JP5596378B2 - Friction damper - Google Patents

Friction damper Download PDF

Info

Publication number
JP5596378B2
JP5596378B2 JP2010058063A JP2010058063A JP5596378B2 JP 5596378 B2 JP5596378 B2 JP 5596378B2 JP 2010058063 A JP2010058063 A JP 2010058063A JP 2010058063 A JP2010058063 A JP 2010058063A JP 5596378 B2 JP5596378 B2 JP 5596378B2
Authority
JP
Japan
Prior art keywords
sliding member
seismic isolation
friction damper
isolation layer
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010058063A
Other languages
Japanese (ja)
Other versions
JP2011190621A (en
Inventor
尚 幸田
忠史 金子
昇 鶴山
啓介 高橋
大洋 坂口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Engineering Corp
Original Assignee
Mitsubishi Chemical Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Engineering Corp filed Critical Mitsubishi Chemical Engineering Corp
Priority to JP2010058063A priority Critical patent/JP5596378B2/en
Publication of JP2011190621A publication Critical patent/JP2011190621A/en
Application granted granted Critical
Publication of JP5596378B2 publication Critical patent/JP5596378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)

Description

本発明は、免震構造物に設置される摩擦ダンパーに関する。 The present invention relates to a friction damper installed in a seismic isolation structure.

免震構法は、構造物(上部構造物)と基礎(下部構造物)との間に積層ゴムやリニアガイド等の免震装置を設置して免震層を設けることにより構造物の固有周期を長周期化し、構造物に入力される地震加速度の低減を図る構法である。従来より、免震構法では、層間変形が過大にならないようにするため、免震層に減衰機構を設けている。例えば、特許文献1では、アーム構造の第1のディスクと、摩擦材を介して第1のディスクに圧接され、第1のディスクに対して相対回転運動が可能なアーム構造の第2のディスクとからなり、上記両ディスクの先端可動部分の一方を構造物に、他方を基礎に連結するようにした免震システム用ディスクダンパが開示されている。 In the seismic isolation method, the natural period of the structure is set by installing a seismic isolation layer such as laminated rubber and linear guides between the structure (upper structure) and the foundation (lower structure). It is a construction method that reduces the earthquake acceleration input to the structure by increasing the period. Conventionally, in the seismic isolation system, a damping mechanism is provided in the seismic isolation layer so that the interlayer deformation does not become excessive. For example, in Patent Document 1, a first disk having an arm structure and a second disk having an arm structure that is pressed against the first disk via a friction material and is capable of relative rotational movement with respect to the first disk. There is disclosed a disk damper for a seismic isolation system in which one of the movable end portions of both disks is connected to a structure and the other is connected to a foundation.

特開昭62−233386号公報JP-A-62-233386

免震構造物の場合、免震層の減衰が小さいほうが、高振動数域における加速度応答倍率(応答加速度/入力加速度)は小さくなる。即ち、免震効果は大きくなる。このため、入力加速度が小さく免震層の層間変形が小さい中小地震に対しては、免震層の減衰は小さいほうが望ましい。一方、入力加速度が大きい大地震に対しては、免震層の層間変形が過大とならないように、免震層の減衰は大きいほうが望ましい。従って、入力加速度が小さく免震層の層間変形が小さい場合は小さな減衰力を、入力加速度が大きく免震層の層間変形が大きい場合は大きな減衰力を発揮できるダンパーが理想的といえる。しかしながら、免震構造物に設置される従来の摩擦ダンパーは、免震層の層間変形の大きさにかかわらず常に一定の摩擦力(減衰力)しか発揮することができない。 In the case of a seismic isolation structure, the smaller the damping of the seismic isolation layer, the smaller the acceleration response magnification (response acceleration / input acceleration) in the high frequency range. That is, the seismic isolation effect is increased. For this reason, it is desirable that the damping of the seismic isolation layer be small for small and medium earthquakes where the input acceleration is small and the interlayer deformation of the seismic isolation layer is small. On the other hand, for large earthquakes with high input acceleration, it is desirable that the seismic isolation layer has a large attenuation so that the interlayer deformation of the seismic isolation layer does not become excessive. Therefore, a damper that can exhibit a small damping force when the input acceleration is small and the interlayer deformation of the base isolation layer is small, and a damper that can exhibit a large damping force when the input acceleration is large and the interlayer deformation of the base isolation layer is large is ideal. However, the conventional friction damper installed in the base isolation structure can always exhibit only a constant frictional force (damping force) regardless of the magnitude of the interlayer deformation of the base isolation layer.

本発明はかかる事情に鑑みてなされたもので、入力加速度が小さく免震層の層間変形が小さい場合は小さな摩擦力を、入力加速度が大きく免震層の層間変形が大きい場合は大きな摩擦力を発揮できる摩擦ダンパーを提供することを目的とする。 The present invention has been made in view of such circumstances. When the input acceleration is small and the interlayer deformation of the seismic isolation layer is small, a small friction force is obtained. When the input acceleration is large and the interlayer deformation of the seismic isolation layer is large, a large friction force is obtained. It aims at providing the friction damper which can be exhibited.

上記目的を達成するため、第1の発明は、上部構造物と下部構造物との間に設けられた免震層に設置される摩擦ダンパーであって、
上下方向に伸縮可能な弾性部材を介して前記上部構造物の底面に設置された摺動部材と、前記下部構造物の上面に形成され、平坦な頂部とその周囲に形成された傾斜部とを有する円錐台状の突起部とを有し、
平面視して格子状に配置された前記突起部間に形成された谷部に前記摺動部材が配置され、前記免震層の層間変形に伴って、前記摺動部材が前記突起部上を摺動することを特徴としている。
To achieve the above object, a first invention is a friction damper installed in a seismic isolation layer provided between an upper structure and a lower structure,
A sliding member installed on the bottom surface of the upper structure via an elastic member that can be expanded and contracted in the vertical direction , a flat top portion formed on the upper surface of the lower structure, and an inclined portion formed around the top portion. A frustoconical protrusion having
The sliding member is disposed in a valley formed between the projecting portions arranged in a lattice shape in plan view, and the sliding member moves on the projecting portion in accordance with interlayer deformation of the seismic isolation layer. It is characterized by sliding.

また、第2の発明は、上部構造物と下部構造物との間に設けられた免震層に設置される摩擦ダンパーであって、
上下方向に伸縮可能な弾性部材を介して前記下部構造物の上面に設置された摺動部材と、前記上部構造物の底面に形成され、平坦な頂部とその周囲に形成された傾斜部とを有する円錐台状の突起部とを有し、
平面視して格子状に配置された前記突起部間に形成された谷部に前記摺動部材が配置され、前記免震層の層間変形に伴って、前記摺動部材が前記突起部上を摺動することを特徴としている。
The second invention is a friction damper installed in a seismic isolation layer provided between the upper structure and the lower structure,
A sliding member installed on the upper surface of the lower structure via an elastic member that can expand and contract in the vertical direction , a flat top portion formed on the bottom surface of the upper structure, and an inclined portion formed around the top portion. A frustoconical protrusion having
The sliding member is disposed in a valley formed between the projecting portions arranged in a lattice shape in plan view, and the sliding member moves on the projecting portion in accordance with interlayer deformation of the seismic isolation layer. It is characterized by sliding.

摺動面に作用する面圧が大きくなるにつれて摩擦力は増大する。第1及び第2の発明では、摺動部材が突起部の傾斜部を登ることにより弾性部材が圧縮され、摺動部材と突起部との間に作用する面圧が上昇する。その結果、摺動部材に作用する摩擦力が増大し、突起部の頂部において面圧は最大となり、摩擦力も最大となる。第1及び第2の発明に係る摩擦ダンパーでは、中小地震時には、免震層の層間変形量が小さいので、摺動部材も突起部の低い位置で往復運動し、小さな摩擦力しか発生しないが、大地震時には、免震層の層間変形量が大きいので、摺動部材も突起部の頂部に達する往復運動をするため、大きな摩擦力が発生する。 As the surface pressure acting on the sliding surface increases, the frictional force increases. In the first and second inventions, the elastic member is compressed as the sliding member climbs the inclined portion of the protruding portion, and the surface pressure acting between the sliding member and the protruding portion increases. As a result, the frictional force acting on the sliding member is increased, the surface pressure is maximized at the top of the protrusion, and the frictional force is also maximized. In the friction damper according to the first and second inventions, since the amount of interlayer deformation of the seismic isolation layer is small at the time of a small and medium earthquake, the sliding member also reciprocates at a low position of the protrusion, and only a small frictional force is generated. At the time of a large earthquake, since the amount of interlayer deformation of the seismic isolation layer is large, the sliding member also reciprocates to reach the top of the protrusion, and thus a large frictional force is generated.

また、第1及び第2の発明に係る摩擦ダンパーでは、前記摺動部材及び前記突起部の少なくとも一方の表面が摩擦材で形成されていてもよい。これにより、安定した大きな摩擦力を発生させることができる。 In the friction damper according to the first and second inventions, at least one surface of the sliding member and the protrusion may be formed of a friction material. Thereby, a stable large frictional force can be generated.

本発明に係る摩擦ダンパーでは、上部構造物と下部構造物との間に設けられた免震層の層間変形に伴って、摺動部材が突起部上を摺動することにより、中小地震時における小さな層間変形に対しては小さな摩擦力を、大地震時における大きな層間変形に対しては大きな摩擦力を発揮することができ、理想的な免震構造物を実現することができる。 In the friction damper according to the present invention, the sliding member slides on the protruding portion in accordance with the interlayer deformation of the seismic isolation layer provided between the upper structure and the lower structure. A small frictional force can be exerted for small interlaminar deformation, and a large frictional force can be exerted for large interlaminar deformation during a large earthquake, and an ideal seismic isolation structure can be realized.

本発明の一実施の形態に係る摩擦ダンパーの模式図である。It is a schematic diagram of the friction damper which concerns on one embodiment of this invention. 同摩擦ダンパーの配置図である。It is an arrangement view of the friction damper. 摩擦ダンパーの原理を説明するための模式図である。It is a schematic diagram for demonstrating the principle of a friction damper. 摩擦ダンパーに吸収されるエネルギーのグラフである。It is a graph of the energy absorbed by a friction damper. 弾性部材の縦断面図である。It is a longitudinal cross-sectional view of an elastic member. 変形例に係る弾性部材の縦断面図である。It is a longitudinal cross-sectional view of the elastic member which concerns on a modification. ガイド部を底面から見た模式図である。It is the schematic diagram which looked at the guide part from the bottom.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態に付き説明し、本発明の理解に供する。なお、下部構造物の上面に摺動部材を設置すると共に、上部構造物の底面に突起部を形成する場合も基本的に同様であるため、以下では、上部構造物の底面に摺動部材を設置すると共に、下部構造物の上面に突起部を形成する場合についてのみ説明する。 Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention. The same applies to the case where the sliding member is installed on the upper surface of the lower structure and the protrusion is formed on the bottom surface of the upper structure. Only the case of installing and forming a protrusion on the upper surface of the lower structure will be described.

本発明の一実施の形態に係る摩擦ダンパー10を図1及び図2に示す。免震装置の一例である積層ゴム11が上部構造物12と下部構造物13の間に介装され、平面視して積層ゴム11と積層ゴム11との間の空間に摩擦ダンパー10が設置される(図2参照)。 1 and 2 show a friction damper 10 according to an embodiment of the present invention. A laminated rubber 11, which is an example of a seismic isolation device, is interposed between the upper structure 12 and the lower structure 13, and the friction damper 10 is installed in a space between the laminated rubber 11 and the laminated rubber 11 in plan view. (See FIG. 2).

摩擦ダンパー10は、下部構造物13の上面に形成された側断面が台形状の複数の突起部16と、突起部16上を摺動する摺動部材15と、摺動部材15に一端が連結され、上部構造物12の底面に一端が固定された上下方向に伸縮可能な弾性部材14とから概略構成されている。 The friction damper 10 includes a plurality of protrusions 16 having a trapezoidal cross section formed on the upper surface of the lower structure 13, a sliding member 15 that slides on the protrusions 16, and one end connected to the sliding member 15. The upper structure 12 is generally composed of an elastic member 14 that can be expanded and contracted in the vertical direction.

各突起部16は、平坦な頂部16aとその周囲に形成された傾斜部16bとを有する円錐台状とされ、図2に示すように、平面視して格子状に配置されている。一方、摺動部材15は、突起部16間に形成された谷部17に配置される。突起部16の材質としてはコンクリートあるいは鉄などの金属を使用することができ、摺動部材15の材質としては鉄などの金属を使用することができる。
また、弾性部材14は、1方向に伸縮可能で伸縮に伴って摺動部材15に付勢力を付与できるものであれば良く、例えばスプリングなどのバネを使用することができる。
Each protrusion 16 has a truncated cone shape having a flat top portion 16a and an inclined portion 16b formed around the flat top portion 16a, and is arranged in a lattice shape in plan view as shown in FIG. On the other hand, the sliding member 15 is disposed in a trough 17 formed between the protrusions 16. A metal such as concrete or iron can be used as the material of the protrusion 16, and a metal such as iron can be used as the material of the sliding member 15.
The elastic member 14 may be any member that can expand and contract in one direction and can apply a biasing force to the sliding member 15 along with expansion and contraction. For example, a spring such as a spring can be used.

なお、摺動部材15及び突起部16の表面を摩擦材で形成しても良い。摩擦材の材質については特に限定する必要はなく、従来より使用されている公知のものを使用することができる。 In addition, you may form the surface of the sliding member 15 and the projection part 16 with a friction material. The material of the friction material is not particularly limited, and a conventionally known material can be used.

次に、本実施の形態に係る摩擦ダンパー10の原理について図3を用いて説明する。なお、図3において、A、Dは傾斜部16bの最下点を、B、Cは頂部16aの両端をそれぞれ示している。
突起部16の傾斜部16bの傾斜角度をθ、弾性部材14(摺動部材15)が、傾斜部16bの最下点であるAから水平方向に変位x移動したときの弾性部材14の鉛直方向の弾性力をFとし、傾斜面に対するFの法線方向成分をFv、Fの傾斜面方向成分をFuとする。また、弾性部材14の鉛直方向のバネ定数をk、摺動部材15と突起部16との間の動摩擦係数をμ’とすると、以下の式が成立する。
Next, the principle of the friction damper 10 according to the present embodiment will be described with reference to FIG. In FIG. 3, A and D indicate the lowest points of the inclined portion 16b, and B and C indicate both ends of the top portion 16a.
The inclination angle of the inclined portion 16b of the protrusion 16 is θ, and the elastic member 14 (sliding member 15) is displaced by x in the horizontal direction from the lowest point A of the inclined portion 16b. F is a normal direction component of F with respect to the inclined surface, and F is an inclined surface direction component of F. Further, when the spring constant in the vertical direction of the elastic member 14 is k and the coefficient of dynamic friction between the sliding member 15 and the protrusion 16 is μ ′, the following equation is established.

F=k・tanθ・x ……(1)
Fv=Fcosθ ……(2)
Fu=μ’Fv ……(3)
F = k · tanθ · x (1)
Fv = Fcosθ (2)
Fu = μ'Fv (3)

(1)及び(2)式を(3)式に代入すると、Fuは以下のようになる。
Fu=μ’Fv=μ’k・tanθcosθ・x
=μ’k・sinθ・x ……(4)
Substituting Equations (1) and (2) into Equation (3) gives Fu as follows.
Fu = μ′Fv = μ′k · tan θ cos θ · x
= Μ'k · sinθ · x (4)

一方、弾性部材14(摺動部材15)が傾斜面に沿って移動した変位をLとすると、Lは次式で表すことができる。
L=x/cosθ ……(5)
On the other hand, when the displacement of the elastic member 14 (sliding member 15) moved along the inclined surface is L, L can be expressed by the following equation.
L = x / cos θ (5)

図4は、縦軸にFu、横軸にLを採ったグラフであり、折線で囲まれた領域の面積が摩擦ダンパー10によって消費されたエネルギーに相当する。図4より明らかなように、弾性部材14(摺動部材15)が突起部16の傾斜部16bをAからBに向けて移動するにつれて摩擦力は増大し、頂部16a(即ちB〜Cの範囲)において摩擦力は最大となる。さらに、弾性部材14(摺動部材15)が突起部16の傾斜部16bをCからDに向けて移動すると摩擦力は減少に転じる。 FIG. 4 is a graph with Fu on the vertical axis and L on the horizontal axis. The area surrounded by the broken line corresponds to the energy consumed by the friction damper 10. As is clear from FIG. 4, the frictional force increases as the elastic member 14 (sliding member 15) moves the inclined portion 16b of the protruding portion 16 from A to B, and the top portion 16a (that is, the range of B to C). ), The frictional force is maximized. Further, when the elastic member 14 (sliding member 15) moves the inclined portion 16b of the protruding portion 16 from C toward D, the frictional force starts to decrease.

摩擦ダンパー10を免震構造物に適用した場合、中小地震時には、免震層の層間変形が小さいので、摺動部材15が傾斜部16bの低い位置及び谷部17間で往復運動することにより小さな摩擦力(減衰力)を発揮し、大地震時には、免震層の層間変形が大きいので、摺動部材15が傾斜部16bから頂部16aにかけて往復運動することにより大きな摩擦力(減衰力)を発揮する。
摩擦ダンパー10の設計に当たっては、地震応答解析等により中小地震時及び大地震時における免震層の層間変形量を想定したうえで、摺動部材15の摺動量に基づいて傾斜部16b及び頂部16aの幅(長さ)をそれぞれ決定することになる。
When the friction damper 10 is applied to a base-isolated structure, since the interlayer deformation of the base isolation layer is small during a small and medium earthquake, the sliding member 15 is small by reciprocating between the low position of the inclined portion 16b and the valley portion 17. Demonstrates frictional force (damping force), and during large earthquakes, the interlayer deformation of the seismic isolation layer is large. Therefore, the sliding member 15 reciprocates from the inclined portion 16b to the top portion 16a to exert a large frictional force (damping force). To do.
In designing the friction damper 10, the amount of deformation of the seismic isolation layer during a small and large earthquake is assumed by seismic response analysis and the like, and the inclined portion 16 b and the top portion 16 a are based on the sliding amount of the sliding member 15. The width (length) of each is determined.

図5は、弾性部材14及び摺動部材15の一例を示したものである。
本例では、弾性部材14が水平方向に変形しないような配慮がなされている。具体的には、上部構造物12の底面に基端部が固定され、下方に延びる内筒22と、内筒22に外装される外筒21と、外筒21の外周部に一端が固定され、他端が上部構造物12の底面に固定されたバネ20とから弾性部材14が概略構成され、外筒21の底面に半球状の摺動部材15が固着されている。また、内筒22と外筒21との間には、摩擦係数の小さな低摩擦材23、例えばポリ4フッ化エチレンなどが介装され、外筒21の周壁には空気孔24が設けられている。
本例では、半球状の摺動部材15が突起部16上を摺動する際、外筒21が上下方向にのみ移動し、弾性部材14の水平方向変形を拘束している。
FIG. 5 shows an example of the elastic member 14 and the sliding member 15.
In this example, consideration is given so that the elastic member 14 does not deform in the horizontal direction. Specifically, the base end is fixed to the bottom surface of the upper structure 12, the inner cylinder 22 extending downward, the outer cylinder 21 that is externally mounted on the inner cylinder 22, and one end fixed to the outer periphery of the outer cylinder 21. The elastic member 14 is schematically constituted by the spring 20 having the other end fixed to the bottom surface of the upper structure 12, and the hemispherical sliding member 15 is fixed to the bottom surface of the outer cylinder 21. Further, a low friction material 23 having a small friction coefficient, such as polytetrafluoroethylene, is interposed between the inner cylinder 22 and the outer cylinder 21, and air holes 24 are provided in the peripheral wall of the outer cylinder 21. Yes.
In this example, when the hemispherical sliding member 15 slides on the protrusion 16, the outer cylinder 21 moves only in the vertical direction and restrains the elastic member 14 from deforming in the horizontal direction.

図6及び図7に、変形例に係る弾性部材18を示す。
この例では、弾性部材18は、上部構造物12の底面に基端部が固定された内筒26と、内筒26の底面に装着されたガイド部27と、ガイド部27にガイドされて上下方向に移動可能とされた外筒25と、外筒25の外周部に一端が固定され、他端が上部構造物12の底面に固定されたバネ20とから概略構成されている。また、外筒25の底面には、半球状の摺動部材15が固着されている。
6 and 7 show an elastic member 18 according to a modification.
In this example, the elastic member 18 includes an inner cylinder 26 whose base end is fixed to the bottom surface of the upper structure 12, a guide portion 27 attached to the bottom surface of the inner cylinder 26, and a guide portion 27 that guides the elastic member 18. The outer cylinder 25 is movable in the direction, and the spring 20 has one end fixed to the outer periphery of the outer cylinder 25 and the other end fixed to the bottom surface of the upper structure 12. A hemispherical sliding member 15 is fixed to the bottom surface of the outer cylinder 25.

ガイド部27は、内筒26の底面に装着され水平面内で回動自在とされた回動板28と、回動板28上に並設され、外筒25の内壁面に接する一対の滑車29、30と、一対の滑車29、30間にタスキ掛けされたベルト31とを備えている。
本例では、ベルト31の搬送方向と異なる方向から水平力Hが作用した場合(図7左図参照)、回動板28が水平面内で回動し、平面視してベルト31の搬送方向と水平力Hの作用方向が一致する(図7右図参照)。
The guide portion 27 is mounted on the bottom surface of the inner cylinder 26 and is rotatable on a horizontal plane, and a pair of pulleys 29 that are juxtaposed on the rotation plate 28 and are in contact with the inner wall surface of the outer cylinder 25. , 30 and a belt 31 that is tucked between a pair of pulleys 29, 30.
In this example, when a horizontal force H is applied from a direction different from the conveying direction of the belt 31 (see the left figure in FIG. 7), the rotating plate 28 rotates in a horizontal plane, and the conveying direction of the belt 31 in the plan view. The direction of action of the horizontal force H coincides (see the right figure in FIG. 7).

以上、本発明の一実施の形態について説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、上記実施の形態では、突起部の形状を円錐台状かつ摺動部材の形状を半球状としたが、これに限定されるものではなく他の形状でも良いことは言うまでもない。また、上記実施の形態では、平面視して格子状に突起部を配置したが、平面視して千鳥状に突起部を配置するなど他の異なる配置パターンでも良い。 Although one embodiment of the present invention has been described above, the present invention is not limited to the configuration described in the above-described embodiment, and is within the scope of matters described in the claims. Other possible embodiments and modifications are also included. For example, in the above-described embodiment, the shape of the protrusion is a truncated cone and the shape of the sliding member is a hemispherical shape, but it is needless to say that the shape is not limited to this and may be other shapes. In the above-described embodiment, the projections are arranged in a lattice shape in plan view, but other different arrangement patterns such as arranging the projection portions in a staggered pattern in plan view may be used.

10:摩擦ダンパー、11:積層ゴム、12:上部構造物、13:下部構造物、14:弾性部材、15:摺動部材、16:突起部、16a:頂部、16b:傾斜部、17:谷部、18:弾性部材、20:バネ、21:外筒、22:内筒、23:低摩擦材、24:空気孔、25:外筒、26:内筒、27:ガイド部、28:回動板、29、30:滑車、31:ベルト 10: friction damper, 11: laminated rubber, 12: upper structure, 13: lower structure, 14: elastic member, 15: sliding member, 16: protrusion, 16a: top, 16b: inclined part, 17: valley Part, 18: elastic member, 20: spring, 21: outer cylinder, 22: inner cylinder, 23: low friction material, 24: air hole, 25: outer cylinder, 26: inner cylinder, 27: guide part, 28: times Moving plate, 29, 30: pulley, 31: belt

Claims (3)

上部構造物と下部構造物との間に設けられた免震層に設置される摩擦ダンパーであって、
上下方向に伸縮可能な弾性部材を介して前記上部構造物の底面に設置された摺動部材と、前記下部構造物の上面に形成され、平坦な頂部とその周囲に形成された傾斜部とを有する円錐台状の突起部とを有し、
平面視して格子状に配置された前記突起部間に形成された谷部に前記摺動部材が配置され、前記免震層の層間変形に伴って、前記摺動部材が前記突起部上を摺動することを特徴とする摩擦ダンパー。
A friction damper installed in a seismic isolation layer provided between the upper structure and the lower structure,
A sliding member installed on the bottom surface of the upper structure via an elastic member that can be expanded and contracted in the vertical direction , a flat top portion formed on the upper surface of the lower structure, and an inclined portion formed around the top portion. A frustoconical protrusion having
The sliding member is disposed in a valley formed between the projecting portions arranged in a lattice shape in plan view, and the sliding member moves on the projecting portion in accordance with interlayer deformation of the seismic isolation layer. Friction damper characterized by sliding.
上部構造物と下部構造物との間に設けられた免震層に設置される摩擦ダンパーであって、
上下方向に伸縮可能な弾性部材を介して前記下部構造物の上面に設置された摺動部材と、前記上部構造物の底面に形成され、平坦な頂部とその周囲に形成された傾斜部とを有する円錐台状の突起部とを有し、
平面視して格子状に配置された前記突起部間に形成された谷部に前記摺動部材が配置され、前記免震層の層間変形に伴って、前記摺動部材が前記突起部上を摺動することを特徴とする摩擦ダンパー。
A friction damper installed in a seismic isolation layer provided between the upper structure and the lower structure,
A sliding member installed on the upper surface of the lower structure via an elastic member that can expand and contract in the vertical direction , a flat top portion formed on the bottom surface of the upper structure, and an inclined portion formed around the top portion. A frustoconical protrusion having
The sliding member is disposed in a valley formed between the projecting portions arranged in a lattice shape in plan view, and the sliding member moves on the projecting portion in accordance with interlayer deformation of the seismic isolation layer. Friction damper characterized by sliding.
請求項1又は2記載の摩擦ダンパーにおいて、前記摺動部材及び前記突起部の少なくとも一方の表面が摩擦材で形成されていることを特徴とする摩擦ダンパー。 The friction damper according to claim 1 or 2, wherein at least one surface of the sliding member and the protrusion is formed of a friction material.
JP2010058063A 2010-03-15 2010-03-15 Friction damper Expired - Fee Related JP5596378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058063A JP5596378B2 (en) 2010-03-15 2010-03-15 Friction damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058063A JP5596378B2 (en) 2010-03-15 2010-03-15 Friction damper

Publications (2)

Publication Number Publication Date
JP2011190621A JP2011190621A (en) 2011-09-29
JP5596378B2 true JP5596378B2 (en) 2014-09-24

Family

ID=44795810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058063A Expired - Fee Related JP5596378B2 (en) 2010-03-15 2010-03-15 Friction damper

Country Status (1)

Country Link
JP (1) JP5596378B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014196820A (en) * 2013-03-29 2014-10-16 積水化学工業株式会社 Clamp for pipe joint
JP6419449B2 (en) * 2014-03-28 2018-11-07 株式会社ブリヂストン Seismic isolation device
CN113967700A (en) * 2021-10-26 2022-01-25 浙江冉弘电子有限公司 Unmanned aerial vehicle aircraft production is with accessory punching press fixing device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH029201U (en) * 1988-07-01 1990-01-22
JP3842400B2 (en) * 1997-09-04 2006-11-08 シバタ工業株式会社 Girder fall prevention device for bridge
JP2001090775A (en) * 1999-09-24 2001-04-03 Mitsubishi Steel Mfg Co Ltd Friction damper for base isolation
JP2006241815A (en) * 2005-03-03 2006-09-14 Oriental Construction Co Ltd Sliding bearing with added geometric stiffness, and structure for arranging the bearing
JP2008019941A (en) * 2006-07-12 2008-01-31 Ntn Corp Base isolation device
JP5561661B2 (en) * 2007-12-14 2014-07-30 オイレス工業株式会社 Sliding bearings for structures

Also Published As

Publication number Publication date
JP2011190621A (en) 2011-09-29

Similar Documents

Publication Publication Date Title
US6948284B2 (en) All-directional damping and earthquake-resisting unit
US7237364B2 (en) Foundation shock eliminator
EP2732106B1 (en) Passive damper
JP5596378B2 (en) Friction damper
EP2227606B1 (en) Tuned mass damper
JP2006275130A (en) Sliding bearing
JP2017503095A (en) Apparatus and method for friction damping
JP2019035493A (en) Slide bearing device
JP2010249169A (en) Friction damper
JP4244408B2 (en) 3D seismic isolation device
JP7102249B2 (en) Multi-sided slide bearing device for structures
JP2015081464A (en) Vibration control structure
JP4640958B2 (en) Friction damper
JP5720718B2 (en) Vibration control building
JP7409809B2 (en) Tuned mass dampers and buildings
JPH11190390A (en) Base isolation device
JP5062752B2 (en) Friction damper
JP6682393B2 (en) Tuned Mass Damper
JP6651933B2 (en) Vibration isolation device and method for adjusting deformation of laminated rubber bearing
JP3888887B2 (en) Seismic isolation device
JP6467564B2 (en) Structure
RU2646694C1 (en) Vibration insulation system
JP2023130206A (en) Displacement-dependent damper
JP2017155812A (en) Friction damper, structure having friction damper
JPWO2010146650A1 (en) Braking device and friction material manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130823

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130910

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140715

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140807

R150 Certificate of patent or registration of utility model

Ref document number: 5596378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees