JP5594265B2 - Engine intake control device - Google Patents

Engine intake control device Download PDF

Info

Publication number
JP5594265B2
JP5594265B2 JP2011194300A JP2011194300A JP5594265B2 JP 5594265 B2 JP5594265 B2 JP 5594265B2 JP 2011194300 A JP2011194300 A JP 2011194300A JP 2011194300 A JP2011194300 A JP 2011194300A JP 5594265 B2 JP5594265 B2 JP 5594265B2
Authority
JP
Japan
Prior art keywords
intake
valve
engine
control valve
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011194300A
Other languages
Japanese (ja)
Other versions
JP2013053608A (en
Inventor
光高 小島
一洋 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2011194300A priority Critical patent/JP5594265B2/en
Publication of JP2013053608A publication Critical patent/JP2013053608A/en
Application granted granted Critical
Publication of JP5594265B2 publication Critical patent/JP5594265B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

本発明は、吸気圧力脈動を発生させる吸気制御弁をそなえたエンジンの吸気制御装置に関するものである。   The present invention relates to an intake control device for an engine provided with an intake control valve that generates intake pressure pulsation.

内燃機関(以下、エンジンともいう)において、エンジン単体での燃費向上のためには、圧縮比を高めることが有効であるが、圧縮比を高めると、高負荷域でノッキングが発生してしまう。このノッキングを回避するには、例えば遅閉カムを採用するなどして吸気弁の閉弁タイミングを遅延させて、高負荷域では実際の実圧縮比を減らして運転する必要が生じる。   In an internal combustion engine (hereinafter also referred to as an engine), it is effective to increase the compression ratio in order to improve the fuel consumption of the engine alone. However, when the compression ratio is increased, knocking occurs in a high load range. In order to avoid this knocking, for example, it is necessary to delay the intake valve closing timing by, for example, adopting a late closing cam, and to reduce the actual actual compression ratio in the high load range.

しかし、吸気弁の閉弁タイミングを遅延させることによって実圧縮比を低減させると、筒内〜吸気ポート側への吸気の吹き返しが発生し、これにより筒内の新気量が確保できなくなり、体積効率が低下して、通常の吸気弁の閉弁タイミングに比べてエンジンの出力トルクが低下してしまう。
この出力トルク低下を改善する方法として、例えば特許文献1等には、各気筒の吸気弁とサージタンクの間のインテークマニホールド等の吸気通路にこの吸気通路を遮断可能な吸気制御弁(インパルスバルブとも言う)を設け、この吸気制御弁を吸気行程中に適切なタイミングで開閉制御することにより、気筒別の吸気通路内に圧力脈動を生じさせ、機関の充填効率を向上させる技術が記載されている。この技術では、機関の低負荷時等の過給が不要な状況では吸気制御弁は常に開状態とする常時開モードを実行し、機関の高負荷時等の過給が必要な状況では吸気制御弁の開閉制御により充填効率を高める充填効率向上モードを実行する。
However, if the actual compression ratio is reduced by delaying the closing timing of the intake valve, intake air blows back from the cylinder to the intake port side, which makes it impossible to secure the amount of fresh air in the cylinder, and the volume The efficiency is lowered, and the output torque of the engine is lowered as compared with the normal closing timing of the intake valve.
As a method for improving the output torque drop, for example, Patent Document 1 discloses an intake control valve (also called an impulse valve) that can block the intake passage in an intake passage such as an intake manifold between the intake valve and the surge tank of each cylinder. And a technique for improving the charging efficiency of the engine by generating pressure pulsation in the intake passage for each cylinder by controlling the opening and closing of the intake control valve at an appropriate timing during the intake stroke. . In this technology, the intake control valve is always open when supercharging is not required, such as when the engine is under low load, and intake control is performed when supercharging is required, such as when the engine is under high load. A filling efficiency improvement mode is executed to increase the filling efficiency by controlling the opening and closing of the valve.

特許文献1には、さらに、加速時等に常時開モードから充填効率向上モードへと移行した最初のサイクルでは、過給効果により機関の充填効率は高められるものの、残留ガスの掃気効果は得られないことから、混合気の温度は高くなり高負荷かつ高温な状態が発生し、一時的なノッキング発生の懸念がある点に着目し、このモード過渡期におけるノッキング発生のおそれを回避する技術も提案されている。   Further, in Patent Document 1, in the first cycle in which the normally open mode is shifted to the charging efficiency improvement mode during acceleration or the like, the charging efficiency of the engine is increased by the supercharging effect, but the scavenging effect of the residual gas is obtained. Because there is not, the temperature of the air-fuel mixture becomes high, a high load and high temperature state occurs, and there is a concern of the occurrence of temporary knocking, and a technique to avoid the possibility of knocking during this mode transition period is also proposed Has been.

この技術は、充填効率向上モードでは、吸気行程の途中から吸気制御弁を開き、吸気行程の終期に吸気制御弁を閉じ、この弁閉時期は、圧力振動が最大圧となる時点に設定すれば大きな過給効果を得られるが、常時開モードから充填効率向上モードへと移行した最初のサイクルでは、充填効率向上モードにおける通常の開閉時期に比較して、吸気制御弁の閉時期を僅かに遅角して、シリンダ内の過給圧を定常時の目標過給圧よりも低くし、負荷の増大を抑え、ノッキングの発生を回避している。   In the charging efficiency improvement mode, this technology opens the intake control valve in the middle of the intake stroke, closes the intake control valve at the end of the intake stroke, and sets the valve closing timing to the time when the pressure oscillation becomes the maximum pressure. Although a large supercharging effect can be obtained, the closing timing of the intake control valve is slightly delayed compared to the normal opening / closing timing in the charging efficiency improvement mode in the first cycle that has shifted from the normally open mode to the charging efficiency improvement mode. In fact, the supercharging pressure in the cylinder is made lower than the target supercharging pressure in the steady state to suppress an increase in load and avoid the occurrence of knocking.

特許第4396253号公報Japanese Patent No. 4396253

しかしながら、本願発明者らの研究により、充填効率向上モードにおいて、インパルスバルブによって最大限に体積効率を向上させると、上記のモード過渡期でなくてもノッキングが発生しうることが判明した。本願発明者らは、このようなノッキングの発生現象について研究を重ねた結果、圧縮上死点温度が過剰に大きくなることがノッキングの原因であることを究明した。   However, the inventors' research has revealed that, in the filling efficiency improvement mode, if the volume efficiency is improved to the maximum by the impulse valve, knocking can occur even in the mode transition period. As a result of repeated studies on the phenomenon of occurrence of such knocking, the inventors of the present application have determined that the cause of knocking is that the compression top dead center temperature becomes excessively high.

つまり、体積効率を向上させるためには、インパルスバルブの開時期を遅らせてインパルス反応(圧力変動)を強めれば、圧力脈動が強まり充填効率を向上させることができより有効である。しかし、充填効率を高め過ぎると圧縮上死点温度が過剰に大きくなり、これに起因してノッキングが発生するものと考えられる。
この点、特許文献1の技術もノッキングの発生を抑えるものではあるが、特許文献1の技術のように、インパルスバルブの閉時期を僅角するには限度があり、この手法によってかかるノッキングの発生を抑えることは困難である。
That is, in order to improve the volumetric efficiency, if the impulse reaction (pressure fluctuation) is strengthened by delaying the opening timing of the impulse valve, the pressure pulsation becomes stronger and the filling efficiency can be improved. However, if the filling efficiency is increased too much, the compression top dead center temperature becomes excessively large, and it is considered that knocking occurs due to this.
In this respect, the technique of Patent Document 1 also suppresses the occurrence of knocking, but there is a limit to narrowing the closing timing of the impulse valve as in the technique of Patent Document 1, and the occurrence of knocking by this method is limited. It is difficult to suppress this.

本発明は、かかる課題に鑑み創案されたもので、吸気制御弁(インパルスバルブ)によってエンジンの体積効率を向上させ、エンジン出力を高めるようにしながら、これに伴って生じ易いノッキングの発生を抑制することができるようにした、エンジンの吸気制御装置を提供することを目的とする。   The present invention has been devised in view of such problems, and improves the volumetric efficiency of the engine by an intake control valve (impulse valve) and increases the engine output, while suppressing the occurrence of knocking that easily occurs. An object of the present invention is to provide an intake control device for an engine that can be used.

本発明のエンジンの吸気制御装置は、吸気弁上流の気筒別の吸気通路内に該吸気通路を遮断可能な吸気制御弁を有すると共に、エンジンの運転状態に応じて前記吸気制御弁の作動状態を制御する吸気制御弁制御手段を備えたエンジンの吸気制御装置において、前記吸気制御弁制御手段は、前記エンジンの低負荷運転領域では、前記吸気制御弁を常時開放する制御弁非作用モードを実施し、前記エンジンの高負荷運転領域では、吸気行程の開始以降から該吸気行程の終了付近までの期間内で前記吸気制御弁を開放して、吸気圧力脈動を発生させる制御弁作用モードを実施し、前記制御弁作用モードの実施時には、前記吸気圧力脈動により生じる圧力差が最大となり前記エンジンの体積効率が最も上昇する第1のピーク値となる開放タイミングよりも進角させた進角開放タイミングで前記吸気制御弁の開放を行ない、前記エンジンは、前記吸気制御弁の開放タイミングを進角させていくと前記エンジンの体積効率が遅角側の前記第1のピーク値よりも低い第2のピーク値を有するように遷移する特性を有しており、前記進角開放タイミングは、前記第2のピーク値を与える開放タイミング又はこの近傍のタイミングであることを特徴としている。 An intake control device for an engine according to the present invention has an intake control valve capable of blocking the intake passage in an intake passage for each cylinder upstream of the intake valve, and changes the operation state of the intake control valve according to the operating state of the engine. In the intake control device for an engine having an intake control valve control means for controlling, the intake control valve control means implements a control valve non-operation mode in which the intake control valve is always opened in a low load operation region of the engine. In the high-load operation region of the engine, a control valve action mode for opening the intake control valve within a period from the start of the intake stroke to the vicinity of the end of the intake stroke to generate intake pressure pulsation is performed. during the implementation of the control valve action mode, the first peak value and the ing opening timing pressure difference caused by the intake air pressure pulsation is most increased volumetric efficiency maximized Do Ri said engine Opening rows that have a well advanced and allowed the advance opening timing by the intake control valve, the engine, the volumetric efficiency retard side of the and will be advanced open timing of the intake control valve engine It has a characteristic of transitioning so as to have a second peak value lower than the first peak value, and the advance angle release timing is an opening timing for giving the second peak value or a timing in the vicinity thereof. It is characterized by that.

前記エンジンのノッキングを検出するノッキング検出手段を備え、前記吸気制御弁制御手段は、前記ノッキング検出手段により前記エンジンのノッキングが検出されると、前記進角開放タイミングで前記吸気制御弁の開放を行ない、前記ノッキング検出手段により前記エンジンのノッキングが検出されないと、前記吸気圧力脈動により生じる圧力差が最大となる開放タイミングで前記吸気制御弁の開放を行なうことが好ましい。   Knock detection means for detecting knocking of the engine is provided, and the intake control valve control means opens the intake control valve at the advance opening timing when the knock detection of the engine is detected by the knock detection means. If the engine knocking is not detected by the knocking detecting means, it is preferable that the intake control valve is opened at an opening timing at which the pressure difference caused by the intake pressure pulsation is maximized.

あるいは、前記高負荷運転領域が、高負荷側であってノッキングが発生しうる第1高負荷運転領域と、低負荷側であってノッキングが発生しにくい第2高負荷運転領域とに区分され、前記吸気制御弁制御手段は、前記エンジンの前記第1高負荷運転領域では、前記進角開放タイミングで前記吸気制御弁の開放を行ない、前記エンジンの前記第2高負荷運転領域では、前記吸気圧力脈動により生じる圧力差が最大となる開放タイミングで前記吸気制御弁の開放を行なうことも好ましい。   Alternatively, the high-load operation region is divided into a first high-load operation region on the high-load side where knocking can occur and a second high-load operation region on the low-load side where knocking is difficult to occur, The intake control valve control means opens the intake control valve at the advance opening timing in the first high load operation region of the engine, and the intake pressure in the second high load operation region of the engine. It is also preferable to open the intake control valve at the opening timing at which the pressure difference caused by pulsation is maximized.

前記進角開放タイミングは、前記吸気弁の最大リフトタイミングよりも進角させたタイミングであることが好ましい It is preferable that the advance angle release timing is a timing advanced from the maximum lift timing of the intake valve .

前記制御弁作用モードによる前記吸気制御弁の閉鎖タイミングは、前記吸気行程の下死点若しくは前記下死点から僅かに遅角したタイミングであることが好ましい。   It is preferable that the closing timing of the intake control valve in the control valve action mode is a bottom dead center of the intake stroke or a timing slightly delayed from the bottom dead center.

本発明のエンジンの吸気制御装置によれば、吸気制御弁制御手段が、エンジンの低負荷運転領域では、吸気制御弁を常時開放する制御弁非作用モードを実施するので、吸気制御弁の影響を受けることなくエンジンが作動するが、エンジンの高負荷運転領域では、吸気行程の開始以降から該吸気行程の終了付近までの期間内のみで吸気制御弁を開放して、吸気圧力脈動を発生させる制御弁作用モードを実施するので、吸気圧力脈動を利用して、エンジンの充填効率を高めること、したがって、体積効率を高めることができる。   According to the engine intake control device of the present invention, the intake control valve control means implements the control valve non-operation mode in which the intake control valve is normally opened in the low load operation region of the engine. The engine operates without being affected, but in the high-load operation region of the engine, the control that opens the intake control valve and generates the intake pressure pulsation only during the period from the start of the intake stroke to the end of the intake stroke. Since the valve action mode is implemented, intake pressure pulsation can be used to increase engine charging efficiency and therefore volumetric efficiency.

制御弁作用モードでは、吸気圧力脈動を利用して体積効率を高める際、これに伴って、着火前の気筒内の温度が上昇し、これに起因してノッキングを生じやすいが、吸気行程の開始時点以降において、吸気圧力脈動により生じる圧力差が最大となりエンジンの体積効率が最も上昇する第1のピーク値となる開放タイミングよりも進角させた進角開放タイミングで吸気制御弁の開放を行なうため、吸気圧力脈動により生じる圧力差が緩和されて、着火前の気筒内の温度上昇が抑制され、ノッキングの発生を抑制することができる。また、かかる進角開放タイミングで吸気制御弁の開放を行なっても、吸気圧力脈動による体積効率の向上効果は十分に得られる。
つまり、エンジンは、吸気制御弁の開放タイミングを進角させていくとエンジンの体積効率が遅角側の第1のピーク値よりも低い第2のピーク値を有するように遷移する特性を有しており、進角開放タイミングを、かかる第2のピーク値を与える開放タイミング又はこの近傍のタイミングとするので、ノッキングの発生抑制効果と、吸気圧力脈動による体積効率の向上効果とをより確実に得ることができる。
In the control valve action mode, when the volumetric efficiency is increased by using the intake pressure pulsation, the temperature in the cylinder before ignition rises accordingly, and knocking is likely to occur due to this, but the intake stroke starts. in later time, the opening of the intake control valve in the first peak value and advance opening timing is advanced from Na Ru opening timing of the pressure difference is increased most volumetric efficiency maximized Do Ri engine caused by the intake pressure pulsation Therefore, the pressure difference caused by the intake pressure pulsation is alleviated, the temperature rise in the cylinder before ignition is suppressed, and the occurrence of knocking can be suppressed. Further, even if the intake control valve is opened at such an advance angle opening timing, the effect of improving the volumetric efficiency due to the intake pressure pulsation can be sufficiently obtained.
In other words, the engine has a characteristic that when the opening timing of the intake control valve is advanced, the volume efficiency of the engine changes so as to have a second peak value lower than the first peak value on the retard side. Since the advance angle release timing is set to the release timing that gives the second peak value or a timing in the vicinity thereof, the effect of suppressing the occurrence of knocking and the effect of improving the volumetric efficiency due to the intake pressure pulsation can be obtained more reliably. be able to.

ノッキング検出手段によりエンジンのノッキングが検出されると、進角開放タイミングで吸気制御弁の開放を行ない、エンジンのノッキングが検出されないと、吸気圧力脈動により生じる圧力差が最大となる開放タイミングで前記吸気制御弁の開放を行なえば、ノッキングの発生を抑制しながら、吸気圧力脈動による体積効率の向上効果をより一層得ることができる。   When engine knocking is detected by the knocking detection means, the intake control valve is opened at the advance opening timing, and when engine knocking is not detected, the intake air is discharged at the opening timing at which the pressure difference caused by the intake pressure pulsation is maximized. If the control valve is opened, it is possible to further obtain the effect of improving the volume efficiency due to the intake pressure pulsation while suppressing the occurrence of knocking.

また、高負荷運転領域を、高負荷側であってノッキングが発生しうる第1高負荷運転領域と、低負荷側であってノッキングが発生しにくい第2高負荷運転領域とに区分し、第1高負荷運転領域では、進角開放タイミングで吸気制御弁の開放を行ない、第2高負荷運転領域では、吸気圧力脈動により生じる圧力差が最大となる開放タイミングで吸気制御弁の開放を行なっても、ノッキングセンサに頼らずに、ノッキングの発生を抑制しながら、吸気圧力脈動による体積効率の向上効果をより一層得ることができる。   Further, the high load operation region is divided into a first high load operation region on the high load side where knocking may occur and a second high load operation region on the low load side where knocking is unlikely to occur. In the first high load operation region, the intake control valve is opened at the advance opening timing, and in the second high load operation region, the intake control valve is opened at the release timing at which the pressure difference caused by the intake pressure pulsation is maximized. However, the volumetric efficiency can be further improved by the intake pressure pulsation while suppressing the occurrence of knocking without relying on the knocking sensor.

進角開放タイミングを、吸気弁の最大リフトタイミングよりも進角させたタイミングとすれば、確実にノッキングの発生を抑制しながら、吸気圧力脈動による体積効率の向上効果を得られる If the advance angle opening timing is set to a timing advanced from the maximum lift timing of the intake valve, it is possible to obtain an effect of improving volumetric efficiency due to intake pressure pulsation while reliably suppressing the occurrence of knocking .

制御弁作用モードによる吸気制御弁の閉鎖タイミングを、吸気行程の下死点若しくは前記下死点から僅かに遅角したタイミングとすれば、ノッキングの発生を抑制しながら、吸気圧力脈動による体積効率の向上効果を得ることができる。   If the closing timing of the intake control valve in the control valve operation mode is set to the bottom dead center of the intake stroke or slightly delayed from the bottom dead center, the volume efficiency due to the intake pressure pulsation is suppressed while suppressing the occurrence of knocking. An improvement effect can be obtained.

本発明の一実施形態に係る吸気制御装置を備えたエンジンのシステム構成図である。1 is a system configuration diagram of an engine including an intake air control device according to an embodiment of the present invention. 本発明の一実施形態に係る吸気制御装置による吸気制御弁の制御モードの割り付けを示すマップである。It is a map which shows allocation of the control mode of the intake control valve by the intake control device concerning one embodiment of the present invention. 本発明の一実施形態に係る吸気制御装置の吸気制御弁(インパルスバルブ)による効果を説明する図である。It is a figure explaining the effect by the intake control valve (impulse valve) of the intake control device concerning one embodiment of the present invention. 吸気制御弁(インパルスバルブ)の開弁タイミング(開弁角)による体積効率の向上特性を示す図である。It is a figure which shows the improvement characteristic of the volumetric efficiency by the valve opening timing (valve opening angle) of an intake control valve (impulse valve). 吸気制御弁(インパルスバルブ)の開弁タイミング(開弁角)に応じた筒内圧の変動特性を示す図である。It is a figure which shows the fluctuation characteristic of the cylinder pressure according to the valve opening timing (valve opening angle) of an intake control valve (impulse valve). 吸気制御弁(インパルスバルブ)の開弁タイミング(開弁角)による着火前筒内温度の特性を示す図である。It is a figure which shows the characteristic of the cylinder temperature before ignition by the valve opening timing (valve opening angle) of an intake control valve (impulse valve). 吸気制御弁(インパルスバルブ)の開弁タイミング(開弁角)に応じた筒内温度の変動特性を示す図である。It is a figure which shows the fluctuation characteristic of the in-cylinder temperature according to the valve opening timing (valve opening angle) of an intake control valve (impulse valve). 吸気制御弁(インパルスバルブ)の開弁タイミング(開弁角)による筒内残留EGR量の特性を示す図である。It is a figure which shows the characteristic of the cylinder residual EGR amount by the valve opening timing (valve opening angle) of an intake control valve (impulse valve). 吸気制御弁(インパルスバルブ)の開弁タイミング(開弁角)によるプレチャンバー内圧の特性を示す図である。It is a figure which shows the characteristic of the pre-chamber internal pressure by the valve opening timing (valve opening angle) of an intake control valve (impulse valve). 実施例にかかる吸気制御弁(インパルスバルブ)の開閉タイミングとこれに対応した筒内圧の変動を示す図である。It is a figure which shows the opening-and-closing timing of the intake control valve (impulse valve) concerning an Example, and the fluctuation | variation of the cylinder pressure corresponding to this.

以下、図面を用いて本発明にかかる一実施形態を説明する。
図1〜図10は本実施形態にかかる吸気制御装置及びそれを備えたエンジン(内燃機関)を示すもので、これらの図に基づいて説明する。なお、本実施形態では4サイクルガソリンエンジンに本装置を適用した例を示すが、本発明はガソリンエンジンに限らずディーゼルエンジン等への適用も可能である。
Hereinafter, an embodiment according to the present invention will be described with reference to the drawings.
1 to 10 show an intake control device according to the present embodiment and an engine (internal combustion engine) including the intake control device, which will be described based on these drawings. Although the present embodiment shows an example in which the present apparatus is applied to a four-cycle gasoline engine, the present invention can be applied not only to a gasoline engine but also to a diesel engine or the like.

〔吸気制御装置及びエンジンの構成〕
図1は実施形態に係る吸気制御装置を備えたエンジンのシステム構成図である。図1に示すように、エンジン2は、シリンダブロック2Aに設けられた複数のシリンダ(気筒)4と、各シリンダ4内を摺動するピストン6と、ピストン6とコネクティングロッド8を介して接続されたクランクシャフト10とを備えている。各シリンダ4内は下方をピストン6によって上方をシリンダヘッド2Bによって画成された燃焼室12を備え、燃焼室12には、吸気通路14及び排気通路16が接続されている。燃焼室12の中心部上面には、点火プラグ18が配置されている。
[Configuration of intake control device and engine]
FIG. 1 is a system configuration diagram of an engine including an intake air control device according to an embodiment. As shown in FIG. 1, the engine 2 is connected via a plurality of cylinders (cylinders) 4 provided in the cylinder block 2 </ b> A, pistons 6 that slide in the cylinders 4, pistons 6, and connecting rods 8. The crankshaft 10 is provided. Each cylinder 4 includes a combustion chamber 12 defined by a piston 6 on the lower side and a cylinder head 2B on the upper side, and an intake passage 14 and an exhaust passage 16 are connected to the combustion chamber 12. A spark plug 18 is disposed on the upper surface of the central portion of the combustion chamber 12.

吸気通路14は、上流側から吸気管22,吸気マニホールド24,吸気ポート26が接続され構成されており、吸気ポート26が燃焼室12に接続されている。吸気管22と吸気マニホールド24との間の吸気マニホールド24上流端部にはサージタンク28が備えられている。サージタンク28の上流の吸気管22の下流端部には、吸気通路面積を任意に調整可能なバタフライバルブ型のスロットルバルブ30がそなえられている。このスロットルバルブ30は、モータ等のスロットルバルブ駆動装置により開度が制御されるいわゆる電子制御スロットルバルブである。また、吸気ポート26には、燃料噴射弁20が配設され、エンジン負荷つまり吸入空気量に応じた量の燃料が噴射される。   The intake passage 14 is configured by connecting an intake pipe 22, an intake manifold 24, and an intake port 26 from the upstream side, and the intake port 26 is connected to the combustion chamber 12. A surge tank 28 is provided at the upstream end of the intake manifold 24 between the intake pipe 22 and the intake manifold 24. At the downstream end of the intake pipe 22 upstream of the surge tank 28, a butterfly valve type throttle valve 30 capable of arbitrarily adjusting the intake passage area is provided. The throttle valve 30 is a so-called electronically controlled throttle valve whose opening degree is controlled by a throttle valve driving device such as a motor. A fuel injection valve 20 is disposed in the intake port 26, and an amount of fuel corresponding to the engine load, that is, the intake air amount is injected.

排気通路16は、上流側から排気ポート32,排気マニホールド34,排気管36が接続され構成されており、排気ポート32が燃焼室12に接続される。排気管36には、排気浄化触媒38が備えられている。吸気ポート26の燃焼室12への開口部には、ポペットバルブからなる吸気バルブ40が装備されており、排気ポート32の燃焼室12への開口部には、ポペットバルブからなる排気バルブ42が装備されている。   The exhaust passage 16 is configured by connecting an exhaust port 32, an exhaust manifold 34, and an exhaust pipe 36 from the upstream side, and the exhaust port 32 is connected to the combustion chamber 12. The exhaust pipe 36 is provided with an exhaust purification catalyst 38. An intake valve 40 comprising a poppet valve is provided at the opening of the intake port 26 to the combustion chamber 12, and an exhaust valve 42 comprising a poppet valve is provided at the opening to the combustion chamber 12 of the exhaust port 32. Has been.

これらの吸気バルブ40及び排気バルブ42は、図示しない動弁機構によってクランクシャフト10の回転に同期して開閉駆動される。吸気バルブ40は、ピストン6の吸気上死点の少し前に開弁し、吸気下死点の少し後に閉弁する。排気バルブ42も、ピストン6の排気下死点の少し前に開弁し、排気上死点の少し後に閉弁する。そして、排気バルブ42と吸気バルブ40とが同時に開弁するバルブオーバラップ期間が設けられている。   The intake valve 40 and the exhaust valve 42 are driven to open and close in synchronization with the rotation of the crankshaft 10 by a valve mechanism (not shown). The intake valve 40 opens slightly before the intake top dead center of the piston 6 and closes slightly after the intake bottom dead center. The exhaust valve 42 is also opened slightly before the exhaust bottom dead center of the piston 6 and is closed slightly after the exhaust top dead center. A valve overlap period in which the exhaust valve 42 and the intake valve 40 are simultaneously opened is provided.

各気筒の吸気マニホールド24には、吸気マニホールド24において吸気通路14を遮断し得る吸気制御弁50が設けられている。吸気制御弁50は、吸気制御弁駆動装置52によって1サイクル中の任意の時期に応答性良く開閉可能であり、例えば電磁石により開閉するフラップ弁あるいはバタフライバルブ型の弁などから構成されている。吸気制御弁50の配設位置は、吸気管長が慣性過給効果を得る上で最適となるように設定されている。   The intake manifold 24 of each cylinder is provided with an intake control valve 50 that can block the intake passage 14 in the intake manifold 24. The intake control valve 50 can be opened and closed with good responsiveness at any time in one cycle by the intake control valve driving device 52, and is constituted by, for example, a flap valve or a butterfly valve type valve that is opened and closed by an electromagnet. The arrangement position of the intake control valve 50 is set so that the intake pipe length is optimal for obtaining the inertia supercharging effect.

この吸気制御弁50は、圧力脈動を利用して燃焼室12への空気の充填効率を向上させエンジン2の体積効率を向上させるものであるので、インパルスバルブとも呼ぶ。詳細は後述するが、エンジン2の出力が要求される高負荷運転時に、インパルスバルブ50を、その気筒の吸気行程の開始以降から吸気行程の終了付近までの期間内のみ開放して、吸気圧力脈動を発生させる。なお、インパルスバルブ50から、吸気バルブ40により閉鎖される吸気ポート26の燃焼室12への開口部までの吸気通路14の部分を、プレチャンバー(副室)54と呼ぶ。   The intake control valve 50 is also referred to as an impulse valve because it uses the pressure pulsation to improve the efficiency of filling the combustion chamber 12 with air and improve the volumetric efficiency of the engine 2. Although details will be described later, during high load operation where the output of the engine 2 is required, the impulse valve 50 is opened only during the period from the start of the intake stroke of the cylinder to the end of the intake stroke, and the intake pressure pulsation Is generated. A portion of the intake passage 14 from the impulse valve 50 to the opening of the intake port 26 closed by the intake valve 40 to the combustion chamber 12 is referred to as a pre-chamber (sub chamber) 54.

このインパルスバルブ50の開閉や、スロットルバルブ30の開度や、燃料噴射弁20からの燃料噴射量や、点火プラグ18の点火時期等を制御するエンジンECU(エンジンElectronic Control Unit)60が備えられている。エンジンECUは、周知のマイクロプロセッサやROM,RAM等を集積したLSIデバイスや組み込み電子デバイスとして構成される電子制御ユニットである。   An engine ECU (Engine Electronic Control Unit) 60 for controlling the opening / closing of the impulse valve 50, the opening degree of the throttle valve 30, the fuel injection amount from the fuel injection valve 20, the ignition timing of the spark plug 18, and the like is provided. Yes. The engine ECU is an electronic control unit configured as an LSI device or a built-in electronic device in which a known microprocessor, ROM, RAM, and the like are integrated.

このエンジンECU60には、アクセルペダルの操作量(アクセル開度)を検出するアクセルポジションセンサ62からのアクセル開度情報、クランクシャフト10のクランク角度を検出するクランク角センサ64からのクランク角情報、ノッキングによるシリンダブロック2Bの振動を検出するノックセンサ(ノッキング検出手段)66の検出情報や、図示しないエアフローセンサからの吸入空気量情報などの信号が入力され、これらの入力された情報に基づいて、エンジンECU60は各部を制御する。なお、ノッキング検出手段は、ノッキングを検出する物であればノックセンサ66に限らない。   The engine ECU 60 includes accelerator opening information from an accelerator position sensor 62 that detects an operation amount (accelerator opening) of an accelerator pedal, crank angle information from a crank angle sensor 64 that detects a crank angle of the crankshaft 10, and knocking. Signals such as detection information of a knock sensor (knocking detection means) 66 that detects vibration of the cylinder block 2B due to air and intake air amount information from an air flow sensor (not shown) are input, and the engine is based on the input information. The ECU 60 controls each part. The knocking detection means is not limited to the knock sensor 66 as long as it is an object that detects knocking.

つまり、エンジンECU60はアクセル開度情報に基づいてスロットルバルブ30の開度を制御し、吸入空気量情報に基づいて燃料噴射弁20からの燃料噴射量を制御し、クランク角情報に基づいて演算されるエンジン回転数Neとアクセル開度情報に基づいて演算されるエンジン負荷(ここでは、平均有効圧Peを用いる)とに基づいて、点火時期を制御する。また、後述の制御弁非作用モードによる運転時に、ノックセンサ66からノッキングの検出情報が入力されたら点火時期を遅角制御する。そして、インパルスバルブ50に対しては、エンジンECU60は、エンジン回転数Neとエンジン負荷Peとに基づいて、制御モードを設定して開閉を制御する。この場合、エンジンECU60は、吸気制御弁制御手段(インパルスバルブ制御手段)として機能する。   That is, the engine ECU 60 controls the opening of the throttle valve 30 based on the accelerator opening information, controls the fuel injection amount from the fuel injection valve 20 based on the intake air amount information, and is calculated based on the crank angle information. The ignition timing is controlled based on the engine speed Ne and the engine load calculated based on the accelerator opening information (here, the average effective pressure Pe is used). In addition, when knocking detection information is input from the knock sensor 66 during operation in the control valve non-operation mode described later, the ignition timing is retarded. For the impulse valve 50, the engine ECU 60 controls the opening and closing by setting a control mode based on the engine speed Ne and the engine load Pe. In this case, the engine ECU 60 functions as intake control valve control means (impulse valve control means).

〔吸気制御弁(インパルスバルブ50)の制御〕
ここで、本装置の特徴であるインパルスバルブ50の開閉制御について説明する。
図2はインパルスバルブ50の制御モードの割り付けを示すマップであり、図2に示すように、エンジン回転数Neとエンジン負荷Peとにより規定されるエンジン運転領域のうち、エンジン回転数Neが低中回転でエンジン負荷Peが高い領域(低回転高負荷領域)を、インパルスバルブ50を充填効率向上のために作用させる制御弁作用モード(充填効率向上モード)とし、その他の領域を、インパルスバルブ50を常時開放して特に作用させない制御弁非作用モード(常時開モード)とする。
[Control of intake control valve (impulse valve 50)]
Here, the opening / closing control of the impulse valve 50, which is a feature of the present apparatus, will be described.
FIG. 2 is a map showing assignment of control modes of the impulse valve 50. As shown in FIG. 2, the engine speed Ne is low or low in the engine operation range defined by the engine speed Ne and the engine load Pe. A region where the engine load Pe is high due to rotation (low rotation high load region) is a control valve action mode (filling efficiency improvement mode) in which the impulse valve 50 is operated to improve the charging efficiency, and the other region is the impulse valve 50. A control valve non-operation mode (normally open mode) in which the valve is always open and does not particularly act is set.

制御弁作用モード(充填効率向上モード)では、吸気行程の開始以降から吸気行程の終了付近までの期間内のみでインパルスバルブ50を開放して、その他の期間ではインパルスバルブ50を閉鎖して、エンジンの充填効率を向上させ、高いエンジン負荷(負荷要求)Peに対応する。
ここで、インパルスバルブ50によるエンジンの充填効率の向上原理を説明する。
In the control valve action mode (filling efficiency improvement mode), the impulse valve 50 is opened only during the period from the start of the intake stroke to the vicinity of the end of the intake stroke, and the impulse valve 50 is closed during the other periods. The charging efficiency of the engine is improved to cope with a high engine load (load demand) Pe.
Here, the principle of improving the charging efficiency of the engine by the impulse valve 50 will be described.

図3は、インパルスバルブ50をクランク角A1(吸気上死点後120度)からクランク角A2(吸気下死点の直後)にかけて開放した場合の、気筒内(筒内、シリンダ4内)及びプレチャンバー54内の各圧力のクランク角変化に対する変動を、ベース(インパルスバルブ50のない場合、これはインパルスバルブ50を常時開とした制御弁非作用モードに対応する)の気筒内圧力と対比して示す図である。   FIG. 3 shows the case where the impulse valve 50 is opened from the crank angle A1 (120 degrees after the intake top dead center) to the crank angle A2 (immediately after the intake bottom dead center) and in the cylinder (in the cylinder and in the cylinder 4). The fluctuation of each pressure in the chamber 54 with respect to the change in the crank angle is compared with the in-cylinder pressure of the base (when there is no impulse valve 50, this corresponds to the control valve non-operation mode in which the impulse valve 50 is normally opened). FIG.

図3に一点鎖線で示すように、インパルスバルブ50を閉鎖していると、排気行程においては、プレチャンバー54内は前回の吸気行程終了時の圧力をほぼ維持するのに対して、気筒4内圧力は排気と共に低下し、プレチャンバー54内よりも低圧になる。バルブオーバラップ期間になると、吸気バルブ40が開放するため、プレチャンバー54内から気筒4内への流れが起こり、気筒4内がプレチャンバー54内と同圧になるまで圧力上昇し、この後、排気バルブ42が閉鎖しピストン6が下がるに従って、気筒4内及びプレチャンバー54内に負圧が発生し、気筒内圧力及びプレチャンバー54内圧力は次第に減少する(区間a参照)。   As shown by the one-dot chain line in FIG. 3, when the impulse valve 50 is closed, the pressure in the pre-chamber 54 is substantially maintained in the pre-chamber 54 in the exhaust stroke, while in the cylinder 4 The pressure decreases with the exhaust, and becomes lower than that in the prechamber 54. In the valve overlap period, since the intake valve 40 is opened, a flow from the pre-chamber 54 into the cylinder 4 occurs, and the pressure increases until the pressure in the cylinder 4 becomes the same as that in the pre-chamber 54. As the exhaust valve 42 is closed and the piston 6 is lowered, negative pressure is generated in the cylinder 4 and the pre-chamber 54, and the pressure in the cylinder and the pressure in the pre-chamber 54 are gradually reduced (see section a).

吸気行程途中のクランク角A1からインパルスバルブ50を開弁すると、インパルスバルブ50の上流と下流との圧力差によって吸気が高速で気筒内に流入する(区間b参照)。この際に発生する負圧波が上流のサージタンク28で反射し、正圧波となって気筒4内に伝達した時にインパルスバルブ50を閉鎖する。これにより、気筒4内への吸気量が増大され充填効率が向上し、体積効率向上を実現する。さらに、プレチャンバー54内に閉じ込められた正圧により(区間c参照)、上記のように次サイクルのバルブオーバラップ期間における気筒4内からプレチャンバー54内への排気の吹き返しを抑制することができる。   When the impulse valve 50 is opened from the crank angle A1 during the intake stroke, the intake air flows into the cylinder at a high speed due to the pressure difference between the upstream and downstream of the impulse valve 50 (see section b). When the negative pressure wave generated at this time is reflected by the upstream surge tank 28 and transmitted to the cylinder 4 as a positive pressure wave, the impulse valve 50 is closed. Thereby, the amount of intake air into the cylinder 4 is increased, the charging efficiency is improved, and the volumetric efficiency is improved. Further, the positive pressure confined in the pre-chamber 54 (see section c) can suppress the exhaust blowback from the cylinder 4 into the pre-chamber 54 during the valve overlap period of the next cycle as described above. .

このようなインパルスバルブ50による体積効率の向上は、インパルスバルブ50の閉弁角(インパルスバルブ50を閉弁するクランク角、閉弁タイミング)を固定し、開弁角(インパルスバルブ50を開弁するクランク角、開弁タイミング)を変更すると、図4に示すように、開弁角によって体積効率向上効果は異なるが、吸気行程内のいずれの開弁角でも体積効率向上効果は得られる。なお、開弁角による体積効率の差は、図5に示すように、サージタンク28からの反射波を筒内に閉じ込める度合いによるものと考えられる。   The improvement in volumetric efficiency by such an impulse valve 50 is to fix the valve closing angle (crank angle and valve closing timing of the impulse valve 50) and to open the valve opening angle (open the impulse valve 50). When the crank angle and the valve opening timing are changed, as shown in FIG. 4, the volume efficiency improvement effect varies depending on the valve opening angle, but the volume efficiency improvement effect can be obtained at any valve opening angle in the intake stroke. Note that the difference in volumetric efficiency due to the valve opening angle is considered to be due to the degree of confinement of the reflected wave from the surge tank 28 in the cylinder, as shown in FIG.

図5において、A〜A12の各曲線は、インパルスバルブ50の開弁角を変更した場合のそれぞれの気筒内の圧力変化の特性を示し、開弁角Aは吸気上死点後略20度であり、開弁角Aは吸気上死点後略30度であり、以降、A,A,・・・とクランク角で略10度ずつ遅らせた開弁角であり、開弁角A12は吸気上死点後略130度である。なお、インパルスバルブ50の閉弁角はクランク角A2(吸気下死点の直後)に固定している。 In FIG. 5, each curve of A 1 to A 12 shows the characteristic of pressure change in each cylinder when the valve opening angle of the impulse valve 50 is changed, and the valve opening angle A 1 is approximately 20 after intake top dead center. and in degrees, opening angle a 2 is the intake top dead center Koryaku 30 degrees since, a 3, a 4, a valve opening angle delayed by 10 degrees substantially in ... and the crank angle, the valve opening angle a 12 is the intake top dead center Koryaku 130 degrees. The valve closing angle of the impulse valve 50 is fixed at the crank angle A2 (immediately after the intake bottom dead center).

インパルスバルブ50が閉じていると、排気バルブ42が閉鎖しピストン6が下がるに従って、気筒4内及びプレチャンバー54内に負圧が発生し、気筒内圧力は次第に減少するが、開弁角A,Aのように開弁角が早いと、気筒内圧力があまり減少しない段階で、したがって、インパルスバルブ50の上流と下流との圧力差が大きくならない段階で、吸気が気筒4内に流入する。この場合、吸気脈動はあまり強くないので、この際に発生する負圧波も比較的弱く、気筒内圧力は上昇後、下降,上昇を伴って振動し、その後、ピストン6の上昇に伴って気筒内圧力も上昇して行く。開弁角を遅くしていくにしたがって、インパルスバルブ50の開弁時のインパルスバルブ50の上流と下流との圧力差が大きくなり、吸気脈動も強まり、気筒内圧力は大きく上昇した後、下降し、ピストン6の上昇に伴って再び上昇する。 If the impulse valve 50 is closed, according to the piston 6 exhaust valve 42 is closed down, negative pressure is generated in the cylinder 4 and the pre-chamber 54, cylinder pressure is decreased gradually, the opening angle A 1 , A 2 , when the valve opening angle is fast, intake air flows into the cylinder 4 at a stage where the pressure in the cylinder does not decrease so much, and therefore, at a stage where the pressure difference between the upstream and downstream of the impulse valve 50 does not increase. . In this case, since the intake pulsation is not so strong, the negative pressure wave generated at this time is also relatively weak, and the cylinder pressure oscillates with a rise and fall after the rise, and then the inside of the cylinder with the rise of the piston 6 The pressure also rises. As the valve opening angle is made slower, the pressure difference between the upstream and downstream of the impulse valve 50 when the impulse valve 50 is opened increases, the intake pulsation increases, the cylinder pressure increases greatly, and then decreases. As the piston 6 rises, it rises again.

いずれの開弁角A〜A12でも、インパルスバルブ50のない場合(これは、ベース、及び、インパルスバルブ50を常時開とした制御弁非作用モードに対応する)よりも、吸気弁40を閉じた後の気筒内圧力(この気筒内圧力が体積効率に対応する)が高まり、開弁角を遅くするにしたがって、吸気弁40を閉じた後の気筒内圧力が高まる傾向にある。 In any of the valve opening angles A 1 to A 12 , the intake valve 40 is made to be more than the case where the impulse valve 50 is not provided (this corresponds to the base and the control valve non-operation mode in which the impulse valve 50 is normally opened). The in-cylinder pressure after closing (the in-cylinder pressure corresponds to volumetric efficiency) increases, and the in-cylinder pressure after closing the intake valve 40 tends to increase as the valve opening angle is delayed.

ただし、開弁角A,A,A(70度〜90度程度)では、それよりも早い開弁角A〜Aよりも吸気弁40を閉じた後の気筒内圧力が低くなっている。これは、吸気脈動によって気筒内圧力が低くなった段階で吸気弁40が閉鎖するためと考えられる。逆に、比較的早い開弁角A〜Aでは、吸気脈動によって気筒内圧力が低くなった後、再び上昇した段階で吸気弁40が閉鎖するために、吸気弁40を閉じた後の気筒内圧力が高まるものと考えられる。 However, at the valve opening angles A 6 , A 7 , A 8 (about 70 to 90 degrees), the cylinder pressure after closing the intake valve 40 is lower than the valve opening angles A 1 to A 5 earlier than that. It has become. This is presumably because the intake valve 40 is closed when the cylinder pressure is lowered by the intake pulsation. On the other hand, at the relatively fast valve opening angles A 1 to A 5 , after the pressure in the cylinder has decreased due to the intake pulsation, the intake valve 40 closes when the pressure rises again. It is thought that the cylinder pressure increases.

この傾向が、図4にも示されている。つまり、図4に示すように、インパルスバルブ50の開弁角A〜A12に応じて体積効率の上昇量は異なり、比較的遅い開弁角A〜A12の付近に体積効率が最も上昇する第1のピークがあり、比較的早い開弁角A〜Aの付近に体積効率が二番目に上昇する第2のピークがある。
この一方で、インパルスバルブ50による体積効率の向上に伴い、着火前筒内温度が上昇するためノッキングが発生しやすくなる。図6はインパルスバルブ50の開弁角に応じた着火前筒内温度を示すもので、図6に示すように、インパルスバルブ50の開弁角を遅らせるほど着火前筒内温度が上昇する傾向があり、開弁角が120度或いは130度といった体積効率向上が最大級の条件では、着火前筒内温度がインパルスバルブ50のないものに較べて数10℃近く上昇しノッキングが極めて発生しやすくなる。
This tendency is also shown in FIG. That is, as shown in FIG. 4, the amount of increase in volumetric efficiency varies depending on the valve opening angles A 1 to A 12 of the impulse valve 50, and the volumetric efficiency is the most in the vicinity of the relatively slow valve opening angles A 9 to A 12. There is a first peak that rises, and there is a second peak whose volumetric efficiency rises second in the vicinity of the relatively fast valve opening angles A 1 to A 5 .
On the other hand, as the volume efficiency is improved by the impulse valve 50, the in-cylinder temperature before ignition rises, so that knocking is likely to occur. FIG. 6 shows the in-cylinder temperature before ignition according to the opening angle of the impulse valve 50. As shown in FIG. 6, the in-cylinder temperature tends to increase as the opening angle of the impulse valve 50 is delayed. Yes, under conditions where the volumetric efficiency improvement is the largest, such as a valve opening angle of 120 degrees or 130 degrees, the in-cylinder temperature before ignition rises by several tens of degrees Celsius compared to those without the impulse valve 50, and knocking is very likely to occur. .

一方、インパルスバルブ50の開弁角を小さくする(開弁を早期にする)と、負圧の発生が抑制され、インパルスバルブ50の開閉時の圧力差による温度上昇が少なくなる。
また、これに加えて、排気行程でインパルスバルブ50が閉じていることからプレチャンバー54内を高圧に維持することができバルブオーバラップ中の排気の吸気側への吹き戻しを回避できる。その結果、内部EGR(=残留EGRガス)を減少させることができ、これによって、EGRガスによる温度上昇を防いで吸気上死点での気筒4内の温度を低下させることができる。
On the other hand, when the valve opening angle of the impulse valve 50 is made small (opening the valve early), the generation of negative pressure is suppressed, and the temperature rise due to the pressure difference when the impulse valve 50 is opened and closed is reduced.
In addition, since the impulse valve 50 is closed during the exhaust stroke, the inside of the pre-chamber 54 can be maintained at a high pressure, and the exhaust air blowback to the intake side during the valve overlap can be avoided. As a result, the internal EGR (= residual EGR gas) can be reduced, whereby the temperature rise due to the EGR gas can be prevented and the temperature in the cylinder 4 at the intake top dead center can be lowered.

図7はインパルスバルブ50の各開弁角A〜A12(A〜A12は図5と同様のもの)について、クランク角に応じた気筒4内温度の変化を示す図である。
吸気上死点における温度を見ると、温度が高いグループdと、温度が中程度のグループeと、温度が低いグループfとに分類できる。
グループdは、インパルスバルブ50のない場合及び開弁角A,A,A(70度〜90度程度)の場合であり、これらはいずれも吸気弁40を閉じた後の気筒内圧力が比較的低い。これは、排気行程において、吸気ポート26或いはプレチャンバー54内の圧力が低いため、バルブオーバラップ中の排気の吸気側への吹き戻しが発生して気筒4内温度が高まるものと考えられる。
FIG. 7 is a diagram showing changes in the cylinder 4 temperature according to the crank angle for the valve opening angles A 1 to A 12 (A 1 to A 12 are the same as those in FIG. 5) of the impulse valve 50.
The temperature at the intake top dead center can be classified into a group d having a high temperature, a group e having a medium temperature, and a group f having a low temperature.
Group d is the case without the impulse valve 50 and the valve opening angles A 6 , A 7 , A 8 (about 70 ° to 90 °), and these are all the cylinder pressures after the intake valve 40 is closed. Is relatively low. This is presumably because, during the exhaust stroke, the pressure in the intake port 26 or the pre-chamber 54 is low, so that the exhaust during the valve overlap is blown back to the intake side and the temperature in the cylinder 4 increases.

グループeは、比較的早い開弁角A〜Aの場合であり、前述のように、これらはいずれも吸気弁40を閉じた後の気筒内圧力が比較的高くなり、排気行程において、プレチャンバー54内の圧力が比較的高く維持されるため、バルブオーバラップ中の排気の吸気側への吹き戻しが抑制され気筒4内温度が抑えられるものと考えられる。
グループfは遅い開弁角A〜A12の場合であり、前述のように、これらはいずれも吸気弁40を閉じた後の気筒内圧力が大幅に高くなり、排気行程において、プレチャンバー54内の圧力が高く維持されるため、バルブオーバラップ中の排気の吸気側への吹き戻しが確実に抑制され気筒4内温度が大きく抑えられるものと考えられる。
Group e is a case of relatively fast valve opening angles A 1 to A 5 , and as described above, the pressure in the cylinder after closing the intake valve 40 becomes relatively high as described above, and in the exhaust stroke, Since the pressure in the pre-chamber 54 is kept relatively high, it is considered that the exhaust of the exhaust during the valve overlap to the intake side is suppressed and the temperature in the cylinder 4 is suppressed.
The group f is a case of the slow valve opening angles A 9 to A 12 , and as described above, the pressure in the cylinder after closing the intake valve 40 becomes significantly high as described above, and the pre-chamber 54 is in the exhaust stroke. Since the internal pressure is kept high, it is considered that the blowback of the exhaust gas to the intake side during the valve overlap is reliably suppressed and the temperature in the cylinder 4 is largely suppressed.

一方、インパルスバルブ50の開弁後の各温度挙動を見ると、吸気上死点における温度が低い場合ほど開弁後の温度上昇が急になっており、圧縮行程末期(クランク角が300度以降)における気筒4内温度は、結果的には、グループfが最も高く、ついで、グループdとなり、グループeが最も低くなることがわかる。
図8はインパルスバルブ50の開弁角に対する内部EGR(=の特性を示す図であり、図9はインパルスバルブ50の開弁角に対するプレチャンバー54内の圧力の特性を示す図である。これらの図からも、グループeはプレチャンバー54内の圧力がある程度確保されるため、残留EGRガス量が少なく、グループdはプレチャンバー54内の圧力が低くなるため、残留EGRガス量が多く、グループfはプレチャンバー54内の圧力がきわめて高く、残留EGRガス量もきわめて低いことがわかる。
On the other hand, looking at each temperature behavior after the valve opening of the impulse valve 50, the temperature rise after the valve opening becomes steeper as the temperature at the intake top dead center is lower, and the end of the compression stroke (crank angle after 300 degrees) As a result, it can be seen that the temperature in the cylinder 4 at) is highest in the group f, then in the group d, and lowest in the group e.
8 is a diagram showing a characteristic of internal EGR (=) with respect to the valve opening angle of the impulse valve 50, and FIG. 9 is a diagram showing a characteristic of pressure in the pre-chamber 54 with respect to the valve opening angle of the impulse valve 50. Also from the figure, since the pressure in the pre-chamber 54 is secured to some extent in the group e, the residual EGR gas amount is small, and in the group d, the pressure in the pre-chamber 54 is low, so the residual EGR gas amount is large, and the group f It can be seen that the pressure in the pre-chamber 54 is extremely high and the amount of residual EGR gas is very low.

ここで、このインパルスバルブ開弁角に応じた吸気行程における気筒4内の温度挙動を考察する。
まず、吸気行程開始時には、バルブオーバラップによって、気筒4内及びプレチャンバー54内の圧力が高いほど、排気が掃気されて内部EGRが減少するので、気筒4内温度は低くなる。
Here, the temperature behavior in the cylinder 4 in the intake stroke in accordance with the impulse valve opening angle will be considered.
First, at the start of the intake stroke, as the pressure in the cylinder 4 and the pre-chamber 54 is increased due to valve overlap, the exhaust gas is scavenged and the internal EGR decreases, so the temperature in the cylinder 4 decreases.

インパルスバルブ50を使用しない場合は、吸気弁40の開弁期間中は圧力がほぼ大気圧なので、その後、ピストン6が下降して新気が入るのに従って、気筒4内に残っていた高温の残留EGRガスが薄められて気筒4内の温度が低下する。この温度(筒内温度T)の推移は新気の量(新規の体積V2)と残留EGRの量(残留EGRの体積V1)との体積比と、残留EGRの温度T1及び新規の温度T2とで決まり、下式のように摸擬できる。
T=V1/V2×T1+(1−V1/V2)×T2
一方、インパルスバルブ50の使用時には、吸気行程初期はインパルスバルブ50が閉じているので、閉じた系でのポリトロープ(≒断熱)変化をし、筒内温度Tと筒内容積Vとの積は一定(TV=const)となる。したがって、ピストン6の下降に伴う筒内容積Vの増加(=断熱膨張)により、筒内温度Tが低下する。膨張初期には筒内温度Tの低下率はインパルスバルブ50未使用時よりも少ないが、膨張が進むにつれて筒内温度Tの低下がインパルスバルブ50未使用時よりも大きくなる。
When the impulse valve 50 is not used, the pressure is almost atmospheric pressure during the opening period of the intake valve 40. Thereafter, as the piston 6 descends and fresh air enters, the high temperature residue remaining in the cylinder 4 remains. The EGR gas is diluted and the temperature in the cylinder 4 is lowered. The transition of this temperature (in-cylinder temperature T) is the volume ratio between the amount of fresh air (new volume V2) and the amount of residual EGR (volume V1 of residual EGR), the temperature T1 of residual EGR, and the new temperature T2. It can be simulated by the following formula.
T = V1 / V2 × T1 + (1−V1 / V2) × T2
On the other hand, when the impulse valve 50 is used, since the impulse valve 50 is closed at the beginning of the intake stroke, the polytropy (≈ adiabatic) changes in the closed system, and the product of the in-cylinder temperature T and the in-cylinder volume V is constant. (TV = const). Accordingly, the in-cylinder temperature T decreases due to the increase in the in-cylinder volume V (= adiabatic expansion) accompanying the lowering of the piston 6. In the initial stage of expansion, the decrease rate of the in-cylinder temperature T is smaller than when the impulse valve 50 is not used, but as the expansion proceeds, the decrease in the in-cylinder temperature T becomes larger than when the impulse valve 50 is not used.

ただ、インパルスバルブ50を閉じたまま負圧を増大させ、インパルスバルブ50の前後(上下流)に圧力差を設けた状態でインパルスバルブ50を開くと、吸気弁40の弁体部分の外径に応じて流路面積が小さくなる分、そこで損失が発生し、不可逆な断熱変化になる。そのため、インパルスバルブ50の前後(上下流)の圧力が同等になり、新気量の移行が停止した場合でも、筒内の温度はインパルスバルブ50前(インパルスバルブ50よりも上流のインテークマニホールド24等)の温度よりも高くなり、また、インパルスバルブ50の前の温度は、バルブが閉じた状態での温度よりも低下する。そのため、インパルスバルブ50使用時は、未使用時(=圧力差を設けない)よりも圧力差に応じて温度が上がってしまうものと考えられる。   However, if the negative pressure is increased while the impulse valve 50 is closed and the impulse valve 50 is opened with a pressure difference before and after (upstream and downstream) of the impulse valve 50, the outer diameter of the valve body portion of the intake valve 40 is increased. Correspondingly, the flow path area is reduced, so that a loss occurs, resulting in an irreversible adiabatic change. Therefore, even when the pressure before and after (upstream / downstream) of the impulse valve 50 becomes equal and the transition of the fresh air amount stops, the temperature in the cylinder remains before the impulse valve 50 (the intake manifold 24 upstream of the impulse valve 50, etc.) ) And the temperature before the impulse valve 50 is lower than the temperature when the valve is closed. For this reason, when the impulse valve 50 is used, it is considered that the temperature rises according to the pressure difference than when the impulse valve 50 is not used (= no pressure difference is provided).

ただし、気体の自由膨張の場合、つまり、気体の流入に際して損失がない場合は、気体の温度変化は起こらない。
また、気体の温度が上がるもう一つの理由としては、作動流体である気体による比熱比の違いの影響がある。例えば、酸素Oの比熱比は1.4であり、二酸化炭素COの比熱比は1.29であって、負圧を増大させた時点の筒内の気体は主に既燃ガスであり、既燃ガスは新気(空気)中の酸素Oが二酸化炭素CO2、に置き換わったものであるから、比熱比が空気よりも小さく、温度低下が少ないが、この反面、インパルスバルブ50の開放後は、気筒4内には未燃ガス(=空気)が入ってくるため,温度上昇は既燃ガスより大きくなると考えられる。
However, in the case of free expansion of the gas, that is, when there is no loss during the inflow of the gas, the temperature change of the gas does not occur.
Another reason why the temperature of the gas rises is the influence of the difference in specific heat ratio depending on the gas that is the working fluid. For example, the specific heat ratio of oxygen O 2 is 1.4, the specific heat ratio of carbon dioxide CO 2 is 1.29, and the gas in the cylinder when the negative pressure is increased is mainly burnt gas. The burned gas is obtained by replacing oxygen O 2 in fresh air (air) with carbon dioxide CO 2, so that the specific heat ratio is smaller than that of air and the temperature is less decreased. Since the unburned gas (= air) enters the cylinder 4 after being opened, the temperature rise is considered to be larger than the burned gas.

このため、インパルスバルブ50の開弁を遅くしてインパルスバルブ50の開放時におけるインパルスバルブ50の前後圧力差を大きくすると、即ち、体積効率の大幅な向上を図ると、着火前筒内温度が上がってしまうものと考えられる。
このような着火前筒内温度の上昇が、エンジン2のノッキングを招くので、制御弁作用モード(充填効率向上モード)による運転時には、ノックセンサ66からノッキングの検出情報がエンジンECU60に入力されれば、吸気制御弁制御手段としてのエンジンECU60は、インパルスバルブ50の開弁角を、体積効率が第2のピーク(図4)となる上記のグループe(開弁角A〜A、つまり、吸気上死点後略20度〜略60度、特に、吸気上死点後略30度〜略50度が好ましい)のように、着火前筒内温度が低く且つ一定の体積効率の向上効果が得られるタイミングとして、体積効率は最大ではないがノッキングの発生は抑えられるように設定する。一方、制御弁作用モード(充填効率向上モード)による運転時には、ノックセンサ66からノッキングの検出情報がエンジンECU60に入力されなければ、吸気制御弁制御手段としてのエンジンECU60は、インパルスバルブ50の開弁角を、体積効率が第1のピーク(図4)となる上記のグループf(開弁角A〜A12、つまり、吸気上死点後略90度〜略130度、特に、吸気上死点後略110度〜略130度が好ましい)のように、体積効率の向上効果が最も得られるタイミングとする。
Therefore, if the valve opening of the impulse valve 50 is delayed to increase the pressure difference across the impulse valve 50 when the impulse valve 50 is opened, that is, if the volumetric efficiency is greatly improved, the in-cylinder temperature before ignition increases. It is thought that it will end up.
Such an increase in the in-cylinder temperature before ignition leads to knocking of the engine 2, so that knock detection information is input to the engine ECU 60 from the knock sensor 66 during operation in the control valve action mode (filling efficiency improvement mode). The engine ECU 60 serving as the intake control valve control means determines the valve opening angle of the impulse valve 50 from the group e (valve opening angles A 1 to A 5 ) in which the volumetric efficiency is the second peak (FIG. 4), that is, The cylinder temperature before ignition is low and a certain volume efficiency improvement effect is obtained, such as approximately 20 degrees to approximately 60 degrees after intake top dead center, and preferably approximately 30 degrees to approximately 50 degrees after intake top dead center. The timing is set so that the volumetric efficiency is not the maximum, but the occurrence of knocking can be suppressed. On the other hand, during operation in the control valve action mode (filling efficiency improvement mode), if knock detection information is not input from the knock sensor 66 to the engine ECU 60, the engine ECU 60 serving as the intake control valve control means opens the impulse valve 50. The above-mentioned group f (valve opening angle A 8 to A 12 , that is, approximately 90 degrees to approximately 130 degrees after the intake top dead center, in particular, the intake top dead center, where the volumetric efficiency becomes the first peak (FIG. 4). The timing at which the effect of improving the volumetric efficiency is most obtained is obtained, such as about 110 degrees to about 130 degrees later.

換言すれば、エンジンECU60は、ノッキングの発生時には、インパルスバルブ50の通常手法である大きな負圧を作って圧力差を設けた上でインパルスバルブ50を開弁させ、発生した負圧波が上流のサージタンクで反射し、正圧波となって筒内に伝達した時にバルブを閉弁する振幅の大きな圧力波の半波長(腹〜腹)を利用するのではなく,比較的小さな負圧で振幅の小さい脈動を作るとともに、脈動の2回目以降の波の腹(正圧の部分)でインパルスバルブを閉じるように制御することにより、一定の体積効率の向上効果を得ながら、ノッキングの発生を抑えるようにインパルスバルブ50の開弁タイミングを制御するのである。   In other words, when knocking occurs, the engine ECU 60 creates a large negative pressure, which is a normal technique of the impulse valve 50, creates a pressure difference, opens the impulse valve 50, and the generated negative pressure wave causes an upstream surge. Rather than using the half-wave (abdominal to abdominal) of a large amplitude pressure wave that is reflected by the tank and transmitted as a positive pressure wave into the cylinder, the amplitude is small with a relatively small negative pressure. In addition to creating pulsation and controlling the impulse valve to close at the antinode of the second and subsequent waves of pulsation (positive pressure part), to suppress the occurrence of knocking while obtaining a certain volumetric efficiency improvement effect The valve opening timing of the impulse valve 50 is controlled.

〔作用及び効果〕
本発明の一実施形態にかかるエンジンの吸気制御装置は、上述のように構成されているので、エンジンECU(吸気制御弁制御手段)60は、エンジン2の中低回転高負荷運転領域では、制御弁作用モード(充填効率向上モード)を実施し、インパルスバルブ50の開弁を制御し吸気圧力脈動を利用して、エンジン2の充填効率を高めて、体積効率を高めるので、エンジン出力を容易に高めることができ、エンジンの負荷要求に十分且つ速やかに応じることができる。
[Action and effect]
Since the engine intake control device according to the embodiment of the present invention is configured as described above, the engine ECU (intake control valve control means) 60 controls the engine 2 in the medium / low rotation / high load operation region. The valve action mode (filling efficiency improvement mode) is implemented, the valve opening of the impulse valve 50 is controlled and the intake pressure pulsation is used to increase the charging efficiency of the engine 2 and increase the volumetric efficiency, thus making engine output easier It can be increased and the load demand of the engine can be sufficiently and promptly met.

一方、エンジン2の中低回転高負荷運転領域でなければ、制御弁非作用モード(常時開モード)を実施し、インパルスバルブ50の開弁を常時開放するので、インパルスバルブ50の影響を受けることなく通常の特性で気筒4内に吸気を送ることができ、エンジン2が作動する。
そして、制御弁作用モードでは、吸気圧力脈動を利用して体積効率を高める際、これに伴って、着火前の気筒内の温度が上昇し、これに起因してノッキングを生じやすいが、ノックセンサ66の情報に基づいて、ノッキングが生じたら、図10に2種類の太破線で示すように、インパルスバルブ50の開放タイミングを吸気圧力脈動により生じる圧力差が最大となるインパルスバルブ50の開放タイミングよりも進角させ、特に、インパルスバルブ50の開放タイミングを、体積効率が第2のピーク(図4)となる上記のグループe(開弁角A〜A、つまり、吸気上死点後略20度〜略60度、特に、吸気上死点後略30度〜略50度が好ましい)のように、着火前筒内温度が低く且つ一定の体積効率の向上効果が得られるタイミングA01,A02とするので、一定の体積効率向上効果を得ながらノッキングの発生を抑えることができる。
On the other hand, if the engine 2 is not in the middle / low rotation / high load operation region, the control valve non-operation mode (normally open mode) is executed and the impulse valve 50 is always opened, and therefore, it is affected by the impulse valve 50. Therefore, intake air can be sent into the cylinder 4 with normal characteristics, and the engine 2 operates.
In the control valve action mode, when the volumetric efficiency is increased by using the intake pressure pulsation, the temperature in the cylinder before ignition rises accordingly, and knocking is likely to occur due to this. If knocking occurs based on the information of No. 66, the opening timing of the impulse valve 50 is determined from the opening timing of the impulse valve 50 at which the pressure difference caused by the intake pressure pulsation becomes maximum, as shown by two types of thick broken lines in FIG. In particular, the opening timing of the impulse valve 50 is set to the above-mentioned group e (opening angles A 1 to A 5 , that is, about 20 after the intake top dead center, where the volumetric efficiency becomes the second peak (FIG. 4). Timing at which the pre-ignition in-cylinder temperature is low and a certain volumetric efficiency improvement effect is obtained, such as approximately 60 degrees to approximately 60 degrees, and preferably approximately 30 degrees to approximately 50 degrees after intake top dead center. Since A01 and A02 are set, occurrence of knocking can be suppressed while obtaining a certain volumetric efficiency improvement effect.

また、エンジン2のノッキングが検出されないと、図10に細破線で示すように、インパルスバルブ50の開放タイミングを、体積効率が第1のピーク(図4)となる上記のグループf(開弁角A〜A12、つまり、吸気上死点後略90度〜略130度、特に、吸気上死点後略110度〜略130度が好ましい)のように、吸気圧力脈動により生じる圧力差が最大となる開放タイミングA1とするので、吸気圧力脈動による体積効率の向上効果をより一層得ることができる。 If knocking of the engine 2 is not detected, as shown by a thin broken line in FIG. 10, the opening timing of the impulse valve 50 is set to the above-described group f (valve opening angle) in which the volume efficiency becomes the first peak (FIG. 4). a 8 to a 12, that is, the intake top dead center Koryaku 90 degrees to approximately 130 degrees, in particular, as in the preferred) intake top dead center Koryaku 110 degrees to approximately 130 degrees, the maximum pressure difference caused by the intake pressure pulsation Since the opening timing A1 is as follows, the effect of improving the volumetric efficiency due to the intake pressure pulsation can be further obtained.

〔その他〕
以上、本発明の実施の形態を説明したが、本発明はかかる実施の形態に限定されるものではなく、本発明の主旨を逸脱しない範囲で、かかる実施の形態を適宜変形して実施しうるものである。
例えば、上記実施形態では、ノックセンサ66の情報に基づいて、ノッキングが発生したらインパルスバルブ50の開放タイミングを進角させているが、これに限らない。例えばノックセンサ66に頼ることなく、予めノッキングの発生する運転条件を試験等により求めておき、各種センサから得られた運転条件がノッキング発生条件を満たした時にインパルスバルブ50の開放タイミングを進角させてもよい。または、ノッキングの発生に依らず制御弁作用モード(充填効率向上モード)の際には、常時、上記のグループeのように、吸気圧力脈動により生じる圧力差が最大となるインパルスバルブ50の開放タイミングよりも進角させるようにしてもよい。
[Others]
Although the embodiment of the present invention has been described above, the present invention is not limited to such an embodiment, and can be appropriately modified and implemented without departing from the gist of the present invention. Is.
For example, in the above-described embodiment, when the knocking occurs based on the information of the knock sensor 66, the opening timing of the impulse valve 50 is advanced, but the present invention is not limited to this. For example, without relying on the knock sensor 66, an operation condition that causes knocking is obtained in advance by a test or the like, and the opening timing of the impulse valve 50 is advanced when the operation conditions obtained from various sensors satisfy the knocking occurrence condition. May be. Or, in the control valve action mode (filling efficiency improvement mode) regardless of the occurrence of knocking, the opening timing of the impulse valve 50 at which the pressure difference caused by the intake pressure pulsation is always the maximum, as in group e above. You may make it advance rather than.

また、図2に、二点鎖線で示すように、制御弁作用モード(充填効率向上モード)の運転領域を、高負荷側であってノッキングが発生しうる第1高負荷運転領域a1と、低負荷側であってノッキングが発生しにくい第2高負荷運転領域a2とに区分し、第1高負荷運転領域a1では、進角開放タイミングでインパルスバルブ50の開放を行ない、第2高負荷運転領域a2では、吸気圧力脈動により生じる圧力差が最大となる開放タイミングでインパルスバルブ50の開放を行なっても、ノッキングセンサ66に頼らずに、ノッキングの発生を抑制しながら、吸気圧力脈動による体積効率の向上効果を得ることができる。   Further, as shown by a two-dot chain line in FIG. 2, the operation region of the control valve action mode (filling efficiency improvement mode) is set to a first high load operation region a1 on the high load side where knocking may occur, and a low It is divided into a second high load operation region a2 on the load side where knocking is unlikely to occur. In the first high load operation region a1, the impulse valve 50 is opened at the advance opening timing, and the second high load operation region In a2, even if the impulse valve 50 is opened at the opening timing at which the pressure difference caused by the intake pressure pulsation is maximized, the volumetric efficiency due to the intake pressure pulsation is suppressed while suppressing the occurrence of knocking without depending on the knocking sensor 66. An improvement effect can be obtained.

もちろん、この技術にノッキングセンサ66を適用し、第2高負荷運転領域a2であっても、ノッキングセンサ66によりノッキングの発生が検出されたら、進角開放タイミングでインパルスバルブ50の開放を行なうようにしてもよい。   Of course, the knocking sensor 66 is applied to this technique, and even when the knocking sensor 66 detects the occurrence of knocking even in the second high-load operation region a2, the impulse valve 50 is opened at the advance opening timing. May be.

2 エンジン
4 シリンダ(気筒)
6 ピストン
10 クランクシャフト
12 燃焼室
14 吸気通路
16 排気通路
18 点火プラグ
20 燃料噴射弁
22 吸気管
24 吸気マニホールド
26 吸気ポート
28 サージタンク
30 スロットルバルブ
40 吸気バルブ
42 排気バルブ
50 インパルスバルブ(吸気制御弁)
54 プレチャンバー(副室)
60 エンジンECU(吸気制御弁制御手段)
62 アクセルポジションセンサ(APS)
64 クランク角センサ
66 ノックセンサ(ノッキング検出手段)
2 Engine 4 Cylinder
6 piston 10 crankshaft 12 combustion chamber 14 intake passage 16 exhaust passage 18 spark plug 20 fuel injection valve 22 intake pipe 24 intake manifold 26 intake port 28 surge tank 30 throttle valve 40 intake valve 42 exhaust valve 50 impulse valve (intake control valve)
54 Pre-chamber
60 Engine ECU (intake control valve control means)
62 Accelerator position sensor (APS)
64 Crank angle sensor 66 Knock sensor (knocking detection means)

Claims (5)

吸気弁上流の気筒別の吸気通路内に該吸気通路を遮断可能な吸気制御弁を有すると共に、エンジンの運転状態に応じて前記吸気制御弁の作動状態を制御する吸気制御弁制御手段を備えたエンジンの吸気制御装置において、
前記吸気制御弁制御手段は、
前記エンジンの低負荷運転領域では、前記吸気制御弁を常時開放する制御弁非作用モードを実施し、
前記エンジンの高負荷運転領域では、吸気行程の開始以降から該吸気行程の終了付近までの期間内で前記吸気制御弁を開放して、吸気圧力脈動を発生させる制御弁作用モードを実施し、
前記制御弁作用モードの実施時には、前記吸気圧力脈動により生じる圧力差が最大となり前記エンジンの体積効率が最も上昇する第1のピーク値となる開放タイミングよりも進角させた進角開放タイミングで前記吸気制御弁の開放を行ない、
前記エンジンは、前記吸気制御弁の開放タイミングを進角させていくと前記エンジンの体積効率が遅角側の前記第1のピーク値よりも低い第2のピーク値を有するように遷移する特性を有しており、
前記進角開放タイミングは、前記第2のピーク値を与える開放タイミング又はこの近傍のタイミングである
ことを特徴とする、エンジンの吸気制御装置。
Intake control valve control means for controlling the operating state of the intake control valve according to the operating state of the engine, as well as having an intake control valve capable of blocking the intake passage in the intake passage for each cylinder upstream of the intake valve In the engine intake control system,
The intake control valve control means includes
In the low load operation region of the engine, a control valve non-operation mode in which the intake control valve is always opened is performed,
In the high-load operation region of the engine, the control valve action mode for opening the intake control valve within a period from the start of the intake stroke to the vicinity of the end of the intake stroke to generate intake pressure pulsation is performed.
Wherein the time of execution of the control valve action mode, the intake pressure pulsation due to the pressure difference is maximized Do Ri said advance was the advance is angularly than the first peak value and name Ru opening timing volumetric efficiency of the engine is most increased opening caused the have the opening of the intake control valve row at the timing,
The engine has a characteristic that, when the opening timing of the intake control valve is advanced, the volume efficiency of the engine changes so as to have a second peak value lower than the first peak value on the retard side. Have
The engine intake control device according to claim 1, wherein the advance angle release timing is an opening timing for giving the second peak value or a timing in the vicinity thereof.
前記エンジンのノッキングを検出するノッキング検出手段を備え、
前記吸気制御弁制御手段は、前記ノッキング検出手段により前記エンジンのノッキングが検出されると、前記進角開放タイミングで前記吸気制御弁の開放を行ない、前記ノッキング検出手段により前記エンジンのノッキングが検出されないと、前記吸気圧力脈動により生じる圧力差が最大となる開放タイミングで前記吸気制御弁の開放を行なう
ことを特徴とする、請求項1記載のエンジンの吸気制御装置。
A knocking detecting means for detecting knocking of the engine;
The intake control valve control means opens the intake control valve at the advance angle release timing when the knock detection means detects the engine knock, and the knock detection means does not detect the engine knock. The intake control device for an engine according to claim 1, wherein the intake control valve is opened at an opening timing at which a pressure difference caused by the intake pressure pulsation is maximized.
前記高負荷運転領域が、高負荷側であってノッキングが発生しうる第1高負荷運転領域と、低負荷側であってノッキングが発生しにくい第2高負荷運転領域とに区分され、
前記吸気制御弁制御手段は、前記エンジンの前記第1高負荷運転領域では、前記進角開放タイミングで前記吸気制御弁の開放を行ない、前記エンジンの前記第2高負荷運転領域では、前記吸気圧力脈動により生じる圧力差が最大となる開放タイミングで前記吸気制御弁の開放を行なう
ことを特徴とする、請求項1記載のエンジンの吸気制御装置。
The high load operation region is divided into a first high load operation region on the high load side where knocking may occur, and a second high load operation region on the low load side where knocking is unlikely to occur,
The intake control valve control means opens the intake control valve at the advance opening timing in the first high load operation region of the engine, and the intake pressure in the second high load operation region of the engine. The intake control apparatus for an engine according to claim 1, wherein the intake control valve is opened at an opening timing at which a pressure difference caused by pulsation is maximized.
前記進角開放タイミングは、前記吸気弁の最大リフトタイミングよりも進角させたタイミングである
ことを特徴とする、請求項1〜3のいずれか1項に記載のエンジンの吸気制御装置
The engine intake control device according to any one of claims 1 to 3, wherein the advance angle release timing is a timing advanced from a maximum lift timing of the intake valve .
前記制御弁作用モードによる前記吸気制御弁の閉鎖タイミングは、前記吸気行程の下死点若しくは前記下死点から僅かに遅角したタイミングである
ことを特徴とする、請求項1〜のいずれか1項に記載のエンジンの吸気制御装置。
Closing timing of the control valve acting mode by the intake control valve is characterized in that the to timing retarded slightly from the bottom dead center or the bottom dead center of the intake stroke, claim 1-4 The engine intake control device according to claim 1.
JP2011194300A 2011-09-06 2011-09-06 Engine intake control device Active JP5594265B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011194300A JP5594265B2 (en) 2011-09-06 2011-09-06 Engine intake control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011194300A JP5594265B2 (en) 2011-09-06 2011-09-06 Engine intake control device

Publications (2)

Publication Number Publication Date
JP2013053608A JP2013053608A (en) 2013-03-21
JP5594265B2 true JP5594265B2 (en) 2014-09-24

Family

ID=48130814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011194300A Active JP5594265B2 (en) 2011-09-06 2011-09-06 Engine intake control device

Country Status (1)

Country Link
JP (1) JP5594265B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10994561B2 (en) 2018-09-28 2021-05-04 Ricoh Company, Ltd. Head device, head position adjustment mechanism, and image forming apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4396253B2 (en) * 2003-12-15 2010-01-13 日産自動車株式会社 Intake control device for internal combustion engine
JP4483643B2 (en) * 2005-03-23 2010-06-16 マツダ株式会社 Multi-cylinder engine controller
JP4706957B2 (en) * 2005-03-31 2011-06-22 トヨタ自動車株式会社 Engine control device
JP4539408B2 (en) * 2005-03-31 2010-09-08 トヨタ自動車株式会社 Intake control device and method

Also Published As

Publication number Publication date
JP2013053608A (en) 2013-03-21

Similar Documents

Publication Publication Date Title
JP2006046293A (en) Intake air control device for internal combustion engine
JP5428473B2 (en) Method and apparatus for controlling an internal combustion engine
JP2010144558A (en) Control method and control device for engine
US7406937B2 (en) Method for operating an internal combustion engine
CN110462204B (en) Control device for internal combustion engine
JP2012145040A (en) Control device of internal combustion engine
US20170107922A1 (en) Control system of internal combustion engine
JP5594265B2 (en) Engine intake control device
JP5851463B2 (en) Valve timing control device for internal combustion engine
JP6090641B2 (en) Control device for internal combustion engine
JP6848412B2 (en) Internal combustion engine control device
WO2014185493A1 (en) Internal combustion engine controller
JP4335264B2 (en) Internal combustion engine control device
JP3903832B2 (en) Control method for internal combustion engine
JP2005113772A (en) Knocking avoidance device
JP2004232580A (en) Control for internal combustion engine in period of changing compression ratio
JP2009216035A (en) Control device of internal combustion engine
JP2016050502A (en) Control device of internal combustion engine
JP6554863B2 (en) Engine control device
JP7256682B2 (en) Internal combustion engine control method and internal combustion engine control device
JP4396253B2 (en) Intake control device for internal combustion engine
CN108691663B (en) Control device for internal combustion engine
JP2009293458A (en) Control device for internal combustion engine
JP7238571B2 (en) Engine control method and engine control device
JP2018141404A (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R151 Written notification of patent or utility model registration

Ref document number: 5594265

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350