JP5600590B2 - Power-saving high-intensity integrated fluorescent lamp - Google Patents

Power-saving high-intensity integrated fluorescent lamp Download PDF

Info

Publication number
JP5600590B2
JP5600590B2 JP2010517595A JP2010517595A JP5600590B2 JP 5600590 B2 JP5600590 B2 JP 5600590B2 JP 2010517595 A JP2010517595 A JP 2010517595A JP 2010517595 A JP2010517595 A JP 2010517595A JP 5600590 B2 JP5600590 B2 JP 5600590B2
Authority
JP
Japan
Prior art keywords
discharge lamp
power
fluorescent
phosphor
fluorescent discharge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010517595A
Other languages
Japanese (ja)
Other versions
JPWO2009153872A1 (en
Inventor
隆二 小澤
正利 加藤
将弘 原田
稔美 三吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Tianyang Putai Investment And Consulting CoLtd
Original Assignee
Beijing Tianyang Putai Investment And Consulting CoLtd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Tianyang Putai Investment And Consulting CoLtd filed Critical Beijing Tianyang Putai Investment And Consulting CoLtd
Publication of JPWO2009153872A1 publication Critical patent/JPWO2009153872A1/en
Application granted granted Critical
Publication of JP5600590B2 publication Critical patent/JP5600590B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J65/00Lamps without any electrode inside the vessel; Lamps with at least one main electrode outside the vessel
    • H01J65/04Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels
    • H01J65/042Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field
    • H01J65/046Lamps in which a gas filling is excited to luminesce by an external electromagnetic field or by external corpuscular radiation, e.g. for indicating plasma display panels by an external electromagnetic field the field being produced by using capacitive means around the vessel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/067Main electrodes for low-pressure discharge lamps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/92Lamps with more than one main discharge path
    • H01J61/94Paths producing light of different wavelengths, e.g. for simulating daylight

Description

本発明は、内面に蛍光膜が塗着されたガラス管の両端外周に、外部電極としてのコイル電極を巻回状に配置したコイル電極蛍光灯を並列接続してなる省電高輝度集積型蛍光灯に関するもので、更に詳細には、本発明は、消費電力を大きく低減し且つ長寿命化を実現できるコイル電極蛍光灯を備える省電高輝度集積型蛍光灯を提供する。   The present invention relates to a power-saving high-intensity integrated fluorescent lamp in which a coil electrode fluorescent lamp in which a coil electrode as an external electrode is wound is connected in parallel to both ends of a glass tube having an inner surface coated with a fluorescent film. More specifically, the present invention provides a power-saving high-intensity integrated fluorescent lamp including a coil electrode fluorescent lamp that can greatly reduce power consumption and achieve a long life.

[従来蛍光放電灯管の概説]
近年、地球の温暖化が進み、世界規模で炭酸ガス放出が問題化している。炭酸ガスを大量に放出する原因の一つに、化石燃料を使用する発電所が排出する炭酸ガスがある。夜の暗闇を昼間の明るさ(単位面積当たり単位時間に平均1022光子数)に照明する光源は、発電所で発電した電力を大量に使用する(約四分の一)。環境保護の観点から照明光源に使用するランプの稼動電力の大幅な低減が緊急課題になり、新聞やTVニュースの話題になっている。照明光源にはタングステン線を高温度に加熱し、熱放射に伴う可視光を利用する電球が、製造単価が低く、広範囲の輝度が得られるので現在でも広く使用されている。タングステン電球のエネルギー変換効率 は0.8%である。電球のエネルギー変換効率の低さから、電球に変わる光源として注目を集めているのが、蛍光放電灯管である。蛍光放電灯管のエネルギー変換効率は公称20%と言われていることから、室内外の照明光源として蛍光放電灯管への変換が進められている。蛍光放電灯管にも種類があるが、現在注目されている蛍光放電灯管は、直径20 mm以下のガラス管を使用して作られる省電型蛍光放電灯管である。1蛍光放電灯管から発する光量は、蛍光膜の面積に比例するので、蛍光膜の面積の大きい管径が太い蛍光放電灯管を使用した方が省電型であると考えられるが、市販されている省電型蛍光放電灯管は直径が20 mm以下のガラス管を使用して作られている。しかし、その科学的な説明理由は出版された科学論文や放電ハンドブック等で見つけられない。
[Outline of conventional fluorescent discharge lamp tubes]
In recent years, global warming has progressed, and carbon dioxide emission has become a problem worldwide. One of the reasons for releasing large amounts of carbon dioxide is carbon dioxide emitted by power plants that use fossil fuels. Light source illuminating the darkness of night daytime brightness (unit area per unit average 10 22 photon number in time), use the power generated by the power plant in a large amount (about a quarter). From the viewpoint of environmental protection, a significant reduction in the operating power of the lamp used for the illumination light source has become an urgent issue and has become a hot topic in newspapers and TV news. As an illumination light source, a light bulb that uses a tungsten wire heated to a high temperature and uses visible light accompanying thermal radiation is widely used even today because the unit price is low and a wide range of luminance can be obtained. The energy conversion efficiency of tungsten bulbs is 0.8%. A fluorescent discharge lamp tube is attracting attention as a light source that replaces a light bulb because of its low energy conversion efficiency. Since it is said that the energy conversion efficiency of a fluorescent discharge lamp tube is nominally 20%, conversion to a fluorescent discharge lamp tube is underway as an indoor and outdoor illumination light source. Although there are various types of fluorescent discharge lamp tubes, the fluorescent discharge lamp tubes that are currently attracting attention are power-saving fluorescent discharge lamp tubes that are made using glass tubes with a diameter of 20 mm or less. Since the amount of light emitted from one fluorescent discharge lamp tube is proportional to the area of the fluorescent film, it is considered that the use of a fluorescent discharge lamp tube having a large fluorescent film area and a large tube diameter is a power saving type, but is commercially available. The energy-saving fluorescent discharge lamp tubes are made using glass tubes with a diameter of 20 mm or less. However, the reason for its scientific explanation cannot be found in published scientific papers or discharge handbooks.

省電型蛍光放電灯管では、紫外線で発光する蛍光体粉に、資源の存在を示すクラーク数が小さく(存在比が0.003 %以下)、しかも散在する砂粒の中に低濃度(5重量%以下)で存在する希土類元素を化学的手法で濃縮し、精製して得られる非常に高価な希土類元素を原料として使用する。1種類の蛍光体粉では白色が得られないので、個別に3色に発光する蛍光体粉を製造し、その蛍光体粉を機械的に混合して白色発光する蛍光体粉を塗布した蛍光膜を使用する。従来の蛍光放電灯管 (直径30 mm) で使用していた蛍光膜は単独で白色に発光し、しかも資源の豊富なハロ燐酸カルシウム[3Ca3(PO4)2CaFCl:Sb3+:Mn2+] 蛍光体であるが、この蛍光膜は直径20 mm以下の蛍光放電灯管では明るく発光しない経験則に従い、ハロ燐酸カルシウム蛍光体を省電型蛍光放電灯管に使用していない。希土類を使用した蛍光膜は、直径を20 mm以下とする蛍光放電灯管であり、直径30 mmの蛍光放電灯管の明るさよりも明るく発光するので選択している。しかし、その科学的な根拠は誰も与えていない。 In a power-saving fluorescent discharge lamp tube, the phosphor powder that emits light with ultraviolet rays has a small number of Clarke indicating the presence of resources (abundance ratio is 0.003% or less) and low concentration (5% by weight or less) in the scattered sand particles. The very rare earth elements obtained by concentrating and refining the rare earth elements present in (1) by chemical methods are used as raw materials. Since one type of phosphor powder cannot produce white, phosphor films that individually produce phosphor powders that emit light in three colors, mechanically mix the phosphor powders, and apply phosphor powders that emit white light are applied. Is used. The fluorescent film used in the conventional fluorescent discharge lamp tube (diameter 30 mm) emits white light alone, and the resource-rich calcium halophosphate [3Ca 3 (PO 4 ) 2 CaFCl: Sb 3+ : Mn 2 + ] Although it is a phosphor, this phosphor film does not use a calcium halophosphate phosphor in a power-saving fluorescent discharge lamp tube in accordance with the rule of thumb that a fluorescent discharge lamp tube with a diameter of 20 mm or less does not emit light. Fluorescent films using rare earths are selected because they are fluorescent discharge lamp tubes with a diameter of 20 mm or less, and emit light brighter than the brightness of fluorescent discharge lamp tubes with a diameter of 30 mm. But no one has given that scientific basis.

特に直径10 mmの直線型蛍光放電灯ガラス管を多数回曲げるか,螺旋状に曲げ電球型ガラス球に収納した蛍光放電灯管が省電型蛍光放電灯と呼称して市販されている。だが、蛍光放電灯管の公示消費電力は、点灯ランプ単独の消費電力であり、点灯に必要な電源回路の消費電力が含まれていない。金属電極を内蔵した蛍光放電灯管の点灯において、電源装置のコンセントの所で測定する消費電力(電圧×電流×力率=ワット)を含めると、蛍光放電灯の実質消費電力は、表示電力の約1.1から1.5倍になる。公称12ワットの省電型蛍光放電灯の実質消費電力は13から18ワットである。公称ワット数が同じなのに実質消費電力が製造者により変動する理由も分かっていない。消費電力の低減を問題にするには、本来ならばこの実質消費電力を問題とすべきである。   In particular, a fluorescent discharge lamp tube in which a linear fluorescent discharge lamp tube with a diameter of 10 mm is bent many times or spirally bent and stored in a bulb-type glass bulb is called a power-saving fluorescent discharge lamp and is commercially available. However, the official power consumption of the fluorescent discharge lamp tube is the power consumption of the lighting lamp alone, and does not include the power consumption of the power supply circuit necessary for lighting. In the lighting of a fluorescent discharge lamp tube with a built-in metal electrode, including the power consumption (voltage x current x power factor = watts) measured at the outlet of the power supply unit, the actual power consumption of the fluorescent discharge lamp is the display power. From about 1.1 to 1.5 times. The actual power consumption of the nominal 12 watt power-saving fluorescent discharge lamp is 13 to 18 watts. It is not known why the actual power consumption varies from manufacturer to manufacturer even though the nominal wattage is the same. In order to make the reduction of power consumption a problem, this actual power consumption should be a problem.

[電極電圧降下:熱陰極管(第1世代)と冷陰極管(第2世代)]
現在市販されている蛍光放電灯管は、ガラス管内に配置された電子放射と電子収集の役割を果たす金属電極(陰極と陽極)、放電ガスとなるアルゴン(Ar)ガスと水銀(Hg)滴、及び管内壁面に適度の厚さに塗布された蛍光膜を含む単純な構造になっている。この構造を基本とする蛍光放電灯管でガスを放電させているのは、運動エネルギーを持ってガス空間を移動する電子によるガス原子の非弾性衝突である。ガス空間を移動する電子経路には、必然的に、陰極直前に現れる陰極電圧降下と陽極直前に現れる陽極電圧降下が存在する。両者を合計すると放電路で発光に関与しない電力は、ガス放電の電力の約半分になる。蛍光放電灯管の放電から電圧降下を消去できれば、ガスの放電に必要な電力は半減すると考えられた。この計算には点灯に関与する電源装置の消費電力は考慮されていない。
[Electrode voltage drop: Hot cathode tube (1st generation) and cold cathode tube (2nd generation)]
Fluorescent discharge lamp tubes currently on the market are metal electrodes (cathode and anode) that are placed in glass tubes and play the role of electron emission and electron collection, argon (Ar) gas and mercury (Hg) drops as discharge gas, And it has a simple structure including a fluorescent film coated on the inner wall surface of the tube with an appropriate thickness. It is inelastic collision of gas atoms by electrons moving in the gas space with kinetic energy that causes the gas to be discharged by the fluorescent discharge lamp tube based on this structure. In the electron path moving through the gas space, there is necessarily a cathode voltage drop that appears just before the cathode and an anode voltage drop that appears just before the anode. When both are added together, the power that does not contribute to light emission in the discharge path is about half that of the gas discharge. If the voltage drop could be eliminated from the discharge of the fluorescent discharge lamp tube, the power required for the gas discharge was thought to be halved. This calculation does not take into account the power consumption of the power supply device involved in lighting.

上記したように蛍光放電灯管の発光には、電子をガス空間に供給しなければ発光は起こらない。真空中又は低圧力にあるガス空間に電子を供給する手段として、Edisonの発見(1884年)になる熱電子放射を使用する熱陰極蛍光放電灯管(HCFL)(第一世代電子供給源)と、Flower Nordheim による金属-真空間のトンネル効果による電子放射の発見(1928年)から釣鐘型金属電極(第二世代電子供給源)が開発され、金属電極を使用した冷陰極蛍光放電灯管(CCFL)が市場に存在する。使い分けは、管径が10 mm以下と細い蛍光放電灯管にはCCFLが使われ、10 mm以上の蛍光放電灯管にはHCFLが使われている。   As described above, light emission from the fluorescent discharge lamp tube does not occur unless electrons are supplied to the gas space. A hot cathode fluorescent discharge lamp (HCFL) (first generation electron source) that uses thermionic emission as discovered by Edison (1884) as a means of supplying electrons to a gas space in vacuum or low pressure , Flower Nordheim developed a bell-shaped metal electrode (second generation electron source) from the discovery of electron emission by the tunnel effect between metal and vacuum (1928), and cold cathode fluorescent lamp (CCFL) using metal electrode ) Exists in the market. As for proper use, CCFL is used for fluorescent discharge lamp tubes with a tube diameter of 10 mm or less, and HCFL is used for fluorescent discharge lamp tubes of 10 mm or more.

蛍光放電灯管中のガス放電は電極に交流電界を印加して発生させているので、HCFLとCCFLは管の放電管の両端に上記した電極を据え付けて使用したとき、蛍光放電灯管には陰極と陽極の区別がなく、蛍光放電灯管の両端の電極で同じ現象が発生する。交流の半周期に限定してガス放電を検討する時、陰極と陽極の区別が生じる。蛍光放電灯管の放電現象の検討は、多くの場合、交流の半周期に現れる現象を検討していた。その代表が蛍光放電灯管中の放電は、陰極から放射された電子が、陰極と陽極間の電界(一方向)により放電路を一方向に動き、ガス原子と衝突してガス放電が発生すると考えている。一方向に進む電子がガス原子と遭遇する確率は、蛍光放電灯管中に存在するガス原子数を求めると計算できる。管中にあるガス原子のモル数、アボガドロ数、放電管の体積と電子の一方向に動いたときの体積を求めると、一方向に進む電子がガス原子と衝突する確率が算出できるが、この計算も行われていなかった。確率を計算すると、電子がガス原子に遭遇する確率は1000mの移動で一個である。蛍光放電灯管の長さは1mよりも短いので、蛍光放電灯管中で陰極-陽極間の一方向電場で加速した電子はガス原子と衝突できず、従ってガス原子は発光しない。このように蛍光放電灯管の放電機構を検討する上で大切な基本を明確にしていない誤りを犯していた。電子の移動は、交流の一周期間で検討すべきでなく、交流電界の電場中で電子がどのように移動するかを検討すべきであった。   Since the gas discharge in the fluorescent discharge lamp tube is generated by applying an alternating electric field to the electrode, the HCFL and CCFL are not used in the fluorescent discharge lamp tube when the above electrodes are installed at both ends of the discharge tube of the tube. There is no distinction between the cathode and the anode, and the same phenomenon occurs at the electrodes at both ends of the fluorescent discharge lamp tube. When considering gas discharge limited to a half cycle of alternating current, a distinction occurs between the cathode and the anode. In many cases, the discharge phenomenon of a fluorescent discharge lamp tube is a phenomenon that appears in a half cycle of alternating current. A typical example of the discharge in a fluorescent discharge lamp tube is that electrons emitted from the cathode move in one direction by the electric field (one direction) between the cathode and the anode and collide with gas atoms to generate a gas discharge. thinking. The probability that an electron traveling in one direction encounters a gas atom can be calculated by determining the number of gas atoms present in the fluorescent discharge lamp tube. The number of moles of gas atoms in the tube, the Avogadro number, the volume of the discharge tube and the volume of electrons moving in one direction can be calculated, and the probability that electrons traveling in one direction collide with gas atoms can be calculated. No calculations were made. When the probability is calculated, the probability that an electron encounters a gas atom is one for a 1000 m movement. Since the length of the fluorescent discharge lamp tube is shorter than 1 m, the electrons accelerated by the unidirectional electric field between the cathode and the anode in the fluorescent discharge lamp tube cannot collide with the gas atoms, and therefore the gas atoms do not emit light. Thus, an error that did not clarify the basics important in examining the discharge mechanism of a fluorescent discharge lamp tube was made. The movement of electrons should not be examined during one period of alternating current, but how the electrons move in the electric field of the alternating electric field.

[本発明者達による第3世代電子源の発見:電極電圧降下とスパッタリングの完全な解消]
金属電極を使用した蛍光放電灯管の場合、陰極と陽極直前に出現する電圧降下は、電極に印加する交流の周波数に無関係に存在し、検出される。電圧降下は省電を検討するときに重要な解決課題となっていたが、電圧降下が検出されてから100年以上経過した今日でも解決不能として残されていた。放電路の電圧降下は電子放射と電子収集で金属電極表面が放電空間と電気絶縁されずに対向している事実、換言すれば金属電極表面に必然的に現れる正孔の存在に原因する。この事実は、本発明者が出願しているPCT/JP2007/70431(特許文献1)とPCT/JP2007/74829(特許文献2)に詳細に記述されている。電子放射源と収集源に、放電空間に電気絶縁されずに露出する金属電極を使用しなければ、陰極と陽極直前に出現する電圧降下は放電路から消える。本発明者は上記PCT出願において、電子をガス空間に放出する「第三世代電子源」を発見し、前記電圧降下現象を解消することに初めて成功した。
[Discovery of third generation electron source by the present inventors: complete elimination of electrode voltage drop and sputtering]
In the case of a fluorescent discharge lamp tube using a metal electrode, the voltage drop that appears just before the cathode and the anode exists regardless of the frequency of the alternating current applied to the electrode and is detected. The voltage drop has been an important solution when considering power saving, but it has remained unsolvable even today, more than 100 years after the voltage drop was detected. The voltage drop in the discharge path is caused by the fact that the surface of the metal electrode faces the discharge space without being electrically insulated by electron emission and electron collection, in other words, the presence of holes that inevitably appear on the surface of the metal electrode. This fact is described in detail in PCT / JP2007 / 70431 (patent document 1) and PCT / JP2007 / 74829 (patent document 2) filed by the present inventors. If the electron emission source and the collection source do not use a metal electrode that is exposed without being electrically insulated in the discharge space, the voltage drop that appears just before the cathode and the anode disappears from the discharge path. In the PCT application, the present inventor discovered a “third generation electron source” that emits electrons into the gas space, and succeeded in eliminating the voltage drop phenomenon for the first time.

第三世代電子源は、二つの方法で作ることができ、両者の効果は同じである。第一の方法は、金属内部電極に蛍光体粒子を適度な厚さに塗布した蛍光体粒子層絶縁型内部電極である。第二の方法は金属内部電極を使用せずに作られた蛍光放電灯管で、蛍光膜がある部分のガラス管外壁に外部電極を取り付ける方法で実現し、ガラス管絶縁型外部電極又は単に外部電極と称する。勿論、外部電極に対向したガラス管内面には蛍光体粒子層が形成されている。前記両電極とも、放電空間に対し金属電極表面が電気絶縁されており、本発明では前記両電極を纏めて放電空間絶縁型電極と称する。第三世代電子源が出来る理由は次のようになる。放電空間絶縁型電極対に直流電源からの電位を印加する。電極からの電界影響下にある蛍光体粒子は誘電分極する。誘電分極した粒子内の電荷による電位は、電極電位よりも高い。誘電分極した粒子の先端部分の高電位にある表面に交流電界を印加すると、粒子の先端部分のガスが電離する。放電ガスの電離により出来た自由電子と自由陽イオンを誘電分極した粒子表面に個別に集める。即ち、電極が正なら、蛍光体粒子層は負正に誘電分極し、正分極電荷の高電位にあるその表面に前記自由電子が集積する。また、電極が負なら、蛍光体粒子層は正負に誘電分極し、負分極電荷の高電位にあるその表面に前記自由陽イオンが集積する。個別箇所のガス空間に集められた電子と陽イオンをそれぞれ第三世代電子源と電子収集源(陽イオン源)とする。   Third generation electron sources can be made in two ways, and the effects are the same. The first method is a phosphor particle layer insulated internal electrode in which phosphor particles are applied to a metal internal electrode in an appropriate thickness. The second method is a fluorescent discharge lamp tube made without using a metal internal electrode, which is realized by attaching an external electrode to the outer wall of the glass tube where the fluorescent film is located. This is called an electrode. Of course, a phosphor particle layer is formed on the inner surface of the glass tube facing the external electrode. In both the electrodes, the surface of the metal electrode is electrically insulated from the discharge space. In the present invention, the electrodes are collectively referred to as a discharge space insulation type electrode. The reason why a third generation electron source can be produced is as follows. A potential from a DC power source is applied to the discharge space insulation type electrode pair. The phosphor particles under the influence of the electric field from the electrodes are dielectrically polarized. The potential due to the charge in the dielectrically polarized particles is higher than the electrode potential. When an AC electric field is applied to the surface at the high potential of the tip portion of the dielectrically polarized particle, the gas at the tip portion of the particle is ionized. Free electrons and free cations produced by ionization of the discharge gas are individually collected on the surface of the dielectrically polarized particles. That is, if the electrode is positive, the phosphor particle layer is negatively positively dielectrically polarized, and the free electrons are accumulated on the surface of the positively charged high potential. If the electrode is negative, the phosphor particle layer is dielectrically polarized positively and negatively, and the free cations are accumulated on the surface of the negatively charged high potential. The electrons and cations collected in the gas spaces at the individual locations are used as the third generation electron source and the electron collection source (cation source), respectively.

粒子先端部分のガスを電離させる一手法として放電ガスであるArガスに電離の容易なガスを混合すると良いことを見出した。電離を容易にするガスの選択に、選択したガスのイオン化電圧は関係ないようだ。電離の容易なガスとしてネオンガス(Ne)が経験的に知られている。この事実を追認した。放電ガスの基本はArガスであり、ArガスとNeガスの混合ガスを使用すると、放電空間絶縁型電極を使用した蛍光放電灯管をガス放電させるに必要な交流電源の周波数を商業周波数以下に下げることが出来る。Neガスの混合割合は、ガス圧で計測してArガス1に対して0.1から2前後の範囲にあれば良好な結果が得られる。より好ましい混合割合は0.5から1.3の範囲にあり、最も好ましい範囲は0.8から1.1の範囲にある。   As one technique for ionizing the gas at the tip of the particle, it has been found that an easily ionized gas may be mixed with the Ar gas, which is a discharge gas. It seems that the ionization voltage of the selected gas has nothing to do with the choice of gas that facilitates ionization. Neon gas (Ne) is empirically known as an easily ionized gas. I confirmed this fact. The basis of the discharge gas is Ar gas, and when a mixed gas of Ar gas and Ne gas is used, the frequency of the AC power source necessary for gas discharge of the fluorescent discharge lamp tube using the discharge space insulation type electrode is made lower than the commercial frequency. Can be lowered. Good results can be obtained if the mixing ratio of the Ne gas is measured by gas pressure and is in the range of 0.1 to 2 with respect to the Ar gas 1. A more preferred mixing ratio is in the range of 0.5 to 1.3, and a most preferred range is in the range of 0.8 to 1.1.

外部電極に直流電位を印加した状態では、誘電分極した蛍光体粒子表面上に集積した電子は動かない。即ち、第三世代電子源から電子を取り出すことは出来ない。従って、外部電極蛍光放電灯管は直流電源の接続では放電しない。外部電極に交流電位を印加した時にのみ外部電極蛍光放電灯管は放電する。その理由を以下に述べる。外部電極に印加する電位の極性が変わった時、蛍光体粒子の誘電分極の極性が逆転する。質量の軽い電子は僅かな電位差がガス空間にあるとその電位差に吸引され容易にガス空間中を移動する。一方、質量が電子の千倍以上と大きな陽イオンの移動距離は電子の移動距離よりも小さいので、ガス空間に拡散し、陽イオン群として留まる。ガス空間中の陽イオン群の正電位によりガス空間中に移動した電子は吸引され、陽イオン群に向かってガス空間中を移動する。陽イオン群に到達した電子は陽イオンと再結合してガス原子に帰還する。陽イオン群の移動距離は、電極に印加する電位の周波数に逆比例して変わる。高周波電位の印加で移動距離は短くなり、移動電子の距離は周波数の増加により長くなる。実用的には、放電による発光の認知に目の残像効果が働かない周波数(30Hz)以上の交流電位を外部電極蛍光放電灯管の電極に印加すると、外部電極蛍光放電灯管の全長に亘り蛍光膜からフリッカーの無い発光が得られることを本発明者達は経験的に見出した。外部電極蛍光放電灯管は交流電界の印加時にガス空間に移動した電子の振る舞いによりガスの放電で発生している。   When a DC potential is applied to the external electrode, electrons accumulated on the surface of the dielectric-polarized phosphor particles do not move. That is, electrons cannot be extracted from the third generation electron source. Therefore, the external electrode fluorescent discharge lamp tube does not discharge when connected to a DC power source. The external electrode fluorescent discharge lamp discharges only when an AC potential is applied to the external electrode. The reason is described below. When the polarity of the potential applied to the external electrode changes, the polarity of the dielectric polarization of the phosphor particles is reversed. When a slight potential difference is present in the gas space, electrons having a small mass are attracted to the potential difference and easily move in the gas space. On the other hand, since the movement distance of a cation whose mass is 1000 times larger than that of an electron is smaller than the movement distance of an electron, it diffuses into the gas space and remains as a cation group. Electrons that have moved into the gas space due to the positive potential of the cation group in the gas space are attracted and moved in the gas space toward the cation group. Electrons that reach the cation group recombine with the cation and return to the gas atom. The movement distance of the cation group changes in inverse proportion to the frequency of the potential applied to the electrode. The application of the high frequency potential shortens the moving distance, and the moving electron distance becomes longer as the frequency increases. Practically, when an AC potential having a frequency (30 Hz) or higher at which the afterimage effect of the eye does not affect the recognition of light emission due to discharge is applied to the electrode of the external electrode fluorescent discharge lamp tube, the fluorescent light is emitted over the entire length of the external electrode fluorescent discharge lamp tube. The present inventors have empirically found that flicker-free light emission can be obtained from the film. The external electrode fluorescent discharge lamp tube is generated by gas discharge due to the behavior of electrons moved to the gas space when an AC electric field is applied.

従来は交流の半周期内での電子の動きを考えていたので、電子源と電子収集源(陽イオン源)の間(一方向電位)で、電子源から取り出した電子の移動だけが考慮され、一方向の電子移動だけを考えていた。事実は電子源から取り出された電子は、電極間に形成している交流電界中に入り、交流電界と共鳴して放電路を移動しながらガス原子と非弾性衝突(ガス原子の励起とイオン化)する。放電路を移動してガス原子と衝突する電子だけに着目し、移動電子は衝突により散乱されるので、電子はガス原子と弾性衝突と考えていたが、電子がガス原子と弾性衝突する考えは誤りである。電子の衝突を受けたガス原子は、熱放出を伴い電子をガス空間に放出する(イオン化)か、最外殻電子を励起順位に上げるので、衝突を受けたガス原子の状態変化を伴う。電子の衝突は非弾性衝突に属する。励起したガス原子のみが光を放出する。検出した光を従来の研究者や技術者はガス放電と解釈しているので、移動電子によるガス原子の非弾性衝突による発光とイオン化の区別が解明できていなかった。非弾性衝突した電子は、瞬時の間、交流電界中で移動方向を無作為に変え(散乱)るが、消えることなく交流電界中に残り、交流電界の次の波と共鳴し、加速された後、再度他のガス原子と非弾性衝突する。例えば、細い菅径にある外部電極CCFLを周波数20 kHzで操作している場合を考えると、陽光柱内では、同一電子による非弾性衝突の繰り返しが単位時間に単位長当たり5 x 10回も起こり、一個の電子が 5 x 105個のガス原子と非弾性衝突する。電子収集源(陽イオン源)に到達した電子は陽イオンと再結合してガス原子に帰還する。上述した電極構造になる蛍光放電灯管には、放電路に金属電極は存在せず、従って放電路に陰極と陽極直前に出現する電圧降下は存在しない。その結果、蛍光放電灯管中で無駄に使用していた電圧降下による電力が消去され、蛍光放電灯管の放電電力は半分になると考える。 Conventionally, since the movement of electrons within a half cycle of alternating current was considered, only the movement of electrons taken out from the electron source between the electron source and the electron collection source (positive ion source) was considered. I was only thinking about electron movement in one direction. The fact is that the electrons taken out from the electron source enter the AC electric field formed between the electrodes, resonate with the AC electric field and move along the discharge path, and inelastic collision with gas atoms (excitation and ionization of gas atoms) To do. Focusing only on electrons that travel along the discharge path and collide with gas atoms, moving electrons are scattered by collision, so electrons were considered elastic collisions with gas atoms, but the idea that electrons collide elastically with gas atoms is It is an error. The gas atoms that have undergone the electron collision either emit electrons into the gas space with heat emission (ionization) or raise the outermost electrons to the excitation order, resulting in a change in the state of the gas atoms that have undergone the collision. Electron collisions belong to inelastic collisions. Only excited gas atoms emit light. Conventional researchers and engineers interpret the detected light as gas discharge, so it was not possible to elucidate the distinction between light emission and ionization due to inelastic collision of gas atoms by mobile electrons. Electrons that collided inelastically changed the direction of movement randomly in the alternating electric field (scattering) for an instant, but remained in the alternating electric field without disappearing, resonating with the next wave of the alternating electric field, and accelerated. After that, it collides with other gas atoms again inelastically. For example, consider the case where the external electrode CCFL with a small inguinal diameter is operated at a frequency of 20 kHz. In the positive column, the repetition of inelastic collision by the same electron is 5 x 10 5 times per unit length. Occurs and one electron collides with 5 x 10 5 gas atoms inelastically. The electrons that have reached the electron collection source (cation source) recombine with the cations and return to the gas atoms. In the fluorescent discharge lamp tube having the electrode structure described above, there is no metal electrode in the discharge path, and therefore there is no voltage drop appearing immediately before the cathode and the anode in the discharge path. As a result, it is considered that the power due to the voltage drop that was wasted in the fluorescent discharge lamp tube is eliminated, and the discharge power of the fluorescent discharge lamp tube is halved.

蛍光放電灯管を点灯するときに資源節約も大切な因子である。資源節約の問題は点灯可能な時間(寿命)に関わる。第三世代電子供給源を使用すると、蛍光放電灯管の寿命を決めていた金属電極のスパッタリングと蛍光膜表面の残留ガスの吸着が解消する。その結果点灯寿命が半永久(初期輝度を2,000,000時間以上保持)となる外部電極蛍光放電灯管が得られる。従来の金属電極を使用した蛍光放電灯管の寿命は約2000時間である。   Resource saving is also an important factor when lighting fluorescent discharge lamp tubes. The problem of resource saving relates to the time (life) that can be lit. When the third generation electron supply source is used, the sputtering of the metal electrode and the adsorption of the residual gas on the surface of the fluorescent film, which have determined the life of the fluorescent discharge lamp tube, are eliminated. As a result, it is possible to obtain an external electrode fluorescent discharge lamp tube whose lighting life is semi-permanent (initial luminance is maintained for 2,000,000 hours or more). The lifetime of a fluorescent discharge lamp tube using a conventional metal electrode is about 2000 hours.

先ず、従来の金属内部電極を使用した蛍光放電灯管の点灯寿命を決めていた因子を明らかにする。金属電極表面が電子を放射すると、不可欠に表面結合電子(電子雲)が金属電極表面に形成される。金属電極表面に固着した電子雲は、蛍光放電灯管に印加する高周波の存在に無関係であり、高い負電荷(105 V/cm)を持つ。質量の大きなAr、Hgと陽イオン化した残留ガスは、高周波電界(103V/cm)では大きくその位置を動かさないが、それらの陽イオンは、印加周波数に無関係に恒常的に存在する電子雲の強い負電荷による静電引力に吸引され、高速に加速する。加速された陽イオンが金属表面の微小面積に衝突し、金属電極の局所を金属が蒸発する高温度に瞬時の間加熱する。その結果、金属電極の蒸発(スパッタリング)が発生する。蒸発した金属原子は蛍光膜上に付着するので、電極周辺の蛍光膜は時間と共に黒化する。陽イオン衝突による金属電極の蒸発がHCFLとCCFL蛍光放電灯管の寿命を決め、点灯不良になる寿命は2000時間前後であった。 First, the factors that determine the lighting life of a fluorescent discharge lamp tube using a conventional metal internal electrode will be clarified. When the metal electrode surface emits electrons, surface-bound electrons (electron clouds) are indispensably formed on the metal electrode surface. The electron cloud fixed on the surface of the metal electrode is irrelevant to the presence of the high frequency applied to the fluorescent discharge lamp tube and has a high negative charge (10 5 V / cm). Ar + and Hg + with large mass and the residual gas positively ionized do not move greatly in the high frequency electric field (10 3 V / cm), but these positive ions are constantly present regardless of the applied frequency. It is attracted by the electrostatic attractive force due to the strong negative charge of the electron cloud and accelerated at high speed. The accelerated cations collide with a minute area of the metal surface, and the local area of the metal electrode is heated instantaneously to a high temperature at which the metal evaporates. As a result, evaporation (sputtering) of the metal electrode occurs. Since the evaporated metal atoms adhere on the fluorescent film, the fluorescent film around the electrode becomes black with time. The evaporation of the metal electrode due to cation collisions determined the lifetime of the HCFL and CCFL fluorescent discharge lamp tubes, and the lifetime of defective lighting was around 2000 hours.

第三世代電子供給源を使用すると、陽イオンが存在しても、陽イオンを吸引する電子雲は菅中に存在せず、金属電極の蒸発は完全に消失するので、寿命は2,000,000時間以上となる。   Using a third-generation electron source, even if cations are present, the electron cloud that attracts cations does not exist in the cage, and the evaporation of the metal electrode completely disappears, so the lifetime is over 2,000,000 hours. Become.

特許文献1 : PCT/JP2007/70431号公報(本発明者の先願)
特許文献2 : PCT/JP2007/74829号公報(本発明者の先願)
特許文献3 : USP1,612,387号公報
特許文献4 : 実開昭61−126559号公報
特許文献5 : 特開平4−284348号公報
特許文献6 : 特開2007−95531号公報
特許文献7 : 特開2002−8408号公報
特許文献8 : 特開2003−229092公報
特許文献9 : 特開2003−3210公報
非特許文献1 : Journal Physics D Applied Physics, 32, (1999), pp 513-517
Patent Document 1: PCT / JP2007 / 70431 (prior application of the present inventor)
Patent Document 2: PCT / JP2007 / 74829 (prior application of the present inventor)
Patent Document 3: USP 1,612,387 Patent Document 4: Japanese Utility Model Laid-Open No. 61-126559 Patent Document 5: JP-A-4-284348 Patent Document 6: JP 2007-95531 A Patent Document 7: Special Japanese Patent Laid-Open No. 2002-8408 Patent Document 8: Japanese Patent Application Laid-Open No. 2003-229092 Patent Document 9: Japanese Patent Application Laid-Open No. 2003-3210 Non-Patent Document 1: Journal Physics D Applied Physics, 32, (1999), pp 513-517

以上のように開発してきた蛍光放電灯であるが、特に、第三世代電子源として、金属内部電極を使用せずに、蛍光膜を内面に形成した蛍光ガラス管外壁に外部電極を取り付けた蛍光放電灯を実現する。上記蛍光放電灯管の作成で外部電極の形成が消費電力及び寿命に影響する。その観点から、外部電極型蛍光放電灯に関する従来技術(特許文献3〜7)を検討し、従来技術の個々の問題点を説明する。なお、外部電極型蛍光放電灯は内部電極を使用しない意味から無電極蛍光放電灯とも称する。   Although the fluorescent discharge lamp has been developed as described above, in particular, as a third generation electron source, a fluorescent glass tube having an external electrode attached to the outer wall of a fluorescent glass tube having a fluorescent film formed on the inner surface without using a metal internal electrode. Realize a discharge lamp. In the production of the fluorescent discharge lamp tube, the formation of the external electrode affects the power consumption and life. From this point of view, the conventional techniques (Patent Documents 3 to 7) related to the external electrode type fluorescent discharge lamp will be examined, and individual problems of the conventional techniques will be described. The external electrode type fluorescent discharge lamp is also referred to as an electrodeless fluorescent discharge lamp because no internal electrode is used.

外部電極の形成には、導体膜形成によるものやキャップ構造のもの等がある。導体膜形成による従来技術は、例えば、特許文献3〜6に開示されている。実開昭61−126559号公報(特許文献4)には、蛍光ランプ管の両端外周に金属導体が形成された無電極蛍光ランプが開示されている。また、特開平4−284348号公報(特許文献5)には、同様に、金属塗膜電極を外部電極とした無電極蛍光ランプが開示されている。特許文献4の場合、金属導体についての具体的記述は見られないが、特許文献5の場合には、銀ペースト膜を使用した外部電極が記載されている。更に、特開2007−95531号公報(特許文献6)には、蛍光ガラス容器の両端外周に、2層構造の外部電極を形成した無電極蛍光ランプが開示されている。これには、銀ペースト膜及び鉛フリー半田膜の積層電極が記載されている。   The formation of the external electrode includes a conductive film formation and a cap structure. The prior art by conductor film formation is disclosed by patent documents 3-6, for example. Japanese Utility Model Laid-Open No. 61-126559 (Patent Document 4) discloses an electrodeless fluorescent lamp in which metal conductors are formed on both ends of a fluorescent lamp tube. Similarly, Japanese Patent Laid-Open No. 4-284348 (Patent Document 5) discloses an electrodeless fluorescent lamp using a metal coating electrode as an external electrode. In the case of Patent Document 4, no specific description about the metal conductor is found, but in the case of Patent Document 5, an external electrode using a silver paste film is described. Furthermore, JP 2007-95531 A (Patent Document 6) discloses an electrodeless fluorescent lamp in which external electrodes having a two-layer structure are formed on both ends of a fluorescent glass container. This describes a laminated electrode of a silver paste film and a lead-free solder film.

キャップ構造のものによる従来技術は、例えば、特許文献7に開示されている。特開2002−8408号公報(特許文献7)には、蛍光ガラス管の両端外周に、エンドキャップ型の外部電極を嵌着した無電極蛍光ランプが開示されている。これにはキャップ電極材としてアルミニウム、銀、銅を使用することが記載されている。   The prior art based on the cap structure is disclosed in Patent Document 7, for example. Japanese Patent Application Laid-Open No. 2002-8408 (Patent Document 7) discloses an electrodeless fluorescent lamp in which end cap-type external electrodes are fitted to both ends of a fluorescent glass tube. This describes the use of aluminum, silver and copper as the cap electrode material.

上記の特許文献3〜7に開示された金属導体膜又は金属キャップによる外部電極では、以下の問題を生ずる。つまり、電極導体とガラス外周面の間で通電によるミクロな放電現象が生じるため、アーク放電による高熱が発生する。特に金属キャップによる外部電極では、キャップ内の金属粒子間のアーク放電により局所的に高熱が発生する。ガラスの軟化点以上の高温度に局所的に加熱されたガラス管は大気圧により加圧されガラス管壁を貫通するピンホールが形成される。ピンホールの形成によりガラス管の真空が破断されると、空気が蛍光放電灯管内に入り、ガス放電が不可能となり、蛍光放電灯の寿命が短くなる問題を生じた。   The external electrodes using the metal conductor film or the metal cap disclosed in the above Patent Documents 3 to 7 cause the following problems. That is, since a micro discharge phenomenon due to energization occurs between the electrode conductor and the outer peripheral surface of the glass, high heat is generated by arc discharge. Particularly in an external electrode using a metal cap, high heat is locally generated by arc discharge between metal particles in the cap. A glass tube that is locally heated to a high temperature above the softening point of the glass is pressurized by atmospheric pressure to form a pinhole that penetrates the glass tube wall. When the vacuum of the glass tube is broken due to the formation of pinholes, air enters the fluorescent discharge lamp tube, making it impossible to discharge gas, resulting in a problem that the life of the fluorescent discharge lamp is shortened.

上記の特許文献3〜7に開示された金属導体膜又は金属キャップは面状にガラス面に接触あるいは装着されるが、導線をコイル状に巻着して、線状にガラス面に接触あるいは装着される外部電極(コイル電極)を用いる放電灯がある。例えば、特開2003−229092公報(特許文献8)や特開2003−3210公報(特許文献9)には、タングステン線等をガラス管両端に巻き付けたコイル電極蛍光放電灯が開示されている。金属導体膜等における面接触と比べて、コイル電極を使用すると、ガラス面に線接触して放電現象が緩和されると考えられるが、実際は、巻線コイルのうちガラス面に触れていない箇所からも、コイル線間のガラス面に向けてアーク放電が発生して、導体膜等と同様の真空破断が生じた。   The metal conductor films or metal caps disclosed in the above Patent Documents 3 to 7 are contacted or attached to the glass surface in a planar shape, but a conductive wire is wound in a coil shape and contacted or attached to the glass surface in a linear shape. There are discharge lamps that use external electrodes (coil electrodes). For example, Japanese Patent Laid-Open No. 2003-229092 (Patent Document 8) and Japanese Patent Laid-Open No. 2003-3210 (Patent Document 9) disclose a coil electrode fluorescent discharge lamp in which a tungsten wire or the like is wound around both ends of a glass tube. Compared with surface contact in metal conductor films, etc., it is thought that the discharge phenomenon is mitigated by wire contact with the glass surface when using a coil electrode. However, arc discharge occurred toward the glass surface between the coil wires, and the same vacuum break as that of the conductor film or the like occurred.

以上のように、金属導体膜等の外部電極の形成には膜形成コストがかかるため、コイル電極蛍光放電灯が製造コスト面で有利であるが、コイル電極を使用する場合であっても、外部電極における放電現象が寿命及び省電力に影響を与える課題を克服する必要があった。   As described above, the formation of an external electrode such as a metal conductor film incurs a film formation cost, so the coil electrode fluorescent discharge lamp is advantageous in terms of manufacturing cost. It was necessary to overcome the problem that the discharge phenomenon in the electrode affects the life and power saving.

従って、本発明の目的は、ガラス面との放電現象を生じず、省電力化及び長寿命化を図ることのできるコイル電極蛍光放電灯を提供することである。   Accordingly, an object of the present invention is to provide a coil electrode fluorescent discharge lamp which does not cause a discharge phenomenon with a glass surface and can achieve power saving and long life.

本発明は上記課題を解決するために為されたものであり、本発明の第1形態は、複数のコイル電極蛍光灯を並列接続してなる省電高輝度集積型蛍光灯であって、前記コイル電極蛍光灯のそれぞれは、両端を密封されたガラス管の内面に、PL(Photoluminescence)蛍光体粉とCL(Cathodoluminescence)蛍光体粉の混合粉から形成された蛍光膜を形成し、前記ガラス管の内部に放電ガスを充填し、前記ガラス管の両端の外周にコイル電極を巻回状に配置し、高周波電源により前記コイル電極に高周波電圧を印加して前記放電ガスを発光させて点灯させるコイル電極蛍光灯であって、前記蛍光膜は前記コイル電極が対向する位置のガラス管内面にも形成され、前記蛍光膜の表面において、PL(Photoluminescence)蛍光体粒子と、該PL蛍光体粒子と粒子径が近似しているCL(Cathodoluminescence)蛍光体粒子とが管軸方向に交互に隣り合わせに配置され、前記コイル電極は電線の周囲を絶縁層により被覆した絶縁被覆電線を巻回状に形成される省電高輝度集積型蛍光灯である。 The present invention has been made to solve the above problems, and a first embodiment of the present invention is a power-saving high-intensity integrated fluorescent lamp comprising a plurality of coiled electrode fluorescent lamps connected in parallel, Each of the coiled electrode fluorescent lamps has a fluorescent film formed from a mixed powder of PL (Photoluminescence) phosphor powder and CL (Cathodoluminescence) phosphor powder on the inner surface of a glass tube sealed at both ends, and the glass tube A coil in which discharge gas is filled, coil electrodes are wound around the outer periphery of both ends of the glass tube, and a high-frequency voltage is applied to the coil electrode by a high-frequency power source to cause the discharge gas to emit light and turn it on In the electrode fluorescent lamp, the fluorescent film is also formed on the inner surface of the glass tube at a position facing the coil electrode, and on the surface of the fluorescent film, PL (Photoluminescence) phosphor particles, and the PL phosphor particles and particles Diameter Similar CL (Cathodoluminescence) phosphor particles are alternately arranged adjacent to each other in the tube axis direction, and the coil electrode is formed by winding an insulation-coated wire in which the periphery of the wire is covered with an insulation layer. This is a high-intensity integrated fluorescent lamp.

本発明の第2形態は、前記第1形態において、前記コイル電極蛍光灯として、寿命の尽きた内部電極付き蛍光灯を再生使用し、前記内部電極付き蛍光灯に前記コイル電極を設ける省電高輝度集積型蛍光灯である。 According to a second embodiment of the present invention, in the first embodiment, the coil electrode fluorescent lamp is regenerated and used as the coil electrode fluorescent lamp, and the coil electrode is provided in the fluorescent lamp with the internal electrode. This is a luminance integrated fluorescent lamp.

本発明の第形態は、前記第1または第2形態において、前記PL蛍光体粉がハロ燐酸カルシウムPL蛍光体粉であり、前記CL蛍光体粉が低電子線発光するCL蛍光体粉である省電高輝度集積型蛍光灯である。 According to a third aspect of the present invention, in the first or second aspect, the PL phosphor powder is a calcium halophosphate PL phosphor powder , and the CL phosphor powder is a CL phosphor powder that emits a low electron beam. It is a power-saving high-intensity integrated fluorescent lamp.

本発明の第形態は、前記第1または第2形態において、前記PL蛍光体粉が希土類PL蛍光体粉であり、前記CL蛍光体粉が低電子線発光するCL蛍光体粉である省電高輝度集積型蛍光灯である。 According to a fourth aspect of the present invention, in the first or second aspect, the PL phosphor powder is a rare earth PL phosphor powder , and the CL phosphor powder is a CL phosphor powder that emits low electron beams. This is a high-intensity integrated fluorescent lamp.

本発明の第形態は、前記第1〜4形態のいずれかにおいて、前記コイル電極蛍光灯は、前記コイル電極の巻数をn、前記高周波電源の1次側電力をW1n(W)としたとき、W1n=a+b×n(a,b:定数)が近似式として成立する省電高輝度集積型蛍光灯である。 According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the coil electrode fluorescent lamp is configured such that the number of turns of the coil electrode is n and the primary power of the high-frequency power source is W 1n (W). In this case, it is a power-saving high-intensity integrated fluorescent lamp in which W 1n = a n + b n × n (a n , b n : constant) is established as an approximate expression.

本発明の第形態は、前記第1〜形態のいずれかにおいて、前記コイル電極蛍光灯は、前記コイル電極の巻数をn、前記高周波電源の2次側電力をW2n(W)としたとき、W2n=c+d×n(c,d:定数)が近似式として成立する省電高輝度集積型蛍光灯である。 According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the coil electrode fluorescent lamp is configured such that the number of turns of the coil electrode is n and the secondary power of the high-frequency power source is W 2n (W). In this case, it is a power-saving high-intensity integrated fluorescent lamp in which W 2n = c n + d n × n (c n , d n : constant) is established as an approximate expression.

本発明の第形態は、前記第形態において、前記コイル電極の巻数をn、前記交流電源の1次側電力をW1n(W)としたとき、W1n=a+b×n(a,b:定数)が近似式として成立し、前記定数及びdはb>dである省電高輝度集積型蛍光灯である。 In a seventh embodiment of the present invention, when the number of turns of the coil electrode is n and the primary power of the AC power supply is W 1n (W) in the sixth embodiment, W 1n = a n + b n × n ( a n, b n: constant) is established as an approximate expression, the constants b n and d n are power-saving high intensity integrated fluorescent lamp is b n> d n.

本発明の第形態は、前記第5〜7形態のいずれかにおいて、前記巻数nが1≦n≦10の範囲において、前記電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、前記1次側電力W1nは前記近似式の値と最大5(W)のずれ幅を有する省電高輝度集積型蛍光灯である。 Eighth embodiment of the present invention, in any one of the fifth to seventh embodiments, the number of turns n is in the range of 1 ≦ n ≦ 10, the cross-sectional diameter d (mm) to 0.26 (mm) ≦ d of the wire When variable in a range of ≦ 1.6 (mm), the primary power W 1n is a power-saving high-intensity integrated fluorescent lamp having a maximum deviation of 5 (W) from the value of the approximate expression.

本発明の第形態は、前記第形態のいずれかにおいて、前記巻数nが1≦n≦10の範囲において、前記電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、前記1次側電力W1nは前記近似式の値と最大0.6(W)のずれ幅を有する省電高輝度集積型蛍光灯である。 According to a ninth aspect of the present invention, in any one of the fifth to seventh aspects, in the range where the number of turns n is 1 ≦ n ≦ 10, the cross-sectional diameter d (mm) of the electric wire is 0.26 (mm) ≦ d. When variable to a range of ≦ 1.6 (mm), the primary power W 1n is a power-saving high-intensity integrated fluorescent lamp having a deviation width of a maximum of 0.6 (W) from the value of the approximate expression. .

本発明の第10形態は、前記第1〜形態のいずれかにおいて、N(2以上の自然数)本の前記コイル電極蛍光灯を並列接続してなる省電高輝度集積型蛍光灯であって、前記高周波電源の2次側電圧を印加したとき、前記高周波電源の1次側電力をW1N(W)とすると、W1N=a+b×N(a、b:定数)が近似式として成立する省電高輝度集積型蛍光灯である。 A tenth aspect of the present invention is the power-saving high-intensity integrated fluorescent lamp according to any one of the first to ninth aspects, wherein N (natural number of 2 or more) coil electrode fluorescent lamps are connected in parallel. When the secondary side voltage of the high frequency power source is applied and the primary side power of the high frequency power source is W 1N (W), W 1N = a N + b N × N (a N , b N : constant) It is a power-saving high-intensity integrated fluorescent lamp that is established as an approximate expression.

本発明の第11形態は、前記第10形態において、前記高周波電源の2次側電圧を印加したとき、前記高周波電源の2次側電力をW2N(W)としたとき、W2N=c+d×N(c、d:定数)が近似式として成立する省電高輝度集積型蛍光灯である。 In an eleventh aspect of the present invention, when the secondary side voltage of the high frequency power source is applied and the secondary side power of the high frequency power source is W 2N (W) in the tenth aspect, W 2N = c N This is a power-saving high-intensity integrated fluorescent lamp in which + d N × N (c N , d N : constant) is established as an approximate expression.

本発明の第12形態は、前記第11形態において、前記定数及びdはb>dである省電高輝度集積型蛍光灯である。 A twelfth aspect of the present invention is the power-saving high-intensity integrated fluorescent lamp according to the eleventh aspect, wherein the constants b N and d N are b N > d N.

本発明の第1形態によれば、コイル電極蛍光放電灯において、前記蛍光膜は前記コイル電極が対向する位置のガラス管内面にも形成されているので、前記ガラス管の全長を亘って蛍光放電領域として利用でき、高照度で照明することができ、しかも効率的照明により省電力化にも寄与することができる。また、前記コイル電極は電線の周囲を絶縁層により被覆した絶縁被覆電線を巻回状に形成されてなるので、電極用の前記電線は前記絶縁層を介して前記ガラス管に巻き付けられ、前記電線と前記ガラス管の表面との間において放電現象が全く発生しない。また、巻回された前記絶縁被覆電線を熱収縮性樹脂(以後、被覆絶縁層と呼ぶ)で覆った後、加熱して前記熱収縮性樹脂を収縮させた場合には、前記絶縁被覆電線はガラス管外壁に圧着により密着する。従って、放電現象が発生しないからピンホールが形成されず、封入ガス中への空気の侵入が皆無となり、蛍光放電灯の寿命が短くならずに済み、長寿命化を図ることができる。更に、電力の効率的な消費により省電力化を実現することができる。   According to the first aspect of the present invention, in the coil electrode fluorescent discharge lamp, since the fluorescent film is also formed on the inner surface of the glass tube at the position where the coil electrode is opposed, the fluorescent discharge is performed over the entire length of the glass tube. It can be used as a region, can be illuminated with high illuminance, and can contribute to power saving by efficient illumination. In addition, since the coil electrode is formed by winding an insulating coated electric wire in which the periphery of the electric wire is covered with an insulating layer, the electric wire for an electrode is wound around the glass tube via the insulating layer, and the electric wire And no discharge phenomenon occurs between the glass tube and the surface of the glass tube. In addition, when the wound insulation coated electric wire is covered with a heat-shrinkable resin (hereinafter referred to as a coated insulating layer) and then heated to shrink the heat-shrinkable resin, It adheres to the outer wall of the glass tube by pressure bonding. Accordingly, since no discharge phenomenon occurs, pinholes are not formed, air does not enter the sealed gas, the life of the fluorescent discharge lamp is not shortened, and the life can be extended. Furthermore, power saving can be realized by efficient power consumption.

本発明における前記絶縁層には、ポリエステル、ポリアミド、ポリウレタン、ポリビニルブチラール等の被覆材を用いて形成することができる。前記絶縁被覆電線として、より具体的には、ビニル被覆電線やエナメル電線を使用することができる。商用電源を使用する場合、電線の直径が例えば、0.2mm〜3mmにおいては、前記絶縁層の厚さは0.01mm〜0.05mmであればよい。前記コイル電極は、前記ガラス管の外周面に密着形成して、ガラス管を保持するようにすれば、ガラス管の保持部を不要にすることができる。   The insulating layer in the present invention can be formed using a coating material such as polyester, polyamide, polyurethane, and polyvinyl butyral. More specifically, a vinyl-coated wire or an enameled wire can be used as the insulation-coated wire. When a commercial power source is used, for example, when the diameter of the electric wire is 0.2 mm to 3 mm, the thickness of the insulating layer may be 0.01 mm to 0.05 mm. If the coil electrode is formed in close contact with the outer peripheral surface of the glass tube to hold the glass tube, the holding portion of the glass tube can be dispensed with.

本形態においては、前記コイル電極を用いて、蛍光放電灯の両端の電極は内部の放電空間に対し電気的に絶縁された放電空間絶縁型電極から構成されるから、金属電極から放電空間内への電子注入は一切無くなり、電子注入に伴う電極電圧降下も無くなり、電極電圧降下に伴う無駄な電力消費を消尽することに成功した。また、前記電子注入が無いから、陽イオンが金属電極に衝突して生じるスパッタリング現象も無く、電極損耗を消尽して蛍光放電灯管の長寿命化に成功したものである。
放電発光を駆動する電子は、高周波電圧の印加による放電ガスの電離により生成され、生成された電子と陽イオンが前記放電空間絶縁型電極の近傍に電気力で集積し、第3世代電子源(単に電子源とも称する)及び陽イオン源となる。本発明者はこの電子源を第3世代電子源と称し、前記第3世代電子源から電子が前記陽イオン源に前進する過程で放電ガスと衝突して発光し、電子と陽イオンが衝突して電気的に中性の放電ガスに帰還する。しかも再び交流電圧により電離し、発光し、中性ガス化するサイクルを反復する。
In this embodiment, since the electrodes at both ends of the fluorescent discharge lamp are constituted by discharge space insulating electrodes electrically insulated from the internal discharge space using the coil electrode, the metal electrode enters the discharge space. Electron injection was completely eliminated, and the electrode voltage drop caused by the electron injection was eliminated, succeeding in exhausting unnecessary power consumption accompanying the electrode voltage drop. In addition, since there is no electron injection, there is no sputtering phenomenon caused by collision of cations with metal electrodes, and electrode wear is exhausted and the life of the fluorescent discharge lamp tube is extended.
Electrons that drive the discharge light emission are generated by ionization of the discharge gas by applying a high-frequency voltage, and the generated electrons and cations are accumulated by electric force in the vicinity of the discharge space insulation type electrode, and a third generation electron source ( Simply referred to as an electron source) and a cation source. The present inventor refers to this electron source as a third generation electron source, collides with a discharge gas in the process of electrons moving from the third generation electron source to the cation source, and emits light. Return to the electrically neutral discharge gas. In addition, the cycle of ionizing again by the alternating voltage, emitting light, and neutral gasification is repeated.

また、本発明の第1形態によれば、前記蛍光膜の表面において、PL蛍光体粒子とCL蛍光体粒子が管軸方向に交互に分散配置されたコイル電極蛍光灯を備える省電高輝度集積型蛍光灯を提供できる。PL蛍光体粒子とCL蛍光体粒子をガラス管軸方向に交互に分散配置するから、急速点灯とガラス管内の全領域発光を可能にしたコイル電極蛍光放電灯管を実現できる。負電荷を持った蛍光体粒子として、光発光蛍光体(PL蛍光体)が存在する。光発光蛍光体の粒子内部に存在する発光中心(不純物)の多くは遷移元素で作られ、発光中心となる遷移元素には電子がトラップされており、このトラップされた電子に起因して内部持続分極 (PIP)が形成され、内部持続分極の電子が蛍光膜表面に出現して前記負電荷を構成する。一方、低電圧で発光する陰極線発光(CL)発光蛍光体ではPIPが形成されないので、このCL蛍光体粒子の表面には負電荷が存在しない。前記電子源から取り出された電子をCL蛍光膜表面上に導入すると、電子は表面伝導により加速する。前記加速電子の軌道は蛍光膜上の負電荷を持ったPL蛍光体粒子によりガス空間に曲げられ、蛍光放電灯管のガスを瞬時に点灯放電させる蛍光放電灯管が実現できる。従って、加速電子を曲げたい位置に光発光蛍光体を配置しておけば、その位置の光発光蛍光体の負電荷が、前記加速電子に対し曲げ作用を行う。蛍光体の選択により、前記負電荷の大小を可変調整でき、これにより蛍光膜上の表面伝導電子と放電ガスとの衝突を加速して、放電空間内の急速点灯を実現でき、蛍光放電灯管に従来から存在した遅延点灯を無くすことができる。   According to the first aspect of the present invention, the power-saving and high-brightness integration includes the coil electrode fluorescent lamp in which the PL phosphor particles and the CL phosphor particles are alternately distributed in the tube axis direction on the surface of the phosphor film. Type fluorescent lamps can be provided. Since the PL phosphor particles and the CL phosphor particles are alternately distributed in the glass tube axis direction, a coil electrode fluorescent discharge lamp tube capable of rapid lighting and light emission in the entire region in the glass tube can be realized. A light emitting phosphor (PL phosphor) exists as a phosphor particle having a negative charge. Many of the luminescent centers (impurities) present inside the particles of the photoluminescent phosphor are made of transition elements, and electrons are trapped in the transition elements that are the luminescent centers, and the internal persistence is caused by these trapped electrons. Polarization (PIP) is formed, and internally persistently polarized electrons appear on the surface of the fluorescent film to constitute the negative charge. On the other hand, since no PIP is formed in a cathode ray emission (CL) light emitting phosphor that emits light at a low voltage, there is no negative charge on the surface of the CL phosphor particles. When electrons taken out from the electron source are introduced onto the surface of the CL phosphor film, the electrons are accelerated by surface conduction. The orbits of the accelerated electrons are bent into a gas space by PL phosphor particles having a negative charge on the fluorescent film, and a fluorescent discharge lamp tube that instantaneously turns on and discharges the gas of the fluorescent discharge lamp tube can be realized. Therefore, if the photoluminescent phosphor is disposed at a position where the accelerated electrons are to be bent, the negative charge of the photoluminescent phosphor at that position performs a bending action on the accelerated electrons. Depending on the selection of the phosphor, the magnitude of the negative charge can be variably adjusted, thereby accelerating the collision between the surface conduction electrons on the phosphor film and the discharge gas and realizing rapid lighting in the discharge space. Thus, it is possible to eliminate the delayed lighting that has been conventionally present.

負電荷を持たない蛍光体粒子には、電子線発光蛍光体(CL蛍光体)が含まれる。特に、低電圧電子線発光蛍光体は表面汚染が少なく、負電荷に帯電しない性質を有し、チャージアップしない特性を有する。前記蛍光膜の表面に負電荷を持たない蛍光体粒子(CL蛍光体)と負電荷を持った蛍光体粒子(PL蛍光体)を交互に配置させて、前記蛍光膜表面の複数箇所で前記加速電子を前記負電荷を有した蛍光体粒子により、電子をガス空間側に曲げる急速点灯と全面発光する高効率な蛍光放電灯管が提供される。本形態では、負電荷を持たない蛍光体領域ではクーロン反発力が発生しないから、蛍光膜を表面伝導する電子は加速される。他方、負電荷を持つ蛍光体領域では、加速電子はクーロン反発力により放電空間に曲げられ、放電ガスを強制的に放電させ、放電灯管は急速点灯する。しかも、本形態では、多数の負電荷領域が電子の表面伝導方向に点在するから、放電灯管の多数領域で放電が生起し、放電灯管の全体が明るく発光することができる。換言すると、前記負電荷性蛍光体粒子を蛍光膜上に加速電子の進行方向に沿って多数点在させると、加速電子と負電荷とのクーロン反発力により、多数の負電荷位置にて加速電子が放電空間中に強制的に曲げられ、加速電子と放電ガスとの多領域における全空間衝突により放電空間全領域での放電が生起し、急速点灯と全空間点灯が同時達成できる放電灯管を実現できる。   The phosphor particles having no negative charge include an electron beam emitting phosphor (CL phosphor). In particular, the low-voltage electron-emitting phosphor has a low surface contamination, has a property of not being negatively charged, and has a property of not being charged up. The phosphor film having no negative charge (CL phosphor) and the negatively charged phosphor particles (PL phosphor) are alternately arranged on the surface of the phosphor film, and the acceleration is performed at a plurality of locations on the phosphor film surface. By the fluorescent particles having the negative charge of electrons, there is provided a high-efficiency fluorescent discharge lamp tube that rapidly turns on electrons to the gas space side and emits light entirely. In this embodiment, since the Coulomb repulsive force is not generated in the phosphor region having no negative charge, the electrons conducting on the surface of the phosphor film are accelerated. On the other hand, in the phosphor region having a negative charge, the accelerated electrons are bent into the discharge space by the Coulomb repulsion, forcibly discharging the discharge gas, and the discharge lamp tube is lit rapidly. In addition, in this embodiment, since a large number of negative charge regions are scattered in the surface conduction direction of electrons, discharge occurs in a large number of regions of the discharge lamp tube, and the entire discharge lamp tube can emit light brightly. In other words, when a large number of the negatively charged phosphor particles are scattered along the traveling direction of the accelerated electrons on the fluorescent film, the accelerated electrons are generated at a number of negative charge positions due to the Coulomb repulsive force between the accelerated electrons and the negative charges. A discharge lamp tube that is forced to bend into the discharge space and discharge in all areas of the discharge space occurs due to all-space collisions between the accelerated electrons and the discharge gas. realizable.

本発明の第2形態によれば、前記蛍光放電灯管として寿命の尽きた内部電極付き蛍光放電灯管を再生使用し、前記内部電極付き蛍光放電灯管に前記外部電極を設ける蛍光放電灯を備える省電高輝度集積型蛍光灯を提供できる。従来の寿命が尽きた内部電極付き蛍光放電灯管は、スパッタリングにより内部電極が損耗したものが殆んどであり、その場合に放電ガスは漏洩しておらず、健在である。本発明の外部電極方式では、放電空間に放電ガスが存在しておれば蛍光管として駆動することが可能である。従って、寿命の尽きた内部電極付き蛍光放電灯管の外周に外部電極を設ければ、立派に蛍光管として再生することが本発明者等により初めて発見された。日本及び世界で廃棄される蛍光放電灯管の本数はほぼ無数であり、これらの蛍光放電灯管を本発明に利用すれば、極めて安価に、しかも環境に優しく、資源の無駄を省いた集積型蛍光放電灯を提供できる。   According to the second aspect of the present invention, there is provided a fluorescent discharge lamp in which the fluorescent discharge lamp tube with an internal electrode that has reached the end of its life is used as the fluorescent discharge lamp tube, and the external electrode is provided on the fluorescent discharge lamp tube with the internal electrode. A power-saving high-intensity integrated fluorescent lamp can be provided. Conventional fluorescent discharge lamp tubes with internal electrodes whose lifetime has been exhausted are mostly those in which the internal electrodes are worn by sputtering, in which case the discharge gas does not leak and is healthy. The external electrode system of the present invention can be driven as a fluorescent tube if a discharge gas exists in the discharge space. Therefore, the present inventors have discovered for the first time that if an external electrode is provided on the outer periphery of a fluorescent discharge lamp tube with an internal electrode that has reached the end of its life, it can be regenerated as a fluorescent tube. The number of fluorescent discharge lamp tubes to be discarded in Japan and the world is almost innumerable. If these fluorescent discharge lamp tubes are used in the present invention, an integrated type that is extremely inexpensive, environmentally friendly, and wastes resources. A fluorescent discharge lamp can be provided.

本発明の第形態によれば、前記蛍光膜が、PL蛍光体粉とCL蛍光体粉の混合粉から形成されるコイル電極蛍光灯を備える省電高輝度集積型蛍光灯が提供できる。PL蛍光体粉とCL蛍光体粉を混合し、この混合粉を蛍光放電灯管の内面に塗布して蛍光膜を形成すれば、蛍光膜の表面には、PL蛍光体粒子とCL蛍光体粒子が交互に出現する。PL蛍光体粉の粒子表面に微小径にあるCL蛍光体粉を付着させた場合、その効果は非常に小さく実用にならない。PL蛍光体粉の粒子径とCL蛍光体粒子径が近似していることが必要条件である。PL蛍光体粒子は負電荷を有し、CL蛍光体粒子は負電荷を有さないから、前記第1形態で説明した、蛍光膜上のPL蛍光体粒子が露出する無数点で電子軌道が放電空間側にクーロン曲回し、急速点灯と全面点灯を実現できる。 According to the first embodiment of the present invention, it is possible to provide a power-saving high-intensity integrated fluorescent lamp in which the fluorescent film includes a coil electrode fluorescent lamp formed of a mixed powder of PL phosphor powder and CL phosphor powder. If PL phosphor powder and CL phosphor powder are mixed and this mixed powder is applied to the inner surface of a fluorescent discharge lamp tube to form a phosphor film, PL phosphor particles and CL phosphor particles are formed on the phosphor film surface. Appear alternately. When CL phosphor powder having a small diameter is adhered to the particle surface of PL phosphor powder, the effect is very small and not practical. It is a necessary condition that the particle diameter of the PL phosphor powder is close to the CL phosphor particle diameter. Since the PL phosphor particles have a negative charge and the CL phosphor particles do not have a negative charge, the electron trajectory discharges at innumerable points where the PL phosphor particles on the phosphor film are exposed as described in the first embodiment. Coulomb is turned to the space side to realize quick lighting and full lighting.

本発明の第形態によれば、前記PL蛍光体粉がハロ燐酸カルシウムPL蛍光体粉であり、前記CL蛍光体粉が低電子線発光するCL蛍光体粉であるコイル電極蛍光灯を備える省電高輝度集積型蛍光灯が提供される。ハロ燐酸カルシウムPL蛍光体粉と電子線照射下で発光するCL蛍光体粉の混合粉を用いると、ハロ燐酸カルシウムPL蛍光体粉の製造単価が十分の一前後になるので、コイル電極蛍光放電灯の製造コストを低減できる効果がある。即ち、ハロ燐酸カルシウムPL蛍光体はクラーク数が低い希少な希土類元素を用いないから、蛍光体コスト低減できる。しかも、表面に負電荷を有するハロ燐酸カルシウムPL蛍光体粉と表面に負電荷を有さないか僅かに負電荷を有する150V以下の低電圧で発光するCL蛍光体粉の混合粉から蛍光膜を形成すると、必然的にガラス管軸方向の蛍光膜表面にPL蛍光体粒子とCL蛍光体粒子が交互に無数に分散して存在することになる。無数のPL蛍光体粒子の位置でその負電荷により伝導電子が曲げられて発光し、その領域は蛍光膜の全面であるから、急速点灯と全面発光が可能になる。CL蛍光体粉として安価なZnO蛍光体粉を使用すれば、一層の低価格化を実現できるが、本発明はZnO蛍光体粉に限定されず、150V以下の低電圧で発光するCL蛍光体粉であれば同じような効果を期待できる。 According to the third embodiment of the present invention, the PL phosphor powder is a calcium halophosphate PL phosphor powder , and the CL phosphor powder is a CL phosphor powder that emits low-electron-beam light. An electric high-brightness integrated fluorescent lamp is provided. When a mixed powder of calcium halophosphate PL phosphor powder and CL phosphor powder that emits light under electron beam irradiation is used, the unit price of the calcium halophosphate PL phosphor powder becomes about one-tenth, so a coil electrode fluorescent discharge lamp The manufacturing cost can be reduced. That is, since the calcium halophosphate PL phosphor does not use a rare rare earth element having a low Clark number, the phosphor cost can be reduced. Moreover, a phosphor film is formed from a mixed powder of calcium halophosphate PL phosphor powder having a negative charge on the surface and CL phosphor powder having a negative charge on the surface or slightly negative charge and emitting light at a low voltage of 150 V or less. When formed, PL phosphor particles and CL phosphor particles are inevitably dispersed innumerably alternately on the surface of the fluorescent film in the glass tube axis direction. Conduction electrons are bent by the negative charges at the countless PL phosphor particles, and light is emitted. Since the region is the entire surface of the phosphor film, rapid lighting and light emission are possible. If inexpensive ZnO phosphor powder is used as the CL phosphor powder, further cost reduction can be realized. However, the present invention is not limited to ZnO phosphor powder, and the CL phosphor powder emits light at a low voltage of 150 V or less. If so, the same effect can be expected.

本発明の第形態によれば、前記PL蛍光体粉が希土類PL蛍光体粉であり、前記CL蛍光体粉が低電子線発光するCL蛍光体粉であるコイル電極蛍光灯を備える省電高輝度集積型蛍光灯が提供できる。前記蛍光膜を、希土類PL蛍光体粉とCL蛍光体粉の混合粉から形成するから、希土類蛍光膜を使用したコイル電極蛍光放電灯の製造コストを低減できる効果がある。希土類PL蛍光体粉は表面に負電荷を有する高性能のPL蛍光体粉であるが、近年の希土類元素物質の高騰により、希土類蛍光膜を使用した蛍光放電灯管の製造コストは上昇しつつある。そこで、本形態のCL蛍光体粉として、価格が比較的に安くて安定したCL蛍光体であるZnO蛍光体を使用すれば、混合蛍光体粉の製造コストを低減させることを企図している。特に、ZnO蛍光体は紫外線により励起されてから発光するまでの減衰時定数が極めて短いから高速発光が可能であり、30V以下の低電圧でも明るいCLを発光する特性を有する。しかも、表面に負電荷を有する希土類PL蛍光体粉と表面に負電荷を有さないZnO蛍光体粉の混合粉から蛍光膜を形成すると、必然的にガラス管軸方向の蛍光膜表面にPL蛍光体粒子とCL蛍光体粒子が交互に無数に分散して存在することになる。無数のPL蛍光体粒子の位置でその負電荷により伝導電子が曲げられて発光し、その領域は蛍光膜の全面であるから、急速点灯と全面発光が可能になる。 According to the fourth embodiment of the present invention, the PL phosphor powder is a rare earth PL phosphor powder , and the CL phosphor powder is a CL phosphor powder that emits low electron beams. A luminance integrated fluorescent lamp can be provided. Since the phosphor film is formed from a mixed powder of rare earth PL phosphor powder and CL phosphor powder, there is an effect that the manufacturing cost of the coil electrode fluorescent discharge lamp using the rare earth phosphor film can be reduced. Rare earth PL phosphor powder is a high-performance PL phosphor powder having a negative charge on the surface, but due to the recent rise in rare earth element materials, the production cost of fluorescent discharge lamp tubes using rare earth phosphor films is increasing. . Therefore, if a ZnO phosphor, which is a CL phosphor that is relatively inexpensive and stable, is used as the CL phosphor powder of this embodiment, it is intended to reduce the manufacturing cost of the mixed phosphor powder. In particular, the ZnO phosphor has an extremely short decay time constant after being excited by ultraviolet rays until it emits light, so that it can emit light at high speed and has a characteristic of emitting bright CL even at a low voltage of 30 V or less. Moreover, when a fluorescent film is formed from a mixture of rare earth PL phosphor powder having a negative charge on the surface and ZnO phosphor powder having no negative charge on the surface, it is inevitably caused by PL fluorescence on the surface of the fluorescent film in the direction of the glass tube axis. The body particles and the CL phosphor particles are dispersed innumerably alternately. Conduction electrons are bent by the negative charges at the countless PL phosphor particles, and light is emitted. Since the region is the entire surface of the phosphor film, rapid lighting and light emission are possible.

本発明の第形態によれば、前記コイル電極蛍光灯は、前記コイル電極の巻数をn、前記交流電源の1次側電力をW1n(W)としたとき、W1n=a+b×n(a,b:定数)が近似式として成立するので、前記近似式に基づき、前記コイル電極の巻数によって前記交流電源の1次側電力を適宜選択することができ、蛍光放電灯の消費電力設計を簡易に行うことができる。逆に、1次側消費電力に合わせて、前記近似式に基づき、前記コイル電極の巻数を適宜調整して簡単に電極設計を行うことができる。 According to the fifth aspect of the present invention, the coil electrode fluorescent lamp has W 1n = an + b n where n is the number of turns of the coil electrode and W 1n (W) is the primary power of the AC power supply. Since xn (a n , b n : constant) is established as an approximate expression, the primary power of the AC power supply can be appropriately selected based on the number of turns of the coil electrode based on the approximate expression, and the fluorescent discharge lamp The power consumption design can be easily performed. Conversely, the electrode design can be easily performed by appropriately adjusting the number of turns of the coil electrode based on the approximate expression in accordance with the primary side power consumption.

本発明の第形態によれば、前記コイル電極蛍光灯は、前記コイル電極の巻数をn、前記交流電源の2次側電力をW2n(W)としたとき、W2n=c+d×n(c,d:定数)が近似式として成立するので、前記近似式に基づき、前記コイル電極の巻数によって前記交流電源の2次側電力を適宜選択することができ、蛍光放電灯の消費電力設計を簡易に行うことができる。逆に、2次側消費電力に合わせて、前記近似式に基づき、前記コイル電極の巻数を適宜調整して簡単に電極設計を行うことができる。 According to the sixth aspect of the present invention, the coil electrode fluorescent lamp has W 2n = c n + d n , where n is the number of turns of the coil electrode and W 2n (W) is the secondary power of the AC power supply. Since xn (c n , d n : constant) is established as an approximate expression, the secondary power of the AC power supply can be appropriately selected based on the number of turns of the coil electrode based on the approximate expression. The power consumption design can be easily performed. Conversely, the electrode design can be easily performed by appropriately adjusting the number of turns of the coil electrode based on the approximate expression in accordance with the secondary side power consumption.

本発明の第形態によれば、前記コイル電極の巻数をn、前記交流電源の1次側電力をW1n(W)としたとき、W1n=a+b×n(a,b:定数)が近似式として成立する場合、前記第7形態における前記定数及びdはb>dであるので、この関係を利用して、前記コイル電極の巻数に応じて前記交流電源の1次及び2次側電力を精度よく選択することができ、逆に、1次及び2次側消費電力に合わせて、前記コイル電極の巻数を最適に調整することができる。 According to a seventh aspect of the present invention, the number of turns of the coil electrode n, when the primary electric power of the alternating current power supply was set to W 1n (W), W 1n = a n + b n × n (a n, b n : constant) is established as an approximate expression, the constants b n and d n in the seventh embodiment are b n > d n , and therefore, using this relationship, the constant b n and d n are determined according to the number of turns of the coil electrode The primary and secondary power of the AC power supply can be selected with high accuracy, and conversely, the number of turns of the coil electrode can be optimally adjusted according to the primary and secondary power consumption.

本発明の第形態によれば、前記巻数nが1≦n≦10の範囲において、前記電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、前記1次側電力W1nは前記近似式の値と最大5(W)のずれ幅を有するので、前記ずれ幅の範囲内で前記交流電源の1次側電力を適宜選択して、それに応じて前記電線の断面直径dを前記範囲内で可変でき、前記コイル電極の形成自由度が大きい利点を有する。 According to the eighth aspect of the present invention, in the range where the number of turns n is 1 ≦ n ≦ 10, the cross-sectional diameter d (mm) of the electric wire is in the range of 0.26 (mm) ≦ d ≦ 1.6 (mm). Since the primary side power W 1n has a maximum deviation of 5 (W) from the value of the approximate expression, the primary side power of the AC power source is appropriately selected within the range of the deviation width. Accordingly, the cross-sectional diameter d of the electric wire can be varied within the above range, and the coil electrode can be formed with a large degree of freedom.

本発明の第形態によれば、前記巻数nが1≦n≦10の範囲において、前記電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、前記1次側電力W1nは前記近似式の値と最大0.6(W)のずれ幅を有するので、前記ずれ幅の範囲内で前記交流電源の2次側電力を適宜選択して、それに応じて前記電線の断面直径dを前記範囲内で可変でき、前記コイル電極の形成自由度が大きい利点を有する。 According to the ninth aspect of the present invention, in the range where the number of turns n is 1 ≦ n ≦ 10, the cross-sectional diameter d (mm) of the electric wire is in the range of 0.26 (mm) ≦ d ≦ 1.6 (mm). Since the primary side power W 1n has a deviation width of 0.6 (W) at maximum with the value of the approximate expression, the secondary side power of the AC power source is appropriately changed within the deviation width. According to selection, the cross-sectional diameter d of the electric wire can be varied within the above range, and the coil electrode can be formed with a large degree of freedom.

本発明の第10形態によれば、前記第1形態において、N本の前記コイル電極蛍光放電灯を並列接続して前記交流電源の2次側電圧を印加したとき、前記交流電源の1次側電力をW1N(W)とすると、W1N=a+b×N(a、b:定数)が近似式として成立するので、この1次側電力の近似式に基づき、N本の前記コイル電極蛍光放電灯を並列接続した高輝度発光を可能にした省電高輝度集積型蛍光灯を実現することができる。 According to a tenth aspect of the present invention, in the first aspect, when the secondary side voltage of the AC power source is applied by connecting N coil electrode fluorescent discharge lamps in parallel, the primary side of the AC power source Assuming that the power is W 1N (W), W 1N = a N + b N × N (a N , b N : constant) is established as an approximate expression. A power-saving high-intensity integrated fluorescent lamp that enables high-intensity light emission in which the coil electrode fluorescent discharge lamps are connected in parallel can be realized.

金属内部電極を用いた蛍光放電灯管により高輝度発光させる場合には、消費電力が極めて高く、消費電力が増大する結果となっていた。本形態によれば、前記並列接続構成により、放電空間内の保熱効果が高まり、高輝度発光を可能にすることができる。同時に、全本数を同時点灯させても、前記消費電力の低減化を達成し、消費電力の問題を一気に解決して省電化と高輝度発光を同時的に達成した画期的な集積型蛍光放電灯が実現できる。   When the fluorescent discharge lamp tube using the metal internal electrode emits light with high brightness, the power consumption is extremely high, resulting in an increase in power consumption. According to the present embodiment, the parallel connection configuration increases the heat retention effect in the discharge space and enables high-luminance light emission. At the same time, even if all the lamps are turned on at the same time, the power consumption can be reduced and the problem of power consumption can be solved at once to achieve power saving and high brightness emission at the same time. Electric light can be realized.

特に、蛍光放電灯管の放電空間絶縁型電極に交流電源を接続した時、電源回路の入力側で検出する電流は、蛍光放電灯管内に交流電界を形成するに要する電流であり、電流の大きさは放電灯管の管径や放電灯管の長さに無関係で、検出電流の値は蛍光膜の物性だけにより決まり、その値は0.1Aから1Aの範囲で蛍光膜の物性により変る。高周波電界を形成する電力は、蛍光放電灯管の輝度と無関係であり、蛍光放電灯管の消費電力を決めている。蛍光放電灯管の発光に関与する電子は、第三世代電子源から交流電界中に取り出した電子で、その量は蛍光放電灯管の点灯電力とは分離して測定でき、その値は最大1mAであり、高周波電界形成に要する電流(1A)の千分の一以下であるので、蛍光放電灯管の消費電力への関与は無視できる。蛍光放電灯管の輝度は、蛍光放電灯管の保熱効果に依存した水銀蒸気圧できめられている事実を見出した。蛍光放電灯管の輝度が蛍光放電灯管の消費電力と関係すると従来は考えていたが、その関係は小さい。発明者達は従来の常識を基本から修正する新発見により、消費電力を極度に低減する蛍光放電灯を提供できるようになった。   In particular, when an AC power source is connected to the discharge space insulation type electrode of the fluorescent discharge lamp tube, the current detected on the input side of the power supply circuit is a current required to form an AC electric field in the fluorescent discharge lamp tube. The size is independent of the diameter of the discharge lamp tube and the length of the discharge lamp tube, and the value of the detected current is determined only by the physical properties of the fluorescent film, and the value varies depending on the physical properties of the fluorescent film in the range of 0.1A to 1A. . The electric power that forms the high-frequency electric field is independent of the luminance of the fluorescent discharge lamp tube, and determines the power consumption of the fluorescent discharge lamp tube. The electrons involved in the light emission of the fluorescent discharge lamp tube are electrons taken out from the third generation electron source into the alternating electric field, and the amount thereof can be measured separately from the lighting power of the fluorescent discharge lamp tube, and the value is a maximum of 1 mA. Since it is 1 / 1,000 or less of the current (1A) required for forming the high-frequency electric field, the contribution to the power consumption of the fluorescent discharge lamp tube can be ignored. It has been found that the brightness of the fluorescent discharge lamp tube is determined by the mercury vapor pressure depending on the heat retention effect of the fluorescent discharge lamp tube. Conventionally, it was considered that the luminance of the fluorescent discharge lamp tube is related to the power consumption of the fluorescent discharge lamp tube, but the relationship is small. The inventors have been able to provide a fluorescent discharge lamp that extremely reduces power consumption through a new discovery that modifies conventional common sense from the basics.

また、放電空間絶縁型電極の使用により、同一蛍光膜で作られた蛍光放電灯管の複数本を束状に配置した蛍光放電灯管群を作り、束状に配置した各蛍光放電灯管中に高周波電界を形成すると、蛍光放電灯管群の全管に交流電界を形成する電力が著しく減少する。即ち、蛍光放電灯の点灯に要する消費電力が、蛍光放電灯を束状に配置し、集積すると著しく減少する事実の発見である。更に詳細に述べれば、放電空間絶縁型電極を取り付けた1本の蛍光放電灯管の電極に交流電源を接続し、交流電界を前記蛍光放電灯管内に形成すると、1蛍光放電灯管の消費電力はwワットである。前記蛍光放電灯管の近隣に同種蛍光膜で作られた蛍光放電灯管の複数本(n)を束状に配置すると、束状に配置(集積型)した全蛍光放電灯管内に同強度の交流電界が誘発する。集積型蛍光放電灯管の全てに高周波電界を形成するに要する消費電力Wは、実験に使用した蛍光放電灯管では、1本の蛍光放電灯管の供給電力に一本当り1ワットを加算した合計電力となることをみいだした。即ち、W=nwではなくW=n+wとなり、全体消費電力≪一本消費電力×本数の関係が成立し、集積型蛍光放電灯は低消費電力で点灯する。W=n+wの関係は、蛍光放電灯管の管径と蛍光放電灯管の管長に無関係に成立する。   In addition, by using the discharge space insulation type electrode, a group of fluorescent discharge lamps made of the same fluorescent film is arranged in a bundle, and each fluorescent discharge lamp tube arranged in a bundle is formed. When a high-frequency electric field is formed in this manner, the power for forming an AC electric field in all the tubes of the fluorescent discharge lamp tube group is significantly reduced. That is, it is a discovery of the fact that the power consumption required for lighting a fluorescent discharge lamp is significantly reduced when the fluorescent discharge lamps are arranged in a bundle and integrated. More specifically, when an AC power source is connected to an electrode of a single fluorescent discharge lamp tube having a discharge space insulating electrode attached thereto, and an AC electric field is formed in the fluorescent discharge lamp tube, the consumption of the single fluorescent discharge lamp tube The power is w watts. When a plurality of fluorescent discharge lamp tubes (n) made of the same type of fluorescent film are arranged in a bundle in the vicinity of the fluorescent discharge lamp tube, the same strength is provided in all the fluorescent discharge lamp tubes arranged in a bundle (integrated type). AC electric field is induced. The power consumption W required to form a high-frequency electric field in all of the integrated fluorescent discharge lamp tubes is obtained by adding 1 watt to the supply power of one fluorescent discharge lamp tube in the fluorescent discharge lamp tube used in the experiment. I found out that it would be total power. That is, W = n + w instead of W = nw, and the relationship of total power consumption << single power consumption x number is established, and the integrated fluorescent discharge lamp is lit with low power consumption. The relationship W = n + w is established regardless of the tube diameter of the fluorescent discharge lamp tube and the tube length of the fluorescent discharge lamp tube.

集積型蛍光放電灯の各放電灯管の交流電界に第三世代電子源から電子を注入し、注入電子により充填ガスを発光させると、蛍光膜が電子線発光蛍光体粒子と光発光蛍光体粒子の配列で作られている場合、集積蛍光放電灯からの輝度は、放電空間絶縁型電極を取り付けた蛍光放電灯管1本の輝度の集積本数倍になる。著しく低い消費電力(W=n+w)で高輝度な集積型蛍光放電灯が得られる。蛍光膜が光発光蛍光体だけで作られている場合、及び使用する蛍光体粒子表面が電気絶縁体の微細粒子で汚染している場合、集積蛍光放電灯の輝度は集積本数倍にならず、W=nwとなり蛍光放電灯管を集積する利点はなくなる。   When electrons are injected from the third generation electron source into the alternating electric field of each discharge lamp tube of the integrated fluorescent discharge lamp and the filling gas is emitted by the injected electrons, the phosphor film becomes an electron beam emitting phosphor particle and a light emitting phosphor particle. The luminance from the integrated fluorescent discharge lamp is as many as the integrated number of the luminance of one fluorescent discharge lamp tube having a discharge space insulating electrode attached thereto. An integrated fluorescent discharge lamp with high luminance and extremely low power consumption (W = n + w) can be obtained. When the fluorescent film is made of only the light emitting phosphor, and when the phosphor particle surface used is contaminated with fine particles of the electrical insulator, the brightness of the integrated fluorescent discharge lamp does not double the number of integrated lamps. , W = nw, and the advantage of integrating the fluorescent discharge lamp tube is lost.

本発明の第11形態によれば、前記第10形態において、N(2以上の自然数)本の前記コイル電極蛍光放電灯を並列接続して前記交流電源の2次側電圧を印加したとき、前記交流電源の2次側電力をW2N(W)としたとき、W2N=c+d×N(c、d:定数)が近似式として成立するので、この2次側電力の近似式に基づき、あるいは、前記1次側電力の近似式と併用して、N本の前記コイル電極蛍光放電灯を並列接続した高輝度発光を可能にした省電高輝度集積型蛍光灯を実現することができる。 According to an eleventh aspect of the present invention, in the tenth aspect, when N (natural number of 2 or more) coiled electrode fluorescent discharge lamps are connected in parallel and the secondary voltage of the AC power supply is applied, When the secondary power of the AC power supply is W 2N (W), W 2N = c N + d N × N (c N , d N : constant) is established as an approximate expression. Based on the equation, or in combination with the approximate expression of the primary power, a power-saving high-intensity integrated fluorescent lamp that enables high-intensity light emission by connecting N coil electrode fluorescent discharge lamps in parallel is realized. be able to.

本発明の第12形態によれば、前記第11形態において、前記定数及びdはb>dであるので、この関係を利用して、コイル電極蛍光放電灯の集積数に応じて前記交流電源の1次及び2次側電力を精度よく選択し、逆に、1次及び2次側消費電力に合わせて、コイル電極蛍光放電灯の集積数を最適に調整して、N本の前記コイル電極蛍光放電灯を並列接続した高輝度発光を可能にした省電高輝度集積型蛍光灯を実現することができる。 According to the twelfth aspect of the present invention, in the eleventh aspect, since the constants b N and d N are b N > d N , this relationship is used to correspond to the number of integrated coil electrode fluorescent discharge lamps. The primary and secondary power of the AC power supply is selected with high accuracy, and conversely, the number of coil electrode fluorescent discharge lamps is optimally adjusted according to the primary and secondary power consumption, and N Thus, it is possible to realize a power-saving high-intensity integrated fluorescent lamp that enables high-intensity light emission in which the coil electrode fluorescent discharge lamps are connected in parallel.

1本の放電灯の場合には、前記コイル電極の電線の一端側は電源に接続され、その反対側の電線は開放端となる。省電高輝度集積型蛍光灯の場合には、各放電灯のコイル電極の電線の一端側を電源側に共通接続して並列化でき、あるいは、コイル電極の電線の一端側を別の放電灯のコイル電極の起端側として、各放電灯に一本の電線を連続的に巻回して構成することもできる。   In the case of a single discharge lamp, one end of the coil electrode wire is connected to a power source, and the opposite wire is an open end. In the case of a power-saving high-intensity integrated fluorescent lamp, one end side of the coil electrode wire of each discharge lamp can be connected in parallel to the power supply side, or one end side of the coil electrode wire can be connected to another discharge lamp. As a starting side of the coil electrode, one electric wire can be continuously wound around each discharge lamp.

本発明の他の形態によれば、本発明に係わる省電高輝度集積型蛍光灯は、外部コイル電極蛍光放電灯管の両端に、従来の蛍光放電灯管の点灯器具のソケットに嵌め合わせが適合する口金を取り付ける。前記コイル電極蛍光放電灯管の点灯に必要な電源の大きさは、従来の蛍光放電灯管の点灯に要する電源の大きさの数分の一以下と小さく、従来の蛍光放電灯管の点灯装置の収納庫に収納できる。従って、従来使用している点灯器具を全面的に変えることなく、従来の蛍光放電灯管の点灯器具をそのまま利用して、前記コイル電極蛍光放電灯管を従来の蛍光放電灯管と置換するだけの手間と小型な点灯電源を点灯器具内部に収納する簡単な工事により、コイル電極蛍光放電灯管を設置し、点灯が実現できる利便性と経済性を持つ。   According to another aspect of the present invention, the power-saving high-intensity integrated fluorescent lamp according to the present invention is fitted to both ends of the external coil electrode fluorescent discharge lamp tube and the socket of the lighting fixture of the conventional fluorescent discharge lamp tube. Install a suitable base. The size of the power source necessary for lighting the coil electrode fluorescent discharge lamp tube is smaller than a fraction of the size of the power source required for lighting the conventional fluorescent discharge lamp tube. Can be stored in the storage. Accordingly, the conventional fluorescent discharge lamp tube lighting device is used as it is without changing the lighting fixture used in the past, and the coil electrode fluorescent discharge lamp tube is simply replaced with the conventional fluorescent discharge lamp tube. By installing the coil electrode fluorescent discharge lamp tube with a simple construction to store a small lighting power source in the lighting fixture, it is convenient and economical to realize lighting.

[本発明の更なる詳細説明:検出電流と点灯の関係]
本発明に係るコイル電極蛍光放電灯において重要な高輝度化の開発経緯を以下に説明する。
発明者達は、高周波電源を第三世代電子源による蛍光放電灯管の電極に印加すると、電源回路の入力側で検出する電流に発光に関与しない高周波電界を形成する電流と、電子源から供給されてガス原子の発光に関与する電子電流の2種類が存在する事を発見した。高周波電界形成に必要な電流の大きさは、ガス原子を発光させるに必要な電子電流の大きさの千倍以上で1A付近にある。従って、高周波電界形成電流は蛍光放電灯の発光には寄与せず、蛍光放電灯管の点灯時の消費電力のみを決める事実を発見した。ガス放電は電子源からの電子が高周波電界との共鳴でガス空間を移動して起しているが、この電子電流は電流量が小さく(1mA以下)、蛍光放電灯管の点灯に必要な実質電力に影響を与えていない。上記した発見は蛍光放電灯管の全機能を最適化し、今までに得られなかった水準の省電力で高輝度な蛍光放電灯管を開発する上で重要な事項である。
[Further details of the present invention: Relationship between detection current and lighting]
The history of development of high brightness important in the coil electrode fluorescent discharge lamp according to the present invention will be described below.
The inventors applied a high-frequency power source to the electrode of a fluorescent discharge lamp tube by a third-generation electron source and supplied from the electron source a current that forms a high-frequency electric field that does not contribute to light emission in the current detected on the input side of the power circuit. It was discovered that there are two types of electron currents involved in the emission of gas atoms. The magnitude of the current necessary for forming the high-frequency electric field is in the vicinity of 1 A, which is 1000 times or more the magnitude of the electron current necessary for emitting gas atoms. Therefore, it has been found that the high frequency electric field forming current does not contribute to the light emission of the fluorescent discharge lamp, but determines only the power consumption when the fluorescent discharge lamp tube is turned on. The gas discharge is caused by electrons from the electron source moving in the gas space due to resonance with the high frequency electric field, but this electron current has a small amount of current (1 mA or less) and is substantially necessary for lighting the fluorescent discharge lamp tube. The power is not affected. The above discovery is an important matter in optimizing all functions of a fluorescent discharge lamp tube and developing a fluorescent lamp with high power and high brightness that has never been obtained.

更に、次の現象を発見した。一個の蛍光放電灯管中に形成する高周波電界は、複数の同種蛍光放電灯管を前記蛍光放電灯管の周辺に置くと、周辺に置かれた蛍光放電灯管内にも高周波電界が誘起される。最初の蛍光放電灯管の電極に接続した電源回路に流れる電流値は周辺に置かれた蛍光放電灯管数で僅かに増加するだけである。蛍光放電灯管が高周波電界を持っただけでは、蛍光放電灯管は発光しない。蛍光放電灯管を発光させるには、高周波電界中に電子を注入しなければならない。電子を高周波電界中に注入できる条件を調べた。   Furthermore, the following phenomenon was discovered. The high-frequency electric field formed in one fluorescent discharge lamp tube is that when a plurality of the same type of fluorescent discharge lamp tubes are placed around the fluorescent discharge lamp tube, a high-frequency electric field is also induced in the fluorescent discharge lamp tubes placed in the vicinity. The The value of the current flowing in the power supply circuit connected to the electrode of the first fluorescent discharge lamp tube is only slightly increased by the number of fluorescent discharge lamp tubes placed in the vicinity. If the fluorescent discharge lamp tube only has a high frequency electric field, the fluorescent discharge lamp tube does not emit light. In order for the fluorescent discharge lamp tube to emit light, electrons must be injected into the high-frequency electric field. The conditions under which electrons can be injected into the high frequency electric field were investigated.

外部電極蛍光放電灯管で、第三世代電子源からの電子が蛍光放電灯管内に形成した高周波電界中に注入できるか、出来ないかは前記電極蛍光放電灯管中に形成している高周波電界の大きさで顕著に変わる。前記電極蛍光放電灯管中に形成する高周波電界の大きさを、電源回路の入力側で検出する電流のモニターで検討する。外部電極に高周波電位を印加したとき、電源回路で検出する電流は蛍光膜の汚染(帯電)状態で大きく変る。蛍光膜を構成する蛍光体粒子表面が電気絶縁物の微細粒子で重度に汚染されていると電源で検出される電流は1A付近である。蛍光体粒子表面に電気絶縁物の汚染がないと検出電流は最小になり、0.1A付近まで減少する。検出電流が0.7A以上の蛍光放電灯管の点灯は難しい。即ち検出電流が0.7A以上であると、第三世代電子源からの電子は高周波電界中に注入できない。検出電流が0.5A以下であると、蛍光放電灯管に形成している高周波電界中に電子が容易に注入できる。その結果、前記外部電極型蛍光放電灯管は点灯する。   In the external electrode fluorescent discharge lamp tube, whether the electrons from the third generation electron source can be injected into the high frequency electric field formed in the fluorescent discharge lamp tube or not is determined by the high frequency formed in the electrode fluorescent discharge lamp tube. It varies significantly with the magnitude of the electric field. The magnitude of the high-frequency electric field formed in the electrode fluorescent discharge lamp tube is examined by monitoring the current detected on the input side of the power supply circuit. When a high frequency potential is applied to the external electrode, the current detected by the power supply circuit varies greatly depending on the contamination (charging) state of the fluorescent film. When the surface of the phosphor particles constituting the phosphor film is severely contaminated with fine particles of an electrical insulator, the current detected by the power source is around 1 A. If the surface of the phosphor particles is not contaminated with an electrical insulator, the detection current is minimized and decreases to near 0.1A. It is difficult to light a fluorescent discharge lamp tube having a detection current of 0.7 A or more. That is, when the detection current is 0.7 A or more, electrons from the third generation electron source cannot be injected into the high frequency electric field. When the detection current is 0.5 A or less, electrons can be easily injected into the high-frequency electric field formed in the fluorescent discharge lamp tube. As a result, the external electrode type fluorescent discharge lamp tube is lit.

集積型蛍光放電灯を形成するために、検出電流が0.5A以下の外部電極蛍光放電灯管の電極を並列に接続すると、並列に接続された外部電極蛍光放電灯管に第三世代電子供給源から交流電界中に電子の注入が許容される。注入された電子はガス原子と非弾性衝突し、ガスを放電させるので並列接続の全蛍光放電灯管の蛍光膜は均一輝度で発光する。即ち、並列接続された複数の外部電極型蛍光放電灯管の点灯に要する消費電力は、外部電極型蛍光放電灯管を単独で点灯した場合より僅かに増加させただけで、発光強度のみが並列接続蛍光放電灯管数に比例して増加する。検出電流が0.5A以下の外部電極型蛍光放電灯管の電極を並列に接続すると、大きな省電型蛍光放電灯が可能となる。ここで注意しなければならないことがある。市販蛍光放電灯管の多くは外部電極蛍光放電灯管に改変しても検出電流が0.7A以上であり、第三世代電子供給源から改変蛍光放電灯管中の高周波電界に電子注入ができない。その結果、改変蛍光放電灯管を検出電流が0.5A以下の蛍光放電灯と並列接続しても改変蛍光放電灯管は発光しない。参考として記すと、外形が30mmの市販蛍光放電灯管を外部電極型蛍光放電灯管に改変し、外部電極を並列接続しても、改変蛍光放電灯管は発光しない。   When the electrodes of the external electrode fluorescent discharge lamp tube having a detection current of 0.5 A or less are connected in parallel to form an integrated fluorescent discharge lamp, third-generation electrons are supplied to the external electrode fluorescent discharge lamp tube connected in parallel Injection of electrons from the source into the alternating electric field is allowed. The injected electrons collide with gas atoms inelastically and discharge the gas, so that the fluorescent films of all the fluorescent discharge lamps connected in parallel emit light with uniform brightness. That is, the power consumption required for lighting a plurality of external electrode type fluorescent discharge lamp tubes connected in parallel is slightly increased as compared with the case where the external electrode type fluorescent discharge lamp tubes are lit alone, and only the emission intensity is parallel. It increases in proportion to the number of connected fluorescent discharge lamp tubes. When the electrodes of the external electrode type fluorescent discharge lamp tube having a detection current of 0.5 A or less are connected in parallel, a large power saving type fluorescent discharge lamp can be realized. There are things to note here. Many of the commercially available fluorescent discharge lamp tubes have a detection current of 0.7 A or more even if they are changed to external electrode fluorescent discharge lamp tubes, and electrons cannot be injected from the third generation electron source into the high-frequency electric field in the modified fluorescent discharge lamp tube. . As a result, even if the modified fluorescent discharge lamp tube is connected in parallel with a fluorescent discharge lamp having a detection current of 0.5 A or less, the modified fluorescent discharge lamp tube does not emit light. As a reference, even when a commercially available fluorescent discharge lamp tube having an outer shape of 30 mm is modified to an external electrode type fluorescent discharge lamp tube and the external electrodes are connected in parallel, the modified fluorescent discharge lamp tube does not emit light.

第三世代電子源からの電子を高周波電界に注入する最適条件が複雑であった。蛍光体粒子表面に電気絶縁物の汚染が全然ないと、高周波電界に注入した電子は選択的に蛍光膜の表面伝導を取り、陽イオン源に到達し消滅する。その結果、表面伝導電子はガス原子と衝突せず、蛍光放電灯管の発光は起こらない。蛍光膜に突起を作ると、表面伝導している電子が突起した蛍光体粒子と衝突する。印加する電界の半周期をゼロ電位にすると一方向にのみ進む電子の動きのみとなり、突起した蛍光体粒子の陰極側のみが明るく発光し、陽極側では発光しない。突起した蛍光体粒子の発光は電子線照射によるCL発光と同定できる。この観察により、蛍光膜上を一方向に加速されて動く表面伝導電子の存在を確認できる。蛍光体粒子表面が電気絶縁物で重度に汚染していると、第三世代電子源からの電子は汚染物の帯電電荷の負電界からのクーロン反発を受け、ガス空間に入れずガスの発光は起こらない。粒子表面が適度に汚染された蛍光体粒子と、汚染が無い粒子の混合粉で蛍光膜が作られている時のみ、電子がガス空間に侵入し、加速され、蛍光体粒子表面が帯電している負電荷の所で電子軌道をガス空間に曲げ、ガス原子と非弾性衝突する。その結果、蛍光放電灯は発光する。非弾性衝突した電子は軌道を散乱されるが高周波電界にある放電路に留まり、次の波の高周波電界により軌道修正され、加速されて他のガス原子と非弾性衝突する。この繰り返しにより蛍光放電灯管中の陽光柱が成立する。   The optimum conditions for injecting electrons from the third generation electron source into the high frequency electric field were complicated. If there is no contamination of the electrical insulator on the phosphor particle surface, the electrons injected into the high frequency electric field selectively take the surface conduction of the phosphor film, reach the cation source and disappear. As a result, the surface conduction electrons do not collide with gas atoms, and the fluorescent discharge lamp does not emit light. When protrusions are formed on the fluorescent film, surface-conductive electrons collide with the protruded phosphor particles. When the half period of the applied electric field is set to zero potential, only the movement of electrons traveling in only one direction occurs, and only the cathode side of the projected phosphor particles emits light, and no light is emitted on the anode side. The light emission of the projected phosphor particles can be identified as CL light emission by electron beam irradiation. This observation confirms the presence of surface conduction electrons that are accelerated in one direction on the fluorescent film. If the surface of the phosphor particles is heavily contaminated with an electrical insulator, electrons from the third generation electron source are subjected to Coulomb repulsion from the negative electric field of the charged charge of the contaminant, and gas emission does not enter the gas space. Does not happen. Only when the phosphor film is made of a mixed powder of phosphor particles with a moderately contaminated particle surface and non-contaminated particles, electrons enter the gas space and are accelerated to charge the phosphor particle surface. The electron orbit is bent into the gas space at the negative charge, and inelastically collides with the gas atoms. As a result, the fluorescent discharge lamp emits light. The electrons that collide inelastically are scattered in the orbit, but remain in the discharge path in the high-frequency electric field, are corrected by the high-frequency electric field of the next wave, are accelerated, and collide with other gas atoms inelastically. By repeating this, a positive column in the fluorescent discharge lamp tube is established.

上記した複雑な蛍光膜の特性は、次の方法で制御できる。蛍光放電灯管の蛍光膜を同一粒子径にある低電圧電子線発光(CL)蛍光体と光発光(PL)蛍光体の混合で作る時、第三世代電子源からの電子は容易に蛍光膜上に侵入でき、並列接合した蛍光放電灯管の全てが同一輝度で発光する。蛍光放電灯管中に高周波電界を形成するに要する電源回路の検出電流は0.5A以下である。この発見により、複数本の外部電極蛍光放電灯管を適度の隙間を置いて束ねて集積すれば、電源回路に流れる電流値を僅かに変えるだけで、集積蛍光放電灯の輝度のみが束ねた蛍光放電灯管数に比例して増加する。蛍光膜は白色の体色を持ち、蛍光膜で発光した可視光に対して光吸収を持たないので、束ねた蛍光放電管に間隙を設けると、内部に置かれた蛍光放電灯管の蛍光膜で発光した光が全て外部に取り出せる。一個の蛍光放電灯管の消費電力を僅かに増加させただけで複数個の蛍光放電灯管が発光するので、集積により小電力で高輝度に発光する集積型蛍光放電灯管が開発できた。即ち、10本の蛍光放電灯管の集積で作られた集積型蛍光放電灯の電力消費は、10本点灯に必要な電力の五分の一になり、輝度のみが10倍になる。   The characteristics of the complex fluorescent film described above can be controlled by the following method. When the fluorescent film of a fluorescent discharge lamp tube is made by mixing a low voltage electron beam emission (CL) phosphor and a light emission (PL) phosphor having the same particle size, electrons from the third generation electron source are easily converted into the phosphor film. All of the fluorescent discharge lamp tubes that can enter above and are joined in parallel emit light with the same luminance. The detection current of the power supply circuit required to form a high frequency electric field in the fluorescent discharge lamp tube is 0.5 A or less. As a result of this discovery, if multiple external electrode fluorescent discharge lamp tubes are bundled and integrated with an appropriate gap, only the brightness of the integrated fluorescent discharge lamp is bundled by changing the current value flowing in the power circuit slightly. It increases in proportion to the number of discharge lamp tubes. Since the fluorescent film has a white body color and does not absorb light with respect to visible light emitted from the fluorescent film, if a gap is provided in the bundled fluorescent discharge tube, the fluorescent film of the fluorescent discharge lamp tube placed inside All the light emitted from the can be taken out. Since a plurality of fluorescent discharge lamps emit light only by slightly increasing the power consumption of a single fluorescent discharge lamp, an integrated fluorescent discharge lamp that emits light with high power and high luminance has been developed. That is, the power consumption of an integrated fluorescent discharge lamp made by integrating 10 fluorescent discharge lamp tubes is one-fifth of the power required for lighting the 10 fluorescent lamps, and only the luminance is 10 times higher.

そればかりではない。金属電極の使用で寿命の尽きた蛍光放電灯管の外壁に新たに外部電極を設置すると、寿命の尽きた蛍光放電灯管は再点灯する。寿命が尽きた蛍光放電灯管は、外部電極を放電灯ガラス管端に設置すると、完全に再生し、新規に製造した外部電極蛍光放電灯管と同輝度で発光する。しかも、蛍光放電灯管内で寿命に影響を与える因子が全て消去される結果、外部電極蛍光放電灯管の寿命は半永久的になり、蛍光放電灯管の資源回収周期が非常に長くなる。このように第三世代電子源の使用は、蛍光放電灯管の省電だけでなく、資源の節約と寿命の尽きた蛍光放電灯管の破棄による水銀による土壌汚染問題の防止にも大いに貢献する。   Not only that. When a new external electrode is installed on the outer wall of a fluorescent discharge lamp tube whose life has expired due to the use of a metal electrode, the fluorescent discharge lamp tube whose life has expired is relighted. When the external electrode is installed at the end of the discharge lamp glass tube, the fluorescent discharge lamp tube whose lifetime has been exhausted is completely regenerated and emits light with the same brightness as the newly manufactured external electrode fluorescent discharge tube. In addition, as a result of erasing all the factors affecting the life in the fluorescent discharge lamp tube, the life of the external electrode fluorescent discharge lamp tube becomes semi-permanent and the resource recovery cycle of the fluorescent discharge lamp tube becomes very long. Thus, the use of third-generation electron sources greatly contributes not only to the power saving of fluorescent discharge lamp tubes, but also to the saving of resources and the prevention of soil contamination problems due to mercury due to the disposal of fluorescent discharge lamp tubes that have reached the end of their lives. .

コイル電極蛍光放電灯を示す構成図である。It is a block diagram which shows a coil electrode fluorescent discharge lamp. 図1に示されたコイル電極蛍光放電灯の概略断面図である。It is a schematic sectional drawing of the coil electrode fluorescent discharge lamp shown by FIG. 高周波電源6の1次側電力W1n(W)とコイル電極の巻数nの関係を示す図である。It is a figure which shows the relationship between the primary side electric power W1n (W) of the high frequency power supply 6, and the winding number n of a coil electrode. 高周波電源6の1次側電力W1n(W)とコイル電極用電線の線径dの関係を示す図である。It is a figure which shows the relationship between the primary side electric power W1n (W) of the high frequency power supply 6, and the wire diameter d of the electric wire for coil electrodes. 高周波電源6の1次側電力W1n(W)と点灯時間の関係を示す図である。It is a figure which shows the relationship between the primary side electric power W1n (W) of the high frequency power supply 6, and lighting time. 蛍光放電灯が単体のときの、点灯時初期の1次側電力の巻数に対する変化を示す図である。It is a figure which shows the change with respect to the winding | turns number of the primary side electric power of the initial stage at the time of lighting when a fluorescent discharge lamp is single. 蛍光放電灯が単体のときの、点灯時初期の2次側電力の巻数に対する変化を示す図である。It is a figure which shows the change with respect to the winding | turns number of the secondary side electric power of the initial stage at the time of lighting when a fluorescent discharge lamp is single. n本のコイル電極蛍光放電灯を並列接続して高周波電源6の2次側電圧を印加して同時点灯させる集積コイル電極蛍光放電灯の構成図である。FIG. 3 is a configuration diagram of an integrated coil electrode fluorescent discharge lamp in which n coil electrode fluorescent discharge lamps are connected in parallel and a secondary side voltage of a high-frequency power source 6 is applied to simultaneously light up. 共通電線により各コイル電極蛍光放電灯のコイル電極を形成して並列接続した集積コイル電極蛍光放電灯の構成図である。It is a block diagram of the integrated coil electrode fluorescent discharge lamp which formed the coil electrode of each coil electrode fluorescent discharge lamp with the common electric wire, and was connected in parallel. 図8の集積コイル電極蛍光放電灯及び個々の構成放電灯に対する電力測定結果を示す図である。It is a figure which shows the electric power measurement result with respect to the integrated coil electrode fluorescent discharge lamp of FIG. 8, and each structure discharge lamp. コイル電極蛍光放電灯数Nを1、2、3としたときの、高周波電源6の1次側電力W1N(W)及び2次側電力W2N(W)の変化を示す図である。It is a figure which shows the change of the primary side electric power W1N (W) and the secondary side electric power W2N (W) of the high frequency power supply 6 when the number N of coil electrode fluorescent discharge lamps is 1, 2, and 3. 複数の市販の内部電極型蛍光放電灯と、それに使用されている高周波電源につき、コイル電極による集積蛍光放電灯化した場合の2次側電力変化を示す図である。It is a figure which shows the secondary side electric power change at the time of making into the integrated fluorescent discharge lamp by a coil electrode about several commercially available internal electrode type | mold fluorescent discharge lamps and the high frequency power supply used therein. 7本のコイル電極蛍光放電灯23を束状に配置、集積した集積蛍光放電灯を示す図である。It is a figure which shows the integrated fluorescent discharge lamp which arrange | positioned and integrated the seven coil electrode fluorescent discharge lamps 23 in bundle shape. 本発明において蛍光膜表面に導入する電子の挙動が、蛍光膜の荷電状態による変わる様子を説明する模式図である。It is a schematic diagram explaining a mode that the behavior of the electrons introduced into the fluorescent film surface in the present invention changes depending on the charged state of the fluorescent film. 本発明において低電圧電子線発光CL蛍光体粉と光発光PL蛍光体粉の混合粉で作られる最適な蛍光膜の状態を示す模式図である。It is a schematic diagram which shows the state of the optimal fluorescent film made from the mixed powder of low voltage electron beam light emission CL fluorescent substance powder and light emission PL fluorescent substance powder in this invention. 本発明において、従来の蛍光放電灯点灯器具のソケットに嵌め合せが容易に出来る口金を取り付けたコイル電極蛍光放電灯管を示す模式図である。In this invention, it is a schematic diagram which shows the coil electrode fluorescent discharge lamp tube which attached the nozzle | cap | die which can be easily fitted to the socket of the conventional fluorescent discharge lamp lighting fixture.

1 コイル電極蛍光放電灯
2 ガラス管
3 コイル電極
4 コイル電極
5 電圧印加線
6 交流電源
7 商用電源
8 蛍光膜
9 電線
10 絶縁層
11 蛍光体粒子層
12 蛍光体粒子層
13 電圧印加線
14a ガラス管
14b ガラス管
14n ガラス管
15a コイル電極
15b コイル電極
15n コイル電極
16a コイル電極
16b コイル電極
16n コイル電極
17a ガラス管
17b ガラス管
17n ガラス管
18a コイル電極
18b コイル電極
18n コイル電極
19a コイル電極
19b コイル電極
19n コイル電極
20 電圧印加線
21 電圧印加線
22 蛍光放電灯収納部
23 コイル電極蛍光放電灯
24 コイル電極
25 コイル電極
26 PIP鞘
27 PL蛍光体粒子
28 CL蛍光体粒子
29 コイル電極蛍光放電灯
30 コイル電極
31 コイル電極収納庫
32 口金
CCFL 冷陰極蛍光放電灯管
CL 電子線発光(Cathodoluminescence)
e 電子(放出電子)
FL 蛍光放電灯
HCFL 熱陰極蛍光放電灯管
LCD 液晶ディスプレイ
PIP 永続性内部分極
PL 光発光(Photoluminescence)
SBE 表面結合電子(surface-bound-electrons)
UV 紫外線
DESCRIPTION OF SYMBOLS 1 Coil electrode fluorescent discharge lamp 2 Glass tube 3 Coil electrode 4 Coil electrode 5 Voltage application line 6 AC power supply 7 Commercial power supply 8 Fluorescent film 9 Electric wire 10 Insulating layer 11 Phosphor particle layer 12 Phosphor particle layer 13 Voltage application line 14a Glass tube 14b Glass tube 14n Glass tube 15a Coil electrode 15b Coil electrode 15n Coil electrode 16a Coil electrode 16b Coil electrode 16n Coil electrode 17a Glass tube 17b Glass tube 17n Glass tube 18a Coil electrode 18b Coil electrode 18n Coil electrode 19a Coil electrode 19b Coil electrode 19n Coil Electrode 20 Voltage application line 21 Voltage application line 22 Fluorescent discharge lamp housing part 23 Coil electrode fluorescent discharge lamp 24 Coil electrode 25 Coil electrode 26 PIP sheath 27 PL phosphor particle 28 CL phosphor particle 29 Coil electrode fluorescent discharge lamp 30 Coil electrode 31 Coil electrode storage 32 CCFL cold cathode fluorescent lamp tubes CL electron emission (Cathodoluminescence)
e Electron (Emission electron)
FL Fluorescent discharge lamp HCFL Hot cathode fluorescent discharge lamp LCD LCD PIP Permanent internal polarization PL Light emission (Photoluminescence)
SBE surface-bound-electrons
UV UV

同一直径にあるガラス管を使用した蛍光放電灯管の複数を重ねて束ねると、束ねた蛍光放電灯管を集積した蛍光放電灯ができる。集積した蛍光放電灯からは集積本数の倍数で明るい発光が得られる。従来例で示したように、金属電極(即ち、非表面絶縁内部電極)を内蔵した蛍光放電灯管の使用では、集積した各個の蛍光放電管にそれぞれの駆動電源を接続するので、消費電力が集積する放電灯管の倍数で増加する。これでは蛍光放電灯管を個別に発光させた場合と同じであり、何らの利点が得られない。又、並列接続しても、金属陰極から電子を取り出す高電力を必要とするので、大きな点灯回路を必要とするので、実用性が無い。   When a plurality of fluorescent discharge lamp tubes using glass tubes having the same diameter are stacked and bundled, a fluorescent discharge lamp in which the bundled fluorescent discharge lamp tubes are integrated can be obtained. Bright light emission can be obtained from the integrated fluorescent discharge lamp by a multiple of the integrated number. As shown in the conventional example, in the use of a fluorescent discharge lamp tube with a built-in metal electrode (that is, a non-surface-insulated internal electrode), since each driving power source is connected to each integrated fluorescent discharge tube, power consumption is reduced. It increases by a multiple of the number of discharge lamp tubes that accumulate. This is the same as the case where the fluorescent discharge lamp tube is caused to emit light individually, and no advantage is obtained. Moreover, even if connected in parallel, high power for extracting electrons from the metal cathode is required, so that a large lighting circuit is required, so there is no practicality.

本発明者等は、第三世代電子源を使った蛍光放電灯管を使用すると、話が変ることを発見した。第三世代電子源を使用する蛍光放電灯管を複数本束ね、電極を並列接続してできる集積蛍光放電灯は、点灯に要する電力が1灯を点灯する電力を僅かに増加するだけで、発光輝度が集積する蛍光放電灯管数により顕著に増加する。   The present inventors have discovered that the use of a fluorescent discharge lamp tube using a third generation electron source changes the story. An integrated fluorescent discharge lamp that is formed by bundling a plurality of fluorescent discharge lamp tubes that use a third generation electron source and connecting electrodes in parallel emits light just by slightly increasing the power required to light one lamp. The luminance increases remarkably with the number of fluorescent discharge lamp tubes that accumulate.

本実施形態においては、金属内部電極を使用せず、第三世代電子源として、コイル電極を外部電極とした蛍光放電灯を提供する。この場合、管内壁面に塗布する蛍光膜は、管端まで塗布することが可能である。放電に必要な電極は放電灯のガラス管端の外壁面に付ける。この構造からなるコイル電極蛍光放電灯では第三世代電子源が放電に関与する。   In the present embodiment, there is provided a fluorescent discharge lamp using a coil electrode as an external electrode as a third generation electron source without using a metal internal electrode. In this case, the fluorescent film applied to the inner wall surface of the tube can be applied to the end of the tube. The electrodes necessary for the discharge are attached to the outer wall surface of the glass tube end of the discharge lamp. In the coil electrode fluorescent discharge lamp having this structure, the third generation electron source is involved in the discharge.

第三世代電子源を内蔵した外部電極蛍光放電灯管を使用する特徴の一つは、放電灯を点灯する電源回路の小型化である。点灯電源回路の小型化できる理由の第一は、金属陰極電極から電子の取り出しに要する高電圧回路が不必要である。第二の理由は蛍光膜に注入する電子が容易にガス放電をする。従来の蛍光放電灯管の点灯にはガス原子の最外殻電子により形成された負電界(10V cm-)に打ち勝つエネルギーを持った電子を作らなければ、電子がガス空間に入り放電を開始できない難しさがあった。この難しさは外部電極蛍光放電灯管では消えるので、点灯に要した大型で大電力を消費するガス放電の点灯電気回路の工夫は不要である。第三の理由は第三世代電子源から高周波電界に注入する電子流は1mA以下であり、小型の集積回路の使用が可能となる。電源回路に流れる最大電流は蛍光放電灯管中に高周波電界を形成するに要する電力であり、1.0A以下に限定されるので、電源回路の容積は小さくなる。これらを総合すると、外部電極蛍光放電灯の電源回路は、金属電極使用の従来の蛍光放電灯(直径20mm)の点灯回路の容積を大幅に縮小し、5分の1以下になる。 One of the features of using an external electrode fluorescent discharge lamp tube with a built-in third generation electron source is the miniaturization of the power supply circuit for lighting the discharge lamp. The first reason why the lighting power supply circuit can be reduced in size is that a high voltage circuit required for taking out electrons from the metal cathode electrode is unnecessary. The second reason is that electrons injected into the phosphor film easily discharge gas. In order to light up a conventional fluorescent discharge lamp tube, if an electron having energy that overcomes the negative electric field (10 5 V cm- 1 ) formed by the outermost electrons of gas atoms is not created, the electron enters the gas space and discharges. There were difficulties that could not start. Since this difficulty disappears in the external electrode fluorescent discharge lamp tube, it is not necessary to devise a large-sized and large-power-consuming gas discharge lighting electric circuit required for lighting. The third reason is that the electron flow injected from the third generation electron source into the high-frequency electric field is 1 mA or less, and a small integrated circuit can be used. The maximum current flowing in the power supply circuit is the power required to form a high-frequency electric field in the fluorescent discharge lamp tube, and is limited to 1.0 A or less, so the volume of the power supply circuit is reduced. Overall, the power supply circuit of the external electrode fluorescent discharge lamp significantly reduces the volume of the lighting circuit of the conventional fluorescent discharge lamp (diameter 20 mm) using metal electrodes, and is reduced to one fifth or less.

第三世代電子源を使用した蛍光放電灯管の電極に交流電源を印加すると、蛍光膜を構成する蛍光体粒子表面の汚染状態により変わる電流が電源回路に流れる。この電流の変化は高周波電源(30kHz以上で数kVp)の電圧を印加するとき、顕著になり測定が容易になる。この理由で、以下の説明では蛍光膜を構成する蛍光体粒子表面の汚染状態により変わる電源回路の電流変化を述べるが、現象は上記高周波電源に特有でなく、通常の交流電源周波数(50Hz叉は60Hz)でも発生するので、本発明は交流電源の使用で外部電極蛍光放電灯を発光させる全交流電源が包含される。高周波電界の形成は、直管型蛍光放電灯管では容易であるが、曲管型蛍光放電灯管では高周波電界が曲部で阻害され易く、管全体に瞬時に及ばない場合がある。しかし、高周波電界の形成が管全体に及ぶ曲管型蛍光放電灯管も本発明に包含される。この理由で、本発明の以下の説明では、直管型蛍光放電灯管を使用する。蛍光体粒子表面が重度に汚染している時、高周波電界形成に起因した大きな電流が電源回路に流れても、外部電極蛍光放電灯は点灯しない。だが蛍光放電灯管内に高周波電界は形成している。この事実は、蛍光放電灯管の菅軸方向の中心部分で、菅壁から10cm離れた場所の小面積でも高周波電界が検出できるので確認できる。上述した事実は、外部電極蛍光放電灯管内の高周波電界形成で電源回路に流れる電流は直接に蛍光放電灯管のガス放電に関与していない事実を示す。   When an AC power supply is applied to the electrode of a fluorescent discharge lamp tube using a third generation electron source, a current that changes depending on the contamination state of the phosphor particle surface constituting the fluorescent film flows to the power supply circuit. This change in current becomes noticeable when a voltage of a high frequency power source (30 kHz or more and several kVp) is applied, and the measurement becomes easy. For this reason, in the following description, the current change of the power supply circuit that changes depending on the contamination state of the phosphor particles constituting the phosphor film will be described. However, the phenomenon is not specific to the high frequency power supply, and the normal AC power supply frequency (50 Hz or 50 Hz or 60 Hz), the present invention encompasses all AC power sources that cause external electrode fluorescent discharge lamps to emit light using AC power sources. The formation of a high-frequency electric field is easy in a straight tube type fluorescent discharge lamp tube, but in a curved tube type fluorescent discharge lamp tube, the high-frequency electric field is likely to be disturbed by a curved portion and may not reach the entire tube instantaneously. However, a curved tube type fluorescent discharge lamp tube in which the formation of a high-frequency electric field extends over the entire tube is also included in the present invention. For this reason, the following description of the present invention uses a straight tube fluorescent discharge lamp tube. When the surface of the phosphor particles is severely contaminated, the external electrode fluorescent discharge lamp does not light even if a large current caused by the formation of a high frequency electric field flows through the power supply circuit. However, a high-frequency electric field is formed in the fluorescent discharge lamp tube. This fact can be confirmed because a high-frequency electric field can be detected even in a small area at a location 10 cm away from the wall of the fluorescent discharge lamp tube in the central part in the vertical axis direction. The facts described above indicate the fact that the current flowing in the power supply circuit due to the formation of the high-frequency electric field in the external electrode fluorescent discharge lamp tube is not directly involved in the gas discharge of the fluorescent discharge lamp tube.

使用する蛍光体粒子表面が電気絶縁物で汚染している場合、電気絶縁物は一般に帯電している。蛍光体粒子表面が汚染した物質の帯電による負電荷がガス空間にも広がっている。第三世代電子源から取り出した電子の運動エネルギーはゼロに近いので、運動エネルギーの小さな電子は汚染した物質の帯電負電荷によりクローン反発を受け、ガス空間に入れず、蛍光放電灯管は放電しない。従来の放電ガス点灯方式 (瞬間的に高電圧を印加する)を瞬時の間採用すると、汚染物質の帯電は一部分消失するので、第三世代電子源の電子がガス放電路に侵入でき、ガス放電が見られるが、その強度は弱く、時間の経過と共に放電が消える。ガス放電が現れても高周波電界形成に起因した電源回路に流れる電流は不変である。外部電極蛍光放電灯に高周波を印加した時に流れる電源電流は、ガス放電に必要な電子流よりも遥かに大きい事を示す。その電源電流(即ち点灯回路の電力)は、蛍光膜を構成する蛍光体粒子の特性により顕著に変わる。即ち、1本の蛍光放電灯管の消費電力w(ワット)は、同種型の蛍光放電灯管でも、w=4〜7(ワット)の範囲で揺らぐ。   When the surface of the phosphor particles to be used is contaminated with an electrical insulator, the electrical insulator is generally charged. Negative charges due to charging of substances contaminated on the surface of the phosphor particles also spread in the gas space. Since the kinetic energy of the electrons extracted from the third generation electron source is close to zero, the electrons with small kinetic energy are subjected to clone repulsion due to the negative charge of the polluted material, do not enter the gas space, and the fluorescent discharge lamp does not discharge. . If the conventional discharge gas lighting system (which momentarily applies a high voltage) is used for a moment, the charge of the pollutant disappears partially, so the electrons of the third generation electron source can enter the gas discharge path, and the gas discharge However, the intensity is weak and the discharge disappears over time. Even if gas discharge appears, the current flowing in the power supply circuit due to the formation of the high-frequency electric field remains unchanged. It shows that the power supply current that flows when a high frequency is applied to the external electrode fluorescent discharge lamp is much larger than the electron current required for gas discharge. The power supply current (that is, the power of the lighting circuit) varies significantly depending on the characteristics of the phosphor particles constituting the phosphor film. That is, the power consumption w (watt) of one fluorescent discharge lamp tube fluctuates in the range of w = 4 to 7 (watts) even in the same type of fluorescent discharge lamp tube.

蛍光膜が、蛍光体粒子表面の汚染がない低電圧電子線で発光するCL蛍光体を20%以上含むと、電源回路に流れる電流は半分以下に減少する。電源回路に流れる電流が0.5A以下である場合、外部電極蛍光放電灯管は電源からの高周波印加で瞬時に点灯する。陽光柱内で発光に関与する電子は放電路で消えることなく繰り返し使用される(10回)ので、単位時間当たりに必要な電子数は極度に少ない。励起したガスは放電するとガス原子に帰り、再励起の機会を持つ。電子の非弾性衝突によるガス励起は、統計学では置換型サンプリングとして取り扱う。この事を考慮し,単位時間当たりにガス励起に関与する最大電子数(電流)を計算すると,電源回路の入力側で計測した電源電流の千分の一前後(〜1mA)である。この電子数で単位時間に励起するガス原子数は、単位放電空間当たり1022個前後になる。励起ガスは一個のUV光子を放出して基底状態に帰る。ガス内で放出されたUV光は蛍光膜で可視光に変換されるが、その量子効率は実用蛍光膜では1であるので、励起ガス数は蛍光膜から放出する光子数に相当する。蛍光放電灯から単位放電空間当たり1022個前後の可視光の光子数の放射は、昼間の照度で部屋を照明する光源として十分な光子数である。以上の計算より、外部電極型蛍光放電灯管に流れる電流は、外部電極蛍光放電灯管内に形成する高周波電界に必要な電源電流で主に決まり、ガス原子を励起する電子数でない事が明白に成る。発明者達は蛍光放電灯管の放電を論ずる上で放電管内を移動する電子数と高周波電界を形成する電源電流の差が果たす重要な役割を上述した計算と実験事実で発見し、省電力になる蛍光放電灯管を得るには、蛍光放電灯内で高周波電界を形成する蛍光膜の最適化が必要であることを明らかにした。 When the phosphor film contains 20% or more of CL phosphor that emits light with a low-voltage electron beam without contamination of the phosphor particle surface, the current flowing through the power supply circuit is reduced to less than half. When the current flowing in the power supply circuit is 0.5 A or less, the external electrode fluorescent discharge lamp tube is turned on instantaneously when a high frequency is applied from the power supply. Since electrons involved in emission in the positive column is repeatedly used without disappearing in the discharge path (10 5 times), the number of electrons required per unit time is extremely small. When the excited gas is discharged, it returns to the gas atoms and has the opportunity for re-excitation. In gas statistics, gas excitation due to inelastic collision of electrons is treated as replacement sampling. Taking this into consideration, the maximum number of electrons (current) involved in gas excitation per unit time is about one-thousandth (˜1 mA) of the power supply current measured on the input side of the power supply circuit. Gas number of atoms excited in the number of electrons per unit time, becomes 10 22 longitudinal per unit discharge space. The excitation gas emits one UV photon and returns to the ground state. The UV light emitted in the gas is converted into visible light by the fluorescent film, but the quantum efficiency is 1 in the practical fluorescent film, so the number of excited gases corresponds to the number of photons emitted from the fluorescent film. The number of photons emitted in a unit discharge space per 10 22 before and after the visible light from the fluorescent lamp is sufficient photon number as a light source for illuminating a room with daylight illumination. From the above calculation, it is clear that the current flowing in the external electrode fluorescent discharge lamp tube is mainly determined by the power supply current required for the high-frequency electric field formed in the external electrode fluorescent discharge lamp tube, and is not the number of electrons that excite gas atoms. It becomes. The inventors discovered the important role played by the difference between the number of electrons moving in the discharge tube and the power supply current that forms a high-frequency electric field in discussing the discharge of the fluorescent discharge lamp tube by the above-mentioned calculation and experimental facts, to save power In order to obtain the fluorescent discharge lamp tube, it has been clarified that the fluorescent film that forms a high-frequency electric field in the fluorescent discharge lamp needs to be optimized.

外部電極型蛍光放電灯管で消費される電力は蛍光膜の電気特性の影響を受けて決まるので、蛍光膜の選択で外部電極型蛍光放電灯管の消費電力を最低化できる。又蛍光膜の汚染度合で外部電極型蛍光放電灯管の消費電力が変動するので、同じ種類の蛍光体粉を使用しても、製造ロットが異なると、外部電極型蛍光放電灯管を点灯する電力が変動する。更に同種類の蛍光体を使用し、蛍光膜の発光色を変えても点灯電力が変動する。同一混合蛍光体粉を使用しても、外部電極蛍光放電灯の点灯電力は管毎に僅かに変動する。蛍光放電灯の製造時の製品管理には、蛍光体粒子表面の汚染変動を考慮しなければならない。   Since the power consumed by the external electrode fluorescent discharge lamp tube is determined by the influence of the electrical characteristics of the fluorescent film, the power consumption of the external electrode fluorescent discharge lamp tube can be minimized by selecting the fluorescent film. Also, since the power consumption of the external electrode type fluorescent discharge lamp tube fluctuates depending on the degree of contamination of the fluorescent film, the external electrode type fluorescent discharge lamp tube is lit if the production lot is different even if the same type of phosphor powder is used. The power fluctuates. Furthermore, even if the same kind of phosphor is used and the emission color of the phosphor film is changed, the lighting power fluctuates. Even if the same mixed phosphor powder is used, the lighting power of the external electrode fluorescent discharge lamp varies slightly from tube to tube. For product management during the manufacture of fluorescent discharge lamps, it is necessary to take into account fluctuations in the surface of the phosphor particles.

前記した外部電極型蛍光放電灯管で第三世代電子源から高周波電界中に流れる電流は、電源回路と接続する外部電極と外部電極型蛍光放電灯管内のガスとの間に電気絶縁体が介在するので、ガス空間で放電に関与する電子は電源回路から直接供与を受けず、ガス空間で自己調達するのは明白である。電極に接続した時に電源回路に流れるのは高周波電界形成に必要な電力であり、それに必要な電流が点灯電源回路で検出される。従来の蛍光放電灯管のガス放電では高周波電界形成に必要な電力とガス放電に関与する電子流が分離できず、注入電子とガス原子の励起数を最適化が出来なかった。本発明者等は、前述した第3世代電子源を用いることにより、蛍光放電灯管を点灯する時に電源回路に流れる高周波電界形成に必要な電力とガス放電に関与する電子流を分離できた。これは蛍光放電灯管のガス放電を研究する上で大きな発見である。   The current flowing from the third generation electron source into the high-frequency electric field in the external electrode type fluorescent discharge lamp tube described above has an electrical insulator between the external electrode connected to the power supply circuit and the gas in the external electrode type fluorescent discharge lamp tube. It is clear that the electrons involved in the discharge in the gas space are not directly donated from the power supply circuit and are self-raised in the gas space. When it is connected to the electrode, it flows in the power supply circuit that is power necessary for forming a high-frequency electric field, and a current required for it is detected by the lighting power supply circuit. In the conventional gas discharge of a fluorescent discharge lamp tube, the electric power necessary for forming a high-frequency electric field and the electron current involved in the gas discharge cannot be separated, and the number of excited electrons and gas atoms cannot be optimized. By using the above-mentioned third generation electron source, the present inventors have been able to separate the power necessary for forming a high-frequency electric field flowing in the power supply circuit when the fluorescent discharge lamp tube is lit and the electron current involved in the gas discharge. This is a great discovery in studying gas discharge in fluorescent discharge lamp tubes.

蛍光放電灯管を点灯する電源回路の大きさについて検討する。従来の金属電極蛍光放電灯管では、金属電極から抽出した電子の運動エネルギーをガス空間を満たしているガス原子の最外殻電子による負電界より大きくしなければ、抽出電子はガス原子空間に入れず、ガス放電の点灯が困難であった。金属電極蛍光放電灯管の点灯で主要な役割を果たしていた複雑で大容積を占めていた電源回路の細工は、第三世代電子供給源を使用すると蛍光放電灯管では不必要である。それ故、点灯に要した不必要な主要回路が電源回路から取り除け、それだけでも電源回路の消費電力は従来の五分の一以下となる。それに付随して電源回路装置の容積は従来の蛍光放電灯管の五分の1以下となり、小さな空間に収納出来る。と同時に電源回路の製造単価も極度に低減する。   Consider the size of the power supply circuit that lights the fluorescent discharge lamp tube. In the conventional metal electrode fluorescent discharge lamp tube, the extracted electrons are put into the gas atom space unless the kinetic energy of the electrons extracted from the metal electrode is made larger than the negative electric field due to the outermost electrons of the gas atoms filling the gas space. Therefore, it was difficult to turn on the gas discharge. The work of the power supply circuit, which has played a major role in the lighting of the metal electrode fluorescent discharge lamp tube and occupied a large volume, is unnecessary in the fluorescent discharge lamp tube when a third generation electron supply source is used. Therefore, unnecessary main circuits required for lighting can be removed from the power supply circuit, and the power consumption of the power supply circuit is less than one-fifth of the conventional power consumption. Accordingly, the volume of the power supply circuit device is less than one-fifth that of a conventional fluorescent discharge lamp tube, and can be stored in a small space. At the same time, the unit price of the power supply circuit is extremely reduced.

第三世代電子源を使用すると、外部電極蛍光放電灯管中に形成する高周波電界が蛍光膜の電気特性で大きく変わると述べた。外部電極蛍光放電管中の高周波形成電力を減少するには、蛍光膜を構成する蛍光体粒子の電気特性が大切である。本発明者達は、蛍光膜が低電圧電子線で発光する電子線発光(CL)蛍光体を30重量%前後含み、光発光(PL)でのみ明るく発光するPL蛍光体を70重量%含むとき、外部電極蛍光放電管中の高周波電界形成電力が最小であった。即ち外部電極蛍光放電灯管の点灯電力が最低になる。点灯電力は青色と緑色発光蛍光体粒子の表面状態により変動する。希土類蛍光体の内、赤色蛍光体に酸化イットリウム蛍光体を使用すると,電子線発光の臨界電圧は110Vであるので、この赤色混合希土類蛍光体粉を使用して蛍光膜を作るとき、酸化イットリウム赤色蛍光体粉の使用が多いとき、蛍光放電灯管の点灯電力は減少する。電球色にする蛍光体粉は酸化イットリウム蛍光体を使用せず、他の赤色成分蛍光体(臨界電圧が高い)を使用するので、電源回路の電流は増加する。電源回路の電流を減少させるには、酸化イットリウム赤色蛍光体の臨界発光電圧110Vは未だ高い。CL蛍光体の効果は、20V前後で発光するCL蛍光体を混合するとき、電源回路の電流は最小になる。   He stated that when a third-generation electron source is used, the high-frequency electric field formed in the external electrode fluorescent discharge lamp tube varies greatly depending on the electrical characteristics of the fluorescent film. In order to reduce the high-frequency power generated in the external electrode fluorescent discharge tube, the electrical characteristics of the phosphor particles constituting the phosphor film are important. The inventors of the present invention have a case where the phosphor film contains about 30% by weight of an electron beam emission (CL) phosphor that emits light with a low voltage electron beam, and contains 70% by weight of a PL phosphor that emits light only by light emission (PL). The high frequency electric field forming power in the external electrode fluorescent discharge tube was minimal. That is, the lighting power of the external electrode fluorescent discharge lamp tube is minimized. The lighting power varies depending on the surface state of the blue and green light emitting phosphor particles. Among the rare earth phosphors, when an yttrium oxide phosphor is used as the red phosphor, the critical voltage for electron beam emission is 110 V. Therefore, when making a phosphor film using this red mixed rare earth phosphor powder, red yttrium oxide is used. When the phosphor powder is frequently used, the lighting power of the fluorescent discharge lamp decreases. The phosphor powder used for the light bulb color does not use the yttrium oxide phosphor, but uses another red component phosphor (having a high critical voltage), so that the current of the power supply circuit increases. In order to reduce the current of the power supply circuit, the critical emission voltage 110V of the yttrium oxide red phosphor is still high. The effect of the CL phosphor is that the current of the power supply circuit is minimized when CL phosphors emitting at around 20 V are mixed.

そのようなCL蛍光体として、ZnO低電圧CL蛍光体(臨界電圧10eV)がある。ZnO蛍光体を30重量%含んだ、表面処理の無い白色発光ハロ燐酸カルシウム蛍光体で作られた蛍光膜を使用すると、細管の蛍光放電灯管でも明るく発光する。本発明で使用する外部電極型蛍光放電灯管では、ZnO低電圧CL蛍光体を30重量%含んだ白色発光ハロ燐酸カルシウム蛍光体を照明目的で使用する。演色性を問題にする蛍光放電灯管では、従来の希土類混合蛍光体に、更にZnO低電圧CL蛍光体を10重量%添加した蛍光膜を使用すると発光色を変えずに高周波形成電力を減少させる蛍光膜が得られる。また、白色発光ハロ燐酸カルシウム蛍光体に酸化イットリウム赤色蛍光体を20重量%混合すると演色性を改善した安価な蛍光膜が得られる。   As such a CL phosphor, there is a ZnO low voltage CL phosphor (critical voltage 10 eV). When a fluorescent film made of a white light emitting calcium halophosphate phosphor containing 30% by weight of ZnO phosphor and having no surface treatment is used, even a fluorescent discharge lamp having a thin tube emits light brightly. In the external electrode type fluorescent discharge lamp tube used in the present invention, a white light emitting calcium halophosphate phosphor containing 30% by weight of a ZnO low voltage CL phosphor is used for illumination purposes. In a fluorescent discharge lamp tube in which color rendering is a problem, if a fluorescent film in which 10 wt% of ZnO low-voltage CL phosphor is further added to a conventional rare earth mixed phosphor is used, the high-frequency power is reduced without changing the emission color. A fluorescent film is obtained. Further, when 20% by weight of yttrium oxide red phosphor is mixed with white light emitting calcium halophosphate phosphor, an inexpensive phosphor film with improved color rendering can be obtained.

一個の外部電極蛍光放電灯管の点灯電力(駆動回路を含む)は、通常の金属電極を付けた蛍光放電灯の点灯に必要な電源回路の消費電力の2分の一以下になる。集積蛍光放電灯の場合、消費電力の少ない1本の外部電極蛍光放電灯管を点灯し、更にその周辺に別の同種蛍光膜で作られた外部電極蛍光放電灯管を置くと、第二の外部電極蛍光放電灯管内にも高周波電界が誘起される。2本の外部電極蛍光放電灯管の電極を電気的に並列接続すると、第二の蛍光放電灯管も点灯し、第一の外部電極蛍光放電灯管と同じ輝度で発光する。しかも電源回路に流れる電力を電源の入力側で計測すると、一個の外部電極蛍光放電灯管の点灯で消費した電力より僅かに増加するだけである。更に第三、第四と同種蛍光膜で作られた外部電極蛍光放電灯管数を増加した時、並列接合した外部電極蛍光放電灯管のいずれもが同一輝度で発光する。   The lighting power of one external electrode fluorescent discharge lamp tube (including the drive circuit) is less than half of the power consumption of the power supply circuit required for lighting a fluorescent discharge lamp with a normal metal electrode. In the case of an integrated fluorescent discharge lamp, if one external electrode fluorescent discharge lamp tube with low power consumption is turned on, and another external electrode fluorescent discharge lamp tube made of the same kind of fluorescent film is placed around it, A high frequency electric field is also induced in the external electrode fluorescent discharge lamp tube. When the electrodes of the two external electrode fluorescent discharge lamp tubes are electrically connected in parallel, the second fluorescent discharge lamp tube is also lit and emits light with the same luminance as the first external electrode fluorescent discharge lamp tube. Moreover, when the power flowing in the power supply circuit is measured on the input side of the power supply, it is only slightly increased from the power consumed by lighting of one external electrode fluorescent discharge lamp tube. Furthermore, when the number of external electrode fluorescent discharge lamp tubes made of the same kind of fluorescent film as the third and fourth is increased, all of the external electrode fluorescent discharge lamp tubes joined in parallel emit light with the same luminance.

以下に、本発明に係るコイル電極蛍光放電灯の実施例を図面に従って詳細に説明する。 図1は、コイル電極蛍光放電灯を示す構成図である。図2は、コイル電極を示す概略断面図である。この蛍光放電灯管1は、内面に蛍光膜8が形成され、両端を密封したガラス管2と、ガラス管2の両端外周に巻回状に配置したコイル電極3、4と、商用電源7からの供給電源により高周波電圧を生成する高周波電源6からなる。ガラス管2の内部は、放電ガスを充填する放電空間が空洞として形成されている。ガラス管2内部には放電ガスとなるアルゴン(Ar)ガスが充填され、かつ水銀(Hg)滴が封入されている。コイル電極3、4は電線をガラス管外周面の左右端部に4回巻き付けてなり、放電空間絶縁型電極の一種である。図2の(2B)に示すように、各コイル電極は電線9の周囲を絶縁層10により被覆した絶縁被覆電線からなり、終端は開放端で、巻き線側は電圧印加線5として高周波電源6の出力側に接続されている。コイル電極3、4にはエナメル被覆電線又はビニル被覆電線を使用する。外部電極としてコイル電極3、4を使用するので、キャップ電極や電極膜と比べて、ガラス管端部の巻回だけで簡単に製造することができる。   Hereinafter, embodiments of the coil electrode fluorescent discharge lamp according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a configuration diagram showing a coil electrode fluorescent discharge lamp. FIG. 2 is a schematic cross-sectional view showing a coil electrode. This fluorescent discharge lamp tube 1 has a fluorescent film 8 formed on the inner surface thereof, a glass tube 2 sealed at both ends, coil electrodes 3 and 4 wound around the both ends of the glass tube 2, and a commercial power source 7. The high-frequency power source 6 generates a high-frequency voltage from the power source. Inside the glass tube 2, a discharge space filled with a discharge gas is formed as a cavity. The glass tube 2 is filled with argon (Ar) gas serving as a discharge gas and filled with mercury (Hg) droplets. The coil electrodes 3 and 4 are a kind of discharge space insulation type electrode in which an electric wire is wound around the left and right ends of the outer peripheral surface of the glass tube four times. As shown in FIG. 2 (2B), each coil electrode is made of an insulation-coated electric wire in which the periphery of the electric wire 9 is covered with an insulating layer 10, the terminal end is an open end, and the winding side is a voltage application line 5 as a high-frequency power source 6. It is connected to the output side. The coil electrodes 3 and 4 are enamel-coated wires or vinyl-coated wires. Since the coil electrodes 3 and 4 are used as the external electrodes, they can be easily manufactured only by winding the end portion of the glass tube as compared with the cap electrode or the electrode film.

上記構成のコイル電極蛍光放電灯において、コイル電極3、4に高周波電源6による高周波電圧を印加して前記放電ガスを放電させて点灯させることができる。図2の(2A)に示すように、ガラス管2の内面に形成された蛍光膜8はコイル電極3、4の対向面にも延長されており、この延長部分を蛍光体粒子層11、12と称する。蛍光膜8は、PL蛍光粉とCL蛍光粉の混合蛍光体から形成されている。放電空間に面する蛍光膜8の表面には、PL蛍光体粒子が管軸方向に分散して配置されている。   In the coil electrode fluorescent discharge lamp having the above-described configuration, a high-frequency voltage from a high-frequency power source 6 can be applied to the coil electrodes 3 and 4 to discharge the discharge gas and light it. As shown in FIG. 2 (2A), the fluorescent film 8 formed on the inner surface of the glass tube 2 is also extended to the opposing surfaces of the coil electrodes 3 and 4, and this extended portion is used as the phosphor particle layers 11 and 12. Called. The phosphor film 8 is formed from a mixed phosphor of PL phosphor powder and CL phosphor powder. On the surface of the phosphor film 8 facing the discharge space, PL phosphor particles are arranged dispersed in the tube axis direction.

コイル電極蛍光放電灯1における第3世代電子源と陽イオン源の動作を説明する。高周波電源6により印加される高周波電圧のある瞬時において、コイル電極3には正電位、コイル電極4には負電位が印加したと考える。そのとき、蛍光体粒子層11、12は絶縁体であるから、逆極性で誘電分極する。即ち、コイル電極3に対向する蛍光体粒子層11は負正で誘電分極し、コイル電極4に対向する蛍光体粒子層12は正負で誘電分極する。蛍光体粒子層12に誘電分極した正電荷の電位はコイル電極3の正電位よりも数倍高い。高周波電界により放電ガスであるArはイオン化され、e-とArになり、クーロン引力により電子e-は管内で最も正電位が高い蛍光体粒子11側に集積して電子源が形成され、この電子源が本発明における第3世代電子源を構成する。逆に、Arはクーロン引力によりコイル電極4側にあり、管内で最も負電位が高い蛍光体粒子層12側に集積して陽イオン源が形成される。電子源の電子e-は、陽イオン源に向かい、消滅することなく放電空間内のガス原子と非弾性衝突を繰り返し、電子軌道を描きながら前進し、Arと結合して中性のArに戻る。本発明では、電子は外部回路から注入されないから、電極電圧降下は全く生じないので、その分だけ消費電力を低減できる。また、コイル電極3、4はガラス管壁でガス空間と隔離しているので陽イオン衝突が無く、スパッタリングが生起せず、長寿命化が達成される。つまり、本発明では、電極電圧降下の消尽とスパッタリングの消尽が実現できる。 The operation of the third generation electron source and cation source in the coil electrode fluorescent discharge lamp 1 will be described. It is considered that a positive potential is applied to the coil electrode 3 and a negative potential is applied to the coil electrode 4 at a certain moment when a high-frequency voltage is applied by the high-frequency power source 6. At this time, since the phosphor particle layers 11 and 12 are insulators, they are dielectrically polarized with a reverse polarity. That is, the phosphor particle layer 11 facing the coil electrode 3 is negatively positive and dielectrically polarized, and the phosphor particle layer 12 facing the coil electrode 4 is positively and negatively dielectrically polarized. The potential of the positive charge dielectrically polarized on the phosphor particle layer 12 is several times higher than the positive potential of the coil electrode 3. The discharge gas Ar is ionized by the high-frequency electric field to become e and Ar + , and the electron e is accumulated on the phosphor particle 11 side having the highest positive potential in the tube by the Coulomb attractive force to form an electron source. The electron source constitutes the third generation electron source in the present invention. On the contrary, Ar + is on the coil electrode 4 side due to Coulomb attraction, and is accumulated on the phosphor particle layer 12 side having the highest negative potential in the tube to form a cation source. The electron e of the electron source heads toward the cation source, repeats inelastic collision with gas atoms in the discharge space without disappearing, advances while drawing an electron orbit, and combines with Ar + to neutral Ar. Return. In the present invention, since electrons are not injected from an external circuit, no electrode voltage drop occurs, and power consumption can be reduced accordingly. Further, since the coil electrodes 3 and 4 are separated from the gas space by the glass tube wall, there is no cation collision, sputtering does not occur, and a long life is achieved. That is, according to the present invention, it is possible to realize the exhaustion of the electrode voltage drop and the sputtering.

本発明に係るコイル電極蛍光放電灯における種々の電極形成条件を調べた。
図3は高周波電源6の1次側電力W1n(W)とコイル電極3、4の巻数nの関係を示す。この実験では巻数nを1、5、10に変えたときの1次側電力を測定した。コイル電極を付与する蛍光放電灯管として、内部電極付き蛍光放電灯管を使用しコイル電極蛍光放電灯に改変した例を((3A)〜(3C)参照)に、また、寿命が尽きて破棄された内部電極付き蛍光放電灯管をコイル電極蛍光放電灯に改変した((3D)〜(3F)参照)例を示す。絶縁被覆電線の金属電線の直径を、0.26、0.5、0.8、1.6Φ(mm)と変えている。(3A)〜(3C)は点灯初期時の電力、30分後、60分後の電力を示す。(3D)〜(3F)は、不良品における点灯時初期、30分後、60分後の電力を示す。
Various electrode formation conditions in the coil electrode fluorescent discharge lamp according to the present invention were examined.
FIG. 3 shows the relationship between the primary power W 1n (W) of the high-frequency power source 6 and the number of turns n of the coil electrodes 3 and 4. In this experiment, the primary power was measured when the number of turns n was changed to 1, 5, and 10. Example of modification to a coil electrode fluorescent discharge lamp using a fluorescent discharge lamp tube with an internal electrode as a fluorescent discharge lamp tube to be provided with a coil electrode (see (3A) to (3C)) An example is shown in which the fluorescent discharge lamp tube with an internal electrode is changed to a coil electrode fluorescent discharge lamp (see (3D) to (3F)). The diameter of the metal wire of the insulation coated wire is changed to 0.26, 0.5, 0.8, 1.6Φ (mm). (3A) to (3C) indicate power at the beginning of lighting, power after 30 minutes, and power after 60 minutes. (3D) to (3F) indicate the power at the beginning of lighting, 30 minutes, and 60 minutes after the defective product.

図3の測定結果から、1次側電力W1n(W)とコイル電極3、4の巻数nの間には、点灯後の経時変化に伴い線形性が保持されているのは明白である。つまり、コイル電極蛍光放電灯が1本の場合に、各電線径に対して電線巻数nを1、5、10に変えたときの1次側電力を測定した結果、W1n=a+b×n(a,b:定数)が近似式として得られる。前記1次側電力が巻数nと近似的に線形関係にあることは、本発明者等により初めて発見された事実である。前記近似的線形関係は線径dにより変化し、線径dにより1次側電力W1nにはΔWだけのずれ幅があることが判明した。関数形とずれ幅ΔWについては、図6を用いて詳細を後述する。 From the measurement result of FIG. 3, it is clear that linearity is maintained between the primary power W 1n (W) and the number of turns n of the coil electrodes 3 and 4 with the change with time after lighting. That is, when one coil electrode fluorescent discharge lamp is used, the primary power when the number of turns n is changed to 1, 5, and 10 for each wire diameter is measured. As a result, W 1n = a n + b n Xn (a n , b n : constant) is obtained as an approximate expression. The fact that the primary power is approximately linearly related to the number of turns n is a fact first discovered by the present inventors. It has been found that the approximate linear relationship varies with the wire diameter d, and the primary power W 1n has a deviation width of ΔW due to the wire diameter d. Details of the function form and the shift width ΔW will be described later with reference to FIG.

図4は高周波電源6の1次側電力W1n(W)とコイル電極用絶縁被覆電線の線径dの関係を示す。この実験では線径dを0.26、0.5、0.8、1.6φ(mm)に変え、交流電源6の1次側電力を測定した。巻数nを1、5、10と変え、図3の実験と同様に、コイル電極を巻回した新品蛍光放電灯管と((4A)参照))、寿命の尽きた蛍光放電灯管をコイル電極蛍光放電灯管に改変した例((4B)参照)を示す。(4A)、(4B)は夫々、新品と寿命の尽きた蛍光放電管をコイル電極蛍光放電灯管に改変し、点灯60分後の電力を夫々示す。この結果より、与えられた巻数nの場合、改変前の蛍光放電灯管に無関係で1次側電力W1n(W)が安定し、点灯駆動状態が得られることが分かった。即ち、1次側電力W1n(W)は線径dには殆んど依存しないことが分かった。 FIG. 4 shows the relationship between the primary power W 1n (W) of the high-frequency power supply 6 and the wire diameter d of the coil electrode insulation-coated wire. In this experiment, the wire diameter d was changed to 0.26, 0.5, 0.8, and 1.6 (mm), and the primary power of the AC power source 6 was measured. In the same manner as in the experiment of FIG. 3, the number n of turns was changed to 1, 5, and 10, and a new fluorescent discharge lamp tube wound with a coil electrode (see (4A)) and An example (see (4B)) modified to a fluorescent discharge lamp tube is shown. (4A) and (4B) show the electric power after 60 minutes of lighting, respectively, by changing a new and exhausted fluorescent discharge tube to a coil electrode fluorescent discharge lamp tube. From this result, it was found that for the given number of turns n, the primary power W 1n (W) is stable and a lighting driving state can be obtained regardless of the fluorescent discharge lamp tube before modification. That is, it was found that the primary power W 1n (W) hardly depends on the wire diameter d.

図5は高周波電源6の1次側電力W1n(W)と点灯時間tの関係をコイル巻線の金属線の直径dをパラメーターとして測定した結果である。コイル巻線の金属線の直径dを0.26、0.5、0.8、1.6φ(mm)に変え、巻数nを1、5、10変えた時に現れる1次側電力変化を、点灯時、30分後、60分後で測定してある。図3及び図4の実験と同様に、コイル電極を巻回した蛍光放電灯管として、新品の蛍光放電灯管を改変した場合((5A)〜(5D)参照)と、寿命の尽きた蛍光放電灯管を改変した(再生)場合((5E)〜(5H)参照)を示す。この実験結果から、新品と再生品は、線径d及び巻数nによる変化は有るが、与えられたdとnでは1次側電力が大幅に変化することなく安定した点灯駆動状態が得られることがわかった。 FIG. 5 shows the result of measurement of the relationship between the primary side power W 1n (W) of the high frequency power source 6 and the lighting time t using the diameter d of the metal wire of the coil winding as a parameter. The primary power change that appears when the diameter d of the metal wire of the coil winding is changed to 0.26, 0.5, 0.8, 1.6 φ (mm) and the number of turns n is changed to 1, 5, 10, It is measured after 30 minutes and 60 minutes after lighting. As in the experiments of FIGS. 3 and 4, when a new fluorescent discharge lamp tube is modified as a fluorescent discharge lamp tube around which coil electrodes are wound (see (5A) to (5D)), the fluorescence that has expired is exhausted. The case where the discharge lamp tube is modified (regenerated) (see (5E) to (5H)) is shown. From this experimental result, new and refurbished products have a change depending on the wire diameter d and the number of turns n, but a stable lighting drive state can be obtained without giving a significant change in the primary power at the given d and n. I understood.

図6は単体のコイル電極蛍光放電灯管を使用し、点灯時初期の1次側電力W1n(変数yで表示)と巻数n(変数xで表示)の変化を調べ、yとxの間に線径関係が有ることを明らかにした。高周波電源の一次側電力W1nは線径dに依存して変わるが、与えられたdでは、一次側電力yは巻数xの一次関数で近似に表わされることが分かった。例えば、最小の線径d=0.26φの場合、y=1.26x+2.72で表される実験式を得た。測定値の隔たりは最小二乗法により適合性を検定した。その他のdによる実験式は図6に記載された通りである。従って、実験式に基づき、コイル電極の巻数nを決めると、高周波電源6の1次側電力を決定でき、コイル電極蛍光放電灯管の消費電力の設計を簡易に行うことができる。逆に、1次側費電力に合わせて、前記実験式に基づき、前記コイル電極の巻数を適宜決定して簡単に電極設計を行うことができる。 FIG. 6 uses a single coil electrode fluorescent discharge lamp tube, and examines changes in the primary side power W 1n (indicated by the variable y) and the number of turns n (indicated by the variable x) at the time of lighting, and between y and x It was clarified that there is a wire diameter relationship. The primary power W 1n of the high-frequency power source varies depending on the wire diameter d, but it was found that for a given d, the primary power y is approximately expressed by a linear function of the number of turns x. For example, when the minimum wire diameter d = 0.26φ, an empirical formula represented by y = 1.26x + 2.72 was obtained. The gap between measured values was tested for suitability by the least square method. The other empirical formulas for d are as shown in FIG. Therefore, when the number n of turns of the coil electrode is determined based on the empirical formula, the primary power of the high frequency power supply 6 can be determined, and the power consumption of the coil electrode fluorescent discharge lamp tube can be easily designed. Conversely, the electrode design can be easily performed by appropriately determining the number of turns of the coil electrode based on the empirical formula in accordance with the primary side power consumption.

また、図6から分かるように、1次側電力W1n(W)とコイル電極の巻数nの相関実験から、次の事実が判明した。即ち、巻数nが1≦n≦10の範囲において、電線の線径、即ち断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲で変えたとき、1次側電力W1nの変動幅ΔWは巻数nの増加とともに増大し、巻数n=10では最大5(W)のずれ幅ΔWを有する。換言すれば、前記1次側電力W1nは前記近似式の値と最大5(W)となる。従って、前記最大変動幅の範囲内で高周波電源6の1次側電力を適宜選択し、それに応じて線径dを前記範囲内で可変することができ、コイル電極の形成の自由度が大きい事を明らかにした。 Further, as can be seen from FIG. 6, the following facts were found from a correlation experiment between the primary power W 1n (W) and the number of turns n of the coil electrode. That is, when the number of turns n is in the range of 1 ≦ n ≦ 10, the wire diameter of the electric wire, that is, the cross-sectional diameter d (mm) is changed in the range of 0.26 (mm) ≦ d ≦ 1.6 (mm). The fluctuation range ΔW of the secondary power W 1n increases with an increase in the number of turns n, and has a maximum deviation width ΔW of 5 (W) at the number of turns n = 10. In other words, the primary power W 1n is the maximum value of the approximate expression and 5 (W). Accordingly, the primary side power of the high frequency power source 6 can be appropriately selected within the range of the maximum fluctuation range, and the wire diameter d can be varied within the range accordingly, and the degree of freedom in forming the coil electrode is great. Was revealed.

次に、単体であるコイル電極蛍光放電灯の高周波電源6の2次側電力W2n(W)の変化についても調べた。
図7は蛍光放電灯が単体のときの、点灯時初期の2次側電力W2n(変数yで表示)と巻数n(変数xで表示)の変化を示し、yとxの一次関数である実験式を得た。例えば、d=0.26φの場合、y=0.25x−0.12の実験式が得られた。他のdについては図7に記載した通りである。従って、2次側電力についても、1次側電力と同様にW2n=c+d×n(c,d:定数)が成立している。この実験式式に基づき、コイル電極の巻数によって高周波電源6の2次側電力を適宜決定することができ、コイル電極蛍光放電灯の消費電力を簡易に設計できる。逆に、2次側消費電力に合わせて、前記近似式に基づき、コイル電極の巻数を適宜決定して簡単に電極設計を行うことができる。
Next, the change of the secondary power W 2n (W) of the high frequency power supply 6 of the coil electrode fluorescent discharge lamp as a single unit was also examined.
FIG. 7 shows changes in the secondary side power W 2n (indicated by the variable y) and the number of turns n (indicated by the variable x) at the beginning of lighting when the fluorescent discharge lamp is a single unit, and is a linear function of y and x. The empirical formula was obtained. For example, when d = 0.26φ, an empirical formula of y = 0.25x−0.12 was obtained. The other d is as described in FIG. Accordingly, W 2n = c n + d n × n (c n , d n : constant) is also established for the secondary side power, similarly to the primary side power. Based on this empirical formula, the secondary power of the high-frequency power source 6 can be appropriately determined by the number of turns of the coil electrode, and the power consumption of the coil electrode fluorescent discharge lamp can be designed easily. On the contrary, the electrode design can be easily performed by appropriately determining the number of turns of the coil electrode based on the approximate expression according to the secondary side power consumption.

また、図7に示されたコイル電極用電線の線径dと2次側電力W2n(W)の相関実験から、次の事実が判明した。即ち、巻数nが1≦n≦10の範囲において、電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、勾配はdの増加により大きくなる。この事実は2次側電力W2nの値はdの値により増加し、d=0.26に対する変動幅ΔWは巻数n=10で最大0.6(W)となる。換言すれば、前記2次側電力W2nは前記実験式の値は、同じ巻数nであってもdの値により0.6(W)増加する。従って、前記d値による変動幅ΔWの範囲内で前記交流電源の2次側電力を適宜決定し、それに応じて電線の断面直径dを前記範囲内で可変できる。コイル電極蛍光放電灯のコイル電極の選択の自由度が大きい利点を明らかにした。 Further, the following facts were found from the correlation experiment between the wire diameter d of the coil electrode wire and the secondary power W 2n (W) shown in FIG. That is, when the number of turns n is in the range of 1 ≦ n ≦ 10, when the cross-sectional diameter d (mm) of the wire is varied in the range of 0.26 (mm) ≦ d ≦ 1.6 (mm), the gradient increases by d. Becomes larger. This fact indicates that the value of the secondary power W 2n increases with the value of d, and the fluctuation width ΔW with respect to d = 0.26 is 0.6 (W) at the maximum with the number of turns n = 10. In other words, the value of the empirical formula of the secondary power W 2n increases by 0.6 (W) depending on the value of d even when the number of turns n is the same. Therefore, the secondary power of the AC power supply is appropriately determined within the range of fluctuation width ΔW depending on the d value, and the cross-sectional diameter d of the wire can be varied within the range accordingly. The advantage of having a large degree of freedom in selecting the coil electrode of the coil electrode fluorescent discharge lamp was clarified.

図6及び図7から分かるように、上記の1次側電力W1n又は2次側電力W2nについて成り立つ実験式は、いずれも、線径d、コイル電極の巻数n及び点灯時間tの間で相関があり、相関関係は一般式 W=f(d,n,t)で表現できる。が、線径d及び時間tとの相関関係はnの値に比して小さいことが分かったので、上式はW=f(n)で表現しても大きな誤りが無いことが明らかになった。相関関係を導入すると、1次側電力 W1n=a+b×n、2次側電力 W2n=c+d×nで表わせる。しかも。図6及び図7の実験式は一次関数で表され、前記勾配b及びdはb>dの関係にあることが分かった。更に詳細には、b/d=2〜7の範囲にあることが分かった。コイル電極蛍光放電灯の種類を変更すると、前記範囲は更に広がる。従って、この関係を利用して、コイル電極の巻数に応じて高周波電源6の1次及び2次側電力を精度よく選択することができ、逆に、1次及び2次側消費電力に合わせて、コイル電極の巻数を最適に決定することも可能になる。 As can be seen from FIG. 6 and FIG. 7, the empirical formulas that hold for the primary power W 1n or the secondary power W 2n are all between the wire diameter d, the number of turns n of the coil electrode, and the lighting time t. There is a correlation, and the correlation can be expressed by the general formula W = f (d, n, t). However, since it was found that the correlation between the wire diameter d and the time t is smaller than the value of n, it is clear that there is no big error even if the above equation is expressed by W = f (n). It was. When the correlation is introduced, the primary side power W 1n = a n + b n × n and the secondary side power W 2n = c n + d n × n can be expressed. Moreover. Empirical formula of Figure 6 and Figure 7 are represented by a linear function, the slope b n and d n is found to be a relationship of b n> d n. More specifically, it was found that b n / d n = 2 to 7 in range. When the type of the coil electrode fluorescent discharge lamp is changed, the range is further expanded. Therefore, using this relationship, the primary and secondary power of the high-frequency power source 6 can be accurately selected according to the number of turns of the coil electrode, and conversely, according to the primary and secondary power consumption. The number of turns of the coil electrode can be determined optimally.

上記コイル電極蛍光放電灯の応用として、複数管からなる集積蛍光放電灯の実施例を説明する。 図8はn本のコイル電極蛍光放電灯を並列接続して交流電源6の2次側電圧を印加して同時点灯させる集積コイル電極蛍光放電灯を示す。各ガラス管14a、14b〜14nは夫々の両端に、絶縁被覆電線からなるコイル電極対15a及び16a、・・・、15n及び16nが形成されており、各コイル電極対には電圧印加線13を通じて2次側電圧が供給される。この場合、電圧印加線13に対して各コイル電極蛍光放電灯管のコイル電極は並列接続されている。   As an application of the coil electrode fluorescent discharge lamp, an embodiment of an integrated fluorescent discharge lamp consisting of a plurality of tubes will be described. FIG. 8 shows an integrated coil electrode fluorescent discharge lamp in which n coil electrode fluorescent discharge lamps are connected in parallel and a secondary side voltage of the AC power source 6 is applied to simultaneously turn them on. Each glass tube 14a, 14b-14n is formed with coil electrode pairs 15a and 16a,..., 15n and 16n made of insulation-coated electric wires at both ends. A secondary side voltage is supplied. In this case, the coil electrode of each coil electrode fluorescent discharge lamp tube is connected in parallel to the voltage application line 13.

図9はコイル電極の電線の一端側を別の放電灯のコイル電極の起端側とし、各放電灯に一本の絶縁被覆電線を連続的に巻回して並列化した集積コイル電極蛍光放電灯を示す。各ガラス管17a、17b〜17nは夫々の両端にコイル電極対18a及び19a、・・・、18n及び19nが形成されており、各コイル電極対には電圧印加線21を通じて2次側電圧が供給される。この場合、絶縁被覆電線からなる電圧印加線21を各コイル電極の電線に使用し、単一電線により集積コイル電極蛍光放電灯を並列接続している。   FIG. 9 shows an integrated coil electrode fluorescent discharge lamp in which one end side of a coil electrode wire is set as a starting side of a coil electrode of another discharge lamp, and a single insulation-coated wire is continuously wound around each discharge lamp in parallel. Indicates. Each of the glass tubes 17a, 17b to 17n has coil electrode pairs 18a and 19a,..., 18n and 19n formed at both ends, and a secondary side voltage is supplied to each coil electrode pair through the voltage application line 21. Is done. In this case, the voltage application line 21 which consists of an insulation coating electric wire is used for the electric wire of each coil electrode, and the integrated coil electrode fluorescent discharge lamp is connected in parallel by the single electric wire.

図10及び図11には、複数本のコイル電極蛍光放電灯から構成される集積コイル電極蛍光放電灯につき、蛍光放電灯の構成数(以下、蛍光灯管本数という)に対する、高周波電源6の1次側電力W1N(W)及び2次側電力W2N(W)の変化を、コイル電極蛍光放電灯単体を含めて調べた。 FIGS. 10 and 11 show one high-frequency power supply 6 for the integrated coil electrode fluorescent discharge lamp composed of a plurality of coil electrode fluorescent discharge lamps with respect to the number of fluorescent discharge lamps (hereinafter referred to as the number of fluorescent lamp tubes). Changes in the secondary power W 1N (W) and the secondary power W 2N (W) were examined including the coil electrode fluorescent discharge lamp alone.

図10は、図8の並列接続方式による集積コイル電極蛍光放電灯に対する電力測定結果を示す。この測定では8本のコイル電極蛍光放電灯を並列接続した集積コイル電極蛍光放電灯を用いた。(10A)は、蛍光灯番号1〜8の蛍光灯単体に関して、点灯初期の1次側電力W1N(W)及び2次側電力W2N(W)を示す。各コイル電極蛍光灯管の消費電力は、単体の場合変動は無視できる範囲にある。 FIG. 10 shows power measurement results for the integrated coil electrode fluorescent discharge lamp using the parallel connection method of FIG. In this measurement, an integrated coil electrode fluorescent discharge lamp in which eight coil electrode fluorescent discharge lamps were connected in parallel was used. (10A) shows the primary side power W 1N (W) and the secondary side power W 2N (W) at the beginning of lighting with respect to the fluorescent lamps alone having the fluorescent lamp numbers 1 to 8. The power consumption of each coil electrode fluorescent lamp tube is in a range where the fluctuation can be ignored when it is a single unit.

(10B)は、(10A)に示されるコイル電極蛍光灯管を並列接続して集積数(上限8)を増加した場合における、点灯初期の1次側電力W1N(W)及び2次側電力W2N(W)を示す。1次側電力W1N(W)及び2次側電力W2N(W)(変数yで表現)は蛍光灯管本数N(変数xで表現)の増加と共に増加し、線形依存性を示した。1次側電力yのコイル電極蛍光灯管本数xに対する実験式は、y=1.67x+4.78で表される。2次側電力の実験式は、y=0.23x−0.13で表されることが分かった。 (10B) is the primary power W 1N (W) and the secondary power at the beginning of lighting when the number of integrations (upper limit 8) is increased by connecting the coiled electrode fluorescent lamp tubes shown in (10A) in parallel. W 2N (W) is shown. The primary power W 1N (W) and the secondary power W 2N (W) (expressed by the variable y) increased with an increase in the number of fluorescent lamp tubes N (expressed by the variable x), and showed linear dependence. An empirical formula for the number x of coil electrode fluorescent lamp tubes of the primary power y is expressed as y = 1.67x + 4.78. It turned out that the empirical formula of the secondary power is expressed by y = 0.23x−0.13.

図11は、図9の1本電線による接続方式による、集積コイル電極蛍光放電灯管で得たW1NとW2Nの測定結果を示す。コイル電極蛍光放電灯管数N=1、2、3(総本数は3本)としたとき、交流電源6の1次側電力W1N及び2次側電力W2Nの変化を示す。この場合も、1次側電力W1N(W)及び2次側電力W2N(W)は集積コイル電極蛍光放電灯のコイル電極蛍光放電灯管数nに一次関数の依存性を示す。即ち1次側電力yはコイル電極蛍光放電灯管数xに対し、y=5.76x+0.04が成り立つ。また、2次側電力yはコイル電極蛍光放電灯数xに対して、y=0.94x−0.34が成り立つ。 FIG. 11 shows the measurement results of W 1N and W 2N obtained with the integrated coil electrode fluorescent discharge lamp tube by the connection method using one electric wire shown in FIG. Changes in the primary power W 1N and the secondary power W 2N of the AC power source 6 are shown when the number N of coil electrode fluorescent discharge lamp tubes is 1, 2, and 3 (the total number is 3). Also in this case, the primary power W 1N (W) and the secondary power W 2N (W) show the dependence of the linear function on the number n of coil electrode fluorescent discharge lamp tubes of the integrated coil electrode fluorescent discharge lamp. That is, the primary power y is y = 5.76x + 0.04 with respect to the number x of coil electrode fluorescent discharge lamp tubes. Further, the secondary power y satisfies y = 0.94x−0.34 with respect to the number x of coil electrode fluorescent discharge lamps.

次に、図10及び図11の測定結果を纏める。1次側電力に関し、W1N=a+b×N(a、b:定数)が近似式として成立するので、この1次側電力の近似式に基づき、N本のコイル電極蛍光放電灯管を並列接続して高輝度発光を可能にした集積コイル電極蛍光放電灯管を実現することができる。同様に、交流電源6の2次側電圧についても、W2N=c+d×N(c、d:定数)が近似式として成立するので、この2次側電力の近似式に基づき、あるいは、前記1次側電力の近似式と併用して、N本のコイル電極蛍光放電灯を並列接続して高輝度発光を可能にした集積コイル電極蛍光放電灯を実現することができる。なお、集積コイル電極蛍光放電灯管の場合においても、前記勾配b及びdはb>dの関係にある。図10及び図11の具体例では、b/d=5〜7であり、蛍光灯の種類が変化すれば、この範囲は更に広がる。この関係を利用して、構成蛍光放電灯管数に応じて、1次及び2次側電力を精度よく選択することができ、逆に、1次及び2次側消費電力に合わせて、構成蛍光放電灯数を最適に調整することも可能になる。 Next, the measurement results of FIGS. 10 and 11 are summarized. Since W 1N = a N + b N × N (a N , b N : constant) is established as an approximate expression for the primary side power, N coil electrode fluorescent discharges are based on the approximate expression of the primary side power. An integrated coil electrode fluorescent discharge lamp tube in which lamp tubes are connected in parallel to enable high-luminance emission can be realized. Similarly, for the secondary side voltage of the AC power supply 6, W 2N = c N + d N × N (c N , d N : constant) is established as an approximate expression, and therefore, based on the approximate expression of the secondary power. Alternatively, in combination with the approximate expression of the primary power, an integrated coil electrode fluorescent discharge lamp in which N coil electrode fluorescent discharge lamps are connected in parallel to enable high luminance light emission can be realized. Even in the case of the integrated coil electrode fluorescent discharge lamp tube, the gradients b N and d N have a relationship of b N > d N. In the specific examples of FIGS. 10 and 11, b N / d N = 5 to 7, and this range is further expanded if the type of fluorescent lamp is changed. Using this relationship, the primary and secondary power can be accurately selected according to the number of constituent fluorescent discharge lamp tubes, and conversely, the constituent fluorescent light is matched to the primary and secondary power consumption. It is also possible to optimally adjust the number of discharge lamps.

集積コイル電極蛍光放電灯管の2次側電圧に関し、各社の蛍光灯を比較検討した。図12は複数の市販の内部電極型蛍光放電灯と、それに使用されている高周波電源につき、コイル電極による集積蛍光放電灯化した場合の2次側電力変化を示す。M社製の内部電極型蛍光放電灯にコイル電極を施し、そのM社高周波電源を使用した場合には、2次側電力yはコイル電極蛍光放電灯数管数xに対して、y=0.76x−0.02が成立する。D社製の内部電極型蛍光放電灯管にコイル電極を施し、そのD社交流電源を使用した場合には、2次側電力yはコイル電極蛍光放電灯管数xに対し、y=0.42x−0.22が成立する。A社製の内部電極型蛍光放電灯管にコイル電極を施し、電源にA社電源を使用した場合、2次側電力yはコイル電極蛍光放電灯管数xに対し、y=0.23x−0.13が成り立つ。各社蛍光灯の勾配dが異なる理由は、各社蛍光灯の蛍光膜材料が相違することと考えられる。従って、より小さな勾配dを与える蛍光膜材料を選択することにより、一層の省電効果を奏することが可能になる。従って、図10及び図11に示した測定結果と同様に、各社蛍光灯の2次側電力につき、構成蛍光放電灯数に対する線形依存性が認められる。このことは同時に、各社蛍光灯の1次側電力も線形依存性を有することを意味する。これにより、他社市販の良品である内部電極型蛍光放電灯や廃棄品を再生して集積蛍光放電灯管を構成する場合においても、上記線形関係式に基づき、N本のコイル電極蛍光放電灯管を並列接続して、高輝度発光を可能にした集積コイル電極蛍光放電灯管を実現することが可能になる。 Regarding the secondary side voltage of the integrated coil electrode fluorescent discharge lamp tube, the fluorescent lamps of various companies were compared and examined. FIG. 12 shows changes in secondary power when a plurality of commercially available internal electrode type fluorescent discharge lamps and high frequency power supplies used therein are converted into integrated fluorescent discharge lamps using coil electrodes. When a coil electrode is applied to an internal electrode type fluorescent discharge lamp manufactured by M company and the high frequency power source of M company is used, the secondary power y is y = 0 with respect to the number x of coil electrode fluorescent discharge lamps. .76x-0.02 holds. When a coil electrode is applied to an internal electrode type fluorescent discharge lamp tube manufactured by D company and an AC power source of D company is used, the secondary power y is y = 0. 42x−0.22 is established. When the coil electrode is applied to the internal electrode type fluorescent discharge lamp tube manufactured by A company and the power source of company A is used as the power source, the secondary power y is y = 0.23x− with respect to the number x of coil electrode fluorescent discharge lamp tubes. 0.13 holds. Reason for slope d N of the respective companies fluorescent lamp are different are considered to be fluorescent film materials companies fluorescent lamps are different. Therefore, by selecting a fluorescent membrane material to provide a smaller gradient d N, it is possible to achieve the further power saving effect. Therefore, similar to the measurement results shown in FIGS. 10 and 11, the linear dependence on the number of constituent fluorescent discharge lamps is recognized for the secondary power of each company fluorescent lamp. This also means that the primary power of each company fluorescent lamp also has a linear dependence. As a result, even when an internal electrode type fluorescent discharge lamp and a waste product, which are commercially available from other companies, are regenerated to form an integrated fluorescent discharge lamp tube, N coil electrode fluorescent discharge lamp tubes are formed based on the above linear relational expression. Can be connected in parallel to achieve an integrated coil electrode fluorescent discharge lamp tube that can emit light with high brightness.

上記図8又は図9の集積蛍光放電灯は、各コイル電極蛍光放電灯を平面型に並置した構成を有するから、天井や壁面に配置される照明用平面型光源に最適である。また、光源として無駄な容積を有さないから、室内インテリアの多様性に貢献できる。更に、この平面型光源は、液晶バックライトのような平型光源に好適である。   The integrated fluorescent discharge lamp shown in FIG. 8 or FIG. 9 has a configuration in which the coil electrode fluorescent discharge lamps are arranged side by side in a plane type, and is therefore optimal for a planar light source for illumination arranged on a ceiling or a wall surface. Moreover, since there is no useless volume as a light source, it can contribute to the diversity of indoor interiors. Furthermore, this planar light source is suitable for a flat light source such as a liquid crystal backlight.

図13は、蛍光放電灯収納部22内において7本のコイル電極蛍光放電灯管23を相互にスペーサ(図示せず)により所定間隔だけ離間して束状に配置、集積した大型ランプ構造の集積蛍光放電灯を示す。各コイル電極蛍光放電灯管23は両端にコイル電極24、25を有する。7本のコイル電極蛍光放電灯管23の左右端に設けたコイル電極24、25は、並列接続部(図示せず)を介して電圧印加線20に接続され、高周波電源6の高周波電圧が、コイル電極蛍光放電灯管23の夫々に並列的に印加される。この集積型蛍光放電灯は、複数本のコイル電極蛍光放電灯管23を束状に配置することにより、各コイル電極蛍光放電灯管23からの放射熱量を間隙内に蓄積して、各コイル電極蛍光放電灯管23内部の冷空気の対流による冷却を防止し、適度な温度に保持する作用を有する。   FIG. 13 shows an integration of a large lamp structure in which seven coil electrode fluorescent discharge lamp tubes 23 are arranged in a bundle at a predetermined interval from each other by spacers (not shown) in the fluorescent discharge lamp housing 22. A fluorescent discharge lamp is shown. Each coil electrode fluorescent discharge lamp tube 23 has coil electrodes 24 and 25 at both ends. The coil electrodes 24 and 25 provided at the left and right ends of the seven coil electrode fluorescent discharge lamp tubes 23 are connected to the voltage application line 20 via a parallel connection part (not shown), and the high frequency voltage of the high frequency power source 6 is The coil electrode fluorescent discharge lamp tube 23 is applied in parallel. In this integrated fluorescent discharge lamp, by arranging a plurality of coil electrode fluorescent discharge lamp tubes 23 in a bundle, the amount of radiant heat from each coil electrode fluorescent discharge lamp tube 23 is accumulated in the gap, and each coil electrode It has the effect of preventing cooling by convection of cold air inside the fluorescent discharge lamp tube 23 and maintaining an appropriate temperature.

コイル電極蛍光放電灯23の内部には、上述のように、放電ガスとしてArガス、及びHg滴が包含されている。Arは常時ガス状態で存在するが、Hgは室温では僅かな量が蒸発し、多くは水銀滴として存在する。蛍光放電灯管の蛍光膜を発光させる254nm紫外線は、Arガス中に気体として存在するHg原子が励起した時に発生する。従ってHg滴がArガス中に蒸発する量により254nm紫外線強度が変わる。それにはArガスの温度を上昇させて制御する。経験的には、Hg蒸気圧が0.7Pa〜1.5Pa程度であるとき、最適な光出力が得られるとされる。その最適温度範囲は放電ハンドブック等によると40℃〜45℃であるが、本発明者等の研究によれば70℃前後に昇温しても差し支えない。高温度にすると365nmの紫外線量が介入してくるが、254nm紫外線量も増加するので蛍光膜からのPL輝度が著しく増加する。温度の上限は70℃前後にある。1本の蛍光放電灯管では、放電管表面が冷空気と接触し、空気対流により常時放熱する。放電管の冷却を防止して最適温度を維持するためには、放熱量に相当する熱量をArガス中で常時発生させる電力を印加しておかなければならない。従来の蛍光放電灯管の駆動では、冷却で損出する熱量でArガスを加熱していた。換言すれば、蛍光放電灯管の消費電力でこの放熱電力だけ無駄に使用している。蛍光放電灯管内で熱を発生するのは、ガス原子のイオン化である。ガス原子のイオン化には、放電灯内の電子の運動エネルギーをイオン化電圧以上に加速する必要があり、それには放電灯管電極にMHzにある高周波電界の印加か、又は高電圧の印加を必要とする。 本実施形態では、蛍光放電灯管を束状配置することによって蛍光放電灯管を相互に保熱し、更に蛍光放電灯収納管22内に収納することにより保熱作用により束状配置した蛍光放電灯管内のガス温度を最適温度に速やかに上昇させ、ガス空間中の水銀蒸気圧を最適値にすることができる。   As described above, Ar gas and Hg droplets are included in the coil electrode fluorescent discharge lamp 23 as the discharge gas. Ar always exists in a gas state, but Hg evaporates in a small amount at room temperature, and many exist as mercury droplets. The 254 nm ultraviolet light that causes the fluorescent film of the fluorescent discharge lamp tube to emit light is generated when Hg atoms present as a gas in Ar gas are excited. Therefore, the 254 nm ultraviolet intensity changes depending on the amount of Hg droplets evaporated in the Ar gas. For this purpose, the temperature of Ar gas is raised and controlled. Empirically, when the Hg vapor pressure is about 0.7 Pa to 1.5 Pa, an optimum light output is obtained. The optimum temperature range is 40 ° C. to 45 ° C. according to the discharge handbook or the like, but according to the study by the present inventors, the temperature may be raised to about 70 ° C. When the temperature is increased, the amount of 365 nm ultraviolet light intervenes, but the amount of 254 nm ultraviolet light also increases, so that the PL luminance from the fluorescent film increases remarkably. The upper temperature limit is around 70 ° C. In one fluorescent discharge lamp tube, the surface of the discharge tube is in contact with cold air, and heat is radiated constantly by air convection. In order to prevent the discharge tube from being cooled and to maintain the optimum temperature, it is necessary to apply electric power that constantly generates an amount of heat corresponding to the amount of heat radiation in Ar gas. In the driving of the conventional fluorescent discharge lamp tube, the Ar gas is heated with the amount of heat lost by cooling. In other words, only this heat radiation power is wasted in the power consumption of the fluorescent discharge lamp tube. It is ionization of gas atoms that generates heat in the fluorescent discharge lamp tube. For ionization of gas atoms, it is necessary to accelerate the kinetic energy of electrons in the discharge lamp to an ionization voltage or higher, which requires application of a high-frequency electric field at MHz or high voltage to the discharge lamp tube electrode. To do. In the present embodiment, the fluorescent discharge lamp tubes are arranged in a bundle to hold the fluorescent discharge lamp tubes mutually, and further housed in the fluorescent discharge lamp storage tube 22 to be arranged in a bundle by a heat retaining action. The gas temperature in the pipe can be quickly raised to the optimum temperature, and the mercury vapor pressure in the gas space can be brought to the optimum value.

図14は、本発明において蛍光膜表面に導入する電子の挙動が、蛍光膜の荷電状態により変わる様子を説明する模式図である。FL管(蛍光放電灯管)内のガス放電に影響を与える蛍光膜の4つの荷電状態と電子軌道の変化を図14に図解する。図14(A)は、ガラス管2の内壁面に市販放電灯用 (PL) 蛍光体粉を塗布して出来た蛍光膜27の部分図である。市販PL用蛍光体の全粒子は持続性内部分極 (PIP)を製造時から保持して居ることを本発明者は発見し、粒子外にPIPの負電荷 (約 150 V )の電界を及ぼすことを想到するに到った。当然の理で市販PL蛍光体を使って作った蛍光膜27の上面はPIPの負電荷で覆われる。そこに初速ゼロに近い電子源からの電子eが近づくと、電子eはPIPの負電界から静電反発を受け、蛍光膜上に入れない。それだけではない。ガス空間はガス原子の最外殻を充填している外殻電子による負電界で満ち、その電界強度は10V/cmであるので、電子eはガス空間にも入れない。ガス原子は放電しない。即ちガス放電は点灯しない。 FIG. 14 is a schematic diagram for explaining how the behavior of electrons introduced to the surface of the fluorescent film in the present invention changes depending on the charged state of the fluorescent film. FIG. 14 illustrates the changes in the four charged states of the fluorescent film and the electron trajectory that affect the gas discharge in the FL tube (fluorescent discharge lamp tube). FIG. 14A is a partial view of a fluorescent film 27 formed by applying a commercial discharge lamp (PL) phosphor powder to the inner wall surface of the glass tube 2. The present inventor has discovered that all particles of commercially available phosphor for PL have retained sustained internal polarization (PIP) from the time of manufacture, and that the negative charge (about 150 V) of PIP is applied to the outside of the particle. I came up with the idea. Naturally, the upper surface of the fluorescent film 27 made using a commercially available PL phosphor is covered with the negative charge of PIP. When an electron e from an electron source close to zero at the initial velocity approaches there, the electron e receives electrostatic repulsion from the negative electric field of PIP and does not enter the phosphor film. That is not all. The gas space is filled with a negative electric field due to outer shell electrons filling the outermost shell of gas atoms, and the electric field strength is 10 5 V / cm. Therefore, the electrons e cannot enter the gas space. Gas atoms do not discharge. That is, the gas discharge is not turned on.

図14(B)に蛍光体粒子がPIPを持たない蛍光体を使用して作られた蛍光膜28上には初速ゼロに近い電子が容易に導入でき、導入電子は蛍光膜表面を伝導する状態を矢印で示す。PIPを持たない蛍光体としては、種々検討した結果、15 V以下の低電子線の照射下で発光するCL蛍光体がある。代表的な蛍光体は、緑白色に発光するか、又は390 nmにピークを持って鋭い線状発光する酸化亜鉛 (ZnO) 蛍光体、ナトリウム塩化物を融剤に使わずに作られた青色発光硫化亜鉛(ZnS:Ag:Cl) 蛍光体、緑色発光硫化亜鉛 (ZnS:Cu:Al) 蛍光体,及び特殊条件下で作られたMgO粒子がある。蛍光膜に照射する電子のエネルギーを120Vまで上げると、酸化亜鉛過剰で製造された珪酸亜鉛 (Zn2SiO4:Mn) 蛍光体、表面を化学エッチングして作られた硫酸化イットリウム (Y2O2S:Eu or Tb)蛍光体、融剤を使用しないで作られた酸化イットリウム (Y2O3:Eu or Dy) 蛍光体、及び融剤を使用して粒子径を大きくした後に、表面に析出した融剤を酸で除去して表面を清浄にした酸化イットリウム蛍光体等が加わる。図14(B)の例はZnO蛍光体で蛍光膜を作った場合を示す。蛍光膜表面に入った低速電子は、PIP負電界が存在しないため、容易に蛍光膜上に入り、放電管の他端にある陽イオン源Bの電界により加速され、蛍光膜表面上を一方向に進み、ガス原子と衝突することなく、陽イオン源Bに到達し再結合によりガス原子に戻る。通常のFL管(管長50 cm)で一方向に進む電子軌道にガス原子が存在する確率は計算できる。その値は10-6であり、一方向に進む加速電子がガス原子と衝突する確率はゼロと考えて良い。表面伝導する電子によるガス原子の発光はない。CL蛍光体による蛍光膜表面を一方向に伝導する電子の検出は、蛍光膜上に故意に蛍光膜の突起を作り、印加電界の半周期をゼロ電位にすると、蛍光膜の突起した陰極側の側面に電子が周期的に衝突し、明るくCL発光するが、陽極側の側面には電子が衝突しないので発光しない。この事実を肉眼観測により確認できる。 In FIG. 14 (B), electrons close to zero at the initial speed can be easily introduced onto the phosphor film 28 made using a phosphor whose phosphor particles do not have PIP, and the introduced electrons are conducted on the phosphor film surface. Is indicated by an arrow. As a phosphor without PIP, as a result of various studies, there is a CL phosphor that emits light under irradiation with a low electron beam of 15 V or less. Typical phosphors are green-white or zinc oxide (ZnO) phosphors that emit light in a sharp line with a peak at 390 nm, blue emission made without using sodium chloride as a flux. There are zinc sulfide (ZnS: Ag: Cl) phosphors, green light emitting zinc sulfide (ZnS: Cu: Al) phosphors, and MgO particles made under special conditions. When the energy of electrons irradiated to the phosphor film is increased to 120V, zinc silicate (Zn 2 SiO 4 : Mn) phosphor produced with excess zinc oxide, yttrium sulfate (Y 2 O) produced by chemically etching the surface 2 S: Eu or Tb) Phosphor, yttrium oxide made without using flux (Y 2 O 3 : Eu or Dy) An yttrium oxide phosphor or the like whose surface has been removed by removing the deposited flux with an acid is added. The example of FIG. 14B shows a case where a phosphor film is made of a ZnO phosphor. Since the PIP negative electric field does not exist, the slow electrons entering the surface of the fluorescent film easily enter the fluorescent film, and are accelerated by the electric field of the cation source B at the other end of the discharge tube. The process reaches the cation source B without colliding with the gas atoms, and returns to the gas atoms by recombination. The probability that a gas atom exists in an electron orbit traveling in one direction on a normal FL tube (tube length 50 cm) can be calculated. The value is 10 -6 , and it can be considered that the probability that the accelerated electrons traveling in one direction collide with the gas atoms is zero. There is no emission of gas atoms by surface conducting electrons. The detection of electrons conducted in one direction on the phosphor film surface by the CL phosphor is made by intentionally creating a projection of the phosphor film on the phosphor film and setting the half period of the applied electric field to zero potential. Electrons periodically collide with the side surface and emit bright CL, but do not emit light because the electron does not collide with the side surface on the anode side. This fact can be confirmed by visual observation.

図14(C)は上記した発見を確認する目的で、蛍光放電灯管の蛍光膜の終端の小面積にZnO蛍光体粒子28(PIP無し)を塗布し、残りの大面積に市販PL蛍光体粒子を配列した蛍光膜27(PIP有り)で蛍光放電管内壁面を覆う。実験的には先ず市販PL蛍光体粒子をガラス内壁面に塗布し、乾燥してから結合剤を焼却する。ガラス端の蛍光膜を柔らかい布でふき取った後、ZnO蛍光体粒子28を拭き取ったガラス内面に塗布する。乾燥してから結合剤を焼却する。この方法により、図14(C)の蛍光膜が出来る。この蛍光膜による蛍光放電灯管の特徴は、蛍光放電灯管を長くすると、Arガス中を移動する電子が、電極端から遠ざかるに従いPIPの作用を強く受ける結果、陽光柱径が狭められ、蛍光放電灯管の中央部分が暗くなる。中央部を明るく発光させるには、電極に印加する電位を増加させるので、消費電力が増加する。   For the purpose of confirming the above discovery, FIG. 14 (C) applies ZnO phosphor particles 28 (without PIP) to the small area at the end of the fluorescent film of the fluorescent discharge lamp tube, and commercially available PL phosphor to the remaining large area. The inner wall surface of the fluorescent discharge tube is covered with a fluorescent film 27 (with PIP) in which particles are arranged. Experimentally, commercially available PL phosphor particles are first applied to the inner wall surface of the glass, dried, and then the binder is incinerated. The fluorescent film on the glass edge is wiped off with a soft cloth, and then applied to the inner surface of the glass where the ZnO phosphor particles 28 are wiped off. Incinerate the binder after drying. By this method, the fluorescent film of FIG. The feature of this fluorescent discharge lamp tube by the fluorescent film is that when the fluorescent discharge lamp tube is lengthened, electrons moving in the Ar gas are strongly affected by PIP as they move away from the electrode end. The central part of the discharge lamp tube becomes dark. In order to make the central portion emit light brightly, the potential applied to the electrode is increased, so that power consumption increases.

この蛍光膜に本発明になる電子源を設置し、初速ゼロに近い電子を導入する。電子はZnO蛍光体粒子28の配列した所で加速され、ガス原子の励起可能なエネルギーを持つ。加速電子は、しかし市販蛍光膜27上に立ち入ることが出来ず、電子軌道を曲げてガス空間に入る。ガス空間に入った電子はガス原子と非弾性衝突し、ガス原子を励起し、ガス空間の放電を点灯する。この現象が蛍光放電灯管のガス放電の瞬時点灯となる。非弾性衝突した電子は、ガス空間から消えること無く高周波の波に乗り、高周波電界から適切なエネルギーを獲得し、次のガス原子を非弾性衝突で励起する。放電路を伝播する高周波の波と共鳴した電子はこの繰り返しによりガス原子を励起しながら放電管中を管端まで移動し、最後にイオンと結合して消える。蛍光放電管中を高周波の波と共鳴して移動する電子は、我々の眼で観察したとき、蛍光放電灯管は均一強度で発光する蛍光膜として観察される。   An electron source according to the present invention is installed in this fluorescent film, and electrons close to zero at the initial speed are introduced. The electrons are accelerated where the ZnO phosphor particles 28 are arranged, and have energies that can excite gas atoms. However, the accelerated electrons cannot enter the commercially available phosphor film 27, but enter the gas space by bending the electron trajectory. Electrons entering the gas space collide with the gas atoms inelastically, excite the gas atoms, and turn on the gas space discharge. This phenomenon is the instantaneous lighting of the gas discharge of the fluorescent discharge lamp tube. Electrons that have collided inelastically ride on high-frequency waves without disappearing from the gas space, acquire appropriate energy from the high-frequency electric field, and excite the next gas atom by inelastic collisions. Electrons resonating with high-frequency waves propagating in the discharge path move through the discharge tube to the end of the tube while exciting gas atoms by this repetition, and finally combine with ions and disappear. Electrons moving in resonance with high-frequency waves in the fluorescent discharge tube are observed as fluorescent films that emit light with uniform intensity when observed with our eyes.

放電路中を移動する電子は加速によりエネルギーを持ち、ガス原子と非弾性衝突をする。非弾性衝突した電子の軌道方向は無作為である。無作為方向に散乱された電子の中には蛍光膜に接近する機会を持つ電子があるが、蛍光膜にはPIP26の負電荷が存在するので、その電子は蛍光膜に接近できず、陽光柱内に戻る。高周波の波に共鳴しているガス原子を発光させる電子の活動範囲は、ガス放電管の全空間ではなく、蛍光膜から一定の距離を保持した放電管の中央のガス空間内に限定される。それがPIP鞘26に収められた陽光柱である。ガス原子は電気的に中性であり、電界や電荷の影響を受けず、放電管内に均一濃度で分布する。PIP鞘26に収められた陽光柱と蛍光膜の間にガス原子(未励起ガス原子)が均一濃度で分布している。陽光柱で発光した光がガス原子の励起準位から基底準位への電子遷移で発生しているならば、発光した光はガス原子による吸収が許容となる。その場合陽光柱内で発光した光は陽光柱と蛍光膜間に介在するガス原子により吸収され、蛍光膜に届くのは吸収された残量になる。蛍光放電灯の場合、低圧Hg蒸気の発光を利用する。発光はHgの励起準位6pから基底準位6sへの電子遷移であるので、陽光柱と蛍光膜間に存在するHg蒸気により吸収を受ける。光は電荷を持たない粒子であるのでPIPの影響を受けず、陽光柱と蛍光膜間に存在するHg蒸気により吸収を受けた残量だけが蛍光膜に到達する。ハロ燐酸カルシウム蛍光体で蛍光膜を作った場合に相当する。ハロ燐酸カルシウム蛍光膜のPIP強度は管径を小さくしても変わらないので、陽光柱の直径が萎縮する。その結果、ハロ燐酸カルシウム蛍光膜で作られた蛍光放電灯管は管径を細くすると発光が著しく減少する。与えられた蛍光放電灯管で蛍光膜に到達する紫外線量を増加させるには、蛍光膜がPIP負電荷で覆われないようにすると良い。即ち、PIP鞘を作らないようにすると良い。更に次の事実を明らかに出来た。蛍光体粒子は大きな光屈折率を持った粒子であるので、紫外線の一部が蛍光膜の表層に配列した蛍光体粒子に突入し、発光中心に直接吸収されて可視光を発光する。表層粒子で反射した紫外線は散乱光となり蛍光膜の深部にある蛍光体粒子に突入するので,深部にある蛍光体粒子も発光する。蛍光膜は最適な層数でつくられる。 Electrons moving in the discharge path have energy due to acceleration and collide with gas atoms inelastically. The orbital direction of electrons that collide inelastically is random. Among the electrons scattered in the random direction, there is an electron that has an opportunity to approach the fluorescent film, but since the negative charge of PIP26 exists in the fluorescent film, the electron cannot approach the fluorescent film, and the positive column. Return inside. The range of activity of electrons that emit gas atoms resonating with high-frequency waves is not limited to the entire space of the gas discharge tube, but is limited to the central gas space of the discharge tube that maintains a certain distance from the fluorescent film. That is the positive column housed in the PIP sheath 26. The gas atoms are electrically neutral, are not affected by the electric field or charge, and are distributed at a uniform concentration in the discharge tube. Gas atoms (unexcited gas atoms) are distributed at a uniform concentration between the positive column accommodated in the PIP sheath 26 and the fluorescent film. If the light emitted from the positive column is generated by the electron transition from the excited level of the gas atom to the ground level, the emitted light is allowed to be absorbed by the gas atom. In that case, the light emitted in the positive column is absorbed by the gas atoms interposed between the positive column and the fluorescent film, and the remaining amount reaches the fluorescent film. In the case of a fluorescent discharge lamp, light emission of low-pressure Hg vapor is used. Light emission is an electronic transition from the excited level 6 p of Hg to the ground level 6 s, and is therefore absorbed by the Hg vapor existing between the positive column and the fluorescent film. Since light is a particle having no charge, it is not affected by PIP, and only the remaining amount absorbed by the Hg vapor existing between the positive column and the fluorescent film reaches the fluorescent film. This corresponds to the case where a phosphor film is made of a calcium halophosphate phosphor. Since the PIP intensity of the calcium halophosphate phosphor film does not change even if the tube diameter is reduced, the diameter of the positive column is reduced. As a result, the fluorescence discharge lamp tube made of the calcium halophosphate phosphor film has a significant decrease in light emission when the tube diameter is reduced. In order to increase the amount of ultraviolet light reaching the fluorescent film with a given fluorescent discharge lamp tube, it is preferable that the fluorescent film is not covered with PIP negative charges. That is, it is better not to make a PIP sheath. Furthermore, the following fact was able to be clarified. Since the phosphor particles are particles having a large light refractive index, a part of the ultraviolet light enters the phosphor particles arranged on the surface layer of the phosphor film, and is directly absorbed by the emission center to emit visible light. The ultraviolet rays reflected by the surface layer particles become scattered light and enter the phosphor particles in the deep part of the phosphor film, so that the phosphor particles in the deep part also emit light. The phosphor film is made with the optimum number of layers.

最後に、図14(D)に図示したように、PIPを持つ市販PL蛍光体27とPIPを持たない低電圧CL蛍光体28をガラス管内面に交互に配列する。PIP26の作用は大いに減殺され,ガス放電の点火が早く、陽光柱の広がりによる輝度上昇が見られた。ここで低電圧CL蛍光体25の選択が必要になった。低電圧CL蛍光体25の候補は前記した。これ等の蛍光体のどれでもが使用できるとは限らない。市販されているこれ等の蛍光体の中には、表面処理と言って絶縁体の微細粒子が表面に付着している。他の場合、蛍光体製造時の処理が不十分で残留物が粒子表面に残っている。陽光柱から散乱により蛍光体粒子に照射した電子は、蛍光体粒子内に入り、蛍光体粒子から二次電子を真空中に放出する。その時蛍光体粒子の中に正孔を残す。この正孔と二次電子が真空中で結合し、金属陰極の場合と同様な機構で粒子表面に表面結合電子(SBE)を形成する。不純物が付着していると、その不純物の表面にもSBEが形成する。CL蛍光体粒子の発光は、電子の入射で蛍光体粒子内に沢山できる正孔と電子が発光中心で再結合して発光する。CL蛍光体粒子の表面が清浄であると、CL蛍光体粒子の表面にあるSBEは結合相手である蛍光体粒子内の正孔をCL発光により失う。相手を失った真空中の電子は自由電子となり、加速され電子軌道を陽光柱に曲げられ放電に寄与する。問題は粒子表面に付着している不純物上にできたSBEである。PIPと等価の作用をもつ。困ったことに不純物上のSBEの消去はできない。この理由で、低電圧CL蛍光体の選別が大切となる。最も確かな低電圧CL蛍光体はZnO蛍光体である。ここでCL蛍光体の方がPL蛍光体より明るい理由を説明する。蛍光体粒子内に突入した1個の入射電子により作られる電子と正孔対数は入射電子が結晶格子と非弾性散乱する数に相当する(約1,000個)。一方、PL蛍光体粒子では一個の光子は一個の発光中心しか励起できない。CL蛍光体が明るい理由である。   Finally, as shown in FIG. 14D, commercially available PL phosphors 27 having PIP and low-voltage CL phosphors 28 not having PIP are alternately arranged on the inner surface of the glass tube. The action of PIP26 was greatly diminished, the ignition of the gas discharge was quick, and the brightness was increased due to the spread of the positive column. Here, it is necessary to select the low voltage CL phosphor 25. The candidates for the low voltage CL phosphor 25 are described above. Not all of these phosphors can be used. Among these phosphors that are commercially available, fine particles of an insulator are adhered to the surface, which is called surface treatment. In other cases, the treatment during the production of the phosphor is insufficient and the residue remains on the particle surface. Electrons irradiated to the phosphor particles by scattering from the positive column enter the phosphor particles, and secondary electrons are emitted from the phosphor particles into the vacuum. At that time, holes are left in the phosphor particles. These holes and secondary electrons combine in a vacuum to form surface-bound electrons (SBE) on the particle surface by the same mechanism as in the case of a metal cathode. When impurities are attached, SBE is also formed on the surface of the impurities. The CL phosphor particles emit light by recombining many holes and electrons that are formed in the phosphor particles upon incidence of electrons at the emission center. When the surface of the CL phosphor particle is clean, SBE on the surface of the CL phosphor particle loses holes in the phosphor particle that is a binding partner by CL emission. The electrons in the vacuum that have lost their counterparts become free electrons, which are accelerated and bend the electron orbit into the positive column, contributing to the discharge. The problem is SBE made on impurities adhering to the particle surface. Equivalent to PIP. Unfortunately, SBE on impurities cannot be erased. For this reason, it is important to select low-voltage CL phosphors. The most reliable low voltage CL phosphor is a ZnO phosphor. Here, the reason why the CL phosphor is brighter than the PL phosphor will be described. The number of electrons and hole pairs created by one incident electron entering the phosphor particle corresponds to the number of inelastic scattering of the incident electrons with the crystal lattice (approximately 1,000). On the other hand, in a PL phosphor particle, one photon can excite only one emission center. This is why CL phosphors are bright.

図15は、本発明において低電圧電子線発光CL蛍光体粉と光発光PL蛍光体粉の混合粉で作られる最適な蛍光膜の状態を示す模式図である。蛍光放電灯管の内壁面にPL蛍光体27と低電圧CL蛍光体28を隣り合わせにして蛍光膜を製造するのは至難の業である。出版された論文、Journal Physics D Applied Physics, 32, (1999), pp 513-517(非特許文献1)によれば、FLの最適蛍光膜厚は蛍光体粒子の5層で出来ている。この蛍光膜に照射する電子の突入できる粒子は、最上層に配列した粒子だけである。散乱紫外線は粒子の荷電に影響を受けず、蛍光膜中に突入する。突入深度は粒子層数にして5層である。この理由で、市販蛍光体粒子24を5層になるようにガラス管内壁面に塗布し、乾燥後低電圧CL蛍光体28を市販蛍光体層27の上に散布するように塗布すると、本発明になる蛍光膜が製造できる。このようにして作られた蛍光膜の模式図を図15(A)に示す。   FIG. 15 is a schematic diagram showing the state of an optimum fluorescent film made of a mixed powder of low-voltage electron beam-emitting CL phosphor powder and light-emitting PL phosphor powder in the present invention. It is extremely difficult to manufacture a phosphor film by placing the PL phosphor 27 and the low voltage CL phosphor 28 next to each other on the inner wall surface of the fluorescent discharge lamp tube. According to a published paper, Journal Physics D Applied Physics, 32, (1999), pp 513-517 (non-patent document 1), the optimum fluorescent film thickness of FL is made of five layers of phosphor particles. The only particles that can enter the electrons that irradiate the fluorescent film are the particles arranged in the uppermost layer. The scattered ultraviolet rays are not affected by the charge of the particles and enter the fluorescent film. The penetration depth is 5 layers in terms of the number of particle layers. For this reason, when the commercially available phosphor particles 24 are applied to the inner wall surface of the glass tube so as to form five layers, and the low voltage CL phosphor 28 is applied after spraying on the commercially available phosphor layer 27, the present invention is applied. A fluorescent film can be manufactured. FIG. 15A shows a schematic diagram of the phosphor film thus produced.

蛍光膜を2度に分けて塗布するのは、作業工程が複雑になる。蛍光体スラリーの一回塗布で蛍光膜を作る方法を考案した。市販PL蛍光体の平均粒子径を4 μmとする。低電圧CL蛍光体の粒子径を2 μmとする。粒子径が異なる2種類の蛍光体粉を、重量比でPL蛍光体:CL蛍光体=7:3の割合で秤量し、秤量粉体を混合瓶に入れ、均一に混ざるまで混合し、蛍光体塗布液を作り放電管ガラス内壁面に塗布する。塗布液が乾燥しないとき、ガラス管壁に近い所には大きなPL蛍光体粒子27が選択的に集まり、蛍光膜の表面に小さなCL蛍光体粒子28が多く集まるので、図15(B)に示した蛍光膜が得られる。図15(B)の蛍光膜を使い蛍光放電灯管を作ると、表面層にあるCL蛍光体粒子はSBEを形成しないので、陽光柱内で高エネルギーを持った電子はCL蛍光体粒子に達する。その結果、陽光柱が蛍光膜の所まで接近して紫外線を放射する。この紫外線は未励起Hg原子が介在せず、より多くの紫外線がPL蛍光体層に入射する。その結果、蛍光膜のPL強度が増加する。ここに使用するCL蛍光体粒子の大きさは、PL蛍光体の平均粒子径が4μmであるとき、平均値で1μm〜3μmであるとき、良好な結果が得られた。この粒子径はPL蛍光体の粒子径により変わる。注意することは、CL蛍光体粒子が1μm以下と小さい時、粒子は蛍光膜の表面に配列せず、蛍光膜の乾燥時に蛍光膜の底に集まり、CL蛍光体粒子の効果は減退する。更に1μm以下と小さいCL蛍光体粒子をPL蛍光体粒子表面に付着させた場合、僅かな効果は期待できても、本発明になる蛍光膜構成の効果とは比較にならない程度であるので、実用では大きな差となる。   Applying the fluorescent film in two steps complicates the work process. A method for producing a phosphor film by single application of phosphor slurry was devised. The average particle size of the commercially available PL phosphor is 4 μm. The particle size of the low voltage CL phosphor is 2 μm. Two types of phosphor powders with different particle diameters are weighed in a ratio by weight of PL phosphor: CL phosphor = 7: 3, and the weighed powder is put in a mixing bottle and mixed until it is evenly mixed. A coating solution is made and applied to the inner wall surface of the discharge tube glass. When the coating solution does not dry, large PL phosphor particles 27 selectively gather near the glass tube wall, and many small CL phosphor particles 28 gather on the surface of the phosphor film, which is shown in FIG. A fluorescent film is obtained. When a fluorescent discharge lamp tube is made using the fluorescent film in FIG. 15B, the CL phosphor particles in the surface layer do not form SBE, so electrons having high energy in the positive column reach the CL phosphor particles. . As a result, the positive column approaches the fluorescent film and emits ultraviolet rays. This ultraviolet light does not intervene with unexcited Hg atoms, and more ultraviolet light enters the PL phosphor layer. As a result, the PL intensity of the fluorescent film increases. Regarding the size of the CL phosphor particles used here, good results were obtained when the average particle diameter of the PL phosphor was 4 μm and the average value was 1 μm to 3 μm. This particle size varies depending on the particle size of the PL phosphor. It should be noted that when the CL phosphor particles are as small as 1 μm or less, the particles are not arranged on the surface of the phosphor film, but gather at the bottom of the phosphor film when the phosphor film is dried, and the effect of the CL phosphor particles is reduced. Furthermore, when CL phosphor particles as small as 1 μm or less are attached to the surface of the PL phosphor particles, even if a slight effect can be expected, it is not comparable to the effect of the phosphor film structure according to the present invention. Then it becomes a big difference.

本発明の重要な点を下記に記しておく。集積蛍光放電灯の最外周に配置した蛍光放電灯管の保熱管22の外壁(ガラス管外壁)は温度の低い周囲空気に露出する。ガスのイオン化で加熱されたArガスにより加熱されるガラス管壁と室温との間にかなりの温度差(20oC以上)があるので、空気対流によりガラス管壁は熱を失う。第三世代電子源からの電子を使用すると、単位時間当たりのガスのイオン化量が少ないので、蛍光放電灯管の温度が上がらず、最適水銀蒸気圧を与える温度より低い30oC前後であった。一方、内側に配置した蛍光放電灯管は外側に配置した蛍光放電灯管により熱的に保護され、空気対流は少なく、外壁温度が45oCから70oC前後に上昇する。同量の電子数で水銀蒸気を励起し発光させているので、水銀蒸気の励起数は管中の水銀蒸気数に比例して増減する。蛍光放電灯管内の水銀蒸気数が少ないと暗くなり、水銀蒸気数が多くなると明るく発光する。集積蛍光放電灯では温度差による大きな輝度差が発生し、最外部に配列した蛍光放電灯管の発光は暗い。最外部に配列した蛍光放電灯管の保温をするには、集積蛍光放電灯をよりやや太いガラス管内22に挿入し、ガラス管端を断熱材で封じると、最外部に配置した蛍光放電灯管は内部配置蛍光放電灯と熱平衡状態になり、集積蛍光放電灯管の全てが均一輝度で発光する。その結果、累積蛍光放電灯の輝度は、集積した蛍光放電灯管数の倍数で増加する。 The important points of the present invention are described below. The outer wall (the outer wall of the glass tube) of the heat insulating tube 22 of the fluorescent discharge lamp tube disposed on the outermost periphery of the integrated fluorescent discharge lamp is exposed to ambient air having a low temperature. Since there is a considerable temperature difference (over 20 ° C.) between the glass tube wall heated by Ar gas heated by gas ionization and room temperature, the glass tube wall loses heat due to air convection. When electrons from the third generation electron source were used, the amount of gas ionization per unit time was small, so the temperature of the fluorescent discharge lamp tube did not rise, and it was around 30 ° C., which is lower than the temperature giving the optimum mercury vapor pressure. . On the other hand, the fluorescent discharge lamp tube arranged on the inner side is thermally protected by the fluorescent discharge lamp tube arranged on the outer side, the air convection is small, and the outer wall temperature rises from about 45 ° C. to about 70 ° C. Since mercury vapor is excited by the same number of electrons to emit light, the number of mercury vapor excitations increases and decreases in proportion to the number of mercury vapor in the tube. When the number of mercury vapor in the fluorescent discharge lamp tube is small, it becomes dark, and when the number of mercury vapor is large, it emits bright light. In an integrated fluorescent discharge lamp, a large luminance difference occurs due to a temperature difference, and light emission from the fluorescent discharge lamp tube arranged at the outermost part is dark. In order to keep the outermost fluorescent discharge lamp tube warm, the integrated fluorescent discharge lamp is inserted into a slightly thicker glass tube 22 and the end of the glass tube is sealed with a heat insulating material. Is in thermal equilibrium with the internally arranged fluorescent discharge lamp, and all of the integrated fluorescent discharge lamp tubes emit light with uniform brightness. As a result, the brightness of the cumulative fluorescent discharge lamp increases by a multiple of the number of integrated fluorescent discharge lamp tubes.

上述した結果は次の分野への応用ができることを示す。集積蛍光放電灯はコイル電極型蛍光放電灯管を束ねて作るほかに、この束を解き、平面に配列する。このとき各コイル電極型蛍光放電灯管を放電灯管の外径より僅かに大きな内径にある保熱管(ガラス管)内に挿入し、ガラス管の両端を断熱材で封じ、蛍光放電灯管を外部空気と断熱すると、各蛍光放電灯管の温度は最適な水銀蒸気圧を与える温度に保温できる。空気に露出した蛍光放電灯管で最適な水銀蒸気圧を与える温度に保温するに必要なガスのイオン化エネルギーは必要でなくなる。その結果、平面上に配列した外部電極蛍光放電灯管(EEFL)の点灯に必要な消費電力は数分の一と少なくても高輝度な平面型光源が得られる。この平面型光源をLCDのバックライトに使用した時、点灯速度がミリ秒単位であるので、平面上に配列した集積蛍光放電灯を幾つかのブロックに分割し、分割した各集積蛍光放電灯を順次に線走査できる。バックライトを分割して線順次走査すると、LCDのスクリーンには、LEDをバックライトに使用した場合よりも遥かに高輝度であり、炭の黒さを基準としたコントラストにより、鮮明な映像が映し出される。上述した効果は、内部電極の表面に電気絶縁体である蛍光体粒子を適度の厚さに塗布した蛍光体粒子層絶縁型内部電極による蛍光放電灯管でも得られるのは勿論である。更に、平面上に配列した集積蛍光放電灯を幾つかのブロックに分割し、各ブロックを順次に発光させると、点灯電力を更に減少させた平面型照明光源が得られる。   The above results show that it can be applied to the following fields. An integrated fluorescent discharge lamp is formed by bundling coil electrode type fluorescent discharge lamp tubes, and also unpacking them and arranging them on a plane. At this time, each coil electrode type fluorescent discharge lamp tube is inserted into a heat insulating tube (glass tube) having an inner diameter slightly larger than the outer diameter of the discharge lamp tube, and both ends of the glass tube are sealed with a heat insulating material. When insulated from the external air, the temperature of each fluorescent discharge lamp tube can be kept at a temperature that gives the optimum mercury vapor pressure. The ionization energy of the gas necessary for maintaining the temperature at which the optimum mercury vapor pressure is obtained in the fluorescent discharge lamp tube exposed to air is not necessary. As a result, a high-brightness planar light source can be obtained even if the power consumption required for lighting the external electrode fluorescent discharge lamps (EEFL) arranged on a plane is a fraction of a fraction. When this flat light source is used for the LCD backlight, the lighting speed is in milliseconds, so the integrated fluorescent discharge lamps arranged on the plane are divided into several blocks, and each divided integrated fluorescent discharge lamp is Sequential line scanning is possible. When the backlight is divided and line-sequential scanning is performed, the LCD screen is much brighter than when LEDs are used for the backlight, and a clear image is displayed due to the contrast based on the blackness of charcoal. It is. Needless to say, the above-described effects can also be obtained in a fluorescent discharge lamp tube using a phosphor particle layer insulated internal electrode in which phosphor particles, which are electrical insulators, are coated on the surface of the internal electrode to an appropriate thickness. Furthermore, when the integrated fluorescent discharge lamps arranged on a plane are divided into several blocks and each block is caused to emit light sequentially, a planar illumination light source with further reduced lighting power can be obtained.

本実施形態に係る集積コイル電極蛍光放電灯の管軸方向の長さは限定されず、任意の長さにしても放電に関与する電子数は同じで、ガス原子と非弾性衝突してガス原子を発光させる繰り返し数のみが増えるだけであるので、消費電力は殆ど変らず、発光する蛍光膜の面積のみが増加する。その結果、輝度のみが集積蛍光放電灯の軸方向の長さに比例して増加する。家庭の居間や、高層ビルの事務所の照明光源として天井に配置して使用するときには、長い集積蛍光放電灯の使用を推奨する。適度の照度を得るに必要な蛍光放電灯数は、集積蛍光放電灯を使用すれば大幅に減少する。更に集積蛍光放電灯は駆動電源回路の電力を含め、同一照度を得るに必要な使用電力を従来の金属電極による蛍光放電灯の点灯の10分の一以下に出来る。その上で、集積蛍光放電灯は点灯時の蛍光放電灯管のガラス管表面温度は水銀蒸気圧を最適にする50oCから70oC前後に保たれるが、集積蛍光放電灯を挿入する外管22で熱遮蔽されているので、空気の熱対流が抑制される。外管内を真空にして魔法瓶構造にすると熱遮蔽の効果は強調される。夏場の事務室の冷房電力をも大幅に節減する利点を持つ。 The length in the tube axis direction of the integrated coil electrode fluorescent discharge lamp according to the present embodiment is not limited, and the number of electrons involved in the discharge is the same even if the length is arbitrary, and gas atoms are inelastically collided with gas atoms. Since only the number of repetitions for emitting light increases, the power consumption hardly changes and only the area of the fluorescent film that emits light increases. As a result, only the luminance increases in proportion to the axial length of the integrated fluorescent discharge lamp. It is recommended to use a long integrated fluorescent discharge lamp when it is placed on the ceiling as a lighting source in the living room of a home or office of a high-rise building. The number of fluorescent discharge lamps required to obtain a moderate illuminance is greatly reduced if an integrated fluorescent discharge lamp is used. Further, the integrated fluorescent discharge lamp can use less than one-tenth of the power consumption of a conventional fluorescent discharge lamp with a metal electrode, including the power of the driving power supply circuit, to obtain the same illuminance. In addition, the integrated fluorescent discharge lamp is maintained at a glass tube surface temperature of 50 ° C. to 70 ° C. which optimizes the mercury vapor pressure when the fluorescent discharge lamp tube is turned on, but the integrated fluorescent discharge lamp is inserted. Since the outer tube 22 is thermally shielded, the thermal convection of air is suppressed. When the inside of the outer tube is evacuated to a thermos structure, the heat shielding effect is emphasized. It also has the advantage of greatly reducing the cooling power in the summer office.

蛍光放電灯管の管径を20 mmよりも太くすると、蛍光放電管中に形成する陽光柱内に励起されないHgガスが存在し、陽光柱内でHgが発光した254 nm紫外線を自己吸収する結果、発光効率が低下する。この理由で、集積蛍光放電灯には、管径20 mm以上の蛍光放電灯管を使用しない方が好ましい。しかし、使用は限定されず、管径20 mm以上の蛍光放電灯管を使用し、集積蛍光放電灯を作っても差し支えない。   When the tube diameter of the fluorescent discharge lamp tube is larger than 20 mm, there is an unexcited Hg gas in the positive column formed in the fluorescent discharge tube, and the result is that the 254 nm ultraviolet light emitted by Hg in the positive column self-absorbs. , Luminous efficiency decreases. For this reason, it is preferable not to use a fluorescent discharge lamp tube having a tube diameter of 20 mm or more for the integrated fluorescent discharge lamp. However, the use is not limited, and an integrated fluorescent discharge lamp can be made using a fluorescent discharge lamp tube having a tube diameter of 20 mm or more.

上記したコイル電極蛍光放電灯管の両菅端に、従来の蛍光放電灯点灯装置のソケットに嵌め合わせ可能な口金を装着すると、従来の蛍光放電灯点灯装置を置換する必要がなく、省電で寿命の長いコイル電極蛍光放電灯管を装着できる利便性が実現する。コイル電極蛍光放電灯管を点灯するに必要な電源は小型化でき、従来の蛍光放電灯点灯装置内部に収納可能である。上記したように開発したコイル電極蛍光放電灯管は大きな工事費を使わずに、従来の蛍光放電灯管と置換して点灯できるので、その経済的な効果と、資源節約、CO2ガスの放出を大きく抑制できる照明光源を提供する。 By attaching a base that can be fitted to the socket of a conventional fluorescent discharge lamp lighting device to both ends of the coil electrode fluorescent discharge lamp tube described above, it is not necessary to replace the conventional fluorescent discharge lamp lighting device. Convenience that a long-life coil electrode fluorescent lamp can be installed is realized. The power source required for lighting the coil electrode fluorescent discharge lamp tube can be reduced in size and can be accommodated in a conventional fluorescent discharge lamp lighting device. The coil electrode fluorescent discharge lamp developed as described above can be lit without replacing the conventional fluorescent discharge lamp tube without using a large construction cost, so its economic effect, resource saving, CO 2 gas emission An illumination light source capable of greatly suppressing

Claims (12)

複数のコイル電極蛍光灯を並列接続してなる省電高輝度集積型蛍光灯であって、前記コイル電極蛍光灯のそれぞれは、両端を密封されたガラス管の内面に、PL(Photoluminescence)蛍光体粉とCL(Cathodoluminescence)蛍光体粉の混合粉から形成された蛍光膜を形成し、前記ガラス管の内部に放電ガスを充填し、前記ガラス管の両端の外周にコイル電極を巻回状に配置し、交流電源により前記コイル電極に交流電圧を印加し、前記放電ガスを発光させて点灯させる外部コイル電極蛍光灯であって、前記蛍光膜は前記コイル電極が対向する位置のガラス管内面にも形成され、前記蛍光膜の表面において、PL(Photoluminescence)蛍光体粒子と、該PL蛍光体粒子と粒子径が近似しているCL(Cathodoluminescence)蛍光体粒子とが管軸方向に交互に隣り合わせに配置され、前記コイル電極は電線の周囲を絶縁層により被覆した絶縁被覆電線を巻回状に形成されることを特徴とする省電高輝度集積型蛍光灯。 A power-saving high-intensity integrated fluorescent lamp in which a plurality of coil electrode fluorescent lamps are connected in parallel. Each of the coil electrode fluorescent lamps has a PL (Photoluminescence) phosphor on the inner surface of a glass tube sealed at both ends. A fluorescent film formed from a powder mixture of powder and CL (Cathodoluminescence) phosphor powder is formed, the inside of the glass tube is filled with a discharge gas, and coil electrodes are arranged around the outer periphery of both ends of the glass tube. An external coil electrode fluorescent lamp that applies an AC voltage to the coil electrode by an AC power source and causes the discharge gas to emit light to be lit, and the fluorescent film is also applied to the inner surface of the glass tube at a position facing the coil electrode. On the surface of the phosphor film formed, PL (Photoluminescence) phosphor particles and CL (Cathodoluminescence) phosphor particles having a particle diameter similar to that of the PL phosphor particles are alternately arranged adjacent to each other in the tube axis direction. Is arranged, said coil electrode is power-saving high-brightness integrated fluorescent lamp, characterized in that formed an insulated wire coated with an insulating layer around the wire in winding circular. 前記コイル電極蛍光灯として、寿命の尽きた内部電極付き蛍光灯を再生使用し、前記内部電極付き蛍光灯に前記コイル電極を設ける請求項1に記載の省電高輝度集積型蛍光灯。 Examples coil electrode fluorescent lamp, the internal electrode with a fluorescent lamp using playback exhausted the life, power-saving high intensity integrated fluorescent lamp according to claim 1 providing the coil electrode to the fluorescent lamp with the internal electrodes. 前記PL蛍光体粉がハロ燐酸カルシウムPL蛍光体粉であり、前記CL蛍光体粉が低電子線発光するCL蛍光体粉である請求項1または2に記載の省電高輝度集積型蛍光灯。 The PL phosphor powder is halo calcium phosphate PL phosphor powder, the CL phosphor powder power saving high intensity integrated fluorescent lamp according to claim 1 or 2 is a CL phosphor powder that emits low electron beam. 前記PL蛍光体粉が希土類PL蛍光体粉であり、前記CL蛍光体粉が低電子線発光するCL蛍光体粉である請求項1または2に記載の省電高輝度集積型蛍光灯。 The power-saving high-intensity integrated fluorescent lamp according to claim 1 or 2 , wherein the PL phosphor powder is a rare earth PL phosphor powder , and the CL phosphor powder is a CL phosphor powder that emits low electron beams. 前記コイル電極蛍光灯は、前記コイル電極の巻数をn、前記交流電源の1次側電力をW1n(W)としたとき、W1n=a+b×n(a,b:定数)が近似式として成立する請求項1からのいずれかに記載の省電高輝度集積型蛍光灯。 The coil electrode fluorescent lamp, when the number of turns of the coil electrode was n, the primary electric power of the AC power source W 1n and (W), W 1n = a n + b n × n (a n, b n: Constant ) Is established as an approximate expression, the power-saving high-intensity integrated fluorescent lamp according to any one of claims 1 to 4 . 前記コイル電極蛍光灯は、前記コイル電極の巻数をn、前記交流電源の2次側電力をW2n(W)としたとき、W2n=c+d×n(c,d:定数)が近似式として成立する請求項1からのいずれかに記載の省電高輝度集積型蛍光灯。 The coil electrode fluorescent lamp has W 2n = c n + d n × n (c n , d n : constant) where n is the number of turns of the coil electrode and W 2n (W) is the secondary power of the AC power supply. ) Is established as an approximate expression, the power-saving high-intensity integrated fluorescent lamp according to any one of claims 1 to 5 . 前記コイル電極の巻数をn、前記交流電源の1次側電力をW1n(W)としたとき、W1n=a+b×n(a,b:定数)が近似式として成立し、前記定数及びdはb>dである請求項に記載の省電高輝度集積型蛍光灯。 When the number of turns of the coil electrode was n, the primary electric power of the AC power source W 1n and (W), W 1n = a n + b n × n (a n, b n: constant) is established as an approximate expression , power saving high intensity integrated fluorescent lamp according to claim 6 wherein the constants b n and d n are b n> d n. 前記巻数nが1≦n≦10の範囲において、前記電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、前記1次側電力W1nは前記近似式の値と最大5(W)のずれ幅を有する請求項からのいずれかに記載の省電高輝度集積型蛍光灯。 When the winding number n is in the range of 1 ≦ n ≦ 10, the primary power is changed when the cross-sectional diameter d (mm) of the electric wire is varied in the range of 0.26 (mm) ≦ d ≦ 1.6 (mm). W 1n the power-saving high-brightness integrated fluorescent lamp according to any one of claims 5-7 with a deviation of the maximum value of the approximate expression 5 (W). 前記巻数nが1≦n≦10の範囲において、前記電線の断面直径d(mm)を0.26(mm)≦d≦1.6(mm)の範囲に可変したとき、前記1次側電力W1nは前記近似式の値と最大0.6(W)のずれ幅を有する請求項からのいずれかに記載の省電高輝度集積型蛍光灯。 When the winding number n is in the range of 1 ≦ n ≦ 10, the primary power is changed when the cross-sectional diameter d (mm) of the electric wire is varied in the range of 0.26 (mm) ≦ d ≦ 1.6 (mm). W 1n the power-saving high-brightness integrated fluorescent lamp according to any one of claims 5-7 having a shift width of the approximate expression of the value and the maximum 0.6 (W). N(2以上の自然数)本の前記コイル電極蛍光灯を並列接続してなる省電高輝度集積型蛍光灯であって、前記交流電源の2次側電圧を印加したとき、前記交流電源の1次側電力をW1N(W)とすると、W1N=a+b×N(a、b:定数)が近似式として成立する請求項1からのいずれかに記載の省電高輝度集積型蛍光灯。 A power-saving high-intensity integrated fluorescent lamp in which N (natural numbers of 2 or more) coiled electrode fluorescent lamps are connected in parallel, and when the secondary voltage of the AC power supply is applied, 1 of the AC power supply When the next-side power and W 1N (W), W 1N = a N + b N × N (a N, b N: constant) power saving height according to any one of claims 1 to establish the approximate expression 9 Luminance integrated fluorescent lamp. 前記交流電源の2次側電圧を印加したとき、前記交流電源の2次側電力をW2N(W)としたとき、W2N=c+d×N(c、d:定数)が近似式として成立する請求項10に記載の省電高輝度集積型蛍光灯。 When the secondary side voltage of the AC power source is applied and the secondary power of the AC power source is W 2N (W), W 2N = c N + d N × N (c N , d N : constant) The power-saving high-intensity integrated fluorescent lamp according to claim 10, which is established as an approximate expression. 前記定数及びdはb>dである請求項11に記載の省電高輝度集積型蛍光灯。 Low power high brightness integrated fluorescent lamp of claim 11 wherein the constant b N and d N is b N> d N.
JP2010517595A 2008-06-19 2008-06-19 Power-saving high-intensity integrated fluorescent lamp Active JP5600590B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061203 WO2009153872A1 (en) 2008-06-19 2008-06-19 Coil electrode fluorescent electric-discharge lamp pipe

Publications (2)

Publication Number Publication Date
JPWO2009153872A1 JPWO2009153872A1 (en) 2011-11-24
JP5600590B2 true JP5600590B2 (en) 2014-10-01

Family

ID=41433802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010517595A Active JP5600590B2 (en) 2008-06-19 2008-06-19 Power-saving high-intensity integrated fluorescent lamp

Country Status (3)

Country Link
JP (1) JP5600590B2 (en)
CN (1) CN102067276B (en)
WO (1) WO2009153872A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174792A (en) * 1991-05-27 1993-07-13 Asea Brown Boveri Ag High output beam generator
JPH0633052A (en) * 1992-07-14 1994-02-08 Toshiba Corp Three-band fluorescent material and fluorescent lamp produced by using the material
JP2001303042A (en) * 2000-04-20 2001-10-31 Toshiba Corp Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
JP2003036723A (en) * 2001-07-19 2003-02-07 Harison Toshiba Lighting Corp Lighting device
JP2003229092A (en) * 2001-11-30 2003-08-15 Harison Toshiba Lighting Corp External electrode discharge lamp
JP2007149573A (en) * 2005-11-30 2007-06-14 Masateru Kobayashi Display object illumination device
JP2007179820A (en) * 2005-12-27 2007-07-12 Harison Toshiba Lighting Corp External electrode fluorescent lamp and illumination device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05174792A (en) * 1991-05-27 1993-07-13 Asea Brown Boveri Ag High output beam generator
JPH0633052A (en) * 1992-07-14 1994-02-08 Toshiba Corp Three-band fluorescent material and fluorescent lamp produced by using the material
JP2001303042A (en) * 2000-04-20 2001-10-31 Toshiba Corp Fluorescent substance for rapid starting type fluorescent lamp and rapid starting type fluorescent lamp using the same
JP2003036723A (en) * 2001-07-19 2003-02-07 Harison Toshiba Lighting Corp Lighting device
JP2003229092A (en) * 2001-11-30 2003-08-15 Harison Toshiba Lighting Corp External electrode discharge lamp
JP2007149573A (en) * 2005-11-30 2007-06-14 Masateru Kobayashi Display object illumination device
JP2007179820A (en) * 2005-12-27 2007-07-12 Harison Toshiba Lighting Corp External electrode fluorescent lamp and illumination device

Also Published As

Publication number Publication date
CN102067276B (en) 2012-11-28
CN102067276A (en) 2011-05-18
WO2009153872A1 (en) 2009-12-23
JPWO2009153872A1 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
US20040169456A1 (en) Low-pressure gas discharge lamp with a mercury-free gas filling
TW201021087A (en) Light-emitting device utilizing gaseous sulfur compounds
US7495396B2 (en) Dielectric barrier discharge lamp
CN101868845B (en) Fluorescent discharge lamp tube, and liquid crystal display device
JP5600590B2 (en) Power-saving high-intensity integrated fluorescent lamp
JPH0217908B2 (en)
US6940216B2 (en) Gas discharge lamp for dielectrically impeded discharges comprising a blue phosphor
JP4923110B2 (en) Fluorescent discharge lamp tube and LCD display device with new structure
WO2009104261A1 (en) Power saving highl luminance integrated fluorescent lamp
US20080174226A1 (en) Mercury-free flat fluorescent lamps
WO2012089468A1 (en) Electrical power control of a field emission lighting system
Hofmann et al. Fluorescent Lamps
WO2009081482A1 (en) External electrode fluorescent discharge lamp tube, flat light source and liquid crystal display device
JP4683549B2 (en) External electrode discharge lamp
Pelletier et al. Positive columns sustained jointly by microwaves and DC voltages for lighting applications: experimental results in pure argon
Masoud et al. High efficiency, fluorescent excimer lamps, an alternative to CFLs and white light LEDs
CN201097397Y (en) A magnetized plasma display
CN103210472B (en) Luminaire
WO2012065312A1 (en) Method for generating electrons in electron source, electron generation device and manufacturing method thereof
WO2009054030A1 (en) Mercury-free flat fluorescent lamps
NL2007664C2 (en) Cold cathode fluorescent lamp for illumination.
JP2002270135A (en) Light emitting structure, method of light emission and illuminator
KR100731153B1 (en) Electrodeless xenon phosphor lamp
TW201119509A (en) Mercury-free fluorescent lamp tube and its drive method
CN1996541A (en) A magnetic plasma display and plasma discharge method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130702

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130930

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140818

R150 Certificate of patent or registration of utility model

Ref document number: 5600590

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250