JP5598896B2 - Frequency stabilization system for power system - Google Patents

Frequency stabilization system for power system Download PDF

Info

Publication number
JP5598896B2
JP5598896B2 JP2009170560A JP2009170560A JP5598896B2 JP 5598896 B2 JP5598896 B2 JP 5598896B2 JP 2009170560 A JP2009170560 A JP 2009170560A JP 2009170560 A JP2009170560 A JP 2009170560A JP 5598896 B2 JP5598896 B2 JP 5598896B2
Authority
JP
Japan
Prior art keywords
power
frequency
amount
received
control load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009170560A
Other languages
Japanese (ja)
Other versions
JP2011019380A (en
Inventor
邦彦 岡野
博巳 山本
知彦 池谷
良爾 日渡
憲治 山地
雅昭 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2009170560A priority Critical patent/JP5598896B2/en
Publication of JP2011019380A publication Critical patent/JP2011019380A/en
Application granted granted Critical
Publication of JP5598896B2 publication Critical patent/JP5598896B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Eletrric Generators (AREA)

Description

本発明は電力系統の周波数安定化システムに関し、特に風況によって発電量が大きく異なる風力発電設備等、発電量が不安定な発電設備を電力系統に多数接続する場合に適用して有用なものである。   The present invention relates to a frequency stabilization system for an electric power system, and is particularly useful when applied to a large number of power generation facilities with unstable power generation amounts, such as wind power generation facilities whose power generation amounts vary greatly depending on wind conditions. is there.

電力系統では発電所の発電量と需要家で消費する受電量の大きさが常に同じでなければならない。例えば、発電量が受電量の大きさを上回ると、電力系統の周波数は基準周波数(例えば50Hz)よりも増大し、逆の場合は減少する。電力系統の周波数はある一定の基準値以内(例えば50±0.2Hz)に収める必要があり、各電力会社は時々刻々と変動する受電量に合わせて、発電量を調整するため、周波数制御(LFC:Load Frequency Control)容量を用意している。ただし、風況によって発電量が大きく変動する風力発電等の自然エネルギーを利用した発電設備が大量に電力系統に導入された場合、現状のLFC容量ではその発電出力の変動分を全て吸収することはできず、系統の周波数が大きく変動する虞がある。したがって、かかる発電量の変動が風力発電設備等を電力系統に導入する場合の障害となっている。   In the power system, the amount of power generated by the power plant and the amount of power received by consumers must always be the same. For example, when the power generation amount exceeds the amount of power reception, the frequency of the power system increases from the reference frequency (for example, 50 Hz), and decreases in the opposite case. The frequency of the power system needs to be within a certain reference value (for example, 50 ± 0.2 Hz), and each electric power company adjusts the power generation amount according to the amount of power received that varies from time to time. LFC: Load Frequency Control) capacity is prepared. However, if a large amount of power generation equipment using natural energy such as wind power generation whose power generation varies greatly depending on the wind conditions is introduced into the power system, the current LFC capacity will absorb all fluctuations in the power generation output. This is not possible and the frequency of the system may fluctuate greatly. Therefore, such fluctuations in the amount of power generation are an obstacle to the introduction of wind power generation facilities and the like into the power system.

ちなみに、近年の地球温暖化問題への対策として自然エネルギーの導入が推進されているが、この場合の発電電力量は自然環境によって左右され、出力電力が大きく変動する。かかる不安定な電源を大量に電力系統に接続した場合、電力系統の周波数品質の維持が困難になることが予想される。さらに、インバータ方式のエアコン等の普及に伴って電力系統の周波数に関係なく、一定の電力を受電する機器も増えており、様々な特性をもった負荷が電力系統に接続されていることから、系統の周波数制御は次第に難しくなっている。   Incidentally, the introduction of natural energy has been promoted as a countermeasure to the global warming problem in recent years. In this case, the amount of generated power depends on the natural environment, and the output power fluctuates greatly. When a large number of such unstable power supplies are connected to the power system, it is expected that it is difficult to maintain the frequency quality of the power system. Furthermore, with the spread of inverter-type air conditioners and the like, the number of devices that receive a certain amount of power is increasing regardless of the frequency of the power system, and loads with various characteristics are connected to the power system. System frequency control is becoming increasingly difficult.

これに対し、従来技術において一般的に行われてきた周波数変動対策は、発電所の出力調整や、集中的に制御された大規模なエネルギー貯蔵システムを利用する方式が中心であったが、これらの機器による応答速度には限界があると同時に、設置には費用がかさむ。また、かかる電源周波数調整のためのエネルギー貯蔵装置はエネルギーを生み出すことはないので、これらの導入は、エネルギーコストの上昇につながり、エネルギー効率も低下させる結果になる。   On the other hand, frequency fluctuation countermeasures that have been generally performed in the prior art centered on power plant output adjustment and a system that uses a centrally controlled large-scale energy storage system. There is a limit to the response speed of the equipment, and installation is expensive. In addition, since the energy storage device for adjusting the power supply frequency does not generate energy, the introduction thereof leads to an increase in energy cost and results in a decrease in energy efficiency.

需要家と発電設備が1対1で接続されている独立電力系統や、少数の需要家と発電設備とから構成される独立電力系統においても、需要家の負荷の入力変動によって生じる周波数変動を抑制することができる電力系統における周波数調整システムを開示する公知文献として特許文献1がある。これは、単独或いは複数の需要家に電力を供給する独立電力系統に接続されている周波数調整システムにおいて、独立電力系統に接続され電力を充電および放電する充放電手段と、充放電手段が充電および放電する充放電量を制御する充放電制御手段と、需要家の受電端に設けられ前記需要家に供給される電力を測定する需要家電力測定手段と、電力系統に接続され電力系統の周波数を測定する周波数測定手段とを備え、充放電制御手段は有効電力および周波数を制御対象信号として前記充放電量を制御し前記電力系統の周波数を所定の範囲内に保つように構成したものである。   Controls frequency fluctuations caused by fluctuations in customer load input even in independent power systems where consumers and power generation equipment are connected one-to-one or in independent power systems consisting of a small number of customers and power generation equipment Patent Document 1 is a publicly known document disclosing a frequency adjustment system in a power system that can be used. In a frequency adjustment system connected to an independent power system that supplies power to a single or a plurality of consumers, charging / discharging means connected to the independent power system for charging and discharging power, and charging / discharging means charging and discharging Charge / discharge control means for controlling the amount of charge / discharge to be discharged; consumer power measurement means for measuring the power supplied to the consumer provided at the receiving end of the consumer; and the frequency of the power grid connected to the power grid Frequency measurement means for measuring, and the charge / discharge control means is configured to control the charge / discharge amount using active power and frequency as control target signals and to keep the frequency of the power system within a predetermined range.

特開2008−178215号公報JP 2008-178215 A

上述の如き特許文献1に開示する周波数調整システムは、充放電装置を備え、この充放電装置における充放電量を制御することにより電力系統の周波数を調整するものであり、周波数調整のために特別な装置が必要になる結果、経済性の悪化の原因となる。また、逆潮流を発生するためこれに対する対策も別途必要になる。すなわち、特許文献1に開示するように、充放電によって周波数を安定化するには、系統運用者から集中的な制御をする必要があり、さらに複数の需要家が個々に充放電を行うと、お互いに干渉しあい、周波数の変動が大きくなる虞もある。   The frequency adjustment system disclosed in Patent Document 1 as described above includes a charge / discharge device, and adjusts the frequency of the power system by controlling the charge / discharge amount in the charge / discharge device. As a result, it becomes a cause of economic deterioration. In addition, since a reverse power flow is generated, it is necessary to take another countermeasure. That is, as disclosed in Patent Document 1, in order to stabilize the frequency by charging and discharging, it is necessary to perform intensive control from the system operator, and when a plurality of consumers perform charging and discharging individually, They may interfere with each other and increase the frequency fluctuation.

本発明は、上記従来技術に鑑み、電力系統に広く分散する負荷を利用して周波数調整を行うことができる電力系統の周波数安定化システムを提供することを目的とする。   An object of the present invention is to provide a frequency stabilization system for a power system capable of performing frequency adjustment using a load widely dispersed in the power system in view of the above-described conventional technology.

上記目的を達成する本発明の第1の態様は、
電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した
場合には前記周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少し
た場合には前記周波数の減少量に応じて前記受電量を減少させるように制御される受電量
制御負荷を他の一般負荷とともに前記電力系統に並列に接続し、
さらに前記電力系統内での電力の需給バランスを維持するために必要な要求発電増加量
と、前記受電量制御負荷の単位周波数当たりの受電電力増加量である前記受電量制御負荷
の周波数特性定数とに基づき求めた周波数シフト量を前記交流電力の周波数に加算して前
記受電量制御負荷に対する前記受電量を制御するように構成したことを特徴とする電力系
統の周波数安定化システムにある。
The first aspect of the present invention for achieving the above object is as follows:
When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the amount of power received is increased according to the amount of increase in the frequency, and when the frequency decreases, the frequency A power reception amount control load that is controlled so as to decrease the power reception amount according to a decrease amount is connected in parallel to the power system together with other general loads,
Furthermore, the required power generation increase required to maintain the power supply-demand balance in the power system, and the frequency characteristic constant of the received power control load, which is the received power increase per unit frequency of the received power control load, The power system frequency stabilization system is configured to control the power reception amount with respect to the power reception amount control load by adding the frequency shift amount obtained based on the frequency to the AC power frequency.

本態様によれば、電力系統内での電力の需給バランスを維持するために必要な要求発電増加量と、前記受電量制御負荷の周波数特性定数とに基づき電力系統の周波数が基準周波数に維持されるように前記受電量制御負荷に対する受電量を増減することができるので、第1の態様と同様の作用・効果に加え、電力系統内での電力の需給バランスを維持するために必要な周波数の制御も行うことができる。すなわち、第1の態様と同様の構成要素で電力系統の数秒単位での細かい周波数変動を抑制すると同時に、前述の如き要求発電増加量と、受電量制御負荷の周波数特性定数とを加味することにより、前記受電量制御負荷をLFC容量の代替とすることができ、第1の実施の形態では残ってしまう基準周波数に対する系統周波数の偏差を可及的に零に抑制することができる。   According to this aspect, the frequency of the power system is maintained at the reference frequency based on the required increase in power generation required to maintain the power supply-demand balance in the power system and the frequency characteristic constant of the received power control load. Since the amount of power received with respect to the received power control load can be increased or decreased as described above, in addition to the same operations and effects as in the first aspect, the frequency required to maintain the power supply-demand balance in the power system Control can also be performed. That is, by suppressing the fine frequency fluctuation in the unit of several seconds of the power system with the same components as in the first aspect, and at the same time, taking into account the required power generation increase amount and the frequency characteristic constant of the power reception amount control load as described above The power reception amount control load can be substituted for the LFC capacity, and the deviation of the system frequency with respect to the reference frequency remaining in the first embodiment can be suppressed to zero as much as possible.

本発明の第2の態様は、
電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した場合には前記周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少した場合には前記周波数の減少量に応じて前記受電量を減少させるように制御される受電量制御負荷を他の一般負荷とともに前記電力系統に並列に接続し、
さらに前記受電量制御負荷の受電量が事前に設定した計画に沿った量となるように設定した計画設定受電量と、前記受電量制御負荷の単位周波数当たりの受電電力増加量である前記受電量制御負荷の周波数特性定数とに基づき求めた周波数シフト量を前記交流電力の周波数に加算して前記受電量制御負荷に対する前記受電量を制御するように構成したことを特徴とする電力系統の周波数安定化システムにある。
The second aspect of the present invention is:
When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the amount of power received is increased according to the amount of increase in the frequency, and when the frequency decreases, the frequency A power reception amount control load that is controlled so as to decrease the power reception amount according to a decrease amount is connected in parallel to the power system together with other general loads,
A plan setting received power amount further power receiving amount of the received power amount control load was set to be an amount in line with the plan set in advance, the amount of received power said a received power increment per unit frequency of the power receiving amount control load A frequency shift amount obtained based on a frequency characteristic constant of a control load is added to the frequency of the AC power to control the power reception amount with respect to the power reception amount control load. In the system.

本態様によれば、計画設定受電量と、周波数特性定数とに基づき求めた周波数シフト量を交流電力の周波数に加算して受電量制御負荷に対する受電量を制御しているので、電力の供給元である、例えば電力会社が自由に各時間帯の需要量を制御することができる。すなわち、受電量制御負荷に対する1日の総充電電力量を各時間帯に最適配分して周波数シフト量を電力系統にとって最適となるように決定することができる。例えば、深夜の最低負荷時間帯に充電電力を大きくすることで、日負荷曲線のボトムアップを図ることができる。日負荷曲線のボトムアップは、発電コストの安いベース電源の稼働率を上げることができるため、電力供給元の経済性の向上に資することができる。   According to this aspect, the amount of frequency shift obtained based on the planned amount of received power and the frequency characteristic constant is added to the frequency of the AC power to control the amount of power received for the received power control load. For example, an electric power company can freely control the amount of demand in each time zone. That is, it is possible to determine the optimum amount of frequency shift for the power system by optimally allocating the total charge power amount for the received power amount control load for each time zone. For example, it is possible to bottom up the daily load curve by increasing the charging power in the lowest load time zone at midnight. The bottom-up of the daily load curve can increase the operating rate of the base power source with low power generation cost, which can contribute to the improvement of the economy of the power supply source.

本発明の第3の態様は、
電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した場合には前記周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少した場合には前記周波数の減少量に応じて前記受電量を減少させるように制御される受電量制御負荷を他の一般負荷とともに前記電力系統に並列に接続し、
さらに前記電力系統内での電力の供給バランスを維持するために必要な要求発電増加量と前記受電量制御負荷の受電量が事前に設定した計画に沿った量となるように設定した計画設定受電量とを加算した電力量と、前記受電量制御負荷の単位周波数当たりの受電電力増加量である前記受電量制御負荷の周波数特性定数とに基づき求めた周波数シフト量を前記交流電力の周波数に加算して前記受電量制御負荷に対する前記受電量を制御するように構成したことを特徴とする電力系統の周波数安定化システムにある。
The third aspect of the present invention is:
When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the amount of power received is increased according to the amount of increase in the frequency, and when the frequency decreases, the frequency A power reception amount control load that is controlled so as to decrease the power reception amount according to a decrease amount is connected in parallel to the power system together with other general loads,
Furthermore, the plan-set power reception set so that the required power generation increase necessary to maintain the power supply balance in the power system and the power reception amount of the power reception control load are in accordance with the preset plan. The amount of frequency shift obtained based on the amount of power added to the amount of power and the frequency characteristic constant of the received power control load, which is the increase in received power per unit frequency of the received power control load, is added to the frequency of the AC power. The power system frequency stabilization system is configured to control the power reception amount with respect to the power reception amount control load.

本態様によれば、上記第2の態様において得られる基準周波数に対する系統周波数の偏差を可及的に零に抑制することができるばかりでなく、上記第3の態様において得られる日負荷曲線のボトムアップを図ることによる経済的な系統運営も実現し得る。   According to this aspect, not only can the deviation of the system frequency with respect to the reference frequency obtained in the second aspect be suppressed to zero as much as possible, but also the bottom of the daily load curve obtained in the third aspect. Economic system management can also be realized by improving the system.

本発明の第4の態様は、
第1乃至第3の態様の何れか一つに記載する電力系統の周波数安定化システムにおいて

前記受電量制御負荷は、前記電力系統から供給される入力電力を変換する電力変換手段
と、前記要求発電増加量を前記受電量制御負荷の周波数特性定数で除して求めた周波数シ
フト量を前記電力系統の周波数の実測値に加算して求まる周波数と、前記基準周波数とを
比較して両者の偏差を表す偏差信号を出力する比較手段と、
前記偏差信号に基づき前記電力変換手段の出力電力を制御する制御手段と、
前記出力電力が供給される受電量可変負荷とを有することを特徴とする電力系統の周波
数安定化システムにある。
The fourth aspect of the present invention is:
In the frequency stabilization system for a power system according to any one of the first to third aspects,
The power reception amount control load includes power conversion means for converting input power supplied from the power system, and a frequency shift amount obtained by dividing the required power generation increase amount by a frequency characteristic constant of the power reception amount control load. Comparing means for comparing the reference frequency with the frequency obtained by adding to the actual measurement value of the frequency of the power system and outputting a deviation signal representing the deviation between the two,
Control means for controlling the output power of the power conversion means based on the deviation signal;
A power system frequency stabilization system comprising: a variable amount of received power to which the output power is supplied.

本態様によれば、電力変換装置の出力電力を電力系統の周波数の変動に応じて調整することにより受電量可変負荷に供給する電力を調整することで個別に負荷側で周波数調整を行うことができる。同時に、周波数シフト量を電力系統の周波数の実測値に加算して求まる周波数と、基準周波数とを比較して両者の偏差に基づき各受電量可変負荷を制御することができる。この結果、第1の実施の形態では残ってしまう基準周波数に対する系統周波数の偏差を可及的に零に抑制することができる。   According to this aspect, the frequency adjustment can be performed individually on the load side by adjusting the power supplied to the variable amount of received power by adjusting the output power of the power converter according to the fluctuation of the frequency of the power system. it can. At the same time, a frequency obtained by adding the frequency shift amount to the actual measurement value of the frequency of the power system and the reference frequency can be compared, and each power reception variable load can be controlled based on the deviation between the two. As a result, the deviation of the system frequency with respect to the reference frequency that remains in the first embodiment can be suppressed to zero as much as possible.

本発明の第5の態様は、
第1乃至第3の態様の何れか一つに記載する電力系統の周波数安定化システムにおいて

前記受電量制御負荷は、前記電力系統から供給される入力電力を変換する電力変換手段
と、
前記電力系統の周波数の実測値と、前記要求発電増加量を前記受電量制御負荷の周波数特
性定数で除して求めた周波数シフト量を前記基準周波数から減算して求まる周波数とを比
較して両者の偏差を表す偏差信号を出力する比較手段と、
前記偏差信号に基づき前記電力変換手段の出力電力を制御する制御手段と、
前記出力電力が供給される受電量可変負荷とを有することを特徴とする電力系統の周波
数安定化システムにある。
According to a fifth aspect of the present invention,
In the frequency stabilization system for a power system according to any one of the first to third aspects,
The power reception amount control load includes power conversion means for converting input power supplied from the power system,
The measured value of the frequency of the power system is compared with the frequency obtained by subtracting the frequency shift amount obtained by dividing the required increase in power generation by the frequency characteristic constant of the received power control load from the reference frequency. A comparison means for outputting a deviation signal representing the deviation of
Control means for controlling the output power of the power conversion means based on the deviation signal;
A power system frequency stabilization system comprising: a variable amount of received power to which the output power is supplied.

本態様によれば、電力変換装置の出力電力を電力系統の周波数の変動に応じて調整することにより受電量可変負荷に供給する電力を調整することで個別に負荷側で周波数調整を行うことができる。同時に、周波数シフト量を前記基準周波数から減算して求まる周波数と、電力系統の実測周波数とを比較して両者の偏差に基づき受電量可変負荷を制御することができる。この結果、第1の実施の形態では残ってしまう基準周波数に対する系統周波数の偏差を可及的に零に抑制することができる。   According to this aspect, the frequency adjustment can be performed individually on the load side by adjusting the power supplied to the variable amount of received power by adjusting the output power of the power converter according to the fluctuation of the frequency of the power system. it can. At the same time, the frequency obtained by subtracting the frequency shift amount from the reference frequency and the actually measured frequency of the power system can be compared to control the variable power reception load based on the deviation between the two. As a result, the deviation of the system frequency with respect to the reference frequency that remains in the first embodiment can be suppressed to zero as much as possible.

本発明の第6の態様は、第1、第3、第4又は第5の態様に記載する電力系統の周波数安定化システムにおいて、
前記要求発電増加量は、複数の電力系統を相互に接続する連系線の潮流を検出する潮流
検出手段における検出電力と前記基準周波数に対する前記電力系統の周波数の偏差とに基
づき求めることを特徴とする電力系統の周波数安定化システムにある。

According to a sixth aspect of the present invention, in the frequency stabilization system for a power system described in the first, third, fourth, or fifth aspect,
The required power generation increase amount is obtained based on a detected power in a tidal current detecting means for detecting a tidal current of an interconnection line connecting a plurality of power systems and a deviation of the frequency of the power system with respect to the reference frequency. In the power system frequency stabilization system.

本態様によれば、電力系統内での需給バランスを制御することで連系線潮流の変動を抑制するとともに周波数変動も良好に抑制することができる。   According to this aspect, by controlling the supply and demand balance in the power system, it is possible to suppress fluctuations in the interconnected power flow and to satisfactorily suppress frequency fluctuations.

さらに、日負荷曲線のボトムアップを図ることもでき、このボトムアップによる経済的な系統運営も実現し得る。   In addition, the daily load curve can be bottomed up, and economic system management can be realized by this bottom up.

本発明によれば、一定の電力で受電する必要がないという受電量制御負荷を利用して個々の負荷側で個別対応の周波数調整を行うことができ、発電所における出力調整や大規模なエネルギー調整システムに頼ることなく当該電力系統の全体的な周波数調整を良好に実現することができる。したがって、発電量が不安定な風力発電設備等が接続されていても、これらの風力発電設備等の発電容量に見合う受電量制御負荷を電力系統に接続するだけで安定的な周波数調整を容易に行うことができる。   According to the present invention, it is possible to perform individual frequency adjustment on each load side using a received power control load that does not need to receive power with constant power, and to adjust output at a power plant and large-scale energy. The overall frequency adjustment of the power system can be satisfactorily realized without depending on the adjustment system. Therefore, even if wind power generation facilities with unstable power generation are connected, stable frequency adjustment can be easily achieved by simply connecting a received power control load that matches the power generation capacity of these wind power generation facilities. It can be carried out.

さらに、受電量制御負荷に対する1日の総充電電力量を各時間帯に最適配分して周波数シフト量を電力系統にとって最適となるように決定することができ、日負荷曲線のボトムアップを図ることができる。   Furthermore, it is possible to determine the optimal amount of frequency shift for the power system by optimally allocating the total charged power amount per day for the received power control load to each time zone, and to achieve a bottom-up of the daily load curve. Can do.

この結果、一般に発電量が不安定な自然エネルギーを利用した発電設備の電力系統への積極的な導入に資することができ、その分自然環境に優しい電力系統を構築することができる。特に、LFC容量が減少する夜間において利用した場合に顕著な効果を奏する。   As a result, it is possible to contribute to the active introduction of power generation facilities that use natural energy, which generally has unstable power generation, into the power system, and to that extent, a power system that is friendly to the natural environment can be constructed. In particular, it has a remarkable effect when used at night when the LFC capacity decreases.

さらに、日負荷曲線のボトムアップによる電力供給元の経済性の向上も実現することができる。   Furthermore, it is possible to improve the economy of the power supply source by bottom-up of the daily load curve.

本発明の第1の実施形態に係る電力系統の周波数安定化システムを示すブロック線図である。It is a block diagram which shows the frequency stabilization system of the electric power system which concerns on the 1st Embodiment of this invention. 図1の受電量制御負荷の部分を抽出して示すブロック線図である。It is a block diagram which extracts and shows the part of the electric power reception amount control load of FIG. 本発明の第1の実施形態に係る周波数制御の一例を示す特性図である。It is a characteristic view which shows an example of the frequency control which concerns on the 1st Embodiment of this invention. 本発明の第1の実施形態に係る周波数制御のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the frequency control which concerns on the 1st Embodiment of this invention. 本発明の第2の実施形態に係る電力系統の周波数安定化システムを示すブロック線図である。It is a block diagram which shows the frequency stabilization system of the electric power grid | system which concerns on the 2nd Embodiment of this invention. 図5の受電量制御負荷の部分を抽出して示すブロック線図である。FIG. 6 is a block diagram showing an extracted portion of the power reception amount control load in FIG. 5. 本発明の第2の実施形態に係る周波数制御のシミュレーション結果を示す特性図である。It is a characteristic view which shows the simulation result of the frequency control which concerns on the 2nd Embodiment of this invention. 図5の受電量制御負荷の部分の他の例を抽出して示すブロック線図である。FIG. 6 is a block diagram showing another example of a portion of the power reception amount control load in FIG. 本発明の第3の実施形態に係る電力系統の周波数安定化システムを示すブロック線図である。It is a block diagram which shows the frequency stabilization system of the electric power grid | system which concerns on the 3rd Embodiment of this invention. 図9に示す第3の実施の形態の電力系統の日負荷曲線の一例を示す特性図である。It is a characteristic view which shows an example of the daily load curve of the electric power grid | system of 3rd Embodiment shown in FIG. 本発明の第4の実施形態に係る電力系統の周波数安定化システムを示すブロック線図である。It is a block diagram which shows the frequency stabilization system of the electric power grid | system which concerns on the 4th Embodiment of this invention.

以下本発明の実施の形態を図面に基づき詳細に説明する。
図1は、本発明の第1の実施の形態に係る電力系統の周波数安定化システムを示すブロック線図である。同図に示すように、系統電源線1には複数の発電設備2と一般負荷3及び受電量制御負荷4とがそれぞれ接続されている。ここで、発電設備としては火力発電設備、水力発電設備等、特別な制限はないが、本形態の場合、風等の自然エネルギーを利用するため発電量が安定しない風力発電設備等であっても問題なく導入することができる。そこで、図には風力発電設備のみを例示的に示している。また、受電量制御負荷4は、受電量を変更することが可能な負荷であり、当該電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した場合には周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少した場合には周波数の減少量に応じて受電量を減少させるように制御される。かかる受電量制御負荷4はその複数台が他の多くの一般負荷3とともに系統電源線1に並列に接続されている。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a frequency stabilization system for a power system according to the first embodiment of the present invention. As shown in FIG. 1, a plurality of power generation facilities 2, a general load 3, and a power reception amount control load 4 are connected to the system power line 1. Here, there are no special restrictions on the power generation equipment, such as thermal power generation equipment, hydroelectric power generation equipment, etc. It can be installed without problems. Therefore, only the wind power generation facility is exemplarily shown in the figure. The power reception amount control load 4 is a load capable of changing the power reception amount. When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the frequency increase is performed. Control is performed to increase the amount of power received according to a large amount and to decrease the amount of power received according to the amount of frequency decrease when the frequency decreases. A plurality of such received power amount control loads 4 are connected in parallel to the system power supply line 1 together with many other general loads 3.

図2は受電量制御負荷4の部分を抽出して示すブロック線である。同図に示すように、受電量制御負荷4は、電力変換装置5と、比較器6と、制御装置7と、受電量可変負荷8とを有する。ここで、電力変換装置5は系統電源線1から供給される入力電力を適当な出力電力に変換するものであり、交流・直流電力変換装置としては整流素子としてサイリスタを用いた整流装置、交流・交流電力変換装置としてはサイリスタを用いた整流装置で一旦直流に整流した後、同様にサイリスタを用いたインバータで所定の交流に再変換する装置で好適に構成することができる。ただ、電力変換装置5をこれらに限る必要は勿論ない。比較器6は、予め定められた基準周波数fと系統電源線1の周波数fの実測値とを比較して両者の偏差を表す偏差信号Seを出力する。制御装置7は偏差信号Seに基づき電力変換装置5の出力電力を制御する。具体的には、電力変換装置5がサイリスタを使用している場合にはその導通角を制御する。受電量可変負荷8は電力変換装置5の出力電力が供給されるもので、具体的には、一定の電力量を電気エネルギーとして蓄積できれば良い蓄電装置、所定の温度条件を満たしている範囲内であれば受電電力量を制御可能な冷蔵庫や自動販売機等で好適に構成することができる。ここで、蓄電装置は直流負荷であり、冷蔵庫や自動販売機は交流負荷である。したがって、前者には整流装置を介して、後者にはインバータを介して所定の電力が供給される。このように、本形態における受電量可変負荷8は直流負荷乃至交流負荷のいずれでも構わない。ただ、昼間は電気エネルギーを消費することにより走行し、主に夜間に電気エネルギーを蓄積する電気自動車を負荷とするのが当該電力系統にとって最適である。余剰の夜間電力を利用することができるばかりでなく、LFC容量の減少を補完して良好な周波数調整を行うことができるからである。最大充電電力で充電した場合に較べ、本発明による充電電力の調整によって充電には長い時間がかかることになるが、特に電気自動車をプラグインハイブリッド車とした場合には、充電中である夜間に予定外の事態が発生し、当該車両を使用する必要が生じた場合にはガソリン車として走行させることができるため、充電中であっても、車両として予定外の事態に対処させることができるという効果も奏する。 FIG. 2 is a block line showing an extracted portion of the power reception amount control load 4. As shown in the figure, the power reception amount control load 4 includes a power conversion device 5, a comparator 6, a control device 7, and a power reception amount variable load 8. Here, the power converter 5 converts input power supplied from the system power line 1 into appropriate output power. As an AC / DC power converter, a rectifier using a thyristor as a rectifier, AC / DC The AC power conversion device can be suitably configured by a device that once rectifies to direct current using a rectifier using a thyristor and then reconverts it to a predetermined alternating current using an inverter using a thyristor. However, it is needless to say that the power conversion device 5 is not limited to these. The comparator 6 compares a predetermined reference frequency f 0 with an actual measurement value of the frequency f of the system power line 1 and outputs a deviation signal Se 1 representing the deviation between the two. The controller 7 controls the output power of the power converter 5 on the basis of the deviation signal Se 1. Specifically, when the power converter 5 uses a thyristor, the conduction angle is controlled. The power receiving amount variable load 8 is supplied with the output power of the power conversion device 5. Specifically, the power receiving device only needs to be able to store a certain amount of electric power as electric energy, within a range satisfying a predetermined temperature condition. If it exists, it can comprise suitably with a refrigerator, a vending machine, etc. which can control received electric energy. Here, the power storage device is a DC load, and the refrigerator and the vending machine are AC loads. Accordingly, predetermined power is supplied to the former via the rectifier and to the latter via the inverter. Thus, the received power variable load 8 in this embodiment may be a DC load or an AC load. However, it is optimal for the electric power system to use an electric vehicle that travels by consuming electric energy during the day and stores electric energy mainly at night. This is because not only the surplus nighttime electric power can be used, but also a good frequency adjustment can be performed by complementing the decrease in the LFC capacity. Compared to charging with the maximum charging power, charging takes longer time by adjusting the charging power according to the present invention. Especially when the electric vehicle is a plug-in hybrid vehicle, it is charged at night. When an unscheduled situation occurs and the vehicle needs to be used, it can be run as a gasoline car, so it can handle unscheduled situations as a vehicle even during charging. There is also an effect.

上記実施の形態における受電量可変負荷8の定格最大電力をPmaxとするとき、基準周波数 f(関東地方であればf=50Hz)に対して、基準周波数では0.5Pmaxの受電をし、電源周波数がΔHz低下すると受電電力をゼロに、ΔHz上昇すると受電電力をPmaxに増加するように設定し、±ΔHzを超える範囲でのPinは一定、その中間は周波数変化幅に比例して制御する。 実測された電源周波数をf、基準周波数をfoとして、受電電力Pinを式で表すと次の通りである。 When the rated maximum power of the received power variable load 8 in the above embodiment is Pmax, the reference frequency f 0 (f 0 = 50 Hz in the Kanto region) is received at 0.5 Pmax at the reference frequency, When the power frequency decreases by ΔHz, the received power is set to zero, and when the power frequency increases, the received power is set to increase to Pmax. Pin in a range exceeding ± ΔHz is constant, and the middle is controlled in proportion to the frequency change width. . The measured power supply frequency is f, the reference frequency is fo, and the received power Pin is expressed by the following equation.

Pin = 0.5 Pmax { 1 + (f - f)/Δ} [ -1 ≦(f - f)/Δ)≦ 1 ] ・・・(1)
Pin = 0 [(f - f)/Δ) < -1 ] ・・・(2)
Pin = Pmax [ 1 <(f - f)/Δ) ] ・・・(3)
Pin = 0.5 Pmax {1 + (f-f 0 ) / Δ} [-1 ≤ (f-f 0 ) / Δ) ≤ 1] (1)
Pin = 0 [(f-f 0 ) / Δ) <-1] (2)
Pin = Pmax [1 <(f-f 0 ) / Δ)] (3)

現実の制御例としては Δ =0.2Hz程度が望まれる。   As an actual control example, Δ = about 0.2 Hz is desired.

本形態におけるかかる制御は、各需要家相互の調整を全く必要とすることなく、個別に周波数を実測しながら行う。   Such control in the present embodiment is performed while actually measuring the frequencies individually without requiring any mutual adjustment between consumers.

本形態の効果を具体的に確認するため次のようなシミュレーションを行った。条件は次の通りである。
1)電力系統の容量(基準周波数における電力需要):6085MW
2)電力系統のLFC容量:99MW
ここで、LFCは電力系統内の発電過不足量を解消するために、発電機が持っている
発電出力を変化させることができる容量の範囲であり、各発電機の出力変化特性を模擬
するために電気学会における標準モデル(火力発電所および水力発電所)を用いた。
3)電力系統に接続された風力発電設備の定格容量 :1200MW
風力発電の出力波形を模擬したものを周波数シミュレーションモデルに入力した。最大出力変動幅を定格出力の40%(480MW)としている。
受電量可変負荷8として電気自動車の蓄電池を想定した。
In order to specifically confirm the effect of this embodiment, the following simulation was performed. The conditions are as follows.
1) Capacity of power system (electric power demand at reference frequency): 6085 MW
2) LFC capacity of power system: 99MW
Here, LFC is a range of capacity that can change the power generation output of the generator in order to eliminate the excess or deficiency of power generation in the power system, and to simulate the output change characteristics of each generator. The standard model (thermal power plant and hydroelectric power plant) at the Institute of Electrical Engineers of Japan was used.
3) Rated capacity of wind power generation equipment connected to the power grid: 1200 MW
A simulation of the output waveform of wind power generation was input to the frequency simulation model. The maximum output fluctuation range is 40% of the rated output (480 MW).
An electric vehicle storage battery is assumed as the variable amount 8 of received power.

ここで、蓄電池の時定数(電源周波数に対する応答速度)は1秒とした。ちなみに、火力発電所の場合の時定数は10秒程度である。また、周波数応答特性は、定格最大電力Pmaxを1000Wとした場合で、図3に示す特性を有するものとした。   Here, the time constant of the storage battery (response speed with respect to the power supply frequency) was 1 second. Incidentally, the time constant in the case of a thermal power plant is about 10 seconds. Further, the frequency response characteristics are those when the rated maximum power Pmax is 1000 W and have the characteristics shown in FIG.

かかる条件に基づくシミュレーション結果を図4に示す。図4において、薄い実線は図3に示す周波数制御を行わない場合、点線は合計50MWの電気自動車(10万台)の蓄電池を受電量可変負荷8として用いることにより図3に示す周波数制御を行った場合、濃い実線は合計150MWの電気自動車(30万台)の蓄電池を受電量可変負荷8として用いることにより図3に示す周波数制御を行った場合をそれぞれ示している。   The simulation result based on such conditions is shown in FIG. In FIG. 4, the thin solid line does not perform the frequency control shown in FIG. 3, and the dotted line performs the frequency control shown in FIG. 3 by using a storage battery of a total of 50 MW electric vehicles (100,000 units) as the power reception variable load 8. In this case, a dark solid line indicates a case where the frequency control shown in FIG. 3 is performed by using a storage battery of a total of 150 MW electric vehicles (300,000 units) as the power reception variable load 8.

図4を参照すれば、本形態における受電量可変負荷8を全く有しない場合には、周波数変動が0.4Hzに達しているのに対し、受電量可変負荷8である電気自動車を10万台接続して50MWの負荷容量で周波数調整を行った場合には0.2Hz程度、さらに電気自動車を30万台接続して150MWの負荷容量で周波数調整を行った場合には0.1Hz程度にまで周波数変動が抑制されていることが分かる。すなわち、この場合の電気自動車がLFC容量の代替として機能していることが分かる。   Referring to FIG. 4, when there is no variable power receiving load 8 in this embodiment, the frequency fluctuation reaches 0.4 Hz, whereas 100,000 electric vehicles that are the variable power receiving load 8 are provided. When connected and frequency adjusted with a load capacity of 50 MW, about 0.2 Hz, and when 300,000 electric vehicles are connected and frequency adjusted with a load capacity of 150 MW, up to about 0.1 Hz It can be seen that the frequency fluctuation is suppressed. That is, it can be seen that the electric vehicle in this case functions as an alternative to the LFC capacity.

このように、本形態によれば需要家側の受電において、一定の受電量を維持する必要のない機器、例えば電気自動車、冷蔵庫、自動販売機等の受電において、受電量を電力系統の周波数に対応させて調整することで、電力系統の周波数変動を吸収することができる。かかる周波数制御は検出された電力系統の周波数に基づき、個々の需要家が個別に実施することが可能であり、受電制御機器である受電量制御負荷を集中的に管理する必要がないという管理上の大きな利点を有している。また、エネルギー貯蔵装置等を別途構築するのではなく、需要家が本来は別の目的(例えば電気自動車の場合は走行)で必要とする機器のエネルギー貯蔵容量をそのまま周波数調整に利用することができるので、エネルギー効率、コストという視点でも極めて有利である。   As described above, according to the present embodiment, in the power reception on the consumer side, in the power reception of devices such as electric cars, refrigerators, and vending machines that do not need to maintain a constant power reception amount, the power reception amount is set to the frequency of the power system. By adjusting correspondingly, it is possible to absorb frequency fluctuations of the power system. Such frequency control can be performed individually by each customer based on the detected frequency of the power system, and there is no need to centrally manage the received power control load that is a power receiving control device. Has great advantages. In addition, instead of building an energy storage device or the like separately, the energy storage capacity of a device that a customer originally needs for another purpose (for example, traveling in the case of an electric vehicle) can be used for frequency adjustment as it is. Therefore, it is extremely advantageous from the viewpoint of energy efficiency and cost.

さらに、上記第1の実施の形態では、図3に示す周波数特性を一種類に固定して用いる場合について説明したが、電力変換装置5に出力させる出力電力のパターンを複数種類用意しても良い。例えば、電力需要がピークに達する真夏の昼間の特定の時間帯では図3に示す特性図において、基準周波数foにおけるチャージ電力が500Wから400Wにシフトされるように図中の左方向に特性直線を平行移動したマップ情報で周波数制御をする。このことで、季節や時間帯で異なる電力需要の実態を反映した的確な周波数制御を行うことができる。ここで、かかるマップ情報は制御装置7に格納しておく。   Furthermore, although the case where the frequency characteristic shown in FIG. 3 is fixed to one type has been described in the first embodiment, a plurality of types of output power patterns to be output to the power converter 5 may be prepared. . For example, in a specific time zone in midsummer daytime when the power demand reaches a peak, in the characteristic diagram shown in FIG. 3, a characteristic line is drawn in the left direction in the figure so that the charge power at the reference frequency fo is shifted from 500 W to 400 W. Frequency control is performed using the translated map information. This makes it possible to perform accurate frequency control that reflects the actual situation of power demand that varies depending on the season and time zone. Here, such map information is stored in the control device 7.

図5及び図6は、本発明の第2の実施の形態に係る電力系統の周波数安定化システムを示す図で、図5はそのブロック線図、図6はその受電量制御負荷14の部分を抽出して示すブロック線図である。   5 and 6 are diagrams showing a frequency stabilization system for an electric power system according to a second embodiment of the present invention. FIG. 5 is a block diagram thereof, and FIG. 6 is a part of the received power control load 14. It is a block diagram extracted and shown.

本形態は、第1の実施の形態に係る周波数安定システムの全ての構成要素を有しており、さらに第1の実施の形態では残ってしまう基準周波数に対する系統周波数の偏差を可及的に零に抑制できるようにしたものである。そこで、図5及び図6中、図1及び図2と同一部分には同一番号を付し、重複する説明は省略する。   The present embodiment has all the components of the frequency stabilization system according to the first embodiment, and further eliminates as much as possible the deviation of the system frequency from the reference frequency that remains in the first embodiment. It can be suppressed. Therefore, in FIG. 5 and FIG. 6, the same parts as those in FIG. 1 and FIG.

図5に示すように、本形態においては系統電源線1に連系線12を介して他の電力系統の系統電力線11が接続されている。系統電力線11には多数の一般負荷3が接続されて
いる。
As shown in FIG. 5, in this embodiment, the system power line 11 of another power system is connected to the system power supply line 1 via the interconnection line 12. A number of general loads 3 are connected to the system power line 11.

潮流検出部13は連系線12の途中に接続してあり、連系線12を介して送電される連系線潮流(電力量)及び基準周波数fに対する潮流周波数(系統電源線1の実測した周波数fと等価)の偏差Δfを検出している。かくして、偏差Δfに基づき系統電源線1内での電力の需給バランスを維持するために必要な要求発電増加量AR(W)を求め、さらに要求発電増加量ARと、受電量制御負荷14の単位周波数当たりの受電電力増加量である受電量制御負荷14の周波数特性定数K(W/Hz)とに基づき受電量制御負荷14に供給する周波数シフト量fshiftを決定している。すなわち、次式(4)の演算により求めた周波数シフト量fshiftを表すシフト信号を各受電量制御負荷14に向けて送出するようになっている。 The tidal current detection unit 13 is connected in the middle of the interconnection line 12. The tidal current (power amount) transmitted through the interconnection line 12 and the tidal frequency relative to the reference frequency f 0 (measurement of the system power line 1). The deviation Δf of the equivalent frequency f) is detected. Thus, the required power generation increase amount AR (W) required for maintaining the power supply / demand balance in the system power line 1 based on the deviation Δf is obtained, and the required power generation increase amount AR and the unit of the received power control load 14 are further obtained. The frequency shift amount f shift to be supplied to the power reception amount control load 14 is determined based on the frequency characteristic constant K p (W / Hz) of the power reception amount control load 14 that is the amount of increase in the power reception power per frequency. That is, a shift signal representing the frequency shift amount f shift obtained by the calculation of the following equation (4) is sent to each power reception amount control load 14.

shift=−(AR/K) ・・・・・(4) f shift = − (AR / K p ) (4)

ここで、受電量制御負荷14の周波数特性定数K(W/Hz)は受電量制御負荷14の特性により予め決定される。 Here, the frequency characteristic constant K p (W / Hz) of the received power control load 14 is determined in advance by the characteristics of the received power control load 14.

上述の如き要求発電増加量ARは系統電源線1を有する地域内での需給バランスを維持するために必要な電力量であるので、要求発電増加量ARと同量だけ需要量を減少させても、地域内の需給バランスを保つことは可能である。これは上式(4)により算出した周波数シフト量fshiftを表すシフト信号を全受電量制御負荷14に一斉に送信し、系統電源線1の周波数fを周波数シフト量fshift だけシフトさせたものを入力として、受電量制御負荷14を制御することで実現できる。これは受電量制御負荷14側から見た見かけ上の周波数を制御していることと等価となる。 The required power increase amount AR as described above is an amount of power necessary to maintain the supply and demand balance in the area where the system power supply line 1 is provided. Therefore, even if the demand amount is reduced by the same amount as the required power generation increase amount AR. It is possible to maintain a balance between supply and demand in the region. This is a signal in which the shift signal representing the frequency shift amount f shift calculated by the above equation (4) is transmitted to all the received power control loads 14 at the same time, and the frequency f of the system power line 1 is shifted by the frequency shift amount f shift. Can be realized by controlling the received power control load 14. This is equivalent to controlling the apparent frequency viewed from the power reception amount control load 14 side.

周波数シフト量fshiftを表すシフト信号は、潮流検出部13が内蔵する送信機(図示せず)を介して各受電量制御負荷14に向けて一括送信される。ここで、図6に示すように、本形態における受電量制御負荷14は受信機16を有しており、この受信機16で前記シフト信号を受信する。シフト信号に基づく周波数シフト量fshiftは加算器17で系統電源線1の実測した周波数fに加算され、f+fshiftとして比較器6で基準周波数設定器15に設定されている基準周波数fと比較される。なお、AR<0の場合にfshift>0となり、AR>0の場合にfshift<0となる。この結果、比較器6の出力信号である偏差信号Seに基づき制御装置7を介して制御される電力変換装置5は、系統電源線1の周波数fが見かけ上(f+fshift)であるとして制御されることで、系統電源線1内の要求発電増加量ARがゼロとなるように受電量可変負荷8に供給する受電電力を調整する。要求発電増加量ARがゼロとなれば、当然、系統電源線1内で需給のバランスが保たれるので、系統周波数は基準周波数に維持され、連系線潮流の変動も無くなる。 The shift signal representing the frequency shift amount f shift is transmitted collectively to each power reception amount control load 14 via a transmitter (not shown) built in the power flow detection unit 13. Here, as shown in FIG. 6, the power reception amount control load 14 in this embodiment has a receiver 16, and the receiver 16 receives the shift signal. The frequency shift amount f shift based on the shift signal is added to the actually measured frequency f of the system power supply line 1 by the adder 17 and compared with the reference frequency f 0 set in the reference frequency setter 15 by the comparator 6 as f + f shift. Is done. Note that f shift > 0 when AR <0, and f shift <0 when AR> 0. As a result, the power conversion device 5 that is controlled via the control device 7 based on the deviation signal Se 2 that is the output signal of the comparator 6 is controlled on the assumption that the frequency f of the system power supply line 1 is apparent (f + f shift ). Thus, the received power supplied to the received power variable load 8 is adjusted so that the required power generation increase amount AR in the system power supply line 1 becomes zero. If the required power increase amount AR becomes zero, naturally, the balance of supply and demand is maintained in the system power supply line 1, so that the system frequency is maintained at the reference frequency, and fluctuations in the interconnection power flow are eliminated.

かかる本形態においては要求発電増加量ARを加味した周波数シフト量fshiftを各受電量制御負荷14の受電量制御のパラメータとして追加したので、各受電量制御負荷14は系統電源線1の周波数fが見かけ上(f+fshift)であるとして受電量可変負荷8に供給する受電電力を調整する。この結果、系統電源線1内の要求発電増加量ARがゼロとなるように受電量可変負荷8に供給する受電電力が調整され、第1の実施の形態では残ってしまう基準周波数に対する系統周波数の偏差を可及的に零に抑制することができる。 In this embodiment, since the frequency shift amount f shift in consideration of the required power generation increase amount AR is added as a parameter for power reception amount control of each power reception amount control load 14, each power reception amount control load 14 has a frequency f of the system power line 1. Is received (f + f shift ), and the received power supplied to the received power variable load 8 is adjusted. As a result, the received power supplied to the received power variable load 8 is adjusted so that the required power increase AR in the system power line 1 becomes zero, and the system frequency relative to the reference frequency that remains in the first embodiment is adjusted. The deviation can be suppressed to zero as much as possible.

図7は本形態に係る周波数制御のシミュレーション結果を示す特性図である。図7において、薄い灰色の実線は第1の実施の形態に係る周波数制御も、本形態(第2の実施の形態)に係る周波数制御も行わない場合、濃い灰色の実線は第1の実施の形態に係る周波数制御のみを行った場合、黒色の実線は第1の実施の形態に係る周波数制御とともに本形態に係る周波数制御も行った場合をそれぞれ示している。   FIG. 7 is a characteristic diagram showing a simulation result of frequency control according to the present embodiment. In FIG. 7, when the frequency control according to the first embodiment and the frequency control according to the present embodiment (second embodiment) are not performed, the light gray solid line indicates the dark gray solid line of the first embodiment. When only the frequency control according to the embodiment is performed, the black solid line indicates the case where the frequency control according to the present embodiment is performed together with the frequency control according to the first embodiment.

図7を参照すれば、本形態における受電量制御負荷14を全く有しない場合には、周波数変動が0.16Hzに達しているのに対し、第1の実施の形態における受電量制御負荷4のみを有する場合には0.05Hz程度、さらに本形態における受電量制御負荷14を有する場合には、受電量制御負荷4のみを有する場合の周波数変動も抑制されて可及的に零に近づいていることが分かる。   Referring to FIG. 7, when there is no power reception amount control load 14 in this embodiment, the frequency fluctuation reaches 0.16 Hz, whereas only the power reception amount control load 4 in the first embodiment. In the case of having the power reception amount control load 14 in the present embodiment, the frequency fluctuation in the case of having only the power reception amount control load 4 is also suppressed and approaches zero as much as possible. I understand that.

なお、第2の実施の形態では、潮流検出部13で連系線12を介して送電される連系線潮流及び基準周波数fに対する潮流周波数の偏差Δfを検出しているが、これに限るものでは勿論ない。例えば、系統の運用管理を行う中央制御室等で測定することも当然できる。また、第2の実施の形態は系統電源線1に連系線12を介して他の電力系統の系統電力線11を接続した場合であるが、これに限るものでもない。単独の系統であっても要求発電増加量ARを管理している系統であれば制限なく適用でき、同様の効果を得ることができる。 In the second embodiment, the tidal current detecting unit 13 detects the telecommunication frequency tidal power transmitted via the telecommunication line 12 and the tidal frequency deviation Δf with respect to the reference frequency f 0. However, the present invention is not limited to this. Of course not a thing. For example, it is naturally possible to perform measurement in a central control room that manages the operation of the system. Moreover, although 2nd Embodiment is the case where the system power line 11 of another power system is connected to the system power supply line 1 via the interconnection line 12, it is not restricted to this. Even a single system can be applied without limitation as long as it is a system that manages the required power generation increase amount AR, and the same effect can be obtained.

図5における潮流検出部13が内蔵する送信機(図示せず)から各受電量制御負荷14に向けて一括送信する周波数シフト量fshiftを表すシフト信号は、図8に示すように、受電量制御負荷24の受信機26で受信するとともに、周波数シフト量fshiftを減算器27で基準周波数fから減算し、f−fshiftとして比較器6で周波数fと比較しても第2の実施の形態と同様の偏差信号Seを得ることができる。したがって、受電量制御負荷24を図8のように構成しても良い。なお、本例でも、AR<0の場合にfshift>0となり、AR>0の場合にfshift<0である。 As shown in FIG. 8, the shift signal representing the frequency shift amount f shift that is collectively transmitted from the transmitter (not shown) built in the power flow detector 13 in FIG. Even if it is received by the receiver 26 of the control load 24 and the frequency shift amount f shift is subtracted from the reference frequency f 0 by the subtractor 27 and compared with the frequency f by the comparator 6 as f 0 -f shift , it is A deviation signal Se 2 similar to that of the embodiment can be obtained. Therefore, the power reception amount control load 24 may be configured as shown in FIG. Also in this example, f shift > 0 when AR <0, and f shift <0 when AR> 0.

なお、本形態においては周波数シフト量fshiftを連系線12の途中に接続してある潮流検出部13から送出するようにしたが、これに限るものではない。連系線12を有しない場合でもよく、中央給電指令所等から送出するようにしても勿論構わない。 In the present embodiment, the frequency shift amount f shift is transmitted from the power flow detector 13 connected in the middle of the interconnection line 12, but is not limited thereto. Of course, the connection line 12 may not be provided, and it may be sent from a central power supply command station or the like.

図9は本発明の第3の実施の形態に係る電力系統の周波数安定化システムを示すブロック線図である。   FIG. 9 is a block diagram showing a frequency stabilization system for a power system according to the third embodiment of the present invention.

本形態は、第1の実施の形態に係る電力系統の周波数安定化システムの全ての構成要素を有しており、さらに第2の実施の形態で説明した周波数シフト量fshiftを、第2の実施の形態のようにLFCに適用するのではなく、経済負荷配分制御(EDC:Economical Load Dispatching Control)に適用したものである。そこで、図9中、図1及び図5と同一部分には同一番号を付し、重複する説明は省略する。 This embodiment has all the components of the frequency stabilization system for the power system according to the first embodiment, and further, the frequency shift amount f shift described in the second embodiment is changed to the second The present invention is not applied to the LFC as in the embodiment, but is applied to an economic load distribution control (EDC). Therefore, in FIG. 9, the same parts as those in FIGS.

図9に示すように、本形態では、中央給電指令所23から各受電量制御負荷14に向けて周波数シフト量fshiftを表すシフト信号を送出するようになっている。ここで、本形態における周波数シフト量fshiftは受電量制御負荷14の受電量が予め定める計画に沿った量となるように設定した計画設定受電量AR’(w)と、周波数特性定数Kとに基づき次式(5)に基づき決定する。 As shown in FIG. 9, in this embodiment, a shift signal representing the frequency shift amount f shift is sent from the central power supply command station 23 toward each power reception amount control load 14. Here, the frequency shift amount f shift in the present embodiment is the planned power reception amount AR ′ (w) set so that the power reception amount of the power reception amount control load 14 is in accordance with a predetermined plan, and the frequency characteristic constant K p. And based on the following equation (5).

shift=−(AR’/K) ・・・・・(5) f shift = − (AR ′ / K p ) (5)

上式(5)に示すように、本形態における周波数シフト量fshiftは式(4)の要求発電増加量ARを計画設定受電量AR’で代替したものである。 As shown in the above equation (5), the frequency shift amount f shift in this embodiment is obtained by substituting the required power generation increase amount AR in equation (4) with the planned power reception amount AR ′.

この結果、各受電量制御負荷14の受電量は系統電源線1から供給される交流電力の周波数fに周波数シフト量fshiftを加算して制御される。すなわち、各受電量制御負荷14は、第2の実施の形態と同様に、系統電源線1の周波数fが見かけ上(f+fshift)であるとして受電量可変負荷8に供給する受電電力を調整する。 As a result, the power reception amount of each power reception amount control load 14 is controlled by adding the frequency shift amount f shift to the frequency f of the AC power supplied from the system power line 1. That is, each received power control load 14 adjusts the received power supplied to the received power variable load 8 assuming that the frequency f of the system power supply line 1 is apparently (f + f shift ), as in the second embodiment. .

ここで、計画設定受電量AR’は、当該電力系統の日負荷曲線に基づき決定する。日負荷曲線の一例を図10に示す。同図に示すように、例えば、受電量制御負荷14の1日の総充電電力量を各時間帯に最適配分する際、深夜の最低負荷時間帯に充電電力を大きくすることで日負荷曲線のボトムアップを図ることができるような計画とする。すなわち、本来的には図10の実線で示すような日負荷曲線の斜線部分を持ち上げて、最低負荷時間帯(図10に示す場合は、午前1時頃から午前6時過ぎの時間帯)の負荷を一点鎖線で示すような特性にする。なお、図10はベース電源として原子力発電を適用し、不足分を順次LNG発電及び石油発電で賄っていく場合を示している。この場合、単位電力当たりの発電コストは、原子力、LNG、石油の順に高くなる。   Here, the planned power reception amount AR ′ is determined based on the daily load curve of the power system. An example of the daily load curve is shown in FIG. As shown in the figure, for example, when optimally allocating the total charge power amount of the received power control load 14 to each time zone, the charge power is increased in the lowest load time zone at midnight to increase the daily load curve. The plan will allow bottom-up. That is, the shaded portion of the daily load curve as originally shown by the solid line in FIG. 10 is lifted and the minimum load time zone (in the case shown in FIG. 10, the time zone from about 1 am to past 6 am) Set the load as indicated by the alternate long and short dash line. FIG. 10 shows a case where nuclear power generation is applied as the base power source, and the shortage is successively covered by LNG power generation and oil power generation. In this case, the power generation cost per unit power increases in the order of nuclear power, LNG, and petroleum.

図10中に斜線で示すような日負荷曲線のボトムアップにより発電コストが最も安価なベース電源である原子力発電稼働率を図中に矢印Aで示すように上昇させることができる。すなわち、図中10に示す斜線部分の電力が計画設定受電量ということになり、中央給電指令所23は各時間毎に割り振って計画設定受電量に基づく周波数シフト量fshiftを表すシフト信号を送出する。 The nuclear power generation operation rate, which is the base power source with the lowest power generation cost, can be raised as indicated by an arrow A in the figure by bottom-up of the daily load curve as shown by diagonal lines in FIG. That is, the power in the shaded area shown by 10 in the figure is the planned power reception amount, and the central power supply command station 23 allocates each time and sends a shift signal representing the frequency shift amount f shift based on the planned power reception amount. To do.

すなわち、本形態における中央給電指令所23は、系統電源線1を含む電力系統に対する供給電力量の制御等、従来と同様の機能とともに、受電量制御負荷14の受電量が予め定める計画に沿った量となるように設定した計画設定受電量AR’(w)に基づくEDCの機能も有するものとなる。   That is, the central power supply command station 23 in the present embodiment is in accordance with a plan in which the amount of power received by the power reception control load 14 is determined in advance along with functions similar to the conventional ones such as control of the amount of power supplied to the power system including the system power line 1 It also has an EDC function based on the planned power reception amount AR ′ (w) set so as to be an amount.

図11は本発明の第4の実施形態に係る電力系統の周波数安定化システムを示すブロック線図である。   FIG. 11: is a block diagram which shows the frequency stabilization system of the electric power grid | system which concerns on the 4th Embodiment of this invention.

本形態は、第2の実施の形態と第3の実施の形態との機能を兼備するものである。すなわち、LFCとEDCとを同時に実現するものである。そこで、図11中、図5及び図9と同一部分には同一番号を付し、重複する説明は省略する。   This embodiment combines the functions of the second embodiment and the third embodiment. That is, LFC and EDC are realized simultaneously. Therefore, in FIG. 11, the same parts as those in FIGS. 5 and 9 are denoted by the same reference numerals, and redundant description is omitted.

図11に示すように、本形態では、連系線12の途中に接続された中央給電指令所33から要求発電増加量ARと計画設定受電量AR’とを加算した電力量と、周波数特性定数Kとに基づき求めた周波数シフト量fshiftを表すシフト信号を各受電量制御負荷14に向けて送出するようになっている。すなわち、本形態における周波数シフト量fshiftは次式(6)で表される。 As shown in FIG. 11, in this embodiment, the power amount obtained by adding the required power generation increase AR and the planned power reception amount AR ′ from the central power supply command station 33 connected in the middle of the interconnection line 12, and the frequency characteristic constant a shift signal representing the K p and the frequency shift amount f shift determined based on adapted to deliver toward each received power amount control load 14. That is, the frequency shift amount f shift in this embodiment is expressed by the following equation (6).

shift=−(AR+AR’/K) ・・・・・(6) f shift = − (AR + AR ′ / K p ) (6)

本形態における各受電量制御負荷14は系統電源線1から供給される交流電力の周波数fに周波数シフト量fshiftを加算して系統電源線1の周波数fが見かけ上(f+fshift)であるとして受電量可変負荷8に供給する受電電力を調整する。 Each power reception amount control load 14 in this embodiment adds the frequency shift amount f shift to the frequency f of the AC power supplied from the system power supply line 1, and the frequency f of the system power supply line 1 is apparently (f + f shift ). The received power supplied to the received power variable load 8 is adjusted.

この結果、本形態によれば、電力系統内での需給バランスを制御することで連系線潮流の変動を抑制するとともに周波数変動も良好に抑制することができるばかりでなく、日負荷曲線のボトムアップを図ることもでき、このボトムアップによる経済的な系統運営も実現し得る。   As a result, according to this embodiment, by controlling the supply and demand balance in the power system, it is possible not only to suppress fluctuations in the interconnection power flow, but also to suppress frequency fluctuations well, as well as the bottom of the daily load curve. It is possible to improve the system, and it is possible to realize economical system operation by bottom-up.

本発明は、自然エネルギーを利用した発電システムを構築する産業分野で有効に利用することができる。   The present invention can be effectively used in an industrial field in which a power generation system using natural energy is constructed.

1、11 系統電源線
2 発電設備
3 一般負荷
4、14、24 受電量制御負荷
5 電力変換装置
6 比較器
7 制御装置
8 受電量可変負荷
12 連系線
13 潮流検出部
16、26 受信機
17 加算器
23、33 中央給電指令所
27 減算器
DESCRIPTION OF SYMBOLS 1, 11 System power line 2 Power generation equipment 3 General load 4, 14, 24 Power receiving amount control load 5 Power converter 6 Comparator 7 Control device 8 Power receiving amount variable load 12 Interconnection line 13 Power flow detection part 16, 26 Receiver 17 Adders 23, 33 Central power supply command station 27 Subtractor

Claims (6)

電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した場合には前記周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少した場合には前記周波数の減少量に応じて前記受電量を減少させるように制御される受電量制御負荷を他の一般負荷とともに前記電力系統に並列に接続し、
さらに前記電力系統内での電力の需給バランスを維持するために必要な要求発電増加量と、前記受電量制御負荷の単位周波数当たりの受電電力増加量である前記受電量制御負荷の周波数特性定数とに基づき求めた周波数シフト量を前記交流電力の周波数に加算して前記受電量制御負荷に対する前記受電量を制御するように構成したことを特徴とする電力系統の周波数安定化システム。
When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the amount of power received is increased according to the amount of increase in the frequency, and when the frequency decreases, the frequency A power reception amount control load that is controlled so as to decrease the power reception amount according to a decrease amount is connected in parallel to the power system together with other general loads,
Furthermore, the required power generation increase required to maintain the power supply-demand balance in the power system, and the frequency characteristic constant of the received power control load, which is the received power increase per unit frequency of the received power control load, A frequency stabilization system for an electric power system configured to control the power reception amount with respect to the power reception amount control load by adding the frequency shift amount obtained based on the frequency to the frequency of the AC power.
電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した場合には前記周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少した場合には前記周波数の減少量に応じて前記受電量を減少させるように制御される受電量制御負荷を他の一般負荷とともに前記電力系統に並列に接続し、
さらに前記受電量制御負荷の受電量が事前に設定した計画に沿った量となるように設定した計画設定受電量と、前記受電量制御負荷の単位周波数当たりの受電電力増加量である前記受電量制御負荷の周波数特性定数とに基づき求めた周波数シフト量を前記交流電力の周波数に加算して前記受電量制御負荷に対する前記受電量を制御するように構成したことを特徴とする電力系統の周波数安定化システム。
When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the amount of power received is increased according to the amount of increase in the frequency, and when the frequency decreases, the frequency A power reception amount control load that is controlled so as to decrease the power reception amount according to a decrease amount is connected in parallel to the power system together with other general loads,
A plan setting received power amount further power receiving amount of the received power amount control load was set to be an amount in line with the plan set in advance, the amount of received power said a received power increment per unit frequency of the power receiving amount control load A frequency shift amount obtained based on a frequency characteristic constant of a control load is added to the frequency of the AC power to control the power reception amount with respect to the power reception amount control load. System.
電力系統における所定の基準周波数に対して受電している交流電力の周波数が増大した場合には前記周波数の増大量に応じて受電量を増大させるとともに、前記周波数が減少した場合には前記周波数の減少量に応じて前記受電量を減少させるように制御される受電量制御負荷を他の一般負荷とともに前記電力系統に並列に接続し、
さらに前記電力系統内での電力の供給バランスを維持するために必要な要求発電増加量と前記受電量制御負荷の受電量が事前に設定した計画に沿った量となるように設定した計画設定受電量とを加算した電力量と、前記受電量制御負荷の単位周波数当たりの受電電力増加量である前記受電量制御負荷の周波数特性定数とに基づき求めた周波数シフト量を前記交流電力の周波数に加算して前記受電量制御負荷に対する前記受電量を制御するように構成したことを特徴とする電力系統の周波数安定化システム。
When the frequency of the AC power received with respect to a predetermined reference frequency in the power system increases, the amount of power received is increased according to the amount of increase in the frequency, and when the frequency decreases, the frequency A power reception amount control load that is controlled so as to decrease the power reception amount according to a decrease amount is connected in parallel to the power system together with other general loads,
Furthermore, the plan-set power reception set so that the required power generation increase necessary to maintain the power supply balance in the power system and the power reception amount of the power reception control load are in accordance with the preset plan. The amount of frequency shift obtained based on the amount of power added to the amount of power and the frequency characteristic constant of the received power control load, which is the increase in received power per unit frequency of the received power control load, is added to the frequency of the AC power. And a power system frequency stabilization system configured to control the power reception amount with respect to the power reception amount control load.
請求項乃至請求項の何れか一つに記載する電力系統の周波数安定化システムにおいて、
前記受電量制御負荷は、前記電力系統から供給される入力電力を変換する電力変換手段と、
前記要求発電増加量を前記受電量制御負荷の周波数特性定数で除して求めた周波数シフト量を前記電力系統の周波数の実測値に加算して求まる周波数と、前記基準周波数とを比較して両者の偏差を表す偏差信号を出力する比較手段と、
前記偏差信号に基づき前記電力変換手段の出力電力を制御する制御手段と、
前記出力電力が供給される受電量可変負荷とを有することを特徴とする電力系統の周波数安定化システム。
In the frequency stabilization system of the electric power system as described in any one of Claims 1 thru | or 3 ,
The power reception amount control load includes power conversion means for converting input power supplied from the power system,
The frequency obtained by dividing the required increase in power generation by the frequency characteristic constant of the received power control load is added to the measured value of the frequency of the power system and the reference frequency to compare both A comparison means for outputting a deviation signal representing the deviation of
Control means for controlling the output power of the power conversion means based on the deviation signal;
A power system frequency stabilization system comprising: a variable amount of received power to which the output power is supplied.
請求項乃至請求項の何れか一つに記載する電力系統の周波数安定化システムにおいて、
前記受電量制御負荷は、前記電力系統から供給される入力電力を変換する電力変換手段と、
前記電力系統の周波数の実測値と、前記要求発電増加量を前記受電量制御負荷の周波数特性定数で除して求めた周波数シフト量を前記基準周波数から減算して求まる周波数とを比較して両者の偏差を表す偏差信号を出力する比較手段と、
前記偏差信号に基づき前記電力変換手段の出力電力を制御する制御手段と、
前記出力電力が供給される受電量可変負荷とを有することを特徴とする電力系統の周波
数安定化システム。
In the frequency stabilization system of the electric power system as described in any one of Claims 1 thru | or 3 ,
The power reception amount control load includes power conversion means for converting input power supplied from the power system,
The measured value of the frequency of the power system is compared with the frequency obtained by subtracting the frequency shift amount obtained by dividing the required increase in power generation by the frequency characteristic constant of the received power control load from the reference frequency. A comparison means for outputting a deviation signal representing the deviation of
Control means for controlling the output power of the power conversion means based on the deviation signal;
A power system frequency stabilization system comprising: a variable amount of received power to which the output power is supplied.
請求項1、請求項3、請求項4又は請求項5に記載する電力系統の周波数安定化システムにおいて、
前記要求発電増加量は、複数の電力系統を相互に接続する連系線の潮流を検出する潮流検出手段における検出電力と前記基準周波数に対する前記電力系統の周波数の偏差とに基づき求めることを特徴とする電力系統の周波数安定化システム。
In the power system frequency stabilization system according to claim 1, claim 3, claim 4 or claim 5 ,
The required power generation increase amount is obtained based on a detected power in a tidal current detecting means for detecting a tidal current of an interconnection line connecting a plurality of power systems and a deviation of the frequency of the power system with respect to the reference frequency. Power system frequency stabilization system.
JP2009170560A 2008-11-25 2009-07-21 Frequency stabilization system for power system Expired - Fee Related JP5598896B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009170560A JP5598896B2 (en) 2008-11-25 2009-07-21 Frequency stabilization system for power system

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008300207 2008-11-25
JP2008300207 2008-11-25
JP2009138639 2009-06-09
JP2009138639 2009-06-09
JP2009170560A JP5598896B2 (en) 2008-11-25 2009-07-21 Frequency stabilization system for power system

Publications (2)

Publication Number Publication Date
JP2011019380A JP2011019380A (en) 2011-01-27
JP5598896B2 true JP5598896B2 (en) 2014-10-01

Family

ID=43596731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009170560A Expired - Fee Related JP5598896B2 (en) 2008-11-25 2009-07-21 Frequency stabilization system for power system

Country Status (1)

Country Link
JP (1) JP5598896B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494769A (en) * 2019-01-07 2019-03-19 华北电力大学 A kind of wind field participates in frequency modulation method and system
WO2022172045A1 (en) 2021-02-10 2022-08-18 日産自動車株式会社 Charge/discharge control method for charging/discharging element and charge/discharge control device for charging/discharging element

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9385540B2 (en) 2011-09-22 2016-07-05 Nec Corporation Battery control system, battery control device, battery control method and recording medium
US9682633B2 (en) 2011-11-01 2017-06-20 Nec Corporation Charge control device, battery management device, charge control method, and record medium
EP2830183B1 (en) * 2012-03-23 2016-12-07 Osaka Gas Co., Ltd. Power consumption mode guiding device and system
JP2015512607A (en) * 2012-03-28 2015-04-27 エアロバイロメント, インコーポレイテッドAerovironment, Inc. Frequency responsive charging system and method
US9746836B2 (en) 2012-12-18 2017-08-29 Panasonic Intellectual Property Management Co., Ltd. Supply and demand control device and supply and demand control method
GB201609687D0 (en) * 2016-06-02 2016-07-20 Open En Ltd System and method for controlling an electrical load
JP7365116B2 (en) * 2018-12-26 2023-10-19 川崎重工業株式会社 Power system stabilizer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3484621B2 (en) * 1997-07-04 2004-01-06 株式会社日立製作所 Power storage system using secondary battery
JP4860960B2 (en) * 2005-08-22 2012-01-25 株式会社東芝 Power network control system
JP5100132B2 (en) * 2007-01-18 2012-12-19 株式会社東芝 Frequency adjustment system and frequency adjustment method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109494769A (en) * 2019-01-07 2019-03-19 华北电力大学 A kind of wind field participates in frequency modulation method and system
WO2022172045A1 (en) 2021-02-10 2022-08-18 日産自動車株式会社 Charge/discharge control method for charging/discharging element and charge/discharge control device for charging/discharging element

Also Published As

Publication number Publication date
JP2011019380A (en) 2011-01-27

Similar Documents

Publication Publication Date Title
JP5598896B2 (en) Frequency stabilization system for power system
US8922056B2 (en) Power interchange system for interchanging electric energy between a battery and an electric grid, method for interchanging electric energy between a battery and an electric grid and application of the power interchange system
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
JP3352662B2 (en) Power system stabilizing apparatus and power system stabilizing method using secondary battery system
CA2908384C (en) Apparatus and method for operating distributed generator in connection with power system
JP5100132B2 (en) Frequency adjustment system and frequency adjustment method
KR101431047B1 (en) Coordinated Droop Control Apparatus and the Method for Stand-alone DC Micro-grid
WO2012017937A1 (en) Power demand-and-supply equalization system
JP5618294B2 (en) High and low voltage distribution system voltage regulation system
EP2490312A1 (en) Solar generation method and system
US20160172853A1 (en) Method and apparatus for transmitting electrical power
WO2006088078A1 (en) Generation system
KR101426826B1 (en) Variable Resistance Type Droop Control Appratus and the Method for Stand-alone Micro-grid
JP5396549B1 (en) Charge / feed device, charge / feed management device, energy management system, and charge / feed management method
US20040257730A1 (en) Power supply method and power supply system
JP2012161202A (en) Hierarchical type supply and demand controller and power system control system
US10074986B2 (en) System for providing a primary control power for a power grid
US20160359342A1 (en) Energy management system
US11865942B2 (en) Electrical vehicle charging station with power management
JP6960314B2 (en) Power management system
JP2013192345A (en) Voltage control system
US20130173190A1 (en) Methods and systems for estimating charge capacity of an electrical energy-storage device
JP5773719B2 (en) Method and apparatus for controlling load frequency of power system
US20200295571A1 (en) Power system and power control device
KR102444388B1 (en) Optimal energy operation method for microgrids

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140806

R150 Certificate of patent or registration of utility model

Ref document number: 5598896

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees