JP5598916B2 - Gate electrode and manufacturing method thereof - Google Patents

Gate electrode and manufacturing method thereof Download PDF

Info

Publication number
JP5598916B2
JP5598916B2 JP2010204196A JP2010204196A JP5598916B2 JP 5598916 B2 JP5598916 B2 JP 5598916B2 JP 2010204196 A JP2010204196 A JP 2010204196A JP 2010204196 A JP2010204196 A JP 2010204196A JP 5598916 B2 JP5598916 B2 JP 5598916B2
Authority
JP
Japan
Prior art keywords
gate electrode
film
value
yttrium
carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010204196A
Other languages
Japanese (ja)
Other versions
JP2012060055A (en
Inventor
俊秀 生田目
豊裕 知京
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science filed Critical National Institute for Materials Science
Priority to JP2010204196A priority Critical patent/JP5598916B2/en
Publication of JP2012060055A publication Critical patent/JP2012060055A/en
Application granted granted Critical
Publication of JP5598916B2 publication Critical patent/JP5598916B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

本発明はnMOSFETのゲート電極及びその製造方法に関し、特にフラットバンド電圧の制御に適するとともに構造が安定なゲート電極材料に関する。   The present invention relates to an nMOSFET gate electrode and a method of manufacturing the same, and more particularly to a gate electrode material suitable for controlling a flat band voltage and having a stable structure.

メタルゲート電極/高誘電率ゲート絶縁膜からなるCMOSにおいて、nMOSFETのフラットバンド電圧の制御が要求されており、これまでにTiN、TaNの窒化物材料やTaCの炭化物材料がnゲート電極材料として盛んに検討されている。しかし、窒化物材料は、窒素が高誘電率ゲート絶縁膜へ拡散して電気特性の劣化を引き起こす問題がある。また、TaCは酸素や窒素を導入する事でフラットバンド電圧を制御することが特許文献1に開示されているが、構造の不安定性が大きな問題となっている。   In a CMOS consisting of a metal gate electrode / high dielectric constant gate insulating film, control of the flat band voltage of the nMOSFET is required, and so far nitride materials of TiN and TaN and carbide materials of TaC have been popular as n gate electrode materials. Has been considered. However, the nitride material has a problem in that nitrogen diffuses into the high dielectric constant gate insulating film and causes deterioration of electrical characteristics. Further, although TaC discloses that the flat band voltage is controlled by introducing oxygen or nitrogen, the instability of the structure is a serious problem.

本発明の課題は、上述した従来の材料を使用したnMOSFETのゲート電極が有していた問題点を解消し、フラットバンド電圧を制御できるとともに、半導体デバイス製造プロセスで使用される高温に曝されても特性の劣化が少ないゲート電極及びその製造方法を提供することに有る。   The object of the present invention is to solve the problems of the nMOSFET gate electrode using the above-mentioned conventional material, to control the flat band voltage, and to be exposed to the high temperature used in the semiconductor device manufacturing process. Another object of the present invention is to provide a gate electrode and a method for manufacturing the same with little deterioration in characteristics.

本発明の一側面によれば、炭化タンタルイットリウムTa1−x、炭化チタンイットリウムTi1−x、炭化ジルコニウムイットリウムZr1−x、炭化ハフニウムイットリウムHf1−x、炭化バナジウムイットリウムV1−x、炭化ニオブイットリウムNb1−x、炭化モリブデンイットリウムMo1−x及び炭化タングステンイットリウムW1−xからなる群から選ばれた炭化物からなるnMOSFETのゲート電極が与えられる。
前記yは0より大きく5以下であってよい。
前記炭化物は炭化タンタルイットリウムであってよい。
前記xは0より大きく0.5以下であってよい。
前記xは0.4以下であってよい。
本発明の他の側面によれば、ゲート絶縁膜上に前記炭化物の膜を形成する、前記ゲート電極の製造方法が与えられる。
前記炭化物の膜は、イットリウムを含まない前記炭化物のターゲット及びイットリウムのターゲットを用いた共スパッタリング法により形成してよい。
前記炭化物の膜は、MOCVD法またはALD法により形成してよい。
According to one aspect of the present invention, tantalum carbide, yttrium Ta 1-x Y x C y , titanium carbide, yttrium Ti 1-x Y x C y , zirconium carbide, yttrium Zr 1-x Y x C y , hafnium carbide, yttrium Hf 1 -x Y x C y, vanadium carbide, yttrium V 1-x Y x C y , niobium carbide, yttrium Nb 1-x Y x C y , molybdenum carbide, yttrium Mo 1-x Y x C y and tungsten carbide yttrium W 1-x A gate electrode of an nMOSFET made of a carbide selected from the group consisting of Y x C y is provided.
The y may be greater than 0 and less than or equal to 5.
The carbide may be tantalum yttrium carbide.
The x may be greater than 0 and less than or equal to 0.5.
The x may be 0.4 or less.
According to another aspect of the present invention, there is provided a method for manufacturing the gate electrode, wherein the carbide film is formed on the gate insulating film.
The carbide film may be formed by a co-sputtering method using the carbide target not containing yttrium and the yttrium target.
The carbide film may be formed by MOCVD or ALD.

本発明によれば、500℃〜600℃程度の熱処理を経ても構造が安定で、抵抗が低く、かつY元素の添加量を調節することでフラットバンド電圧を調節することができるゲート電極及びその製造方法が与えられる。   According to the present invention, a gate electrode having a stable structure even after a heat treatment of about 500 ° C. to 600 ° C., having a low resistance, and capable of adjusting a flat band voltage by adjusting the amount of Y element added, and the gate electrode A manufacturing method is given.

Ta1−x膜のx値を変えた場合のX線回折パターン変化を示す図。Ta 1-x Y x C y diagram showing an X-ray diffraction pattern changes when changing the x value of the film. Ta1−x膜のx値を変えた場合の抵抗変化を示す図。It shows a resistance change when changing the x value of the Ta 1-x Y x C y film. Ta1−x膜のx値を変えた場合のC−V特性変化を示す図。Ta 1-x Y x C y shows the C-V characteristics change when changing the x value of the film. Ta1−x膜のx値を変えた場合のフラットバンド電圧のシフトを示す図。It shows the shift of the flat band voltage when changing the x value of the Ta 1-x Y x C y film. Ta1−x膜のx値を変えた場合のHfO膜及びHfSiO膜の各熱処理条件に対するフラットバンド電圧のシフトを示す図。It shows the shift of the flat band voltage for each heat treatment conditions HfO 2 film and HfSiO x film when changing the x value of the Ta 1-x Y x C y film.

本発明は、nMOSFETのゲート電極材料としてTaCへ仕事関数の小さなY元素を添加する事で、その仕事関数を小さくできるとともに、600℃の熱処理を経ても構造が安定で、低抵抗及びY元素の添加量に従ってフラットバンド電圧が調整できるようにする。ここにおいて、ゲート電極としては低抵抗な導体であることが要求されることから、Ta1−xのx値が0.50以下であれば熱処理の影響が少ないので好ましい(ここでy値は(Taの量である(1−x)+(Yの量であるx)=1)に対して、0より大きく5以下の範囲の値をとることが望ましい)。また、素子構造の熱処理温度に対する安定性の観点からは、500℃までの熱処理温度が必要な場合にはTa1−xのx値が0.50以下が好ましく、600℃までならばx値が0.40以下が望ましい。結晶化したFCC構造の安定性の観点からは、Ta1−xのx値が0.40以下であることが好ましい。 In the present invention, by adding a Y element having a small work function to TaC x as a gate electrode material of an nMOSFET, the work function can be reduced, the structure is stable even after heat treatment at 600 ° C., low resistance and Y element The flat band voltage can be adjusted in accordance with the amount of addition. Here, since the gate electrode is required to be a low-resistance conductor, the x value of Ta 1-x Y x C y is preferably 0.50 or less because the influence of heat treatment is small (here, The y value (desirably takes a value in the range of greater than 0 and less than or equal to 5 with respect to (1-x) which is the amount of Ta + (x which is the amount of Y) = 1)). From the viewpoint of the stability of the element structure with respect to the heat treatment temperature, when the heat treatment temperature up to 500 ° C. is required, the x value of Ta 1-x Y x C y is preferably 0.50 or less, and up to 600 ° C. For example, the x value is preferably 0.40 or less. From the viewpoint of the stability of the crystallized FCC structure, the x value of Ta 1-x Y x C y is preferably 0.40 or less.

同じ希土類のLaやII族のSr及びBaの炭化物は小さな仕事関数を持つが、空気中の酸素、水分と容易に反応するなど構造が不安定である。一方、Y,Y及びY7のYの炭化物は空気中でも安定である。この点で、Yを使用する本発明は上記他の元素に比較して優位性を有する。 Although the same rare-earth La and II group Sr and Ba carbides have a small work function, their structures are unstable, such as easily reacting with oxygen and moisture in the air. On the other hand, Y carbides of Y 2 C 3 , Y 4 C 5 and Y 4 C 7 are stable in air. In this respect, the present invention using Y has an advantage over the other elements described above.

なお、TaCの代りに、他のTiC、ZrC、HfC、VC、NbC、MoCあるいはWC炭化物へY元素を添加しても良い。この場合においても、M(Ti、Zr、Hf、V、Nb、MoまたはW)とYの量の合計を1としたとき(つまりM1−x)、y値は0よりも大きく5以下が望ましい。 Instead of TaC y, other TiC y, ZrC y, HfC y , VC y, NbC y, may be added to Y element to MoC y or WC y carbide. Even in this case, when the sum of the amounts of M (Ti, Zr, Hf, V, Nb, Mo, or W) and Y is 1 (that is, M 1−x Y x C y ), the y value is more than 0. Largely 5 or less is desirable.

以下で本発明の実施例に基づくFET製造プロセスを説明するが、当然のこととして、本発明はここで説明する電極あるいはその製造方法に限定されるものではない。
ゲートラストプロセスでは、まず、SiOダミーゲート絶縁膜とポリシリコンダミーゲート電極のスタック構造を形成して、ダミーゲート電極をマスクとしてソース・ドレインを形成する。つづいて、ダミーゲート電極を絶縁膜で埋め込み、絶縁膜表面をCMP(Chemical Mechanical Polishing)等により平坦化した後にダミーゲート電極とダミーゲート絶縁膜を選択的に除去する。
The FET manufacturing process based on the embodiments of the present invention will be described below. However, as a matter of course, the present invention is not limited to the electrodes described herein or the manufacturing method thereof.
In the gate last process, first, a stack structure of a SiO 2 dummy gate insulating film and a polysilicon dummy gate electrode is formed, and a source / drain is formed using the dummy gate electrode as a mask. Subsequently, the dummy gate electrode is embedded with an insulating film, and the surface of the insulating film is planarized by CMP (Chemical Mechanical Polishing) or the like, and then the dummy gate electrode and the dummy gate insulating film are selectively removed.

続いて、シリコン層側よりゲート絶縁膜を形成する。具体的には、シリコン層上に例えば希釈フッ酸溶液で自然酸化膜を除去した後に、950℃以上の高温度熱処理酸化方法によって0.1〜2nm程度の酸化シリコン膜を堆積し、その酸化シリコン膜上に例えば、HOのO(酸素)原料とTEMAHf(Tetrakis-Ethylmethylamido-Hafnium:Hf(NEtMe))のHf(ハフニウム)原料を用いたALD(Atomic Layer Deposition)法によって1〜8nm程度の酸化ハフニウム(HfO)膜を堆積した後、アニール処理を施してゲート絶縁膜を形成する。このアニール処理は、例えば、N雰囲気中、700℃以上で行う。 Subsequently, a gate insulating film is formed from the silicon layer side. Specifically, after removing the natural oxide film on the silicon layer with a diluted hydrofluoric acid solution, for example, a silicon oxide film having a thickness of about 0.1 to 2 nm is deposited by a high-temperature heat treatment oxidation method at 950 ° C. or higher. About 1 to 8 nm by an ALD (Atomic Layer Deposition) method using an O (oxygen) source of H 2 O and a Hf (hafnium) source of TEMAHf (Tetrakis-Ethylmethylamido-Hafnium: Hf (NEtMe) 4 ) on the film, for example. After depositing a hafnium oxide (HfO 2 ) film, an annealing process is performed to form a gate insulating film. This annealing process is performed at 700 ° C. or higher in an N 2 atmosphere, for example.

本実施の形態では、ゲート絶縁膜を構成する高誘電率膜(high−k膜)として、酸化ハフニウムを用いている。この酸化ハフニウムは、酸化シリコン膜や酸窒化シリコン膜よりも誘電率が高いので、物理膜厚を(酸化ハフニウム膜の誘電率/酸化シリコン膜の誘電率)倍だけ厚くできるので、結果としてリーク電流を低減することができる。このため、リーク電流を低減するためであれば、シリコン層上に直接、酸化ハフニウム膜を形成しても良い。なお、本実施の形態では、高誘電率膜として酸化ハフニウムを用いるが、窒化ハフニウムシリケート、Hf-Si-O、Hf-Al-O、Hf-Al-O-Nなどの高誘電率誘電体も用いることができる。   In this embodiment mode, hafnium oxide is used as the high dielectric constant film (high-k film) constituting the gate insulating film. This hafnium oxide has a higher dielectric constant than silicon oxide film and silicon oxynitride film, so the physical film thickness can be increased by (dielectric constant of hafnium oxide film / dielectric constant of silicon oxide film) times, resulting in leakage current. Can be reduced. Therefore, a hafnium oxide film may be formed directly on the silicon layer in order to reduce the leakage current. In the present embodiment, hafnium oxide is used as the high dielectric constant film, but high dielectric constant dielectrics such as hafnium nitride silicate, Hf—Si—O, Hf—Al—O, and Hf—Al—O—N are also used. Can be used.

続いて、ゲート絶縁膜上に炭化タンタルイットリウム(Ta1−x)メタルゲート電極を形成する。具体的には、炭化タンタル(TaC)ターゲットとイットリウム(Y)ターゲットを用いた共スパッタリング法によって、5〜50nm程度のTa1−x膜を堆積して、メタルゲート電極を形成する。 Subsequently, tantalum carbide, yttrium on the gate insulating film (Ta 1-x Y x C y) to form a metal gate electrode. Specifically, a metal gate electrode is formed by depositing a Ta 1-x Y x Cy film of about 5 to 50 nm by a co-sputtering method using a tantalum carbide (TaC y ) target and an yttrium (Y) target. To do.

表1に示すように、Ta/Y比率のx値はTaCターゲットとYターゲットのスパッタリングパワー比を変えることで、変化させることができる。 As shown in Table 1, x value of Ta / Y ratio by changing the sputtering power ratio of TaC y target and Y target can be varied.

x値を変えたTa1−x膜のX線回折測定の結果を図1に示す。x値が0.40以下ではTaCのFCC構造を示し、0.50以上になると非晶質へ変わる事が分る。FCC構造は600℃の熱処理後でも安定なことが分かる。 FIG. 1 shows the results of X-ray diffraction measurement of Ta 1-x Y x C y films with different x values. An x value of 0.40 or less indicates an FCC structure of TaC, and when it is 0.50 or more, it turns out to be amorphous. It can be seen that the FCC structure is stable even after heat treatment at 600 ° C.

図2に、Ta1−x膜のx値と抵抗の関係を示す。x値が0.50以下では、熱処理温度600℃においてもアズデポ(as-depo、堆積したままの、特に後処理していない状態)膜と同等の抵抗値であることが分る。一方、x値が0.68では、熱処理温度500℃以上で抵抗が増加する傾向を示す。 FIG. 2 shows the relationship between the x value of the Ta 1-x Y x C y film and the resistance. When the x value is 0.50 or less, it can be seen that even at a heat treatment temperature of 600 ° C., the resistance value is equivalent to that of an as-depo (as-depo, not particularly post-treated) film. On the other hand, when the x value is 0.68, the resistance tends to increase at a heat treatment temperature of 500 ° C. or higher.

図3はTa1−xゲート電極/HfO/SiO/Si構造のMOSキャパシタの容量(C)−ゲート電圧(V)特性を示す。アズデポのTa1−xゲート電極のx値を変えた場合のC−Vカーブは、x値が大きくなるに従って負の方向へシフトすることがわかる。 FIG. 3 shows the capacitance (C) -gate voltage (V) characteristics of a MOS capacitor having a Ta 1-x Y x C y gate electrode / HfO 2 / SiO 2 / Si structure. It can be seen that the CV curve when the x value of the as - deposited Ta 1-x Y x C y gate electrode is changed shifts in the negative direction as the x value increases.

図4はTa1−xゲート電極/HfO/SiO/Si構造におけるフラットバンド電圧Vfbのx値に対する変化を示す。フラットバンド電圧はMOSキャパシタのC−V特性から算出した。なお、C−V特性では、Ta1−x膜中のx値によらず、測定値は理想カーブで再現された。アズデポ、400℃の還元処理(FGA:Forming Gas anneal)、窒素雰囲気の500℃及び600℃熱処理を施したが、いずれもx値が大きくなるに従ってフラットバンド電圧は負方向へシフトする傾向を示す。これは、仕事関数の小さなY原子がTaCy材料へ添加されることで、Ta1−xゲート電極の仕事関数が小さな値へ変化したことによる。また、500℃ではx値が0.50以下、600℃ではx値が0.40以下であれば、良好なC−V特性が得られることが分った。各々の熱処理条件で、x値がそれ以上になるとゲート絶縁膜の耐圧性が低下してリーク電流が増加することがわかった。 FIG. 4 shows the change of the flat band voltage V fb with respect to the x value in the Ta 1-x Y x Cy gate electrode / HfO 2 / SiO 2 / Si structure. The flat band voltage was calculated from the CV characteristics of the MOS capacitor. In the CV characteristic, the measured value was reproduced with an ideal curve regardless of the x value in the Ta 1-x Y x C y film. Asdepo, reduction treatment at 400 ° C. (FGA: Forming Gas anneal) and heat treatment at 500 ° C. and 600 ° C. in a nitrogen atmosphere, both show a tendency that the flat band voltage shifts in the negative direction as the x value increases. This is because the Do Y atoms small work function that is added to TaCy material, the work function of the Ta 1-x Y x C y gate electrode is changed to a small value. Further, it was found that good CV characteristics can be obtained when the x value is 0.50 or less at 500 ° C. and the x value is 0.40 or less at 600 ° C. Under each heat treatment condition, it has been found that when the x value is higher than that, the breakdown voltage of the gate insulating film is lowered and the leakage current is increased.

図5はhigh−kゲート絶縁膜にHfO膜とHfSiO膜を用いた場合の熱処理条件に対するフラットバンド電圧Vfbの変化(シフト)Vfbshiftを示す。Ta1−x膜のx値を変えた場合のHfO膜及びHfSiO膜の各熱処理条件に対するフラットバンド電圧のシフトはほぼ同じ傾向を示し、high−kゲート絶縁膜の材料による有意差は認められないことがわかる。 FIG. 5 shows the change (shift) V fb shift of the flat band voltage V fb with respect to the heat treatment conditions when the HfO 2 film and the HfSiO x film are used as the high-k gate insulating film. The flat band voltage shift with respect to each heat treatment condition of the HfO 2 film and the HfSiO x film when the x value of the Ta 1-x Y x C y film is changed shows almost the same tendency and depends on the material of the high-k gate insulating film. It can be seen that there is no significant difference.

Ta1−xゲート電極は、スパッタリング法で説明したが、MOCVD法あるいはALD法で作製しても良い。 The Ta 1-x Y x C y gate electrode has been described by the sputtering method, but may be formed by the MOCVD method or the ALD method.

続いて埋め込み電極として、Ti、TiN、AL及びW等の電極をTa1−xゲート電極上へ形成した後に、CMPプロセスで平坦化する。その後に、絶縁膜の形成、ソース・ドレイン部へのコンタクトホール作製、コンタクトメタル形成について、リソグラフィープロセスを用いて行うことで、nMOSFETを作製できる。 Subsequently, electrodes such as Ti, TiN, AL, and W are formed on the Ta 1-x Y x C y gate electrode as a buried electrode, and then planarized by a CMP process. After that, an nMOSFET can be manufactured by performing an insulating film formation, contact hole formation to the source / drain portion, and contact metal formation using a lithography process.

以上説明したように、本発明によれば、熱処理を経ても構造が安定した、フラットバンド電圧を調節できるゲート電極を実現することができるので、nMOSFETデバイスの性能向上に大いに貢献することが可能である。   As described above, according to the present invention, it is possible to realize a gate electrode with a stable structure even after heat treatment and capable of adjusting a flat band voltage, which can greatly contribute to improving the performance of an nMOSFET device. is there.

特開2009−272368JP2009-272368

Claims (6)

FCC構造を有する炭化タンタルイットリウムTa1−x らなるnMOSFETのゲート電極。 Tantalum carbide, yttrium Ta 1-x Y x C y or Ranaru nMOSFET gate electrode having a FCC structure. 前記yは0より大きく5以下である、請求項1に記載のゲート電極。   The gate electrode according to claim 1, wherein y is greater than 0 and 5 or less. 前記xは0.4以下である、請求項1または2に記載のゲート電極。 The gate electrode according to claim 1 , wherein the x is 0.4 or less . ゲート絶縁膜上に前記炭化タンタルイットリウムの膜を形成する、請求項1から3の何れかに記載のゲート電極の製造方法 4. The method of manufacturing a gate electrode according to claim 1, wherein the tantalum yttrium carbide film is formed on the gate insulating film . 前記炭化タンタルイットリウムの膜は、炭化タンタルのターゲット及びイットリウムのターゲットを用いた共スパッタリング法により形成する、請求項4に記載のゲート電極の製造方法 5. The method of manufacturing a gate electrode according to claim 4, wherein the tantalum carbide yttrium film is formed by a co-sputtering method using a tantalum carbide target and an yttrium target . 前記炭化タンタルイットリウムの膜は、MOCVD法またはALD法により形成する、請求項4に記載のゲート電極の製造方法。 5. The method for manufacturing a gate electrode according to claim 4 , wherein the tantalum carbide yttrium film is formed by MOCVD or ALD .
JP2010204196A 2010-09-13 2010-09-13 Gate electrode and manufacturing method thereof Expired - Fee Related JP5598916B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010204196A JP5598916B2 (en) 2010-09-13 2010-09-13 Gate electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010204196A JP5598916B2 (en) 2010-09-13 2010-09-13 Gate electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012060055A JP2012060055A (en) 2012-03-22
JP5598916B2 true JP5598916B2 (en) 2014-10-01

Family

ID=46056756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010204196A Expired - Fee Related JP5598916B2 (en) 2010-09-13 2010-09-13 Gate electrode and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5598916B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004207481A (en) * 2002-12-25 2004-07-22 Renesas Technology Corp Semiconductor device and its manufacturing method
JP3981094B2 (en) * 2004-03-11 2007-09-26 株式会社東芝 Semiconductor device
JP4398939B2 (en) * 2005-12-20 2010-01-13 株式会社東芝 Semiconductor device
US7425497B2 (en) * 2006-01-20 2008-09-16 International Business Machines Corporation Introduction of metal impurity to change workfunction of conductive electrodes
JP5288789B2 (en) * 2007-12-28 2013-09-11 株式会社東芝 Semiconductor device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2012060055A (en) 2012-03-22

Similar Documents

Publication Publication Date Title
TWI587513B (en) Semiconductor device including fluorine-free tungsten barrier layer and method for fabricating the same
JP3703373B2 (en) MOSFET and gate dielectric manufacturing method
JP4871433B2 (en) Semiconductor device and manufacturing method thereof
KR101052587B1 (en) Dielectric Films and Semiconductor Devices Using Dielectric Films
JP5517918B2 (en) Capacitor, semiconductor device having the same, and manufacturing method thereof
JP5931312B2 (en) CMOS semiconductor device and manufacturing method thereof
US20050275035A1 (en) Gate Electrode Architecture for Improved Work Function Tuning and Method of Manufacture
JP2007513498A (en) CVD Tantalum Compound for FET Gate Electrode (Chemical Vapor Deposition Method of Compounds Containing Ta and N and Semiconductor Field Effect Device)
US8203176B2 (en) Dielectric, capacitor using dielectric, semiconductor device using dielectric, and manufacturing method of dielectric
US8115264B2 (en) Semiconductor device having a metal gate with a low sheet resistance and method of fabricating metal gate of the same
US9887083B2 (en) Methods of forming capacitors
JP2002026319A (en) Gate forming method for semiconductor element
US20150194351A1 (en) Semiconductor device and method of manufacturing the same
US8786031B2 (en) Metal nitride film, semiconductor device using the metal nitride film, and manufacturing method of semiconductor device
US20080164582A1 (en) Semiconductor devices and methods of manufacture thereof
US8649154B2 (en) Method for producing a metal-insulator-metal capacitor for use in semiconductor devices
Lee et al. The structural and electrical comparison of Y2O3 and Ti-doped Y2O3 dielectrics
Tsui et al. High-Performance Metal–Insulator–Metal Capacitors With $\hbox {HfTiO}/\hbox {Y} _ {2}\hbox {O} _ {3} $ Stacked Dielectric
TWI416596B (en) Conducting metal oxide with additive as p-mos device electrode
JP5373619B2 (en) Capacitor, semiconductor device having the same, and method of manufacturing capacitor
JP5197986B2 (en) Semiconductor device manufacturing equipment
US7115461B2 (en) High permittivity silicate gate dielectric
JP5598916B2 (en) Gate electrode and manufacturing method thereof
JP4691873B2 (en) Semiconductor device and manufacturing method thereof
WO2019142581A1 (en) Mis type semiconductor device, method for producing same, and sputtering target which is used for production of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5598916

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees