was reached even on the positive force side of the specimen, and θ was 13.9 × 10 −3 rad. Since then, the proof stress has been reduced, but not as much as when the left beam was positively applied. FIG. 26 shows the bending compression regions of the left and right beams after the experiment is completed. As shown in Fig. 3 (a), the compression force w C at the lower end of the left beam balances with the tensile force 2 · p T of the upper and lower PC bars, so if w C during bending strength decreases, the bending of the right beam The tensile force pT also decreases. However, in the right beam, the bending compression region hardly deteriorates, so the distance j does not decrease, and the decrease in bending strength is considered to be moderate.

本接合法ではPC棒鋼を接合部内に定着しないので、接合部の両側に梁が取り付く十字型骨組では、曲げ圧縮合力はPC棒鋼の降伏耐力の2倍に耐える必要がある。その圧縮合力が低下すると、左右の梁の曲げ耐力に影響を与えることに注意が必要である。しかし、図13(b)と図14に観られるように、左右の梁とも負荷力時では最終変形角まで曲げ耐力の低下はほとんど生じていない。このことは、曲げ圧縮降伏する圧縮域の合力wyより、上下のPC棒鋼の降伏耐力の合力2・pyを小さくなるように設計しておくと、大変形域まで安定した耐力を発揮できることを意味する。当然、梁が片側にしか付かない下型骨組では曲げ圧縮降伏は生じにくく、耐力低下も生じにくくなる。 In this joining method, since the PC bar is not fixed in the joint, the bending compression force needs to withstand twice the yield strength of the PC bar in a cross-shaped frame in which beams are attached to both sides of the joint. It should be noted that when the resultant compressive force is reduced, it affects the bending strength of the left and right beams. However, as can be seen in FIGS. 13 (b) and 14, the bending strength of the left and right beams hardly decreases to the final deformation angle when the load is applied. This is from the resultant force w C y of the compression zone of the bending yield compression idea to design smaller a force 2 · p T y yield strength of the upper and lower PC steel bars, a stable strength to a large deformation zone It means that it can be demonstrated. Naturally, in a lower frame with a beam attached to only one side, bending compression yielding hardly occurs, and a decrease in yield strength hardly occurs.

接合部の梁端面のモーメント−回転角の評価方法
先ず、変形の適合条件について説明する。
図16に仮定する変形の適合条件と抵抗要素を示す。ここでは、接合部内の柱軸の直線性は保持されているものとする二次元の応力状態を想定すると、その軸線は柱幅方向に連続した中立面と見なせる。その面では平面保持を仮定することになる。その面を柱軸面Iとする。一方、プレストレスは、PC棒鋼7の左右のナット8を締めて導入する。PC棒鋼7を表す引張バネの変形の適合条件も考慮し、U字型金物の底部の外面に位置する断面を断面IIとし、その平面性も保持されるものとする。
Method for Evaluating Moment-Rotation Angle of Beam End Face of Joint Part First, the conditions for deformation will be described.
FIG. 16 shows an assumed condition for adaptation and resistance elements. Here, assuming a two-dimensional stress state in which the linearity of the column axis in the joint is maintained, the axis can be regarded as a neutral plane continuous in the column width direction. In that plane, plane maintenance is assumed. The surface is defined as a column axis surface I. On the other hand, the prestress is introduced by tightening the left and right nuts 8 of the PC bar 7. Considering the conforming condition of the deformation of the tension spring representing the PC steel bar 7, the section located on the outer surface of the bottom of the U-shaped metal part is defined as the section II, and the flatness thereof is also maintained.

力学的バネモデルに関して、図17はバネモデルを示している。左右の断面IIの区間の抵抗機構をモデル化している。接合部内では柱軸面Iの左右に圧縮バネを設ける。図16の右側に示すように高さ方向に、上下の角座金の高さWの区間aとそれらの内側の区間bに分けて、2種類の圧縮バネを設ける。接合部内では、区間aにはめり込み補強を表す圧縮バネkc1を設け、区間bは繊維と直交する方向の木部のヤング係数Ew1の断面(DB×B)の曲げ断面バネを設ける。梁でも同様に区間aで繊維方向の木部を表す圧縮バネkc2を設け、区間bは繊維方向のヤング係数Ew2の断面(DB×B)の曲げ断面バネを設ける。これらの圧縮バネは引張抵抗に転ずると抵抗しないものとする。一方、引張抵抗するバネは左右の断面IIを結ぶPC棒鋼の引張バネkpcを設けている。kc1,kc2,kpcの名称はバネの軸剛性も表すことにする。 Regarding the mechanical spring model, FIG. 17 shows the spring model. The resistance mechanism in the section of the left and right section II is modeled. Compression springs are provided on the left and right sides of the column axis surface I in the joint. As shown on the right side of FIG. 16, two types of compression springs are provided in the height direction, divided into a section “a” of the height W of the upper and lower square washers and a section “b” inside thereof. In the joint, a compression spring k c1 representing indentation reinforcement is provided in section a, and section b is provided with a bending section spring having a section (D B × B) having a Young's modulus E w1 of the wood part in a direction perpendicular to the fiber. Similarly, the beam is provided with a compression spring k c2 representing a wood portion in the fiber direction in the section a, and the section b is provided with a bending section spring having a section (D B × B) having a Young's modulus E w2 in the fiber direction. These compression springs shall not resist if they turn to tensile resistance. On the other hand, the tension-resisting spring is provided with a tension spring k pc of PC bar connecting the left and right sections II. The names k c1 , k c2 , and k pc represent the axial stiffness of the spring.

プレストレス効果が有効な時の曲げ剛性moに関連して、図18(a)にプレストレス導入時の変形状態を示す。左右の断面IIは柱軸面IにΔoだけ寄る。図18(b)のように梁にモーメントMが作用すると、圧縮バネKc(kc1とkc2を直列結合したもの)は初期の圧縮変形Δoから減少する。その戻りの変形ΔtがΔoより小さい範囲では、剛性は圧縮バネの剛性Kcに従う。 In connection with the pre-stress effect enabled when the flexural stiffness m K o, showing a deformation state when prestress introduced in FIG. 18 (a). Section II of the left and right stop by just delta o the cylindrical axis plane I. When the moment M acts on the beam as shown in FIG. 18B, the compression spring K c (the one in which k c1 and k c2 are connected in series) decreases from the initial compression deformation Δ o . In a variant delta t of the return is delta o lesser extent, stiffness according to the stiffness K c of the compression spring.

一方、PC棒鋼の引張バネkpcは、左右のモーメントが同じであれば、左右の断面IIの変形が柱軸面Iに対して逆対称になるため、変形は生じない。必ずしも逆対称にならないが、ここではその状態で近似することになる。この状態のモーメントMと回転角θの曲げ剛性moに影響を与えるのは圧縮バネKcだけとなる。moは区間aの軸剛性Kcと区間bの曲げ断面性能で表される。これを式で表すと(2)式と(3)式で表される。 On the other hand, if the left and right moments of the tension spring k pc of the PC steel bar are the same, the deformation of the left and right cross-sections II is inversely symmetric with respect to the column axis surface I, so that no deformation occurs. Although it is not necessarily antisymmetric, it is approximated in that state here. Only the compression spring K c affects the moment M in this state and the bending stiffness m K o of the rotation angle θ. m K o is expressed by the axial rigidity K c of the section a and the bending section performance of the section b. This is expressed by the formulas (2) and (3).

M=mo・θ (2)
=Kc・jr/2・θ・jr+Ewb・Ib・θ/L
mo=Kc・jr 2/2+Ewb・Ib/L (3)
M = m K o · θ (2)
= K c · j r / 2 · θ · j r + E wb · I b · θ / L
m K o = K c · j r 2/2 + E wb · I b / L (3)

ここに、Kc=1/(1/kc1+1/kc2),kc1=Ews・Aws/L1
c2=Ew2・Aw2/L2,Ewb=Ew2/(n・L1/L+L2/L),
n=Ew2/Ew1,L=L1+L2,Ib=B・DB 3/12
c:軸剛性kc1とkc2を直列結合した軸剛性
r:上下のめり込み補強鉄筋の重心間距離
c1:区間aのめり込み補強鉄筋の軸剛性
ws:めり込み補強鉄筋のヤング係数
ws:区間aのめり込み補強筋の全面積
1:柱せいの1/2,L2:図14参照
c2:区間aの木部の軸剛性
w2:木材の繊維方向のヤング係数,Aw2:区間aの木部の断面蹟
wb:区間bの木部を柱軸面Iから断面IIまでの範囲を直列結合した場合の見掛けのヤン グ係数
b:断面(B×DB)の断面二次モーメント,DB:区間bのせい
w1:木部の繊維に直交する方向の木部のヤング係数
Where K c = 1 / (1 / k c1 + 1 / k c2 ), k c1 = E ws · A ws / L 1 ,
k c2 = E w2 · A w2 / L 2 , E wb = E w2 / (n · L 1 / L + L 2 / L),
n = E w2 / E w1, L = L 1 + L 2, I b = B · D B 3/12
K c : Shaft rigidity k c1 and k c2 connected in series j r : Distance between the centers of gravity of the upper and lower indented reinforcing bars k c1 : Axial rigidity E of the indented reinforcing bar in section a ws : Young's modulus A ws of the indented reinforcing bar : Total area L 1 of the reinforcement reinforcement in the section a L: 1/2 of the column, L 2 : see FIG. 14 k c2 : axial rigidity E w2 of the wood part of the section a: Young's modulus in the fiber direction of wood, A w2 : section a cross section 蹟 E wb of the xy part of a : apparent tangent coefficient I b when the range of the xy part of the section b is connected in series from the column axis plane I to the cross section II: the cross section of the cross section (B × D B ) next moment, D B: due to the interval b E w1: Young's modulus of the wood in the direction perpendicular to the fibers of the wood

次に、プレストレス効果が消滅する時のモーメントMoについて説明する。
ここでのプレストレス効果は、圧縮バネをすべて圧縮状態にして梁端面の曲げ剛性が鉄筋の軸剛性に依存して増大することである。
プレストレス効果が消滅する時点は、Kcのバネがプレストレスを導入する以前の初期形状に戻り、引張状態に転じる時である。これはプレストレス導入時の圧縮バネKcの軸圧縮変形Δoが、モーメントMによる引張変形Δtにより打ち消される時である。プレストレスによるPC棒鋼1本あたりの元張力Toは(4)式のように、梁せいの半分の圧縮バネの軸剛性とΔoの積で表される。Δtは(5)式のように回転角θに梁の断面図心から圧縮バネKcまでの距離jr/2の積で表される。ΔoとΔtは絶対量とし、ΔoとΔtを等しくさせるモーメントMoより、大きなモーメントが作用すると梁端面の回転剛性が減少する。
Next, the moment Mo when the prestress effect disappears will be described.
The prestress effect here is that the compression springs are all compressed and the bending rigidity of the beam end faces increases depending on the axial rigidity of the reinforcing bars.
When the prestressing effect disappears, returning to the previous initial shape spring K c is prestressed, it is time to turn in tension. This is the time when the axial compression deformation Δ o of the compression spring K c when prestress is introduced is canceled by the tensile deformation Δ t caused by the moment M. The original tension T o per PC bar due to pre-stress is expressed by the product of Δ o and the axial stiffness of the compression spring that is half of the beam, as shown in equation (4). Δt is expressed by the product of the distance j r / 2 from the cross-sectional centroid of the beam to the compression spring K c at the rotation angle θ as in equation (5). The delta o and delta t and absolute amount, than delta o and delta t equally be to moment M o, rotational stiffness of large the moment it acts beam end face is reduced.

o=(Kc+Ewb・(B・DB/2)/L)・Δo (4)
Δt=θ・jr/2 (5)
上式のΔoとΔtを等しくおき、(2)式によるθと(3)式のmoを代入してMoについて整理するとプレストレス効果が消滅する時のモーメントMoは(6)式と(7)式で表される。
T o = (K c + E wb · (B · D B / 2) / L) · Δ o (4)
Δ t = θ · j r / 2 (5)
If Δ o and Δ t in the above equation are set equal, θ by Equation (2) and m K o in Equation (3) are substituted and arranged for Mo , the moment Mo when the prestress effect disappears is (6 ) And (7).

o=To・jr・α (6)
α=2・(Kc・L・jr 2+2・Ewb・Ib
/((2・Kc・L+Ewb・B・DB)・jr 2) (7)
ここに、Kcは前述したものと同じである。
M o = T o · j r · α (6)
α = 2 · (K c · L · j r 2 + 2 · E wb · I b )
/ ((2 · K c · L + E wb · B · D B ) · j r 2 ) (7)
Here, K c is the same as described above.

次に、Mo以降の接線曲げ剛性m1について説明する。
モーメントが前節のMoより大きくなると、図18(c)のように右梁の曲げ引張側の剛性は、PC棒鋼の軸剛性kpcと左側の圧縮バネの軸剛性Kcに依存する。右側下の圧縮バネは抵抗しなくなり、無視できる。左梁も同様である。ここでは曲げ圧縮域が小さくなるため、区間bの抵抗も無視する。曲げ圧縮側では残る圧縮バネKcだけが抵抗する。
Next, a description will be given tangent flexural stiffness m K 1 after M o.
When the moment is greater than the previous section M o, flexural tensile side of the stiffness of Migihari as in FIG. 18 (c) depends on the axial stiffness K c of the shaft stiffness k pc and left compression spring PC steel bar. The compression spring on the lower right side no longer resists and can be ignored. The same applies to the left beam. Here, since the bending compression region becomes small, the resistance in the section b is also ignored. Only bending compression spring K c which remains in compression side to resist.

oより増加するモーメントの増分をΔMとし、これにより増加する梁の曲げ引張力の増分をΔT、曲げ圧縮合力の増分をΔC、断面IIの回転角の増分をΔθとする。ΔMとΔTの関係は、圧縮バネ位置まわりのモーメントの釣り合いより(8)式で表される。ΔCは断面IIに生じる上下のPC棒鋼の引張力の増分ΔTと水平方向に釣り合うため、(9)式で表される。柱軸面Iに対する断面IIの上下のPC棒鋼位置での水平変形Δc,Δtは、
(10)式と(11)式で表される。
The increment of the moment increases from M o and .DELTA.M, thereby an increment of bending tensile strength of the beam [Delta] T, the bending ΔC increments of compression force, and increments the Δθ of the rotation angle of the cross section II to increase. The relationship between ΔM and ΔT is expressed by equation (8) from the balance of moments around the compression spring position. Since ΔC balances with the increase ΔT in the tensile force of the upper and lower PC steel bars generated in the section II in the horizontal direction, it is expressed by equation (9). Horizontal deformations Δ c and Δ t at the upper and lower PC bar positions in the section II with respect to the column axis surface I are:
It is represented by the formulas (10) and (11).

ΔM=ΔT・j (8)
ΔC=2・ΔT (9)
Δc=ΔC/Kc (10)
Δt=ΔC/Kc+ΔT/kpc (11)
ΔM = ΔT · j (8)
ΔC = 2 · ΔT (9)
Δ c = ΔC / K c (10)
Δ t = ΔC / K c + ΔT / k pc (11)

回転角の増分Δθは(12)式で表される。これに(8)式から(11)式を整理して代入すると、Mo以降の増分のモーメント−回転角関係は(13)式と(14)式で表される。 The increment Δθ of the rotation angle is expressed by equation (12). Substituting to organize it to (8) from equation (11), M o subsequent incremental moment - rotation angle relation is expressed by equation (13) and (14).

Δθ=(Δc+Δt)/j (12)
ΔM=m1・Δθ (13)
m1=j2/(4/Kc+1/kpc ) (14)
ここに、kpc=Epc・Apc/Lpc
c:5.3節のものと同じ、kpc:PC棒鋼の軸剛性、Epc:PC棒鋼のヤング係数、Apc:PC鋼の断面積、Lpc:左右ナット間の内法長さ、j:めり込み補強の重心位置からPC棒鋼までの応力中心間距離
Δθ = (Δ c + Δ t ) / j (12)
ΔM = m K 1 · Δθ (13)
m K 1 = j 2 / (4 / K c + 1 / k pc ) (14)
Where k pc = E pc · A pc / L pc
K c : Same as in Section 5.3, k pc : axial rigidity of PC steel bar, E pc : Young's modulus of PC steel bar, A pc : sectional area of PC steel, L pc : inner length between left and right nuts , J: Stress center distance from the center of gravity of indentation reinforcement to PC bar

次に、終局モーメントMuについて説明する。
本接合法では、前述したようにU字型金物の脚部の接着面積は、そのせいWと梁幅Bからなる梁木部の断面積の曲げ引張合力wbyを十分伝達できるように確保する。wbyは曲げ基準強度Fbに断面積(W×B)を乗じて評価できる。本接合法ではPC棒鋼の降伏耐力pyをそのwbyより小さくして、PC棒鋼の曲げ引張降伏が先行するように設計する。本実施形態の試験体ではpywbyを78%としている。一方、曲げ圧縮側は、接合部内では鉄筋でめり込み補強が十分なされるので梁側の木部が曲げ圧縮降伏する。
Next, the final moment Mu will be described.
In this bonding method, the bonding area of the legs of the U-shaped fittings as described above ensures that because W and the bending tensile force w T By the cross-sectional area of Ryoboku portion consisting Ryohaba B As can be transmitted . w T by can be evaluated by multiplying the bending reference strength F b by the cross-sectional area (W × B). In this bonding method is made smaller than that w T By the yield strength p T y of PC steel bars are designed to bend tensile yield the PC steel bars is preceded. In the test of the present embodiment is set to 78% of p T y / w T by. On the other hand, the bending compression side is bent and compression yielded on the beam side because the reinforcing part is sufficiently reinforced with reinforcement in the joint.

上下のPC棒鋼が引張降伏する時に、梁木部の圧縮合力wCは図18(d)に示すように水平方向の力の釣り合いより、降伏耐力pyの2倍になる。木部の繊維方向が圧縮降伏する場合は延性的であり、ある程度のひずみまでは降伏応力度を保持できる。簡略的に降伏応力度をFbとして曲げ圧縮応力分布をせいXの矩形分布と仮定する。前述したPC棒鋼の設計方針に基づくと、XはWの2倍以下になる。本試験体の場合にはWの77%の2倍、即ち1.54Wとなる。本接合法ではWを梁せいDの20%としているので、XはDの約30%となる。 When the upper and lower PC steel bars is tensile yield, compression force w C of Ryoboku portion than the balance of horizontal forces, as shown in FIG. 18 (d), it is twice the yield strength p T y. When the fiber direction of the xylem is compression yielding, it is ductile, and the yield stress level can be maintained up to a certain strain. For simplicity, it is assumed that the yield stress degree is F b and the bending compressive stress distribution is a rectangular distribution of X. Based on the design policy of the PC steel bar described above, X is less than twice W. In the case of this test body, it is twice 77% of W, that is, 1.54W. In this joining method, since W is 20% of the beam D, X is about 30% of D.

No.2試験体の実験の状況からPC棒鋼とU字型金物が本接合法で想定している形状比であれば、PC棒鋼が引張降伏した後、梁木部が圧縮降伏して終局モーメントMuに達すると考えられる。Muは曲げ圧縮合力の重心まわりのモーメントの釣り合いより(15)式で表される。wCは(16)式で表され、pyとの関係はカの釣り合いより(17)式で表される。両式よりXは(18)式で表される。これを(15)式に代入して整理するとMuは(19)式で表される。 No. If the status of the experiment 2 Specimen shape ratio PC steel bar and the U-shaped fittings are assumed in this bonding method, after the PC steel bar has tensile yield, the ultimate moment M u Ryoboku unit compresses yield It is considered to reach. M u is expressed by equation (15) from the balance of moments around the center of gravity of the bending compression force. w C is expressed by equation (16), the relationship between the p T y is represented by the balance, mosquito (17). From both equations, X is expressed by equation (18). By substituting this into the equation (15) and arranging it, Mu is expressed by the equation (19).

upy・(d−X/2) (15)
wC=Fb・X・B (16)
wC=2・py (17)
X=2・py/(Fb・B) (18)
upy・d・(1−pt・σy/Fb) (19)
ここに、pt=at/(B・d)
py:PC棒鋼の降伏耐力、d:圧縮縁から引張縁のPC棒鋼までのせい、B:梁幅、
t:PC鋼の引張鉄筋比、at:PC棒鋼の一本の断面積、σy:PC棒鋼の降伏応力度、Fb:木部の曲げ基準強度
M u = p T y · (d−X / 2) (15)
w C = F b · X · B (16)
w C = 2 · p T y (17)
X = 2 · p T y / (F b · B) (18)
M u = p T y · d · (1− pt · σ y / F b ) (19)
Here, p t = a t / ( B · d)
p T y: the yield strength of the PC steel bar, d: due to the PC steel bars of the tensile edge from compression edge, B: the beam width,
p t: tensile reinforcement ratio of PC steel, a t: single cross-sectional area of the PC steel bars, sigma y: yield stress of the PC steel bars, F b: xylem flexural reference intensity

次に、梁端面のモーメント−回転角関係のモデルについて説明する。
図19(a)は、梁が繰り返しのモーメントを受ける場合のモーメント−回転角関係の履歴モデルを示している。載荷する場合、モーメントが(6)式のMoまでは(2)式の関係に従い、Moより大きくなると(13)式の関係に従い、モーメントが(19)式のMuに達すると、PC棒鋼に塑性変形が生じてモーメントが一定で回転角が増加するものとする。この時、梁端面の曲げ圧縮側では接合部内のめり込み変形はほとんど生じないが、梁の曲げ圧縮域が圧縮降伏して塑性変形も増大する。回転角が大きくなると、その圧縮特性が低下してモーメントが低下し始める。そのモーメントがMuのある比率まで低下する時の回転角を限界回転角と定義する。その回転性能は接合部と関係なく、梁の断面性能が支配する。
Next, a model of the moment-rotation angle relationship of the beam end face will be described.
FIG. 19A shows a history model of the moment-rotation angle relationship when the beam receives repeated moments. If the loading until M o moments (6) according to the relationship of the expression (2), in accordance with the relationship becomes greater than M o (13) where the moment (19) reaches the formula M u, PC It is assumed that plastic deformation occurs in the steel bar, the moment is constant, and the rotation angle increases. At this time, there is almost no indentation deformation in the joint on the bending compression side of the beam end face, but the bending compression area of the beam compressively yields and plastic deformation increases. As the rotation angle increases, the compression characteristics decrease and the moment begins to decrease. The moment is defined as the limit rotation angle rotation angle when lowered to a certain ratio of M u. The rotational performance is governed by the cross-sectional performance of the beam regardless of the joint.

一方、除荷時は、図12で観られたように作用モーメントが小さいLevel1,2では、Moより大きいモーメントを受けた後、除荷されても載荷時の経路をほぼ戻る。しかし、作用モーメントが大きいLevel3で除荷すると、塑性回転角成分が生じてその経路は載荷時の経路を戻らない。このことを基に図19(b)のようにモデル化する。曲げ降伏後、塑性回転角が生じて除荷に転じる場合、(14)式のm1の剛性で戻るものとする。 On the other hand, when unloading, the Level1,2 moment acts is small as is seen in FIG. 12, after receiving the M o greater moment, be unloaded back nearly path during loading. However, when unloading is performed at Level 3 where the acting moment is large, a plastic rotation angle component is generated and the route does not return to the route at the time of loading. Based on this, modeling is performed as shown in FIG. When a plastic rotation angle is generated after bending yielding and the load is changed to unloading, it returns with the rigidity of m K 1 in the equation (14).

各サイクルのピーク時にPC棒鋼の引張バネkpcと、圧縮バネKcに生じる塑性変形の和Δp(図18(d))がプレストレス導入時に生じる変形Δoより小さければプレストレス効果は残り、m1の剛性で戻る経路は図19(b)に示すように初期のMo以下のM−θ関係に合流する。その合流点をPcとする。しかしながらピーク時に回転角が大きく、ΔpがΔoより大きくなるサイクルでは、合流点Pcは現れない。この場合、除荷時のモーメントが零に近づくと、図19(b)に示すように変形が初期状態に戻る剛性に急変する点が現れる。この点をPr点とする。このPr点はNo.1試験体でも生じている。プレストレスの影響と考えられる。ここでは実験結果に基づきPr点のモーメントを梁断面の基準曲げ耐力の10%とする。Pr点以降の除荷剛性は原点を指向するものとする。 If the sum of the plastic deformation Δ p (FIG. 18 (d)) of the PC bar tension spring k pc and the compression spring K c at the peak of each cycle is smaller than the deformation Δ o generated when pre-stress is introduced, the pre-stress effect remains. , path back of a rigid m K 1 merges the initial M o following M-theta relationship as shown in FIG. 19 (b). Let the junction point be P c . However large rotation angle at peak, the delta p is greater than delta o cycle confluence P c does not appear. In this case, when the moment at the time of unloading approaches zero, as shown in FIG. 19B, there appears a point where the deformation suddenly changes to the rigidity to return to the initial state. This point is defined as a Pr point. This Pr point is No. It occurs even in one specimen. This is considered to be the effect of prestress. Here, the moment at the Pr point is set to 10% of the standard bending strength of the beam section based on the experimental results. Unloading stiffness after P r point shall be directed to the origin.

モーメント−回転角の評価方法による評価
No.2試験体の梁端面のモーメント−回転角関係と、層せん断力−層間変形角関係を評価した。
先ず、梁端面のモーメント−回転角関係について説明する。
(a)初期剛性とプレストレス効果消滅時のモーメント
前述した図12のM−θ関係に計算による関係を破線で示す。Moまでの剛性は実験結果とよくあっている。プレストレス効果が消滅して剛性が低下するモーメントMo(水平の一点鎖線のトメント)はLevel1とLevel2及びLevel3の正加力では実験値(図中○の時点)とよくあっている。Level3の負加力では実験値が多少小さくなっている。このサイクルではループ内の面積が多少生じており、正加力で材料が塑性化したことが原因と考えられる。Moより大きい範囲の接線剛性m1も実験結果とよくあっている。
Evaluation No. by moment-rotation angle evaluation method The moment-rotation angle relationship between the beam ends of the two specimens and the layer shear force-interlayer deformation angle relationship were evaluated.
First, the moment-rotation angle relationship of the beam end face will be described.
(A) Initial rigidity and moment when prestress effect disappears The calculated relationship is shown by a broken line in the above-described M-θ relationship of FIG. Rigidity of up to M o is a well with the experimental results. The moment M o (the horizontal one-dot chain line toment) at which the pre-stress effect disappears and the rigidity decreases is in good agreement with the experimental value (at the time indicated by ◯ in the figure) with the positive forces of Level 1, Level 2, and Level 3. The experimental value is somewhat smaller with the negative force of Level3. In this cycle, there is some area in the loop, which is considered to be caused by plasticizing the material with a positive force. M o larger range tangent m K 1 also has a well with the experimental results.

(b)梁端面のモーメント−回転角関係
図20は、計算結果と実験結果を比較して示している。実験は前述したTopyを0.94としたもので、計算でも同じ値としている。計算の各サイクルの最大回転角は実験に合わせている。計算値の終局モーメントは実験値を9%小さく評価した。この原因はPC棒鋼のねじ部の降伏(図28)による降伏強度のバラツキ、梁の曲げ危険断面位置を梁端面していること、梁の曲げ圧縮の降伏強度を基準値としていることなどが考えられる。
(B) Relationship between moment and rotation angle of beam end face FIG. 20 shows a comparison between the calculation results and the experimental results. Experiments in which was 0.94 T o / p T y described above, and has the same value in the calculation. The maximum rotation angle for each cycle of calculation is adjusted to the experiment. The calculated final moment was estimated to be 9% smaller than the experimental value. This is thought to be due to the variation in yield strength due to the yield of the threaded portion of the PC steel bar (Fig. 28), the fact that the cross-sectional position of the beam is at the end of the beam, and the yield strength of the bending compression of the beam as the reference value. It is done.

±3サイクルまでは、除荷時や再載荷の剛性、除荷時にプレストレス効果が復活する点Pc、再載荷時にプレストレス効果が消滅するモーメントMoなどの計算結果は実験結果とよくあっている。±4サイクルの除荷時では、計算のPc点のモーメントはほぼ零で実験値より多少小さくなり、Pc点の直前の剛性に多少差が生じている。しかし、±5サイクル以降の除荷時ではPc点が生じていない。これは、前述したようにPC棒鋼の伸びの塑性変形Δpがプレストレス導入時の軸変形Δoより大きくなったことによる。 ± up to three cycles, there may unloading time and re-loading of the rigid, P c that it revived prestressing effect during unloading, calculation results, such as the moment M o prestressing effect disappears during re-loading the experimental results ing. At the time of unloading of ± 4 cycles, the moment at the calculated P c point is almost zero, which is slightly smaller than the experimental value, and there is a slight difference in the stiffness immediately before the P c point. However, Pc point does not occur at the time of unloading after ± 5 cycles. This is because the plastic deformation delta p of elongation of PC steel bar as described above is larger than the axial deformation delta o when prestress introduced.

±5サイクル以降の除荷時では、原点を指向する剛性に急変するPr点は発生する。これに対しては、その直前の除荷剛性の計算値は実験値と差が生じてm1より多少小さくする必要がある。PC棒鋼の伸びの塑性変形ΔpがΔoより大きくなり、Pr点が発生した以降の剛性は繰り返しの曲げ解析による必要である。 At the time of ± 5 cycles after unloading, P r point which changes abruptly rigid directed origin occurs. On the other hand, the calculated value of the unloading stiffness immediately before that needs to be slightly smaller than m K 1 due to a difference from the experimental value. Plastic deformation delta p of elongation of the PC steel bars is greater than the delta o, the rigidity of the subsequent P r point has occurred is required due to repeated bending analysis.

次に、層せん断力−層間変形角関係について説明する。
図22は、計算結果と実験結果を比較して示している。図21は、この計算に用いたモデルを示している。接合部と梁端面の変形は図19のM−θ関係を用い、断面IIから梁の加力先端までは弾性の曲げ変形を計算した。柱は、前述の計算IIIと同様に接合部に剛域を設けて弾性曲げ変形を計算した。
Next, the relationship between the layer shear force and the interlayer deformation angle will be described.
FIG. 22 shows a comparison between the calculation results and the experimental results. FIG. 21 shows the model used for this calculation. For the deformation of the joint and the beam end face, the elastic bending deformation was calculated from the section II to the applied tip of the beam using the M-θ relationship of FIG. As for the column, the elastic bending deformation was calculated by providing a rigid region at the joint portion in the same manner as in the above calculation III.

1サイクルでは、最大荷重の計算値cmaxの約70%までの剛性は実験値とよく一致している。負加力の−5サイクル以降で実験の変形角が計算値より大きくなっている。これは図29に示すように同サイクルで下柱の曲げ危険断面近傍の曲げひび割れが拡大・進展して柱変形が増加したことが原因である。このことを除くと、図22の計算結果は実験結果を巨視的によく推定していると判断できる。 In one cycle, the rigidity up to about 70% of the calculated maximum load value c P max is in good agreement with the experimental value. The deformation angle of the experiment is larger than the calculated value after -5 cycles of negative force. This is because, as shown in FIG. 29, in the same cycle, the bending cracks near the bending risk section of the lower column expanded and progressed, and the column deformation increased. If this is excluded, it can be judged that the calculation result of FIG. 22 estimates the experimental result well macroscopically.

図中には設計において制限される変形角を二点鎖線で示している。その層間変形角(1/120rad.)では最大荷重の65%程度しか発揮されない。降伏する変形角は1/80rad.であり、大変形域でないとPC棒鋼の降伏エネルギーを利用できない。しかし大地震時を想定して建物を倒壊させないで残留変形を抑える観点では、本接合法は耐力が大きく、エネルギー吸収量も確保されるので有効である。   In the figure, the deformation angle limited in the design is indicated by a two-dot chain line. The interlayer deformation angle (1/120 rad.) Exhibits only about 65% of the maximum load. The yielding deformation angle is 1/80 rad. The yield energy of PC bar cannot be used unless it is in a large deformation range. However, from the viewpoint of suppressing residual deformation without collapsing the building in the event of a large earthquake, this joining method is effective because it has a high yield strength and energy absorption.

次に、エネルギー吸収と等価粘性減衰定数について説明する。
本接合法ではPC棒鋼を引張降伏させるので、明確なエネルギー吸収量が確保できる。図22の各サイクルのループ面積がエネルギー吸収量を意味するが、降伏後の層せん断力がNo.1試験体に較べて大きいので吸収量は大きい。図20の計算のM−θ関係から求められる等価粘性減衰定数の変化を実験値と比較して前頁の図23に示す。横軸は梁端面の回転角θである。図中にはNo.1試験体の実験値も示している。
Next, energy absorption and equivalent viscosity damping constant will be described.
In this joining method, the PC steel bar is tensile yielded, so a clear energy absorption amount can be secured. The loop area of each cycle in FIG. 22 means the amount of energy absorption. Since it is larger than one specimen, the amount of absorption is large. FIG. 23 on the previous page shows the change of the equivalent viscous damping constant obtained from the M-θ relationship in the calculation of FIG. 20 in comparison with the experimental value. The horizontal axis is the rotation angle θ of the beam end face. In the figure, no. Experimental values for one specimen are also shown.

計算値はNo.2試験体の実験値より多少大きくなっている。これは図19の除荷時のPr点のモーメントを小さく設定したことが原因であるが、巨視的にはあっており、本接合法では計算で等価粘性減衰定数を設定できることになる。しかし本接合法はPC棒鋼に圧縮と引張の繰り返しを生じさせないため、変形履歴の影響を受ける。種々の地震波の動的解析による検討が必要である。また、PC棒鋼の降伏エネルギーを積極的に利用する設計を行うのであれば、PC棒鋼が引張降伏と圧縮降伏を繰り返す方法も有効である。 The calculated value is No. It is slightly larger than the experimental value of 2 specimens. This is because the moment at the Pr point at the time of unloading in FIG. 19 is set small. However, this is macroscopic, and the equivalent viscous damping constant can be set by calculation in this joining method. However, this joining method is not affected by the deformation history because it does not cause repeated compression and tension in the PC bar. It is necessary to study by dynamic analysis of various seismic waves. In addition, if the design is made to positively use the yield energy of the PC bar, a method in which the PC bar repeats tensile yielding and compression yielding is also effective.

上述したように木造ラーメンの剛節を意図して大きなプレストレス力を導入できる接合方法を説明し、その可能性を十字型骨組の加力実験により検証した。そして接合部の回転性能の評価方法を説明した。なお、本接合法は柱勝ちの組み方としている。以下に本実施形態における主要な作用効果等を説明する。   As described above, a joint method that can introduce a large prestress force with the intention of rigid joints of wooden ramen was explained, and the possibility was verified by a force test of a cruciform frame. And the evaluation method of the rotational performance of a junction part was demonstrated. In addition, this joining method is a method of assembling a pillar. Hereinafter, main effects and the like in the present embodiment will be described.

(1)本接合法により骨組の層の水平耐力の70%まで剛節としてラーメンの応力と変形の計算ができた。その時の骨組の層間変形角は約1/120rad.で設計の変形制限の範囲では剛節として計算が可能である。その接合部の剛節の程度は、RC架構と同程度まで改善された。 (1) With this joining method, it was possible to calculate the stress and deformation of the ramen as rigid joints up to 70% of the horizontal strength of the frame layer. The interlayer deformation angle of the frame at that time is about 1/120 rad. Thus, it can be calculated as a rigid joint within the range of deformation restrictions of the design. The degree of rigid joint at the joint was improved to the same level as the RC frame.

(2)プレストレスを導入することにより、接合部の回転剛性は増大し、その効果が有効な範囲は、プレストレスの大きさにより異なる。本実施形態のNo.2試験体では梁の母材の基準曲げ耐力の約60%のモーメントまでは効果が確認された。 (2) By introducing prestress, the rotational rigidity of the joint increases, and the range in which the effect is effective varies depending on the magnitude of the prestress. No. of this embodiment. In the two specimens, the effect was confirmed up to a moment of about 60% of the base bending strength of the base material of the beam.

(3)梁の曲げ耐力はPC棒鋼が引張降伏して母材の基準曲げ耐力の70%まで発揮した。この曲げ耐力は梁の部材角で45×10-3rad.まで保持できた。しかしPC棒鋼を接合部内に定着しないため、梁の曲げ圧縮力がPC棒鋼の降伏耐力の2倍になり、梁が曲げ圧縮降伏して大変形域でその圧縮特性が劣化して曲げ耐力が低下した。これを防ぐためにはPC棒鋼の降伏耐力を抑制するか、PC棒鋼の接合部内への定着が必要になる。 (3) The bending strength of the beam was 70% of the base bending strength of the base metal due to the tensile yielding of the PC bar. This bending strength is 45 × 10 −3 rad. I was able to hold. However, because the PC bar is not fixed in the joint, the bending compressive force of the beam is twice that of the PC bar, the beam is bent and compressive yielded, and its compressive characteristics deteriorated in the large deformation region, resulting in a decrease in bending strength. did. In order to prevent this, it is necessary to suppress the yield strength of the PC bar or to fix it in the joint of the PC bar.

(4)PC棒鋼が降伏して耐力に達する変形は、梁の変形角で24×10-3rad.で骨組の層間変形角では1/80rad.であり、大変形域でないとPC棒鋼の降伏エネルギーを利用できない。しかし本接合法は大きな耐力とエネルギー吸収量が確保されるので、大地震時に対しては建物の倒壊防止もしくは残留変形を抑える観点では有効である。 (4) The deformation of the PC steel bar to yield strength is 24 × 10 −3 rad. And the interlaminar deformation angle of the frame is 1/80 rad. The yield energy of PC bar cannot be used unless it is in a large deformation range. However, this joining method ensures large yield strength and energy absorption, so it is effective from the viewpoint of preventing collapse of buildings or suppressing residual deformation in the event of a large earthquake.

(5)本実施形態の評価方法で接合部と梁の境界の梁端面のモーメント−回転角関係と降伏後の等価粘性係数をほぼ推定できた。それを用いて計算される骨組の層せん断力−層間変形角関係も実験結果をよく推定できた。 (5) With the evaluation method of the present embodiment, the moment-rotation angle relationship of the beam end face at the boundary between the joint and the beam and the equivalent viscosity coefficient after yielding were almost estimated. The experimental results were also well estimated for the relationship between the layer shear force of the frame and the interlaminar deformation angle calculated using this.

(第2の実施形態)
次に、本発明の第2の実施形態を説明する。図30及び図31は、第2の実施形態を示している。この例では柱1に接着剤22によって定着される鋼管20を有する。その鋼管20の内側をPC棒鋼ボルト21又は一般のボルトを貫通させる。鋼管20の形状は図32(a)に示すように、鋼管20の外側面には接着力を増大させるため、ねじ溝などの突起が設けられる。
(Second Embodiment)
Next, a second embodiment of the present invention will be described. 30 and 31 show a second embodiment. In this example, the steel pipe 20 is fixed to the pillar 1 by an adhesive 22. A PC bar bolt 21 or a general bolt is passed through the inside of the steel pipe 20. As shown in FIG. 32A, the shape of the steel pipe 20 is provided with protrusions such as thread grooves on the outer surface of the steel pipe 20 in order to increase the adhesive force.

第2の実施形態において、鋼管20及びPC棒鋼ボルト21を同心二重構造とすることで構成を簡素している。定着する複数の異形棒鋼のためにあける柱1の貫通穴と、PC棒鋼7又は一般のボルトを通す柱の貫通穴を併用し,柱1にあける貫通穴の数を減らして加工の省力化をはかる共に、柱1の欠損を減らし柱の剛性・強度の低下を軽減することができる。   In 2nd Embodiment, the structure is simplified by making the steel pipe 20 and the PC bar bolt 21 into a concentric double structure. By using both the through hole of the column 1 for a plurality of deformed steel bars to be fixed and the through hole of the column through which the PC steel bar 7 or general bolts are passed, the number of through holes in the column 1 is reduced and labor saving is achieved. At the same time, it is possible to reduce the loss of the column 1 and reduce the decrease in the rigidity and strength of the column.

(第3の実施形態)
次に、本発明の第3の実施形態を説明する。図33及び図34は、第3の実施形態を示している。この例では柱1に定着する鋼管30の両端に、図32(b)又は(c)に示すように雌ねじ30aを切り、両端にねじ部31aを有するPC棒鋼ボルト31又は一般のボルトをねじ込む。それらのボルト31において、ねじ込まれる側の端に対して反対側の端では2個のナット32,33を設置する。ナット32はPC棒鋼ボルト31にボルト引張のプレストレス力を導入のために締め付ける。この締め付けの後にナット33を回してPC棒鋼ボルト31に設置し、金物の受け部34の間に挿入鋼材35を挿入する。ナット33を逆回りさせて戻らせて、挿入鋼板35に接触させる。これによりPC棒鋼ボルト31と金物の受け部34の間に圧縮力を伝達させる。なお、受け部34は溶接36によりU字型金物5に固定される。
(Third embodiment)
Next, a third embodiment of the present invention will be described. 33 and 34 show a third embodiment. In this example, female screws 30a are cut at both ends of the steel pipe 30 fixed to the pillar 1 as shown in FIG. 32 (b) or (c), and PC bar bolts 31 or general bolts having screw portions 31a at both ends are screwed. In these bolts 31, two nuts 32 and 33 are installed at the opposite end to the screwed end. The nut 32 is fastened to the PC bar bolt 31 for introducing a prestressing force of bolt tension. After this tightening, the nut 33 is turned and installed on the PC bar bolt 31, and the inserted steel material 35 is inserted between the hardware receiving portions 34. The nut 33 is rotated backward and brought into contact with the inserted steel plate 35. Thereby, a compressive force is transmitted between the PC bar bolt 31 and the metal receiving part 34. The receiving portion 34 is fixed to the U-shaped hardware 5 by welding 36.

なお上記の場合、鋼管30のタイプとして、図32(b)又は(c)のものを用いる。図32(b)のタイプは鋼管の内側に雌ねじを設けたものであり、図32(c)のタイプは太径異形鉄筋又は太径ボルトの両端に雌ねじを設けたものである。
更に、PC棒鋼ボルト31にはボルト長さ方向の中央の区間の直径が、その他の区間のものより小さくなるようにして、その区間で明確に降伏するようにして両端のねじ部が降伏することを防止する。
In the above case, the type of the steel pipe 30 is the one shown in FIG. 32 (b) or (c). The type shown in FIG. 32 (b) is provided with a female thread inside the steel pipe, and the type shown in FIG. 32 (c) is provided with a female thread at both ends of a large-diameter deformed reinforcing bar or a large-diameter bolt.
Furthermore, the diameter of the central section in the bolt length direction of the PC steel bar bolt 31 is made smaller than that of the other sections, and the thread portions at both ends are yielded so as to yield clearly in that section. To prevent.

第3の実施形態において、大地震時にPC棒鋼ボルト31又は一般のボルトに引張降伏と圧縮降伏を繰り返し生じさせる。これによりPC棒鋼の塑性エネルギーが増大して、構造物の振動エネルギーを吸収して大地震時の振動を低減することができる。   In the third embodiment, the tensile yield and the compressive yield are repeatedly generated in the PC bar bolt 31 or the general bolt at the time of a large earthquake. As a result, the plastic energy of the PC steel bar is increased, and the vibration energy of the structure can be absorbed to reduce the vibration during a large earthquake.

(第4の実施形態)
更に、本発明の第4の実施形態において、 図35に示すように柱1と梁2の幅が大きくなった場合として、鋼管40とPC棒鋼ボルト41を柱幅方向及び梁幅方向に複数列に平行に配置する。
(Fourth embodiment)
Furthermore, in the fourth embodiment of the present invention, as shown in FIG. 35, when the width of the column 1 and the beam 2 is increased, the steel pipe 40 and the PC bar bolt 41 are arranged in a plurality of rows in the column width direction and the beam width direction. Placed parallel to

本発明の第4の実施形態によれば、柱幅や梁幅が大きくなった場合に母材に近い性能を発揮できる。   According to the fourth embodiment of the present invention, performance close to the base material can be exhibited when the column width or the beam width is increased.

(第5の実施形態)
また更に、本発明の第5の実施形態において、前述した鋼管30(図32参照)の長手方向ほぼ中央部に、所定長さの雌ねじを設ける(なお、図示は省略するものとする)。この雌ねじに対して長手方向両側から、それぞれ両端にねじ部31aを有するPC棒鋼ボルト31又は一般のボルト(図34(a)参照)をねじ込む。なお、その他の基本構成は、第3の実施形態の場合と実質的に同様である。
(Fifth embodiment)
Furthermore, in the fifth embodiment of the present invention, a female screw having a predetermined length is provided at a substantially central portion in the longitudinal direction of the steel pipe 30 (see FIG. 32) (note that illustration is omitted). A PC bar bolt 31 or a general bolt (see FIG. 34 (a)) having screw portions 31a at both ends is screwed into the female screw from both sides in the longitudinal direction. Other basic configurations are substantially the same as those in the third embodiment.

本発明の第5の実施形態によれば、前述した第3の実施形態の作用効果に加えて、PC棒鋼ボルト31等が鋼管30の内方まで延在することで、プレストレス力による効果を高めて柱梁接合部の剛性を有効に増強することができる。   According to the fifth embodiment of the present invention, in addition to the effects of the third embodiment described above, the effect of the prestressing force can be obtained by extending the PC bar bolts 31 and the like to the inside of the steel pipe 30. The rigidity of the beam-column joint can be effectively enhanced by increasing it.

以上、本発明を実施形態とともに説明したが、本発明はこれらの実施形態にのみ限定されるものではなく、本発明の範囲内で変更等が可能である。
例えば、PC棒鋼や鉄筋の数量、サイズ等は必要に応じて増減可能である。また、これらの部材の材質等についても、上記実施形態の場合と同等もしくはそれ以上のものであれば適宜使用可能である。
また、U字型金物の代わりに、厚さの異なる鋼材をU字型に組み合わせて溶接で接合した金物を用いることもできる。この場合、金物の各部の厚さを調節することができ、金物に生じる応力に対して各部分で最適な鋼材の厚さを選択できるようになる。これにより鋼材の使用量を少なくすることができると共に、厚い鋼材の折り曲げ加工をしないで済む等の利点がある。
As mentioned above, although this invention was demonstrated with embodiment, this invention is not limited only to these embodiment, A change etc. are possible within the scope of the present invention.
For example, the quantity, size, etc. of PC bars and reinforcing bars can be increased or decreased as necessary. In addition, the material of these members can be appropriately used as long as it is equal to or higher than that in the above embodiment.
Further, instead of the U-shaped hardware, it is also possible to use a hardware in which steel materials having different thicknesses are combined in a U-shape and joined by welding. In this case, the thickness of each part of the hardware can be adjusted, and the optimum thickness of the steel material can be selected for each part against the stress generated in the hardware. As a result, the amount of steel used can be reduced, and there is an advantage that it is not necessary to bend a thick steel.

本発明の接合構造の要部構成を示す図である。It is a figure which shows the principal part structure of the junction structure of this invention. 本発明の比較対象例としての接合構造を示す図である。It is a figure which shows the junction structure as a comparative example of this invention. 本発明の実施形態における内力の伝達の原理を示す図である。It is a figure which shows the principle of transmission of the internal force in embodiment of this invention. 本発明の実施形態における木造構造部材の全体構成例を示す図である。It is a figure which shows the example of whole structure of the wooden structure member in embodiment of this invention. 本発明の実施形態における柱及び梁の接合面の構成例を示す図である。It is a figure which shows the structural example of the joint surface of the pillar and beam in embodiment of this invention. 本発明の実施形態に係る測定装置の構成例を示す図である。It is a figure which shows the structural example of the measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る測定装置の構成例を示す図である。It is a figure which shows the structural example of the measuring apparatus which concerns on embodiment of this invention. 本発明の実施形態における層せん断力及び層間変形角の関係を示す図である。It is a figure which shows the relationship between the layer shear force and interlayer deformation angle in embodiment of this invention. 本発明の実施形態における層せん断力及び層間変形における各変形成分を示す図である。It is a figure which shows each deformation | transformation component in the layer shear force and interlayer deformation in embodiment of this invention. 本発明の実施形態における剛節の剛性の評価モデルを示す図である。It is a figure which shows the evaluation model of the rigidity of the rigid joint in embodiment of this invention. 本発明の実施形態における初期剛性の実験値と計算値の比較例を示す図である。It is a figure which shows the comparative example of the experimental value and calculated value of initial stage rigidity in embodiment of this invention. 本発明の実施形態における加力サイクルのm−θ関係を示す図である。It is a figure which shows the m-theta relationship of the applied cycle in embodiment of this invention. 本発明の実施形態におけるNo.2試験体のm−θ関係を示す図である。No. in the embodiment of the present invention. It is a figure which shows the m-theta relationship of 2 test bodies. 本発明の実施形態におけるNo.2試験体のm−R関係を示す図である。No. in the embodiment of the present invention. It is a figure which shows the mR relationship of 2 test bodies. 本発明の実施形態における変位計Aの測定区間例を示す図である。It is a figure which shows the example of a measurement area of the displacement meter A in embodiment of this invention. 本発明の実施形態における変形適合条件と抵抗要素を示す図である。It is a figure which shows the deformation | transformation adaptation conditions and resistance element in embodiment of this invention. 本発明の実施形態における力学的バネモデル例を示す図である。It is a figure which shows the example of a dynamic spring model in embodiment of this invention. 本発明の実施形態における各時点の変形状態と応力状態を示す図である。It is a figure which shows the deformation | transformation state and stress state of each time in embodiment of this invention. 本発明の実施形態におけるMB−θ関係の履歴モデルを示す図である。It is a diagram showing a history model M B - [theta] relationship in the embodiment of the present invention. 本発明の実施形態におけるMB−θ関係の計算結果と実験結果を比較して示す図である。It is a graph showing by comparison the calculated results and experimental results of the M B - [theta] relationship in the embodiment of the present invention. 本発明の実施形態におけるQ−R関係のモデル例を示す図である。It is a figure which shows the example of a model of QR relationship in embodiment of this invention. 本発明の実施形態におけるQ−R関係の計算結果と実験結果を比較して示す図である。It is a figure which compares and shows the calculation result and experiment result of QR relationship in embodiment of this invention. 本発明の実施形態における等価粘性減衰常数の変化を示す図である。It is a figure which shows the change of the equivalent viscous damping constant in embodiment of this invention. 本発明の実施形態における左梁下曲げ圧縮域を示す写真である。It is a photograph which shows the bending compression area under the left beam in embodiment of this invention. 本発明の実施形態における左梁下変形測定区間を示す写真である。It is a photograph which shows the left beam under deformation measurement area in embodiment of this invention. 本発明の実施形態における実験終了後の梁の曲げ圧縮域の状況を示す写真である。It is a photograph which shows the condition of the bending compression zone of the beam after completion | finish of experiment in embodiment of this invention. 本発明の実施形態における左梁の横座屈の状況を示す写真である。It is a photograph which shows the condition of the lateral buckling of the left beam in embodiment of this invention. 本発明の実施形態におけるPC棒鋼のねじ部の降伏状態を示す写真である。It is a photograph which shows the yield condition of the thread part of PC bar steel in the embodiment of the present invention. 本発明の実施形態における柱の曲げひび割れ状況を示す写真である。It is a photograph which shows the bending crack condition of the pillar in embodiment of this invention. 本発明の第2の実施形態に係る接合構造の要部構成を示す図である。It is a figure which shows the principal part structure of the junction structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る接合構造の要部構成を示す図である。It is a figure which shows the principal part structure of the junction structure which concerns on the 2nd Embodiment of this invention. 本発明の第2の実施形態に係る鋼管の例を示す図である。It is a figure which shows the example of the steel pipe which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る接合構造の要部構成を示す図である。It is a figure which shows the principal part structure of the junction structure which concerns on the 3rd Embodiment of this invention. 本発明の第3の実施形態に係る接合構造の要部構成を示す図である。It is a figure which shows the principal part structure of the junction structure which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る接合構造の要部構成を示す図である。It is a figure which shows the principal part structure of the junction structure which concerns on the 4th Embodiment of this invention.

符号の説明Explanation of symbols

1 柱
2 梁
3 角穴
4 長溝
5 U字型金物
6 接着剤
7 PC棒鋼
8 ナット
9 角座金
10 角座金
11 鉄筋
12 通し孔
13 通し孔
14 ほぞ
15 ほぞ穴
20,30,40 鋼管
21 PC棒鋼ボルト
32,33 ナット
34 受け部
35 挿入鋼材
1 Column 2 Beam 3 Square Hole 4 Long Groove 5 U-Shaped Metal 6 Adhesive 7 PC Bar 8 Nut 9 Square Washer 10 Square Washer 11 Reinforcement 12 Through Hole 13 Through Hole 14 Mortise 15 Mortise 20, 30, 40 Steel Pipe 21 PC Bar Bolt 32, 33 Nut 34 Receiving part 35 Insert steel

Claims (6)

木造構造を構成する柱及び梁を含む接合部において両部材を相互に接合する木造柱梁部材の接合金具であって、
前記梁方向に沿って前記柱内に定着された受圧部材と、前記梁方向に沿って前記柱を貫通し前記梁内に延出する締結部材とを有し、
前記締結部材を緊締することにより前記受圧部材にプレストレスを導入するようにしたことを特徴とする木造柱梁部材の接合金具。
It is a joining member of a wooden column beam member that joins both members to each other in a joint portion including a column and a beam constituting a wooden structure,
A pressure-receiving member fixed in the column along the beam direction, and a fastening member extending through the column and extending into the beam along the beam direction,
A joining member for a wooden column beam member, wherein prestress is introduced into the pressure receiving member by tightening the fastening member.
前記受圧部材は鉄筋もしくは鋼管材により構成され、前記締結部材は棒鋼材により構成され、前記受圧部材にプレストレスとして圧縮荷重が付与されることを特徴とする請求項1に記載の木造柱梁部材の接合金具。   2. The wooden column beam member according to claim 1, wherein the pressure receiving member is made of a reinforcing bar or a steel pipe material, the fastening member is made of a steel bar material, and a compressive load is applied to the pressure receiving member as a prestress. Joint fittings. 前記接合部における前記梁の端面に前記受圧部材を当接支持する座金を有することを特徴とする請求項1又は2に記載の木造柱梁部材の接合金具。   3. The joint member for a wooden column beam member according to claim 1, further comprising a washer that abuts and supports the pressure receiving member on an end surface of the beam in the joint portion. 前記梁の端面に1又は複数のほぞを設けると共に、前記柱の両側面に前記ほぞと嵌合するほぞ穴が形成されることを特徴とする請求項1〜3のいずれか1項に記載の木造柱梁部材の接合金具。   The tenon hole which fits with the tenon is formed in the both sides | surfaces of the said pillar while providing one or several tenon in the end surface of the said beam, The any one of Claims 1-3 characterized by the above-mentioned. Joints for wooden column beams. 前記受圧部材と前記締結部材は、同心二重構造に構成されることを特徴とする請求項1〜4のいずれか1項に記載の木造柱梁部材の接合金具。   The said pressure receiving member and the said fastening member are comprised by the concentric double structure, The joining bracket of the wooden pillar beam member of any one of Claims 1-4 characterized by the above-mentioned. 木造構造を構成する柱及び梁を含む接合部において両部材を相互に接合する木造柱梁部材の接合方法であって、
前記柱の接合部内部に受圧部材を定着し、前記梁方向に沿って前記柱を貫通する締結部材を緊締することにより、前記受圧部材にプレストレスを導入するようにしたことを特徴とする木造柱梁部材の接合方法。
A method for joining wooden column beam members, in which both members are joined to each other in a joint including columns and beams constituting a wooden structure,
A wooden structure characterized in that a prestress is introduced into the pressure receiving member by fixing a pressure receiving member inside the joint portion of the column and tightening a fastening member penetrating the column along the beam direction. Method for joining column beam members.
JP2008037783A 2008-02-19 2008-02-19 Joining bracket and joining method for wooden column beam members Expired - Fee Related JP5071915B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008037783A JP5071915B2 (en) 2008-02-19 2008-02-19 Joining bracket and joining method for wooden column beam members

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008037783A JP5071915B2 (en) 2008-02-19 2008-02-19 Joining bracket and joining method for wooden column beam members

Publications (2)

Publication Number Publication Date
JP2009197416A JP2009197416A (en) 2009-09-03
JP5071915B2 true JP5071915B2 (en) 2012-11-14

Family

ID=41141224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008037783A Expired - Fee Related JP5071915B2 (en) 2008-02-19 2008-02-19 Joining bracket and joining method for wooden column beam members

Country Status (1)

Country Link
JP (1) JP5071915B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5601515B2 (en) * 2010-09-10 2014-10-08 清水建設株式会社 Structure for improving friction of wood materials
JP2013113000A (en) * 2011-11-29 2013-06-10 Okabe Co Ltd Structure for joining wooden members together
CN103362210B (en) * 2013-07-08 2015-06-10 中国矿业大学 Prestress assembly frame structure
JP6338093B2 (en) * 2014-05-15 2018-06-06 清水建設株式会社 Beam-column joint structure
JP7086471B2 (en) * 2018-06-12 2022-06-20 住友林業株式会社 Column-beam joint structure
JP7217454B2 (en) * 2018-12-28 2023-02-03 株式会社森林経済工学研究所 Structural reinforcement device and structure reinforcement method
JP7251039B2 (en) * 2019-02-25 2023-04-04 株式会社竹中工務店 Column-beam connection structure
JP7360924B2 (en) * 2019-04-26 2023-10-13 三井住友建設株式会社 Joint structure between wooden columns and wooden beams and its construction method
CN110593401B (en) * 2019-09-16 2021-10-22 同济大学 Bidirectional mortise-tenon joint structure of concrete beam column component and construction method thereof
JP7454753B1 (en) 2024-01-26 2024-03-22 鹿島建設株式会社 Joint structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4087977B2 (en) * 1999-03-18 2008-05-21 三井ホーム株式会社 Joint structure of wood members

Also Published As

Publication number Publication date
JP2009197416A (en) 2009-09-03

Similar Documents

Publication Publication Date Title
JP5071915B2 (en) Joining bracket and joining method for wooden column beam members
Loss et al. Experimental investigation on in-plane stiffness and strength of innovative steel-timber hybrid floor diaphragms
Wang et al. Seismic response of extended end plate joints to concrete-filled steel tubular columns
Chou et al. Subassemblage tests and finite element analyses of sandwiched buckling-restrained braces
Wang et al. Seismic behavior of blind bolted CFST frames with semi-rigid connections
Ramhormozian et al. Experimental studies on Belleville springs use in the sliding hinge joint connection
Shi et al. Behaviour of end-plate moment connections under earthquake loading
Elgaaly Thin steel plate shear walls behavior and analysis
Hitaka et al. Cyclic tests on steel and concrete‐filled tube frames with Slit Walls
Hsu et al. Flexural–torsional behaviour of steel reinforced concrete members subjected to repeated loading
Jia et al. Experimental research and cyclic behavior of buckling-restrained braced composite frame
Li et al. Seismic performance of concrete-encased CFST column to steel beam joints with different connection details
Usami et al. Overall buckling prevention condition of buckling-restrained braces as a structural control damper
Zeynalian et al. An experimental investigation on the lateral behavior of knee-braced cold-formed steel shear walls
Wang et al. Flexural strengthening of damaged steel beams with prestressed CFRP plates using a novel prestressing system
Zahrai et al. Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames
Shi et al. Monotonic loading tests on semi-rigid end-plate connections with welded I-shaped columns and beams
Aksoylu et al. Investigation of precast new diagonal concrete panels in strengthened the infilled reinforced concrete frames
Wang et al. Performance of CFTST column to steel beam joints with blind bolts under cyclic loading
Ahn et al. Large-scale testing of coupled shear wall structures with damping devices
Conrad et al. Full scale testing and development of wood-steel composite shear walls
Zeynalian et al. Experimental study on seismic performance of strap-braced cold-formed steel shear walls
Lai et al. Research and application of buckling restrained braces in Taiwan
Ebadi et al. Conceptual study of X-braced frames with different steel grades using cyclic half-scale tests
JP6147628B2 (en) Joint structure of concrete column and steel beam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120717

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120814

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees