JP5598813B2 - Thin film thermophysical property measuring device and method of measuring thermal conductivity and interfacial thermal resistance using this measuring device - Google Patents
Thin film thermophysical property measuring device and method of measuring thermal conductivity and interfacial thermal resistance using this measuring device Download PDFInfo
- Publication number
- JP5598813B2 JP5598813B2 JP2010052533A JP2010052533A JP5598813B2 JP 5598813 B2 JP5598813 B2 JP 5598813B2 JP 2010052533 A JP2010052533 A JP 2010052533A JP 2010052533 A JP2010052533 A JP 2010052533A JP 5598813 B2 JP5598813 B2 JP 5598813B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- measuring
- thermal
- thermal resistance
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010409 thin film Substances 0.000 title claims description 77
- 238000000034 method Methods 0.000 title claims description 9
- 239000000523 sample Substances 0.000 claims description 28
- 239000000758 substrate Substances 0.000 claims description 22
- 238000005259 measurement Methods 0.000 claims description 20
- 238000000691 measurement method Methods 0.000 claims description 11
- 230000004044 response Effects 0.000 claims description 11
- 238000010438 heat treatment Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 4
- 239000010421 standard material Substances 0.000 claims 1
- 239000002184 metal Substances 0.000 description 37
- 229910052751 metal Inorganic materials 0.000 description 37
- 239000010408 film Substances 0.000 description 22
- 238000009792 diffusion process Methods 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000012417 linear regression Methods 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000035699 permeability Effects 0.000 description 4
- 238000004364 calculation method Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 229910052594 sapphire Inorganic materials 0.000 description 3
- 239000010980 sapphire Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Description
本発明は、表面に薄膜を有する対象物の熱物性を調べる熱物性測定装置と薄膜の熱伝導率と界面熱抵抗の測定技術に関する。 The present invention relates to a thermophysical property measuring apparatus for examining a thermophysical property of an object having a thin film on the surface, and a technique for measuring the thermal conductivity and interfacial thermal resistance of the thin film.
薄膜の熱伝導率や界面熱抵抗を測定する手段として、特許文献1、2が既に公知である。
前記特許文献1では、膜厚より熱拡散長が十分小さい条件を要求する解析理論を用いていたが為に、測定可能な膜厚に下限がある。数ミクロン以下の膜厚に対応できない。もちろん界面熱抵抗の測定も不可能であった。
特許文献2では、金属や半導体では、交流電流が金属薄膜以外の層を交流加熱するため、熱伝導方程式の境界条件を満たさないから、測定対象の物質が制限される。金属や半導体に対応できない。
Patent Documents 1 and 2 are already known as means for measuring the thermal conductivity and interfacial thermal resistance of a thin film.
Since Patent Document 1 uses an analysis theory that requires a condition in which the thermal diffusion length is sufficiently smaller than the film thickness, there is a lower limit to the measurable film thickness. Cannot handle film thickness of several microns or less. Of course, it was impossible to measure the interfacial thermal resistance.
In Patent Document 2, in metals and semiconductors, alternating current heats layers other than the metal thin film, so that the boundary condition of the heat conduction equation is not satisfied, and thus the substance to be measured is limited. Cannot handle metals and semiconductors.
本発明は、このような実情に鑑み、薄膜が金属であっても、またその厚さが数ミクロン以下であっても、熱伝導率と界面熱抵抗を測定する手段を得ることを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to obtain a means for measuring thermal conductivity and interfacial thermal resistance even if the thin film is a metal and the thickness is several microns or less. .
本発明の熱物性測定方法は、対象物に対して、所定の周波数の交流ポンプ光を照射する加熱光照射手段と、前記ポンプ光の照射により生じた対象物表面の交流温度応答を測定するための、当該表面から反射するプローブ光の反射率を測定する手段と、当該表面から反射するプローブ光の振幅と位相を測定する手段とを有する熱物性測定装置を用いて対象物の熱物性を調べる測定方法であって、前記交流温度応答の振幅と位相の測定結果から、前記ポンプ光の照射による単位面積当たりの熱流(Q)の絶対値が未知であっても、前記対象物の基板を標準物質とする熱物性値を用いて解析し、前記対象物の表面にある薄膜層の熱抵抗と界面熱抵抗値の和を求めることを特徴とする。
本発明の熱物性測定方法において、好ましくは、前記ポンプ光の照射による単位面積当たりの熱流(Q)は、次式(9)により求めるとよい;
ここで、Qはポンプ光照射による単位面積当たりの発熱量、λは熱伝導率、Cは体積比熱容量、I AC は反射光量のAC成分、I DC は反射光量のDC成分、αはthermo−reflectance係数、ωは角周波数である。
The thermophysical property measurement method of the present invention measures heating light irradiation means for irradiating an object with alternating-current pump light of a predetermined frequency, and an AC temperature response on the surface of the object caused by the irradiation of the pump light. The thermophysical property of the object is examined using a thermophysical property measuring apparatus having means for measuring the reflectance of the probe light reflected from the surface and means for measuring the amplitude and phase of the probe light reflected from the surface. In the measurement method, the substrate of the object is standardized even if the absolute value of the heat flow (Q) per unit area by the irradiation of the pump light is unknown from the measurement result of the amplitude and phase of the AC temperature response. The analysis is performed using the thermophysical value as the substance, and the sum of the thermal resistance and the interfacial thermal resistance value of the thin film layer on the surface of the object is obtained.
In the thermophysical property measuring method of the present invention, preferably, the heat flow (Q) per unit area by the irradiation of the pump light is obtained by the following formula (9);
Here, Q is the amount of heat generated per unit area by pump light irradiation, λ is the thermal conductivity, C is the volume specific heat capacity, I AC is the AC component of the reflected light amount , I DC is the DC component of the reflected light amount, and α is the thermo− The reflectance coefficient, ω, is the angular frequency.
薄膜の標準試料を必要とせずに、極めて薄い膜の熱伝導率と界面熱抵抗測定可能であると共に、完全な光学的手段による加熱・測温方式の採用により、金属膜に測定も可能になった。 It is possible to measure the thermal conductivity and interfacial thermal resistance of an extremely thin film without the need for a thin film standard sample, and it is also possible to measure a metal film by adopting a heating / temperature measurement method using a complete optical means. It was.
(1)本測定法では、基板上に形成された薄膜試料の表面に金属薄膜を成膜し、薄膜層の厚さより熱拡散長が十分大きい条件を満たすような低周波数で変調された。
「薄膜層の膜厚より熱拡散長が十分大きい条件」とは、近似式が成立する条件である。上述の近似式導出過程において数式で提示した条件kd<<1を言葉で表現したものである。
近似式は、exp、sinh、cosh関数をkdについて展開してkdの高次の項を無視することにより得られるが、そのための条件がkd<<1である。
(2)均一かつ、大口径なポンプ光を、金属薄膜表面に照射して交流加熱し、薄膜層と基板層に一次元の温度波を浸透させ、金属薄膜表面の交流温度応答をサーモリフレクタンスで検出し、ロックインアンプで検出したサーモリフレクタンスの振幅と位相を測る。
本発明の熱伝導方程式の境界条件は一次元熱流を前提としている。一次元熱流は、金属薄膜表面のポンプレーザ光の直径を、プロ−ブレーザ光の直径と比較して十分大きくすることにより保障される。
(3)薄膜の膜厚より熱拡散長が十分大きい条件のとき、前記成立する金属薄膜層を含む熱系の熱伝導方程式の解の近似式に基づいて解析することにより、薄膜の熱伝導率と界面熱抵抗を求める。
具体的には、波数kを熱拡散率と周波数の関数とし、熱拡散長の逆数とする。kdを膜厚dを熱拡散長k−1で割ったものとする。
先ず薄膜の膜厚dを測定する。条件を満たすkの値を決定する。薄膜の熱拡散率Dを推定し、kの定義式に従って周波数を計算する。試験測定を行い、熱伝導率の実測結果からk値を求める。k値が条件を満たすかどうか判定する。満たしていなければ、周波数を変更して、再度上記手順を実行する。
(4)本測定法では、基板の既知の熱物性値を用いて薄膜の熱伝導率と界面熱抵抗の絶対値を決定できる。
(5)本測定法では、膜厚が熱拡散長より十分小さい薄膜層の熱伝導率と界面熱抵抗を測定できる。金属薄膜や薄膜のdが薄くてもkd<<1という条件を満たす。(式kd<<1の中のdは膜厚である。)k値の上限は基板の熱物性(熱拡散率と厚さ)で決定され、薄膜の膜厚に依存しない。kが一定のときdが限りなくゼロに近づけば、kdも限りなくゼロに近づくので、これは式kd<<1を満たすこととなる。ちなみに文献1の測定法では、本発明と全く反対のkd>>1が条件になってしまう。この場合はおのずから膜厚に下限が生じる。
(6)本測定法は、ジュール加熱を用いず光加熱によるから絶縁体だけでなく金属や半導体の熱伝導率と界面熱抵抗を測定できる。
(1) In this measurement method, a metal thin film was formed on the surface of a thin film sample formed on a substrate, and modulated at a low frequency so that the thermal diffusion length was sufficiently larger than the thickness of the thin film layer.
The “condition that the thermal diffusion length is sufficiently larger than the film thickness of the thin film layer” is a condition that satisfies the approximate expression. The condition kd << 1 presented by the mathematical expression in the above approximate expression derivation process is expressed in words.
The approximate expression is obtained by expanding the exp, sinh, and cosh functions with respect to kd and ignoring the higher-order terms of kd, and the condition for that is kd << 1.
(2) Uniform and large-diameter pump light is irradiated to the surface of the metal thin film and AC heated to infiltrate a one-dimensional temperature wave into the thin film layer and the substrate layer, and the AC temperature response on the surface of the metal thin film is reflected by thermoreflectance. Measure the amplitude and phase of the thermoreflectance detected by the lock-in amplifier.
The boundary condition of the heat conduction equation of the present invention is premised on a one-dimensional heat flow. One-dimensional heat flow is ensured by making the diameter of the pump laser light on the surface of the metal thin film sufficiently larger than the diameter of the probe laser light.
(3) When the thermal diffusion length is sufficiently larger than the thickness of the thin film, the thermal conductivity of the thin film is analyzed by analyzing based on the approximate equation of the solution of the thermal conduction equation of the thermal system including the metal thin film layer. And determine the interfacial thermal resistance.
Specifically, the wave number k is a function of the thermal diffusivity and the frequency, and the reciprocal of the thermal diffusion length. Let kd be the film thickness d divided by the thermal diffusion length k- 1 .
First, the film thickness d of the thin film is measured. The value of k that satisfies the condition is determined. The thermal diffusivity D of the thin film is estimated, and the frequency is calculated according to the definition formula of k. Test measurement is performed, and k value is obtained from the actual measurement result of thermal conductivity. It is determined whether or not the k value satisfies the condition. If not, change the frequency and execute the above procedure again.
(4) In this measurement method, the absolute values of the thermal conductivity and interfacial thermal resistance of the thin film can be determined using known thermophysical values of the substrate.
(5) In this measurement method, the thermal conductivity and interface thermal resistance of a thin film layer whose film thickness is sufficiently smaller than the thermal diffusion length can be measured. The condition of kd << 1 is satisfied even if d of the metal thin film or the thin film is thin. (D in the formula kd << 1 is the film thickness.) The upper limit of the k value is determined by the thermal properties (thermal diffusivity and thickness) of the substrate and does not depend on the film thickness of the thin film. If d is as close as possible to zero when k is constant, kd will approach zero as much as possible, so this satisfies the equation kd << 1. Incidentally, in the measurement method of Document 1, kd >> 1, which is completely opposite to the present invention, is a condition. In this case, the film thickness naturally has a lower limit.
(6) Since this measurement method uses optical heating without using Joule heating, it can measure the thermal conductivity and interfacial thermal resistance of not only insulators but also metals and semiconductors.
<測定概要1>
図1に模式図で示した薄膜の熱伝導率測定用の熱系(3層熱系)での測定手法を以下に説明する。
図4は、本発明の薄膜熱伝導・界面熱抵抗測定装置の概念図である。
ロックイン増幅器(10)に内蔵の信号発生器から出力される交流信号(C1)により変調されたポンプレーザ光(L2)(LD)をレーザ発信機(8)から発信する。ポンプレーザ光(L2)はPBS(偏光ビームスプリッタ)(9)で直角に反射され、レンズ(11)によって集光され、試料(12)上に一定の直径で、照射される。一方、プローブレーザ発信器(1)から発信されたプローブレーザ光(L1)(HeNe)はλ/2波長板(2)を透過した後、CBS(キューブビームスプリッタ)(5)で2分割される。CBS(5)で反射されたビーム(L12)は、NDF(4)を透過し、直角プリズム(3)で180度向きを変え、再びNDF(4)とCBS(5)を透過し、示差PD(フォトダイオード)(7)の片方のセル(7a)に入射する。一方、はじめにCBS(5)で2分割され、CBS(5)を透過したビーム(L13)はPBS(9)を透過し、レンズ(11)で集光され、金属薄膜表面(12)のポンプレーザ光(L2)の照射領域の中心に焦点を結ぶ。金属薄膜表面で反射された光(L14)は、再びレンズ(11)とPBS(9)を透過し、CBS(5)で反射され、示差PD(7)の他方のセル(7b)に入射する。
λ/2 Plate(λ/2波長板)(2)を光軸のまわりに回転させ、偏光状態を変化させることにより、プローブレーザ光(L1)がPBS(9)を透過する光量を調節することができる。こうして示差PD(7)両セル(7a)(7b)に入射する光量のバランスをとることができる。このような示差光学系はプローブレーザのコモンモードノイズを低減するので、微弱な反射光量変化を高精度で計測できる。
示差PD(7)の光電流の差をIV−増幅器(図外)で電圧に変換し、その電圧信号(C2)をロックイン増幅器(10)でロックイン検波(入力された交流電圧の振幅と位相に比例する直流電圧をそれぞれ出力する)して、コンピュータ端子(13)から、所定の処理方法(以下の各式に基づく処理)プログラムを作動させているコンピュータ(図外)に入力され、当該信号(C2)に基づく演算を行い、その熱伝導率等を算定する。
なお、BPF(バンドパスフィルター)(6)は、プローブレーザ光(L14)を透過し、ポンプレーザ光(L2)を透過させない。NDF(NDフィルター)(4)はプリズム(3)の反射光量を減衰させる。
<Measurement outline 1>
The measurement method in the heat system (three-layer heat system) for measuring the thermal conductivity of the thin film shown in the schematic diagram of FIG. 1 will be described below.
FIG. 4 is a conceptual diagram of a thin film thermal conduction / interfacial thermal resistance measuring apparatus of the present invention.
Pump laser light (L2) (LD) modulated by an AC signal (C1) output from a signal generator built in the lock-in amplifier (10) is transmitted from a laser transmitter (8). The pump laser light (L2) is reflected at right angles by a PBS (polarizing beam splitter) (9), collected by a lens (11), and irradiated onto the sample (12) with a constant diameter. On the other hand, the probe laser beam (L1) (HeNe) transmitted from the probe laser transmitter (1) is transmitted through the λ / 2 wavelength plate (2) and then divided into two by a CBS (cube beam splitter) (5). . The beam (L12) reflected by the CBS (5) passes through the NDF (4), changes its direction by 180 degrees with the right-angle prism (3), and again passes through the NDF (4) and the CBS (5). (Photodiode) Incident on one cell (7a) of (7). On the other hand, the beam (L13) first divided into two by CBS (5) and transmitted through CBS (5) is transmitted through PBS (9), condensed by lens (11), and pump laser on metal thin film surface (12). The focal point is set at the center of the irradiation region of the light (L2). The light (L14) reflected by the surface of the metal thin film is transmitted again through the lens (11) and the PBS (9), is reflected by the CBS (5), and enters the other cell (7b) of the differential PD (7). .
Rotating the λ / 2 plate (λ / 2 wavelength plate) (2) around the optical axis to change the polarization state, thereby adjusting the amount of light transmitted by the probe laser light (L1) through the PBS (9). Can do. In this way, the amount of light incident on the differential PD (7) both cells (7a) and (7b) can be balanced. Since such a differential optical system reduces common mode noise of the probe laser, it is possible to measure a weak reflected light amount change with high accuracy.
The photocurrent difference of the differential PD (7) is converted into a voltage by an IV-amplifier (not shown), and the voltage signal (C2) is locked-in detected by the lock-in amplifier (10) (the amplitude of the input AC voltage and DC voltage proportional to the phase is output respectively) and input from the computer terminal (13) to a computer (not shown) operating a predetermined processing method (processing based on the following equations) program, Calculation based on the signal (C2) is performed, and the thermal conductivity and the like are calculated.
The BPF (band pass filter) (6) transmits the probe laser beam (L14) and does not transmit the pump laser beam (L2). The NDF (ND filter) (4) attenuates the amount of light reflected by the prism (3).
金属薄膜表面に変調された所定の直径のポンプレーザ光(L2)を照射して交流加熱し、X軸方向(図中下側に向く矢印)に交流熱流を発生させる。ポンプレーザ光(L2)照射領域の中心の温度応答をサーモリフレクタンス(反射率が温度で変化する現象)で検出し、具体的には図4の電圧信号(C2)、ロックイン検波することにより、一次元交流熱流による金属薄膜表面の交流温度応答(振幅と位相)を測定する。この熱系の熱伝導方程式の解は(式1)で与えられる。
<式1>
The surface of the metal thin film is irradiated with pump laser light (L2) having a predetermined diameter and subjected to AC heating to generate an AC heat flow in the X-axis direction (arrow pointing downward in the figure). By detecting the temperature response at the center of the pump laser beam (L2) irradiation region with thermoreflectance (a phenomenon in which the reflectance changes with temperature), specifically, by detecting the voltage signal (C2) in FIG. 4 and lock-in detection. Measure AC temperature response (amplitude and phase) of metal thin film surface by one-dimensional AC heat flow. The solution of the heat conduction equation of this heat system is given by (Equation 1).
<Formula 1>
(式1)は、(式13)、(式14)のとき、展開して簡単化され、(式2)が成立する。
<式2>
(Expression 1) is expanded and simplified in the case of (Expression 13) and (Expression 14), and (Expression 2) is established.
<Formula 2>
(式2)の実数部のみを書き出すと、(式3)が得られる。
ここで、(式15)は金属薄膜表面の交流温度応答の実数部(In−phase Amplitude)である。
<式3>
When only the real part of (Expression 2) is written, (Expression 3) is obtained.
Here, (Formula 15) is a real part (In-phase Amplitude) of the AC temperature response on the surface of the metal thin film.
<Formula 3>
<測定概要2>
次に、図2に示す界面熱抵抗測定用の試料構成(2層熱系)に対する測定方法を説明する。
前記測定概要1に示すように前記図4に示す装置を用いる。
測定概要1と同じ方法で、一次元交流熱流による金属薄膜表面の交流温度応答(振幅と位相)、具体的には図4のロックイン検波の出力を測定する。この熱系の熱伝導方程式の解は(式4)で与えられる。
<式4>
<Measurement outline 2>
Next, a measurement method for the sample configuration (two-layer heat system) for measuring the interface thermal resistance shown in FIG. 2 will be described.
As shown in the measurement outline 1, the apparatus shown in FIG. 4 is used.
In the same manner as in measurement outline 1, the AC temperature response (amplitude and phase) of the metal thin film surface by a one-dimensional AC heat flow, specifically, the output of the lock-in detection in FIG. 4 is measured. The solution of the heat conduction equation of this heat system is given by (Equation 4).
<Formula 4>
(式4)は、(式13)のとき、展開して簡単化され、(式5)が成立する。
<式5>
(Expression 4) is expanded and simplified in the case of (Expression 13), and (Expression 5) is established.
<Formula 5>
(式5)の実数部のみを書き出すと、(式6)が得られる。
ここで、(式15)は金属薄膜表面の交流温度応答の実数部(In−phase Amplitude)である。
<式6>
If only the real part of (Expression 5) is written out, (Expression 6) is obtained.
Here, (Formula 15) is a real part (In-phase Amplitude) of the AC temperature response on the surface of the metal thin film.
<Formula 6>
3層熱系の近似解の(式3)と2層熱系の近似解の(式6)は、いずれも右辺がω−1/2の一次式である。すなわち、右辺第1項はω−1/2に比例し、右辺第2項以降はω−1/2に依存しない実定数である。従って、(式12)対ω−1/2プロットの直線回帰のY軸切片(Int)から右辺の定数項の総和R*が求まる。
(式12)とω−1/2の関係を示すグラフの例を<図3>に示す。しかし、定数項の総和R*の絶対値を決定するためには、金属表面の反射率(或いは反射光量)の交流成分の実測値に加えて、thermo−reflectance 係数
とポンプレーザ光照射による単位面積当たりの熱流Q(下記の手順に従って、(式9)を用いて決定される。)の絶対値も必要とおもわれる。
The right side of both the approximate solution of the three-layer thermal system (Equation 3) and the approximate solution of the two-layer thermal system (Equation 6) is a linear expression of ω −1/2 . That is, the first term on the right side is proportional to ω −1/2 , and the second and subsequent terms on the right side are real constants independent of ω −1/2 . Therefore, the sum R * of the constant term on the right side is obtained from the Y-axis intercept (Int) of the linear regression of (Equation 12) versus ω −1/2 plot.
An example of a graph showing the relationship between (Equation 12) and ω −1/2 is shown in FIG. However, in order to determine the absolute value of the sum R * of the constant terms, in addition to the actual measurement value of the AC component of the reflectance (or amount of reflected light) on the metal surface, the thermo-reflection coefficient
The absolute value of the heat flow Q per unit area by pump laser light irradiation (determined using (Equation 9) according to the following procedure) is also considered necessary.
(式3)(6)の右辺の比例係数は基板層の熱浸透率(式16)のみの関数であることから、基板層の熱浸透率(式16)が既知であれば理論計算できる。この理論値を用いて、(式12)の絶対値を決定することができる。その手順は下記のとおりである。先ず、(式3)と(6)を(式7)の一般形に書き換える。
<式7>
Since the proportionality coefficient on the right side of (Equation 3) and (6) is a function of only the thermal permeability of the substrate layer (Equation 16), it can be theoretically calculated if the thermal permeability of the substrate layer (Equation 16) is known. Using this theoretical value, the absolute value of (Equation 12) can be determined. The procedure is as follows. First, (Expression 3) and (6) are rewritten to the general form of (Expression 7).
<Formula 7>
(式7)の両辺に(式17)を掛けると、(式8)が得られる。
<式8>
(Expression 8) is obtained by multiplying both sides of (Expression 7) by (Expression 17).
<Formula 8>
(式18)を複数のωについて実測すれば、(式9)に従って未知係数(式17)を決定できる。
ここで、(式9)の右辺の分子は(式18)対ω−1/2プロットの勾配の実測値であり、分母は(式12)対ω−1/2プロットの勾配の理論値である。
<式9>
If (Equation 18) is actually measured for a plurality of ω, the unknown coefficient (Equation 17) can be determined according to (Equation 9).
Here, the numerator on the right side of (Equation 9) is an actually measured value of the gradient of (Equation 18) versus ω −1/2 plot, and the denominator is the theoretical value of the gradient of (Equation 12) vs. ω −1/2 plot. is there.
<Formula 9>
このように本測定法では、基板が標準物質の役割を果たす。基板はバルク物質なので、多くの場合、既に信頼できる熱物性値(熱伝導率、体積比熱容量の文献値)が存在する。特にシリコン基板は、高純度な単結晶であり、また大量に供給されるので、優れた標準物質となる。 Thus, in this measurement method, the substrate serves as a standard substance. Since the substrate is a bulk material, in many cases there are already reliable thermophysical values (reference values for thermal conductivity and volumetric specific heat capacity). In particular, a silicon substrate is a high-purity single crystal and is supplied in a large amount, so that it becomes an excellent standard substance.
(式10)の右辺は(式3)の右辺の第2項以降の定数項を書き出したものである。先に述べたように、これらの定数項の総和R*は実験的に決定することができる。第1項は基板層と薄膜層の間の界面熱抵抗、第2項は薄膜層の見かけの熱抵抗、第3項は薄膜層と金属薄膜層の間の界面熱抵抗、第4項は金属薄膜層の熱抵抗にそれぞれ対応する。右辺全体は薄膜の膜厚d1の1次式であるから、右辺の定数項の総和R*を測定し、膜厚d1の関数で1次回帰することにより、その勾配から、薄膜の既知の体積比熱容量C1、基板の既知の熱浸透率(式16)を用いて、薄膜の熱伝導率が求まる。
<式10>
The right side of (Expression 10) is a constant term after the second term on the right side of (Expression 3). As mentioned above, the sum R * of these constant terms can be determined experimentally. The first term is the interfacial thermal resistance between the substrate layer and the thin film layer, the second term is the apparent thermal resistance of the thin film layer, the third term is the interfacial thermal resistance between the thin film layer and the metal thin film layer, and the fourth term is metal. Each corresponds to the thermal resistance of the thin film layer. Since the entire right side is a linear expression of the film thickness d 1 of the thin film, the total sum R * of the constant terms on the right side is measured, and linear regression is performed using a function of the film thickness d 1 , so that the thin film is known from the gradient. The thermal conductivity of the thin film can be obtained using the volume specific heat capacity C 1 of the substrate and the known thermal permeability of the substrate (Equation 16).
<Formula 10>
(式11)の右辺は(式6)の右辺の第2項以降の定数項を書き出したものである。先に述べたように、これらの定数項の総和R*は実験的に決定することができる。第1項は金属薄膜層と基板層の間の界面熱抵抗R0に、右辺第2項は金属薄膜層の熱抵抗にそれぞれ対応する。右辺全体は金属薄膜の膜厚d0の1次式であるから、右辺の定数項の総和R*を測定し、膜厚d0の関数で1次回帰することにより、そのY軸切片から、基板層と金属薄膜層の間の界面熱抵抗R0が求まる。また、その勾配から、金属薄膜の既知の体積比熱容量C0、基板の既知の熱浸透率(式16)を用いて、金属薄膜の熱伝導率が求まる。このように2層熱系は、界面がひとつ存在するだけなので、その界面熱抵抗が一義的に決定にできるという利点がある。
<式11>
The right side of (Expression 11) is a constant term after the second term on the right side of (Expression 6). As mentioned above, the sum R * of these constant terms can be determined experimentally. The first term corresponds to the interfacial thermal resistance R 0 between the metal thin film layer and the substrate layer, and the second term on the right side corresponds to the thermal resistance of the metal thin film layer. Since the entire right side is a linear expression of the film thickness d 0 of the metal thin film, by measuring the sum R * of the constant terms on the right side and performing a linear regression with a function of the film thickness d 0 , from the Y-axis intercept, The interfacial thermal resistance R0 between the substrate layer and the metal thin film layer is obtained. Further, from the gradient, the thermal conductivity of the metal thin film can be obtained using the known volume specific heat capacity C 0 of the metal thin film and the known heat permeability of the substrate (Equation 16). Thus, since the two-layer heat system has only one interface, there is an advantage that the interface thermal resistance can be uniquely determined.
<Formula 11>
<式12> <Formula 12>
<式13> <Formula 13>
<式14> <Formula 14>
<式15> <Formula 15>
<式16> <Formula 16>
<式17> <Formula 17>
<式18> <Formula 18>
熱酸化SiO2薄膜の熱伝導率の測定例
前記測定概要2のようにして、熱酸化SiO2薄膜試料にgold薄膜を成膜して測定した例を示す。
シリコン単結晶基板の上に、厚さの異なる熱酸化SiO2薄膜を成膜し、表3に示す試料1、2を作成する。熱酸化SiO2薄膜の見かけの熱抵抗対膜厚のプロットを図5に示す。実験で用いた熱酸化SiO2薄膜試料の熱物性値をまとめて表1に示す。熱酸化SiO2薄膜の熱伝導率測定結果を表2に示す。
ポンプレーザの波長は405nm、プロ−ブレーザの波長は632nmである。ポンプレーザの直径は1mm、プロ−ブレーザの直径は30μmである。ポンプレーザの変調周波数とロックイン検波の周波数はともに2、3,8,12kHzある。プロ−ブレーザはCW発信である。計算式は(式11)を用いて計算した。
本実施例において信号(C1)は、振幅が約5VのON−OFF信号(デジタル信号(TTL))である。
また信号(C2)は、直流成分が1.0Vで、これがIDCになり、交流成分は数μVから数0.1μVのレベルであるが、この段階で測定する必要はない。この交流成分はロックインアンプ(10)で正確に測定する。
2試料は膜厚が異なるだけで、それ以外は共通である。それぞれの試料について求まるのは、定数項の総和だけで、2試料に共通の熱伝導率がひとつ決定される。
As measurement example the measurement overview 2 thermal oxidation SiO 2 thin film thermal conductivity, an example of measurement by forming a gold thin film on the thermally oxidized SiO 2 film sample.
Samples 1 and 2 shown in Table 3 are formed by depositing thermally oxidized SiO 2 thin films having different thicknesses on a silicon single crystal substrate. A plot of the apparent thermal resistance versus film thickness of the thermally oxidized SiO 2 thin film is shown in FIG. Table 1 summarizes the thermal properties of the thermally oxidized SiO 2 thin film samples used in the experiment. Table 2 shows the thermal conductivity measurement results of the thermally oxidized SiO 2 thin film.
The wavelength of the pump laser is 405 nm, and the wavelength of the probe laser is 632 nm. The diameter of the pump laser is 1 mm, and the diameter of the probe laser is 30 μm. Both the modulation frequency of the pump laser and the frequency of lock-in detection are 2, 3, 8, and 12 kHz. The probe laser is CW transmission. The calculation formula was calculated using (Formula 11).
In this embodiment, the signal (C1) is an ON-OFF signal (digital signal (TTL)) having an amplitude of about 5V.
The signal (C2) is a DC component 1.0 V, which is the I DC, but AC component is the level of several 0.1μV several .mu.V, need not be measured at this stage. This AC component is accurately measured by the lock-in amplifier (10).
The two samples differ only in film thickness, and the others are common. What is obtained for each sample is only the sum of the constant terms, and one thermal conductivity common to the two samples is determined.
Bi薄膜の熱伝導率とBi−サファイア界面熱抵抗の測定例
サファイア単結晶基板の上に、厚さの異なるBi膜を成膜し、表6の試料3、4、5を作成する。実験に用いた物質の熱物性値(文献値)を表4に示す。Bi薄膜の熱伝導率とBi−サファイア界面熱抵抗の測定結果を表5に示す。Bi薄膜の見かけの熱抵抗対膜厚のプロットを図6に示す。
試料への照射時のポンプレーザの直径は1mm、プロ−ブレーザの直径は30μmである。ポンプレーザの変調周波数とロックイン検波の周波数はともに2、3、8、12kHzとした。プロ−ブレーザはCW発信である。計算式は<式>10を用いて計算した。
3試料は膜厚が異なるだけで、それ以外は共通している。それぞれの試料について求まるのは、定数項の総和だけで、3試料に共通の熱伝導率と界面熱抵抗がひとつずつ決定される。
Measurement example of thermal conductivity of Bi thin film and Bi-sapphire interface thermal resistance Bi films having different thicknesses are formed on a sapphire single crystal substrate, and samples 3, 4 and 5 in Table 6 are prepared. Table 4 shows the thermophysical values (document values) of the substances used in the experiment. Table 5 shows the measurement results of the thermal conductivity of the Bi thin film and the Bi-sapphire interface thermal resistance. A plot of the apparent thermal resistance versus film thickness of the Bi thin film is shown in FIG.
The diameter of the pump laser when irradiating the sample is 1 mm, and the diameter of the probe laser is 30 μm. Both the pump laser modulation frequency and the lock-in detection frequency were set to 2, 3, 8, and 12 kHz. The probe laser is CW transmission. The calculation formula was calculated using <Formula> 10.
The three samples differ only in film thickness, and the others are common. What is obtained for each sample is only the sum of the constant terms, and the thermal conductivity and interfacial thermal resistance common to the three samples are determined one by one.
T(0):金属薄膜表面の交流温度応答
lj: 熱伝導率(j=0, 金属薄膜;j=1, 薄膜;j=S, 基板)
dj: 膜厚 (j=0, 金属薄膜;j=1, 薄膜)
Cj: 単位体積熱容量 (j=0, 金属薄膜;j=1, 薄膜;j=S, 基板)
Rj: 界面熱抵抗(j=0, 金属薄膜と薄膜間界面;j=1,薄膜と基板間界面)
Q: 単位面積当たりの熱流
(1) プローブレーザ発信器
(2) λ/2波長板
(3) 直角プリズム
(4) NDF(NDフィルター)
(5) CBS(キューブビームスプリッタ)
(6) BPF(バンドパスフィルター)
(7) 示差PD(フォトダイオード)
(7a)(7b) セル
(8) レーザ発信機
(9) PBS(偏光ビームスプリッタ)
(10) ロックイン増幅器
(11) レンズ
(12) 試料(金属薄膜表面)
(13) コンピュータ端子
(C1) 交流信号
(C2) 電圧信号
(L1) プローブレーザ光
(L12) 反射ビーム
(L13) 透過ビーム
(L14) 金属薄膜表面で反射された光
(L2) ポンプレーザ光
T (0): AC temperature response of metal thin film surface
l j : thermal conductivity (j = 0, metal thin film; j = 1, thin film; j = S, substrate)
d j : film thickness (j = 0, metal thin film; j = 1, thin film)
C j : unit volume heat capacity (j = 0, metal thin film; j = 1, thin film; j = S, substrate)
R j : interface thermal resistance (j = 0, interface between metal thin film and thin film; j = 1, interface between thin film and substrate)
Q: Heat flow per unit area (1) Probe laser transmitter (2) λ / 2 wave plate (3) Right angle prism (4) NDF (ND filter)
(5) CBS (cube beam splitter)
(6) BPF (band pass filter)
(7) Differential PD (photodiode)
(7a) (7b) Cell (8) Laser transmitter (9) PBS (polarization beam splitter)
(10) Lock-in amplifier (11) Lens (12) Sample (metal thin film surface)
(13) Computer terminal (C1) AC signal (C2) Voltage signal (L1) Probe laser beam (L12) Reflected beam (L13) Transmitted beam (L14) Light reflected on metal thin film surface (L2) Pump laser beam
Claims (2)
対象物に対して、所定の周波数の交流ポンプ光を照射する加熱光照射手段と、前記ポンプ光の照射により生じた対象物表面の交流温度応答を測定するための、当該表面から反射するプローブ光の反射率を測定する手段と、当該表面から反射するプローブ光の振幅と位相を測定する手段とを有する熱物性測定装置を用いて対象物の熱物性を調べる測定方法であって、
前記交流温度応答の振幅と位相の測定結果から、前記ポンプ光の照射による単位面積当たりの熱流(Q)の絶対値が未知であっても、前記対象物の基板を標準物質とする熱物性値を用いて解析し、前記対象物の表面にある薄膜層の熱抵抗と界面熱抵抗値の和を求めることを特徴とする熱物性測定方法。
Heating light irradiating means for irradiating the object with AC pump light of a predetermined frequency, and probe light reflected from the surface for measuring the AC temperature response of the object surface caused by the irradiation of the pump light means for measuring the reflectance of a measurement method for examining the thermal properties of the object using a thermal property measurement apparatus having means for measuring the probe light amplitude and phase of reflected from said surface,
From the measurement results of the amplitude and phase of the AC temperature response, even if the absolute value of the heat flow (Q) per unit area due to the irradiation of the pump light is unknown, the thermophysical value using the substrate of the object as a standard material And measuring the sum of the thermal resistance and interfacial thermal resistance of the thin film layer on the surface of the object.
ここで、Qはポンプ光照射による単位面積当たりの発熱量、λは熱伝導率、Cは体積比熱容量、I AC は反射光量のAC成分、I DC は反射光量のDC成分、αはthermo−reflectance係数、ωは角周波数である。
The thermophysical property measuring method according to claim 1, wherein the heat flow (Q) per unit area by the irradiation of the pump light is obtained by the following equation.
Here, Q is the amount of heat generated per unit area by pump light irradiation, λ is the thermal conductivity, C is the volume specific heat capacity, I AC is the AC component of the reflected light amount , I DC is the DC component of the reflected light amount, and α is the thermo− The reflectance coefficient, ω, is the angular frequency.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010052533A JP5598813B2 (en) | 2009-03-19 | 2010-03-10 | Thin film thermophysical property measuring device and method of measuring thermal conductivity and interfacial thermal resistance using this measuring device |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009067263 | 2009-03-19 | ||
JP2009067263 | 2009-03-19 | ||
JP2010052533A JP5598813B2 (en) | 2009-03-19 | 2010-03-10 | Thin film thermophysical property measuring device and method of measuring thermal conductivity and interfacial thermal resistance using this measuring device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2010243482A JP2010243482A (en) | 2010-10-28 |
JP5598813B2 true JP5598813B2 (en) | 2014-10-01 |
Family
ID=43096632
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010052533A Expired - Fee Related JP5598813B2 (en) | 2009-03-19 | 2010-03-10 | Thin film thermophysical property measuring device and method of measuring thermal conductivity and interfacial thermal resistance using this measuring device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5598813B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674388B (en) * | 2017-12-28 | 2019-10-11 | 鴻海精密工業股份有限公司 | Thermal transistor and thermal circuit |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102069624B1 (en) * | 2013-05-24 | 2020-01-23 | 삼성전기주식회사 | Method for measuring coefficient of thermal expansion and Thermal Mechanical Analyzer |
CN103983659B (en) * | 2014-04-25 | 2017-03-29 | 北京工业大学 | A kind of method and apparatus for determining varied property component with respect to thermal conductivity factor |
CN104132958B (en) * | 2014-05-07 | 2017-04-19 | 北京工业大学 | Phase change member heat storage-release performance study experiment table and application thereof |
CN103995018B (en) * | 2014-05-26 | 2017-04-12 | 北京工业大学 | Device and method for measuring relative heat conductivity coefficient of phase change member by radiant heat exchange method |
US12092595B2 (en) | 2018-08-28 | 2024-09-17 | University Of Virginia Patent Foundation | Steady-state thermo-reflectance method and system to measure thermal conductivity |
CN109444212B (en) * | 2018-11-12 | 2021-05-11 | 中国科学院电工研究所 | Near-field heat reflection measuring device |
CN113419120B (en) * | 2021-05-08 | 2022-10-25 | 同济大学 | Method and system for measuring thermal resistance of dielectric film and metal interface |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4104785B2 (en) * | 1999-06-04 | 2008-06-18 | アルバック理工株式会社 | Method and apparatus for measuring thermal diffusivity of thin film by laser heating angstrom method |
JP3265362B2 (en) * | 1999-10-18 | 2002-03-11 | 独立行政法人産業技術総合研究所 | Interfacial thermal resistance measurement method |
JP4252207B2 (en) * | 2000-10-05 | 2009-04-08 | 株式会社超高温材料研究所 | Measuring method and measuring device for thermal resistance and biot number of laminated material |
JP3430258B2 (en) * | 2000-10-17 | 2003-07-28 | 独立行政法人産業技術総合研究所 | Measurement method of thermal diffusivity and interfacial thermal resistance |
JP4658366B2 (en) * | 2001-04-05 | 2011-03-23 | アルバック理工株式会社 | Thermophysical property measurement method |
JP3858660B2 (en) * | 2001-10-10 | 2006-12-20 | 株式会社日立製作所 | Measuring method of thermal resistance of resin |
JP2006084442A (en) * | 2004-09-17 | 2006-03-30 | Beteru:Kk | Method for measuring thermophysical property of thin film and micro-area |
JP4756275B2 (en) * | 2006-10-11 | 2011-08-24 | 独立行政法人産業技術総合研究所 | Calculation method of temperature response of multilayer material |
-
2010
- 2010-03-10 JP JP2010052533A patent/JP5598813B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI674388B (en) * | 2017-12-28 | 2019-10-11 | 鴻海精密工業股份有限公司 | Thermal transistor and thermal circuit |
Also Published As
Publication number | Publication date |
---|---|
JP2010243482A (en) | 2010-10-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5598813B2 (en) | Thin film thermophysical property measuring device and method of measuring thermal conductivity and interfacial thermal resistance using this measuring device | |
Yang et al. | Thermal property microscopy with frequency domain thermoreflectance | |
Jiang et al. | Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials | |
Braun et al. | A steady-state thermoreflectance method to measure thermal conductivity | |
Schmidt et al. | Characterization of thin metal films via frequency-domain thermoreflectance | |
Zhu et al. | Ultrafast thermoreflectance techniques for measuring thermal conductivity and interface thermal conductance of thin films | |
Antonacci et al. | Spectral broadening in Brillouin imaging | |
Liu et al. | Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect | |
Wang et al. | Photo-acoustic measurement of thermal conductivity of thin films and bulk materials | |
Depriester et al. | New methodology for thermal parameter measurements in solids using photothermal radiometry | |
US7182510B2 (en) | Apparatus and method for measuring thermal conductivity | |
Hurley et al. | Local measurement of thermal conductivity and diffusivity | |
Yang et al. | Modeling optical absorption for thermoreflectance measurements | |
Chen et al. | Measurement of the optical constants of monolayer MoS2 via the photonic spin Hall effect | |
Rodenhausen et al. | Virtual separation approach to study porous ultra-thin films by combined spectroscopic ellipsometry and quartz crystal microbalance methods | |
Hua et al. | Spatially localized measurement of thermal conductivity using a hybrid photothermal technique | |
Liu et al. | Fluorescence spectra shape based dynamic thermometry | |
Hua et al. | The study of frequency-scan photothermal reflectance technique for thermal diffusivity measurement | |
US10578569B2 (en) | Apparatus for determining a thermal conductivity and a thermal diffusivity of a material, and related methods | |
Rahman et al. | Measuring the thermal properties of anisotropic materials using beam-offset frequency domain thermoreflectance | |
Astrath et al. | Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids | |
Mingolo et al. | Focus shift photothermal method for thermal diffusivity mapping | |
Pham Tu Quoc et al. | New contactless method for thermal diffusivity measurements using modulated photothermal radiometry | |
Menon et al. | High accuracy, self-calibrating photopyroelectric device for the absolute determination of thermal conductivity and thermal effusivity of liquids | |
Ji et al. | Thermal conductivity mapping of oxidized SiC/SiC composites by time‐domain thermoreflectance with heterodyne detection |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20130301 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20131009 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20131015 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20131211 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20140715 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20140804 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5598813 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |