JP5594250B2 - Heat storage device - Google Patents

Heat storage device Download PDF

Info

Publication number
JP5594250B2
JP5594250B2 JP2011170404A JP2011170404A JP5594250B2 JP 5594250 B2 JP5594250 B2 JP 5594250B2 JP 2011170404 A JP2011170404 A JP 2011170404A JP 2011170404 A JP2011170404 A JP 2011170404A JP 5594250 B2 JP5594250 B2 JP 5594250B2
Authority
JP
Japan
Prior art keywords
heat storage
heat
storage material
compartment
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011170404A
Other languages
Japanese (ja)
Other versions
JP2013036627A (en
Inventor
慧 志賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011170404A priority Critical patent/JP5594250B2/en
Publication of JP2013036627A publication Critical patent/JP2013036627A/en
Application granted granted Critical
Publication of JP5594250B2 publication Critical patent/JP5594250B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Air-Conditioning For Vehicles (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、蓄熱装置に関する。   The present invention relates to a heat storage device.

従来、蓄熱装置として、蓄熱器に形成された区画室内の蓄熱材への蓄熱及び同蓄熱材からの放熱を行うものが知られている。そして、上記蓄熱材としては、顕熱蓄熱を行うことの可能なものや、潜熱蓄熱を行うことが可能なものを採用することが考えられる。なお、潜熱蓄熱とは蓄熱材を形成する材料の相状態の変化(例えば固相と液相との間での変化)に伴う同材料の吸熱・放熱を利用した蓄熱のことであり、顕熱蓄熱とは蓄熱材を形成する材料の上記相状態変化を伴わない蓄熱のことである。   2. Description of the Related Art Conventionally, as a heat storage device, a device that stores heat to a heat storage material in a compartment formed in a heat storage device and releases heat from the heat storage material is known. And as said heat storage material, it is possible to employ what can perform sensible heat storage, and what can perform latent heat storage. In addition, latent heat storage is heat storage using heat absorption / dissipation of the material that accompanies a change in the phase state of the material forming the heat storage material (for example, a change between the solid phase and the liquid phase). The heat storage is heat storage that does not involve the phase state change of the material forming the heat storage material.

ちなみに、蓄熱装置において、上記蓄熱器の容量を小さく抑えつつ同蓄熱材での蓄熱量を大きくするためには、同蓄熱材として潜熱蓄熱を行うことが可能なものを採用することが有効である。潜熱蓄熱を行うことの可能な蓄熱材を用いた上記蓄熱装置では、その蓄熱材の温度に基づき同蓄熱材が固相状態から液相状態となるまで同蓄熱材への蓄熱を行う一方、蓄熱器に対する熱の出力要求に応じて上記蓄熱材からの放熱が行われる。   Incidentally, in the heat storage device, in order to increase the amount of heat stored in the heat storage material while keeping the capacity of the heat storage device small, it is effective to adopt a material capable of performing latent heat storage as the heat storage material. . In the above heat storage device using a heat storage material capable of performing latent heat storage, the heat storage material stores heat until the heat storage material changes from a solid phase state to a liquid phase state based on the temperature of the heat storage material. Heat release from the heat storage material is performed in response to a heat output request to the container.

ところで、潜熱蓄熱を行うことの可能な蓄熱材では、固相と液相との間での相状態の変化が繰り返し行われることで、蓄熱材が劣化して潜熱蓄熱量の低下などの問題が生じるおそれがある。このため、例えば特許文献1に示すように、蓄熱材での劣化の発生の有無を判断し、蓄熱材での劣化が発生した旨判断された場合には、そのことを報知することが考えられる。このように蓄熱材での劣化が発生したときに、その劣化の発生を報知することで、蓄熱材を交換するなどの対策を講じることが可能になる。   By the way, in a heat storage material capable of performing latent heat storage, the phase state change between the solid phase and the liquid phase is repeatedly performed, so that the heat storage material is deteriorated and the latent heat storage amount is reduced. May occur. For this reason, for example, as shown in Patent Document 1, it is possible to determine whether or not deterioration has occurred in the heat storage material and to notify that when it is determined that deterioration has occurred in the heat storage material. . Thus, when deterioration occurs in the heat storage material, it is possible to take measures such as replacing the heat storage material by notifying the occurrence of the deterioration.

特開2004−333066公報(段落[0025])JP 2004-333066 A (paragraph [0025])

特許文献1に示すように、蓄熱材での劣化が発生している旨判断されたとき、そのことを報知することにより、蓄熱材の劣化についての対策を講じることが可能にはなる。ただし、蓄熱材を直ちに交換できないような状況のもとでは、劣化の生じた蓄熱材を使い続けなければならなくなり、そのときには蓄熱材に劣化が生じていないときと同様に蓄熱材への蓄熱や同蓄熱材からの放熱が行われる。従って、蓄熱材での劣化が生じているにもかかわらず、同劣化が生じていないときと同様の態様で蓄熱材への蓄熱や同蓄熱からの放熱が行われ、そのことが効果的な蓄熱及び放熱を行ううえでの妨げになりかねない。そして、蓄熱材への蓄熱や同蓄熱材からの放熱を効果的に行えないと、そうした蓄熱や放熱を通じて効率よく熱を用いることが困難になる。   As shown in Patent Document 1, when it is determined that the heat storage material has deteriorated, it is possible to take measures against the deterioration of the heat storage material by notifying that fact. However, under circumstances where the heat storage material cannot be immediately replaced, it is necessary to continue to use the heat storage material that has deteriorated. Heat release from the heat storage material is performed. Therefore, despite the occurrence of deterioration in the heat storage material, heat storage to the heat storage material and heat release from the heat storage are performed in the same manner as when the deterioration does not occur, which is effective heat storage. In addition, it may interfere with heat dissipation. If heat storage to the heat storage material and heat dissipation from the heat storage material cannot be effectively performed, it becomes difficult to use heat efficiently through such heat storage and heat dissipation.

本発明はこのような実情に鑑みてなされたものであって、その目的は、蓄熱材の劣化が生じたとき、その蓄熱材への蓄熱や同蓄熱材からの放熱を可能な限り効果的に行うことで、そうした蓄熱や放熱を通じて効率よく熱を用いることのできる蓄熱装置を提供することにある。   The present invention has been made in view of such a situation, and the purpose thereof is as effectively as possible to store heat to the heat storage material and to release heat from the heat storage material when the heat storage material deteriorates. It is to provide a heat storage device that can efficiently use heat through such heat storage and heat dissipation.

請求項1に記載の発明によれば、複数の区画室内の蓄熱材のうちのいずれにも劣化が生じていない状況のもとでは、それら蓄熱材に対し蓄熱を行う際に各蓄熱材のうち固相状態にあり且つ融点に近い温度のものから順に蓄熱が行われる。これにより、各蓄熱材のうち可能な限り多くの蓄熱材を、顕熱蓄熱状態と比較して蓄熱量が多くなり且つ熱の保持性がよくなる潜熱蓄熱状態とすることができる。一方、複数の区画室内の蓄熱材のうちのいずれにも劣化が生じていない状況のもと、蓄熱器に対する熱の出力要求に基づいて各蓄熱材からの放熱を行う際には、各蓄熱材のうち液相状態にあり且つ温度の高いものから順に放熱が行われる。これにより、蓄熱器に対する熱の出力要求がなされたとき、その熱の出力要求を速やかに満たすことができる。また、複数の区画室内の蓄熱材のうちのいずれかで劣化が生じている状況のもとでは、複数の区画室内の蓄熱材での蓄熱放熱を行う際、上記劣化が生じている蓄熱材での蓄熱放熱よりも、上記劣化が生じていない他の蓄熱材での蓄熱放熱が優先的に行われる。ここで、上記劣化の生じている蓄熱材に関しては劣化の影響から蓄熱量の低下等が生じている可能性が高いことから、蓄熱装置においては上記劣化の生じた蓄熱材を可能な限り蓄熱放熱のために利用しないようにすることが、同装置での蓄熱放熱を効果的なものとするうえで好ましい。このことを考慮して、各蓄熱材のうちのいずれかで劣化が生じている状況のもとでは、各蓄熱材での蓄熱放熱が上述したように行われるため、そうした状況のもとでも蓄熱装置での蓄熱放熱を可能な限り効果的なものとすることができる。 According to the first aspect of the present invention, when heat storage is performed on the heat storage materials, no deterioration occurs in any of the heat storage materials in the plurality of compartments. Heat storage is performed in order from a solid phase state and a temperature close to the melting point. Thereby, as many heat storage materials as possible among the respective heat storage materials can be brought into a latent heat storage state in which the amount of heat storage is increased and heat retention is improved as compared with the sensible heat storage state. On the other hand, when performing heat radiation from each heat storage material based on a heat output request to the heat storage device in a situation where none of the heat storage materials in the plurality of compartments has deteriorated, each heat storage material Among these, heat is radiated in order from the liquid phase state and the highest temperature. Thereby, when the heat output request | requirement with respect to the thermal accumulator is made | formed, the heat output request | requirement can be satisfy | filled rapidly. In addition, under the situation where deterioration has occurred in any of the heat storage materials in the plurality of compartments, the heat storage material in which the deterioration has occurred when performing heat storage or heat dissipation with the heat storage materials in the plurality of compartments Heat storage and heat dissipation with other heat storage materials in which the above-mentioned deterioration has not occurred are preferentially performed over heat storage and heat dissipation at. Here, since it is likely to decrease, etc. of the heat storage amount from the effects of degradation with respect to the heat storage material that occurs in the degradation occurs in the heat storage apparatus Ya heat storage as possible heat storage material produced above degradation It is preferable not to use it for heat dissipation in order to effectively store heat and heat in the apparatus. In consideration of this, since heat storage and heat dissipation in each heat storage material are performed as described above under a situation where deterioration has occurred in any of the heat storage materials, even under such conditions Heat storage and heat dissipation in the heat storage device can be made as effective as possible.

請求項3に記載の発明によれば、複数の区画室内の蓄熱材すべてで劣化が生じているときには、それら蓄熱材すべてで同時に蓄熱放熱が行われる。こうした各蓄熱材での蓄熱放熱を行うことにより、上記劣化が生じていないときのように各蓄熱材毎に個別に蓄熱放熱を行う場合と比較して、それら蓄熱放熱に関する制御を簡略化することができる。 According to the invention described in claim 3, when the degradation in all of the plurality of compartments of the heat storage material occurs at the same time heat accumulation and heat dissipation in all its et thermal storage material takes place. By performing heat storage and heat dissipation with each of these heat storage materials, compared to the case where heat storage and heat dissipation are performed individually for each heat storage material, such as when the above-mentioned deterioration has not occurred, control related to heat storage and heat dissipation is simplified. Can be

請求項5記載の発明によれば、蓄熱材での劣化が生じているか否かの判断は、その蓄熱材への蓄熱時に同蓄熱材の温度が融点を含む判定範囲の下限値から上限値に達するまでに同蓄熱材に投入された熱量の合計値が基準値未満であるか否かに基づいてなされる。そして、上記合計値が基準値未満であることに基づき、蓄熱材での劣化が生じている旨判断される。これにより、蓄熱材での劣化が生じている旨の判断を的確に行うことができる。 According to the fifth aspect of the present invention, whether or not the heat storage material has deteriorated is determined by determining whether the temperature of the heat storage material is the upper limit value from the lower limit value of the determination range in which the temperature of the heat storage material includes the melting point. It is made based on whether or not the total value of the amount of heat input to the heat storage material is less than the reference value. Then, based on the fact that the total value is less than the reference value, it is determined that the heat storage material has deteriorated. Thereby, it can be determined accurately that the heat storage material has deteriorated.

本実施形態における蓄熱装置の全体構成を示す略図。The schematic diagram which shows the whole structure of the thermal storage apparatus in this embodiment. 蓄熱材への蓄熱時及び同蓄熱材からの放熱時における蓄熱材の相状態の変化と温度変化との関係を示す説明図。Explanatory drawing which shows the relationship between the change of the phase state of a thermal storage material at the time of the thermal storage to a thermal storage material, and the time of thermal radiation from the thermal storage material, and a temperature change. 劣化の有無による蓄熱材の蓄熱態様の違いを示すグラフ。The graph which shows the difference in the thermal storage aspect of the thermal storage material by the presence or absence of deterioration. 蓄熱器における区画室内の蓄熱材の劣化判定手順を示すフローチャート。The flowchart which shows the deterioration determination procedure of the thermal storage material in the compartment in a thermal storage. 蓄熱器における区画室内の蓄熱材の劣化判定手順を示すフローチャート。The flowchart which shows the deterioration determination procedure of the thermal storage material in the compartment in a thermal storage. 蓄熱器における区画室内の蓄熱材への蓄熱手順を示すフローチャート。The flowchart which shows the thermal storage procedure to the thermal storage material in the compartment in a thermal storage. 蓄熱材への蓄熱を行う際の第1〜第4蓄熱モードでの蓄熱態様の違いを示す説明図。Explanatory drawing which shows the difference in the thermal storage aspect in the 1st-4th thermal storage mode at the time of performing thermal storage to a thermal storage material. 蓄熱器における区画室内の蓄熱材からの放熱手順を示すフローチャート。The flowchart which shows the thermal radiation procedure from the thermal storage material in the compartment in a thermal storage.

以下、本発明を自動車の蓄熱装置に具体化した一実施形態について、図1〜図8を参照して説明する。
自動車には、図1に示されるように、エンジン1との間で熱交換を行う冷却水(熱媒体)を循環させる循環回路が設けられている。こうした循環回路での冷却水の循環は、例えば電動式のウォータポンプ2を用いて行われる。循環回路においては、ウォータポンプ2から吐出された冷却水が、エンジン1、ヒータコア9、排熱回収器10、及びメイン通路3を通過した後、上記ウォータポンプ2に戻るようになっている。上記ヒータコア9は、自動車に搭載された空調装置を通じて車室内を暖房する際、同装置により車室に送風される空気を上記冷却水の熱によって暖めるためのものである。上記排熱回収器10は、その内部を通過する冷却水とエンジン1の排気との間での熱交換を通じて同排気の熱を上記冷却水により回収するためのものである。
Hereinafter, an embodiment in which the present invention is embodied in an automobile heat storage device will be described with reference to FIGS.
As shown in FIG. 1, the automobile is provided with a circulation circuit that circulates cooling water (heat medium) that exchanges heat with the engine 1. Circulation of the cooling water in such a circulation circuit is performed using, for example, an electric water pump 2. In the circulation circuit, the cooling water discharged from the water pump 2 passes through the engine 1, the heater core 9, the exhaust heat recovery device 10, and the main passage 3, and then returns to the water pump 2. The heater core 9 is for heating the air blown to the passenger compartment by the air-conditioner mounted on the automobile by the heat of the cooling water when the passenger compartment is heated. The exhaust heat recovery unit 10 is for recovering heat of the exhaust gas by the cooling water through heat exchange between the cooling water passing through the exhaust water and the exhaust gas of the engine 1.

自動車では、エンジン1や排熱回収器10等が熱源となり、そうした熱源からの熱が循環回路を循環する冷却水に伝達される。この自動車の蓄熱装置は、エンジン1や排熱回収器10等の熱源からの余剰の熱を一時的に蓄えておき、その蓄えられた熱を自動車における加熱すべき部分(以下、温度調節部という)の加熱に用いるとき等に放出する。ここで、自動車における蓄熱装置の詳細な構造について説明する。   In an automobile, the engine 1, the exhaust heat recovery device 10, and the like serve as heat sources, and heat from such heat sources is transmitted to cooling water that circulates in the circulation circuit. This automobile heat storage device temporarily stores surplus heat from a heat source such as the engine 1 or the exhaust heat recovery unit 10, and the stored heat is a part to be heated in the automobile (hereinafter referred to as a temperature control unit). ) When used for heating. Here, the detailed structure of the heat storage device in the automobile will be described.

循環回路において、排熱回収器10の下流かつウォータポンプ2の上流には、メイン通路3を迂回するバイパス通路4が設けられている。このバイパス通路4には外部と断熱された蓄熱器5が設けられている。蓄熱器5の内部は、複数(この例では二つ)の区画室5a,5bに仕切られている。そして、これら区画室5a,5bにはそれぞれ、潜熱蓄熱を行うことが可能であり、且つ過冷却現象を生じさせることの可能な蓄熱材6が入れられている。なお、上記バイパス通路4は、蓄熱器5の上流で区画室5a,5bをそれぞれ通過する支流部4a,4bに分岐している。そして、これら支流部4a,4bは蓄熱器5の下流で合流している。   In the circulation circuit, a bypass passage 4 that bypasses the main passage 3 is provided downstream of the exhaust heat recovery device 10 and upstream of the water pump 2. The bypass passage 4 is provided with a heat accumulator 5 insulated from the outside. The inside of the heat accumulator 5 is partitioned into a plurality (two in this example) of compartments 5a and 5b. Each of the compartments 5a and 5b is provided with a heat storage material 6 capable of performing latent heat storage and capable of causing a supercooling phenomenon. The bypass passage 4 is branched into branch portions 4a and 4b that pass through the compartments 5a and 5b, respectively, upstream of the heat accumulator 5. These tributaries 4 a and 4 b merge downstream of the heat accumulator 5.

バイパス通路4の蓄熱器5は、区画室5a,5b内に高温の冷却水を流入させて同冷却水の熱を各区画室5a,5b内の蓄熱材6に付与することで、それら蓄熱材6に自動車の熱源からの余剰の熱を蓄えるものである。また、蓄熱器5の蓄熱材6に蓄えられた熱の放出は、区画室5a,5bに低温の冷却水を流入させて各区画室5a,5b内の蓄熱材6からの熱を奪い、それによって温度上昇した冷却水を区画室5a,5bから流出させることで実現される。バイパス通路4における支流部4aと支流部4bとの分岐部分には、それら支流部4a,4bを通じての冷却水の流通を禁止・許可すべく、第1〜第4切換位置の間で切換動作する切換弁11が設けられている。なお、第1〜第4切換位置のいずれかに切り換えられた切換弁11は、それぞれ次のように機能する。   The heat accumulator 5 of the bypass passage 4 allows high-temperature cooling water to flow into the compartments 5a and 5b and applies the heat of the cooling water to the heat storage materials 6 in the compartments 5a and 5b. It stores excess heat from the heat source of the car. Further, the heat stored in the heat storage material 6 of the heat storage device 5 is obtained by flowing low-temperature cooling water into the compartments 5a and 5b to take heat from the heat storage material 6 in each of the compartments 5a and 5b. This is realized by allowing the cooling water whose temperature has risen to flow out of the compartments 5a and 5b. A switching operation is performed between the first to fourth switching positions at the branch portion of the bypass passage 4 between the branch portion 4a and the branch portion 4b so as to prohibit / permit the flow of the cooling water through the branch portions 4a, 4b. A switching valve 11 is provided. In addition, the switching valve 11 switched to one of the first to fourth switching positions functions as follows.

第1切換位置に切り換えられた切換弁11は、支流部4aを通じての冷却水の流通を禁止するとともに、支流部4bを通じての冷却水の流通も禁止する。第2切換位置に切り換えられた切換弁11は、支流部4aを通じての冷却水の流通を許可する一方、支流部4bを通じての冷却水の流通を禁止する。第3切換位置に切り換えられた切換弁11は、支流部4aを通じての冷却水の流通を禁止する一方、支流部4bを通じての冷却水の流通を許可する。第4切換位置に切り換えられた切換弁11は、支流部4aを通じての冷却水の流通を許可するとともに、支流部4bを通じての冷却水の流通も許可する。   The switching valve 11 switched to the first switching position prohibits the circulation of the cooling water through the branch portion 4a and also prohibits the circulation of the cooling water through the branch portion 4b. The switching valve 11 switched to the second switching position permits the circulation of the cooling water through the branch part 4a, while prohibiting the circulation of the cooling water through the branch part 4b. The switching valve 11 switched to the third switching position prohibits the flow of the cooling water through the branch portion 4a, and permits the flow of the cooling water through the branch portion 4b. The switching valve 11 switched to the fourth switching position permits the circulation of the cooling water through the branch part 4a and also permits the circulation of the cooling water through the branch part 4b.

次に、本実施形態の蓄熱装置における電気的構成について説明する。
この蓄熱装置は、自動車に搭載された各種機器の制御を実行する電子制御装置21を備えている。電子制御装置21は、上記制御に係る各種演算処理を実行するCPU、その制御に必要なプログラムやデータの記憶されたROM、CPUの演算結果等が一時記憶されるRAM、外部との間で信号を入・出力するための入・出力ポート等を備えて構成されている。なお、電子制御装置21は、ヒータコア9における空気の加熱及びその加熱された空気の車室内への送風の制御を司る空調制御コンピュータ20に対し車内ネットワーク(CAN)を通じて接続されており、CANを介しての相互通信により空調制御コンピュータ20と必要な情報を共有する。
Next, the electrical configuration of the heat storage device of the present embodiment will be described.
The heat storage device includes an electronic control device 21 that executes control of various devices mounted on the automobile. The electronic control unit 21 is a CPU that executes various arithmetic processes related to the above control, a ROM that stores programs and data necessary for the control, a RAM that temporarily stores the arithmetic results of the CPU, etc. The input / output port for inputting / outputting is provided. The electronic control unit 21 is connected to an air conditioning control computer 20 that controls heating of the air in the heater core 9 and blowing of the heated air into the vehicle interior via a vehicle network (CAN). Necessary information is shared with the air conditioning control computer 20 through mutual communication.

電子制御装置21の入力ポートには、以下に示す各種センサ等が接続されている。
・蓄熱器5の区画室5a内に入れられた蓄熱材6の温度を検出する第1温度センサ22a。
Various sensors shown below are connected to the input port of the electronic control unit 21.
A first temperature sensor 22 a that detects the temperature of the heat storage material 6 placed in the compartment 5 a of the heat storage device 5.

・バイパス通路4の支流部4aを通じて上記区画室5aに流入する冷却水の温度を検出する第1入口水温センサ22b。
・バイパス通路4の支流部4aを通じて上記区画室5aから流出する冷却水の温度を検出する第1出口水温センサ22c。
A first inlet water temperature sensor 22b that detects the temperature of the cooling water flowing into the compartment 5a through the branch portion 4a of the bypass passage 4.
A first outlet water temperature sensor 22c that detects the temperature of the cooling water flowing out of the compartment 5a through the branch portion 4a of the bypass passage 4.

・蓄熱器5の区画室5b内に入れられた蓄熱材6の温度を検出する第2温度センサ23a。
・バイパス通路4の支流部4bを通じて上記区画室5bに流入する冷却水の温度を検出する第2入口水温センサ23b。
A second temperature sensor 23 a that detects the temperature of the heat storage material 6 placed in the compartment 5 b of the heat storage 5.
A second inlet water temperature sensor 23b that detects the temperature of the cooling water flowing into the compartment 5b through the branch portion 4b of the bypass passage 4.

・バイパス通路4の支流部4bを通じて上記区画室5bから流出する冷却水の温度を検出する第2出口水温センサ23c。
・循環回路におけるエンジン1出口での冷却水の温度を検出するエンジン水温センサ24。
A second outlet water temperature sensor 23c that detects the temperature of the cooling water flowing out from the compartment 5b through the branch portion 4b of the bypass passage 4.
An engine water temperature sensor 24 that detects the temperature of the cooling water at the outlet of the engine 1 in the circulation circuit.

・エンジン1の吸入空気量を検出するエアフローメータ25。
・エンジン1の出力軸の回転速度(エンジン回転速度)を検出する回転速度センサ26。
An air flow meter 25 that detects the intake air amount of the engine 1.
A rotational speed sensor 26 that detects the rotational speed of the output shaft of the engine 1 (engine rotational speed).

・エンジン1の排気系における触媒上流の排気温を検出する排気温センサ27。
電子制御装置21の出力ポートには、エンジン1を駆動するための各種機器の駆動回路、ウォータポンプ2の駆動回路、及び切換弁11の駆動回路等が接続されている。
An exhaust temperature sensor 27 that detects the exhaust temperature upstream of the catalyst in the exhaust system of the engine 1.
Connected to the output port of the electronic control unit 21 are drive circuits for various devices for driving the engine 1, a drive circuit for the water pump 2, a drive circuit for the switching valve 11, and the like.

そして、電子制御装置21は、上記各種センサから入力した検出信号に基づき、エンジン回転速度やエンジン負荷(エンジン1の1サイクル当たりに燃焼室に吸入される空気の量)といったエンジン運転状態を把握する。電子制御装置21は、エンジン負荷やエンジン回転速度といったエンジン運転状態に応じて、上記出力ポートに接続されたエンジン1を駆動するための各種機器の駆動回路に指令信号を出力する。こうしてエンジン1における各種の運転制御、例えば燃料噴射制御、点火時期制御、及びスロットル開度制御といった各種の運転制御が電子制御装置21を通じて実施される。   The electronic control unit 21 grasps the engine operating state such as the engine speed and the engine load (the amount of air taken into the combustion chamber per cycle of the engine 1) based on the detection signals input from the various sensors. . The electronic control unit 21 outputs a command signal to drive circuits of various devices for driving the engine 1 connected to the output port in accordance with the engine operating state such as the engine load and the engine speed. In this manner, various operation controls such as fuel injection control, ignition timing control, and throttle opening control in the engine 1 are performed through the electronic control unit 21.

また、電子制御装置21は、上記各種センサから入力した検出信号等に基づき、循環回路における冷却水の温度、エンジン1及びヒータコア9にて必要とされる熱量、蓄熱器5(蓄熱材6)に蓄えられた熱量、及び冷却水が排熱回収器10から受ける熱量等を把握する。電子制御装置21は、それら把握した温度や熱量に応じて、上記出力ポートに接続されたウォータポンプ2の駆動回路及び切換弁11の駆動回路に指令信号を出力する。こうして自動車の蓄熱装置におけるウォータポンプ2の駆動制御、及び切換弁11の切り換え制御等が電子制御装置21を通じて実施される。このようにウォータポンプ2の駆動制御、及び切換弁11の切り換え制御を行う電子制御装置21は、蓄熱器5(蓄熱材6)への蓄熱及び同蓄熱器5からの放熱を制御する制御手段として機能する。   Further, the electronic control device 21 determines the temperature of the cooling water in the circulation circuit, the amount of heat required in the engine 1 and the heater core 9, and the heat storage 5 (heat storage material 6) based on the detection signals input from the various sensors. The amount of heat stored and the amount of heat received by the cooling water from the exhaust heat recovery device 10 are grasped. The electronic control device 21 outputs a command signal to the drive circuit of the water pump 2 and the drive circuit of the switching valve 11 connected to the output port according to the grasped temperature and heat quantity. Thus, the drive control of the water pump 2 and the switching control of the switching valve 11 in the heat storage device of the automobile are performed through the electronic control device 21. The electronic control device 21 that performs the drive control of the water pump 2 and the switching control of the switching valve 11 as described above serves as a control unit that controls the heat storage to the heat storage 5 (heat storage material 6) and the heat release from the heat storage 5. Function.

次に、蓄熱装置における蓄熱器5への蓄熱、及び蓄熱器5からの放熱の概要について説明する。
蓄熱装置では、循環回路を循環する冷却水の熱を、蓄熱器5における複数の区画室5a,5b内の蓄熱材6に付与することが可能であるとき、それら蓄熱材6への蓄熱が行われる。詳しくは、切換弁11が第2〜第4切換位置のうちのいずれかに切り換えられることで、バイパス通路4の支流部4a及び支流部4bの少なくとも一方を通じての冷却水の流通が許可されるとともに、高温の冷却水を支流部4a,4bを通じて蓄熱器5の区画室5a及び区画室5bの少なくとも一方に流入させる。そして、その高温の冷却水が蓄熱器5の区画室5a,5bを通過する際、同冷却水と区画室5a,5b内の蓄熱材6との間の熱交換を通じて、その冷却水の熱が蓄熱材6に伝達される。こうした熱の伝達により蓄熱材6が固相状態のままの状態で温度上昇すると、蓄熱器5で顕熱蓄熱が行われるようになる。その後、蓄熱材6が更に温度上昇して固相状態から液相状態に変化すると、蓄熱器5で潜熱蓄熱が行われるようになる。そして、蓄熱器5での蓄熱が行われた後、切換弁11を第1切換位置に切り換えると、蓄熱器5(蓄熱材6)が蓄熱状態(顕熱蓄熱状態または潜熱蓄熱状態)に保持される。
Next, an outline of heat storage in the heat storage device 5 and heat radiation from the heat storage device 5 in the heat storage device will be described.
In the heat storage device, when the heat of the cooling water circulating in the circulation circuit can be applied to the heat storage material 6 in the plurality of compartments 5a and 5b in the heat storage device 5, the heat storage to the heat storage material 6 is performed. Is called. Specifically, the switching valve 11 is switched to any one of the second to fourth switching positions, thereby permitting the flow of the cooling water through at least one of the branch portion 4a and the branch portion 4b of the bypass passage 4. The high-temperature cooling water is caused to flow into at least one of the compartment 5a and the compartment 5b of the heat accumulator 5 through the branch portions 4a and 4b. When the high-temperature cooling water passes through the compartments 5a and 5b of the regenerator 5, heat of the cooling water is exchanged through heat exchange between the cooling water and the heat storage material 6 in the compartments 5a and 5b. It is transmitted to the heat storage material 6. When the temperature rises while the heat storage material 6 remains in a solid state due to such heat transfer, the sensible heat storage is performed in the heat storage 5. Thereafter, when the heat storage material 6 further rises in temperature and changes from the solid phase state to the liquid phase state, the heat storage device 5 performs latent heat storage. Then, after the heat storage in the heat accumulator 5 is performed, when the switching valve 11 is switched to the first switching position, the heat accumulator 5 (heat storage material 6) is held in a heat storage state (sensible heat storage state or latent heat storage state). The

一方、蓄熱装置においては、蓄熱器5に蓄えられた熱を利用して自動車の温度調節部を加熱すべきとき、例えば循環回路を循環する冷却水をエンジン1の暖機や車室の暖房などのために加熱すべきとき、蓄熱器5(蓄熱材6)からの放熱が行われる。なお、このときの循環回路の冷却水は、自動車において蓄熱器5(蓄熱材6)に蓄えられた熱を利用して加熱すべき温度調節部となる。蓄熱器5からの放熱を行う際にも、切換弁11が第2〜第4切換位置のうちのいずれかに切り換えられる。これにより、バイパス通路4の支流部4a及び支流部4bのうちの少なくとも一方を通じての冷却水の流通が許可され、それに伴い低温の冷却水が区画室5a及び区画室5bのうちの少なくとも一方を通過する。区画室5a,5bを低温の冷却水が通過するとき、その低温の冷却水と蓄熱材6との間の熱交換を通じて、蓄熱材6から上記冷却水に熱が伝達される。このように蓄熱材6からの熱が伝達されて高温となった冷却水を蓄熱器5から流出させることで、蓄熱器5(蓄熱材6)に蓄えられた熱の放出が行われる。その結果、循環回路を循環する冷却水が蓄熱器5に蓄えられた熱を利用して加熱される。なお、蓄熱器5の蓄熱材6は、自身の熱を上述したように冷却水に伝達するにつれて温度低下してゆく。そして、蓄熱材6が潜熱蓄熱状態(液相状態)のもとで上述したように温度低下すると、それに伴って蓄熱材6が固相状態へと徐々に変化してゆく。蓄熱材6が液相状態から固相状態へと変化することで、蓄熱材6が潜熱蓄熱状態から顕熱蓄熱状態へと移行することになる。   On the other hand, in the heat storage device, when the temperature control unit of the automobile is to be heated using the heat stored in the heat accumulator 5, for example, cooling water circulating in the circulation circuit is used to warm up the engine 1 or to heat the passenger compartment. When heat is to be generated, heat is released from the heat accumulator 5 (heat storage material 6). In addition, the cooling water of the circulation circuit at this time becomes a temperature control part which should be heated using the heat stored in the heat accumulator 5 (heat storage material 6) in the automobile. When performing heat radiation from the heat accumulator 5, the switching valve 11 is switched to one of the second to fourth switching positions. Thereby, circulation of the cooling water through at least one of the tributary part 4a and the tributary part 4b of the bypass passage 4 is permitted, and accordingly, the low-temperature cooling water passes through at least one of the compartment 5a and the compartment 5b. To do. When low-temperature cooling water passes through the compartments 5a and 5b, heat is transferred from the heat storage material 6 to the cooling water through heat exchange between the low-temperature cooling water and the heat storage material 6. In this way, the heat stored in the heat storage device 5 (heat storage material 6) is released by causing the coolant stored in the heat storage material 5 to flow out from the heat storage device 5 by transferring the heat from the heat storage material 6 to a high temperature. As a result, the cooling water circulating in the circulation circuit is heated using the heat stored in the heat accumulator 5. In addition, the temperature of the heat storage material 6 of the heat storage device 5 decreases as it transfers its own heat to the cooling water as described above. When the temperature of the heat storage material 6 decreases as described above under the latent heat storage state (liquid phase state), the heat storage material 6 gradually changes to the solid state. When the heat storage material 6 changes from the liquid phase state to the solid phase state, the heat storage material 6 shifts from the latent heat storage state to the sensible heat storage state.

なお、図2は、上記蓄熱材6への蓄熱時及び同蓄熱材6からの放熱時における蓄熱材6の相状態の変化と温度変化との関係を示している。図中の実線から分かるように、固体の状態にある蓄熱材6が温度上昇して融点Tmに達すると、蓄熱材6は加熱し続けても温度をほぼ一定に保ったまま固相状態から液相状態へと徐々に変化してゆく。そして、蓄熱材6全体が液相状態になると、上記加熱に伴って蓄熱材6の温度が再び上昇してゆくようになる。なお、蓄熱材6が液相状態となっているときには、同蓄熱材6が潜熱蓄熱状態となっていることを意味する。一方、図中の破線から分かるように、液相状態にある蓄熱材6が温度低下する場合には、蓄熱材6が液相状態のまま融点Tm未満に温度低下する過冷却状態となる。このように過冷却状態となった蓄熱材6に衝撃等が加わると、蓄熱材6からの放熱が開始されて同蓄熱材が融点Tmまで温度上昇した後、同蓄熱材6が放熱を続けながら温度をほぼ一定に保ったまま液相状態から固相状態へと徐々に変化してゆく。そして、蓄熱材6全体が固相状態になると、上記放熱に伴って蓄熱材6の温度が再び低下してゆくようになる。なお、蓄熱材6が固相状態で同蓄熱材6に熱が蓄えられているときには、その蓄熱材6が顕熱蓄熱状態となっていることを意味する。   FIG. 2 shows the relationship between the change in the phase state of the heat storage material 6 and the temperature change at the time of heat storage to the heat storage material 6 and heat release from the heat storage material 6. As can be seen from the solid line in the figure, when the heat storage material 6 in the solid state rises in temperature and reaches the melting point Tm, the heat storage material 6 remains in the liquid state from the solid state while keeping the temperature substantially constant even if it continues to be heated. It gradually changes to a phase state. And when the whole heat storage material 6 will be in a liquid phase state, the temperature of the heat storage material 6 will rise again with the said heating. In addition, when the heat storage material 6 is in a liquid phase state, it means that the heat storage material 6 is in a latent heat storage state. On the other hand, as can be seen from the broken line in the figure, when the temperature of the heat storage material 6 in the liquid phase is lowered, the heat storage material 6 is in a supercooled state in which the temperature is lowered below the melting point Tm while in the liquid phase. When an impact or the like is applied to the heat storage material 6 that has been in a supercooled state in this way, heat release from the heat storage material 6 is started and the temperature of the heat storage material rises to the melting point Tm, and then the heat storage material 6 continues to release heat. The temperature gradually changes from a liquid phase to a solid phase while keeping the temperature substantially constant. And when the whole heat storage material 6 will be in a solid-phase state, the temperature of the heat storage material 6 will fall again with the said heat dissipation. In addition, when the heat storage material 6 is a solid state and heat is stored in the heat storage material 6, it means that the heat storage material 6 is in a sensible heat storage state.

ところで、潜熱蓄熱を行うことの可能な上記蓄熱材6を用いた蓄熱装置では、蓄熱器5(蓄熱材6)の容量を小さく抑えつつ蓄熱量を多くすることを考慮して、蓄熱材6への蓄熱を行う際に蓄熱材6の温度に基づき同蓄熱材6が固相状態から液相状態となるまで蓄熱材6への蓄熱が行われる。一方、蓄熱装置においては、循環回路内を循環する冷却水(自動車の温度調節部)の温度がその目標値未満であるとき等に蓄熱器5に対する熱の出力要求がなされ、そうした熱の出力要求に基づいて上記蓄熱材6からの放熱が行われる。   By the way, in the heat storage device using the heat storage material 6 capable of performing latent heat storage, the heat storage material 6 is considered in consideration of increasing the heat storage amount while keeping the capacity of the heat storage device 5 (heat storage material 6) small. When the heat storage material 6 is stored, the heat storage material 6 is stored based on the temperature of the heat storage material 6 until the heat storage material 6 changes from the solid phase state to the liquid phase state. On the other hand, in the heat storage device, when the temperature of the cooling water (automobile temperature control unit) circulating in the circulation circuit is lower than the target value, a heat output request is made to the heat storage 5 and the heat output request is made. The heat is released from the heat storage material 6 based on the above.

ここで、潜熱蓄熱を行うことの可能な上記蓄熱材6では、固相と液相との間での相状態の変化が繰り返し行われることで、蓄熱材6が劣化して潜熱蓄熱量の低下などの問題が生じるおそれがある。図3は、上記劣化の有無によって生じると推測される蓄熱材6の蓄熱態様の違いを示したグラフである。同図において、破線は劣化の生じていない蓄熱材6に対して熱を付与したときに同蓄熱材6にて生じると推測される温度上昇態様を示しており、実線は劣化が生じている蓄熱材6に対して熱を付与したときに同蓄熱材6にて生じると推測される温度上昇態様を示している。同図から分かるように、蓄熱材6に劣化が生じている場合(実線)には、同劣化が生じていない場合(破線)と比較して、蓄熱材6が融点Tmまで上昇した後に同融点Tmよりも高い値へと上昇開始するまでに必要な熱量が少なくなると考えられる。言い換えれば、蓄熱材6における潜熱蓄熱による蓄熱量が少なくなると考えられる。このように蓄熱材6における潜熱蓄熱による蓄熱量が少なくなると、顕熱蓄熱による蓄熱量も含めた蓄熱材6での蓄熱量全体が少なくなることは避けられない。そして、劣化に起因して蓄熱材6での蓄熱量が少なくなっている状況のもと、その蓄熱材6への蓄熱及び同蓄熱材6からの放熱が上記劣化が生じていないときと同様の態様で行われると、そのことが効果的な蓄熱及び放熱を行ううえでの妨げになる。そして、蓄熱材6への蓄熱や同蓄熱材6からの放熱を効果的に行えないと、そうした蓄熱や放熱を通じて効率よく熱を用いることが困難になる。   Here, in the heat storage material 6 capable of performing latent heat storage, the change of the phase state between the solid phase and the liquid phase is repeatedly performed, so that the heat storage material 6 is deteriorated and the latent heat storage amount is reduced. May cause problems. FIG. 3 is a graph showing the difference in the heat storage mode of the heat storage material 6 presumed to be caused by the presence or absence of the deterioration. In the figure, the broken line shows the temperature rise mode presumed to occur in the heat storage material 6 when heat is applied to the heat storage material 6 that has not deteriorated, and the solid line shows the heat storage in which deterioration has occurred. The temperature rise mode presumed to occur in the heat storage material 6 when heat is applied to the material 6 is shown. As can be seen from the figure, when the heat storage material 6 has deteriorated (solid line), compared to the case where the deterioration has not occurred (broken line), the heat storage material 6 has risen to the melting point Tm. It is considered that the amount of heat required before starting to increase to a value higher than Tm is reduced. In other words, it is considered that the amount of heat stored by the latent heat storage in the heat storage material 6 is reduced. Thus, when the heat storage amount by the latent heat storage in the heat storage material 6 decreases, it is inevitable that the entire heat storage amount in the heat storage material 6 including the heat storage amount by the sensible heat storage decreases. And in the situation where the amount of heat stored in the heat storage material 6 is reduced due to the deterioration, the heat storage to the heat storage material 6 and the heat radiation from the heat storage material 6 are the same as when the above deterioration has not occurred. If it is performed in this manner, this will hinder effective heat storage and heat dissipation. If heat storage to the heat storage material 6 and heat dissipation from the heat storage material 6 cannot be effectively performed, it becomes difficult to use heat efficiently through such heat storage and heat dissipation.

そこで本実施形態では、蓄熱材6での劣化が生じているときには、その蓄熱材6を顕熱蓄熱用の蓄熱材であるとみなして蓄熱材6の相状態に関係なく同蓄熱材6への蓄熱を行う一方、蓄熱器5に対する熱の出力要求に基づく蓄熱材6からの放熱を顕熱蓄熱状態であることを前提とした態様で行う。   Therefore, in this embodiment, when the heat storage material 6 is deteriorated, the heat storage material 6 is regarded as a heat storage material for sensible heat storage, and the heat storage material 6 is supplied to the heat storage material 6 regardless of the phase state of the heat storage material 6. While heat storage is performed, heat radiation from the heat storage material 6 based on a heat output request to the heat storage device 5 is performed on the assumption that it is in a sensible heat storage state.

詳しくは、蓄熱材6の劣化が生じているときには、その蓄熱材6を顕熱蓄熱用の蓄熱材であるとみなして、蓄熱材6の相状態に関係なく同蓄熱材6への蓄熱が例えば以下のように行われる。すなわち、蓄熱材6の相状態に関係なく、同蓄熱材6の温度が所定値に達するまで蓄熱材6への蓄熱が行われる。そして、蓄熱材6の温度が上記所定値まで上昇したときに同蓄熱材6への蓄熱が終了される。このため、劣化の生じている蓄熱材6に対し潜熱蓄熱を行おうとして、その蓄熱材6への無駄な熱の付与が生じることは抑制される。一方、蓄熱材6の劣化が生じている状況での蓄熱材6からの放熱は、蓄熱器5に対する熱の出力要求に基づき、蓄熱材6が顕熱蓄熱状態であることを前提とした態様で行われる。例えば、蓄熱器5に対する熱の出力要求が大きいときのみ、蓄熱材6からの放熱が行われる。このため、劣化による蓄熱材6の蓄熱量の低下が生じている状況のもとで、蓄熱材6からの放熱を必要性が高いときのみに限定して行うことが可能になり、蓄熱材6に蓄えられた熱を無駄に消費することがない。   Specifically, when the heat storage material 6 is deteriorated, the heat storage material 6 is regarded as a heat storage material for sensible heat storage, and heat storage to the heat storage material 6 is performed regardless of the phase state of the heat storage material 6, for example. This is done as follows. That is, heat storage to the heat storage material 6 is performed until the temperature of the heat storage material 6 reaches a predetermined value regardless of the phase state of the heat storage material 6. And when the temperature of the heat storage material 6 rises to the said predetermined value, the heat storage to the heat storage material 6 is complete | finished. For this reason, when it is going to perform latent heat storage with respect to the heat storage material 6 which has deteriorated, it is suppressed that the provision of useless heat to the heat storage material 6 arises. On the other hand, the heat release from the heat storage material 6 in a situation where the heat storage material 6 is deteriorated is based on the heat output request to the heat storage device 5 and is based on the premise that the heat storage material 6 is in the sensible heat storage state. Done. For example, heat release from the heat storage material 6 is performed only when the heat output requirement for the heat storage device 5 is large. For this reason, it becomes possible to perform heat radiation from the heat storage material 6 only when there is a high necessity under the situation where the heat storage amount of the heat storage material 6 is reduced due to deterioration. The heat stored in is not wasted.

蓄熱材6の劣化が生じているとき、上述したように蓄熱材6への蓄熱及び同蓄熱材6からの放熱を行うことで、蓄熱材6での蓄熱及び放熱を可能な限り効果的に行うことができ、そうした蓄熱や放熱を通じて効率よく熱を用いることができる。   When deterioration of the heat storage material 6 occurs, heat storage and heat dissipation in the heat storage material 6 are performed as effectively as possible by performing heat storage on the heat storage material 6 and heat radiation from the heat storage material 6 as described above. It is possible to use heat efficiently through such heat storage and heat dissipation.

次に、蓄熱器5における区画室5a内の蓄熱材6、及び区画室5b内の蓄熱材6でそれぞれ劣化が生じているか否かの判定の仕方について、劣化判定ルーチンを示す図4及び図5のフローチャートを参照して説明する。この劣化判定ルーチンは、電子制御装置21を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。   Next, FIG. 4 and FIG. 5 which show a deterioration determination routine regarding how to determine whether or not deterioration has occurred in the heat storage material 6 in the compartment 5a and the heat storage material 6 in the compartment 5b in the heat storage device 5, respectively. This will be described with reference to the flowchart of FIG. This deterioration determination routine is periodically executed through the electronic control device 21 by, for example, a time interruption every predetermined time.

同ルーチンにおいては、区画室5a内の蓄熱材6についての劣化判定条件が成立しているか否かが判断される(図4のS101)。ここで、上記劣化判定条件が成立している旨の判断は、例えば、上記蓄熱材6のみへの蓄熱中であり、且つ同蓄熱材6の温度Ths1が融点Tmよりも所定値aだけ低い値未満であるときになされる。そして、上記劣化判定条件が成立している旨判断されると、区画室5a内の蓄熱材6での劣化の有無を判断するための劣化判定処理が実行される(S102)。   In this routine, it is determined whether or not a deterioration determination condition for the heat storage material 6 in the compartment 5a is satisfied (S101 in FIG. 4). Here, the determination that the deterioration determination condition is satisfied is, for example, a value in which heat is stored only in the heat storage material 6 and the temperature Ths1 of the heat storage material 6 is lower than the melting point Tm by a predetermined value a. Made when less than. When it is determined that the deterioration determination condition is satisfied, a deterioration determination process for determining whether or not the heat storage material 6 in the compartment 5a has deteriorated is executed (S102).

この劣化判定処理では、上記蓄熱材6への蓄熱時に同蓄熱材6の温度Ths1が融点Tmを含む判定範囲の下限値から上限値に達するまでに、上記蓄熱材6に投入された熱量の合計値ΣQが求められる。なお、上記判定範囲としては、蓄熱材6の融点Tmよりも所定値aだけ低い値から同融点Tmよりも所定値aだけ高い値まで、という温度範囲が設定されている。従って、上記判定範囲(「Tm−a」〜「Tm+a」)においては、下限値が「Tm−a」になるとともに上限値が「Tm+a」になる。   In this deterioration determination process, the total amount of heat input to the heat storage material 6 until the temperature Ths1 of the heat storage material 6 reaches the upper limit from the lower limit value of the determination range including the melting point Tm when the heat storage material 6 stores heat. A value ΣQ is determined. As the determination range, a temperature range from a value lower than the melting point Tm of the heat storage material 6 by a predetermined value a to a value higher than the melting point Tm by a predetermined value a is set. Accordingly, in the determination range (“Tm−a” to “Tm + a”), the lower limit value is “Tm−a” and the upper limit value is “Tm + a”.

上述した合計値ΣQは、例えば次の[1]〜[3]の手順で求められる。[1]上記蓄熱材6の温度Ths1が上記判定範囲の下限値から上限値まで変化する期間中、同蓄熱材6に投入される単位時間当たりの熱量Qが、次の式「Q=Vw・Cp(Twout−Twin) …(1)」を用いて所定時間毎に算出される。なお、式(1)で用いられる各パラメータは、それぞれ以下に列記するとおりである。「Vw」は、区画室5aを通過する冷却水の流量であって、ウォータポンプ2の駆動指令値等に基づいて推定される。「Cp」は、上記冷却水の比熱であって、ここでは固定値が用いられる。「Twout」は、区画室5aから流出する冷却水の温度であって、第1入口水温センサ22bによって検出される。「Twin」は、区画室5aに流入する冷却水の温度であって、第1出口水温センサ22cによって検出される。[2]所定時間毎に式(1)を用いて上記蓄熱材6に投入される単位時間当たりの熱量Qが算出される度に、前回の熱量Qの算出から今回の熱量Qの算出までに蓄熱材6に投入された熱量を、今回算出された単位時間当たりの熱量Q及び上記所定時間に基づいて求める。[3][2]で求めた熱量を上記単位時間当たりの熱量Qの算出毎に累積してゆき、その累積値を上記合計値ΣQとする。   The above-described total value ΣQ is obtained, for example, by the following procedures [1] to [3]. [1] During a period in which the temperature Ths1 of the heat storage material 6 changes from the lower limit value to the upper limit value of the determination range, the amount of heat Q per unit time input to the heat storage material 6 is expressed by the following equation “Q = Vw · Cp (Twout−Twin) (1) ”is calculated every predetermined time. In addition, each parameter used by Formula (1) is as listing below, respectively. “Vw” is the flow rate of the cooling water passing through the compartment 5a, and is estimated based on the drive command value of the water pump 2 and the like. “Cp” is the specific heat of the cooling water, and a fixed value is used here. “Twout” is the temperature of the cooling water flowing out of the compartment 5a, and is detected by the first inlet water temperature sensor 22b. “Twin” is the temperature of the cooling water flowing into the compartment 5a, and is detected by the first outlet water temperature sensor 22c. [2] Every time the amount of heat Q per unit time input to the heat storage material 6 is calculated using the formula (1) every predetermined time, from the previous calculation of the amount of heat Q to the calculation of the current amount of heat Q The amount of heat input to the heat storage material 6 is obtained based on the amount of heat Q per unit time calculated this time and the predetermined time. [3] The amount of heat obtained in [2] is accumulated every time the amount of heat Q per unit time is calculated, and the accumulated value is defined as the total value ΣQ.

上記劣化判定処理では、上記[1]〜[3]の手順で求めた合計値ΣQが基準値K未満であるか否かに基づき、上記蓄熱材6での劣化が生じているか否かが判断される。上記基準値Kとしては、上記蓄熱材6における潜熱量の適正値Qlhに対し「1.0」未満に設定された所定の係数を乗算して得られる値が用いられる。なお、上記適正値Qlhは、蓄熱材6に材料によって定まる同蓄熱材6の単位質量当たりの潜熱量に対し、その蓄熱材6の質量を乗算することによって求められる。そして、合計値ΣQが基準値K未満であるときには、それに基づいて上記蓄熱材6での劣化が生じている旨判断される。一方、合計値ΣQが基準値K以上であるときには、それに基づいて上記蓄熱材6での劣化は生じていない旨判断される。   In the deterioration determination process, it is determined whether or not the heat storage material 6 has deteriorated based on whether or not the total value ΣQ obtained in the steps [1] to [3] is less than the reference value K. Is done. As the reference value K, a value obtained by multiplying the appropriate value Qlh of the latent heat amount in the heat storage material 6 by a predetermined coefficient set to be less than “1.0” is used. The appropriate value Qlh is obtained by multiplying the amount of latent heat per unit mass of the heat storage material 6 determined by the material of the heat storage material 6 by the mass of the heat storage material 6. When the total value ΣQ is less than the reference value K, it is determined based on that that the heat storage material 6 has deteriorated. On the other hand, when the total value ΣQ is equal to or greater than the reference value K, it is determined based on that that the heat storage material 6 has not deteriorated.

劣化判定ルーチンにおいては、区画室5b内の蓄熱材6についての劣化判定条件が成立しているか否かも判断され(S103)、ここで肯定判定であれば区画室5b内の蓄熱材6での劣化の有無を判断するための劣化判定処理が実行される(S104)。なお、S103における上記劣化判定条件が成立している旨の判断は、例えば、S101の処理と同様、上記蓄熱材6のみへの蓄熱中であり、且つ同蓄熱材6の温度Ths2が融点Tmよりも所定値aだけ低い値未満であるときになされる。また、上記劣化判定条件の成立に基づいて行われるS104の劣化判定処理では、S102の処理と同様、上記蓄熱材6の温度Ths2が融点Tmを含む判定範囲の下限値から上限値に達するまでに上記蓄熱材6に投入された熱量の合計値ΣQが求められ、その合計値ΣQが基準値K未満であるか否かに基づき上記蓄熱材6での劣化の有無が判断される。   In the deterioration determination routine, it is also determined whether or not the deterioration determination condition for the heat storage material 6 in the compartment 5b is satisfied (S103). If the determination is affirmative, the deterioration in the heat storage material 6 in the compartment 5b is determined. A deterioration determination process for determining whether or not there is is performed (S104). Note that the determination that the deterioration determination condition in S103 is satisfied is, for example, that heat is being stored only in the heat storage material 6 and the temperature Ths2 of the heat storage material 6 is higher than the melting point Tm, as in the process of S101. Is also performed when the value is lower than the predetermined value a. In the deterioration determination process of S104 performed based on the establishment of the deterioration determination condition, the temperature Ths2 of the heat storage material 6 reaches the upper limit value from the lower limit value of the determination range including the melting point Tm, similarly to the process of S102. A total value ΣQ of the amount of heat input to the heat storage material 6 is obtained, and whether or not the heat storage material 6 has deteriorated is determined based on whether or not the total value ΣQ is less than a reference value K.

ただし、S104の処理では、上記合計値ΣQを求めるための[1]〜[3]の手順のうち、[1]の手順が次のようにS102の処理と異なっている。[1]式(1)において、流量Vwが区画室5bを通過する冷却水の流量とされ、温度Twoutが区画室5bから流出する冷却水の温度とされ、温度Twinが区画室5bに流入する冷却水の温度とされる。なお、温度Twoutは第2入口水温センサ23bによって検出されるとともに、温度Twinは第2出口水温センサ23cによって検出される。ちなみに、S104においても、S102の処理と同様、合計値ΣQが基準値K未満であることに基づき上記蓄熱材6での劣化が生じている旨判断される一方、上記合計値ΣQが基準値K以上であることに基づき上記蓄熱材6での劣化は生じていない旨判断される。   However, in the process of S104, among the procedures [1] to [3] for obtaining the total value ΣQ, the procedure of [1] is different from the process of S102 as follows. [1] In equation (1), the flow rate Vw is the flow rate of the cooling water that passes through the compartment 5b, the temperature Twout is the temperature of the coolant that flows out of the compartment 5b, and the temperature Twin flows into the compartment 5b. Cooling water temperature. The temperature Twout is detected by the second inlet water temperature sensor 23b, and the temperature Twin is detected by the second outlet water temperature sensor 23c. Incidentally, in S104, as in the process of S102, it is determined that the heat storage material 6 has deteriorated based on the total value ΣQ being less than the reference value K, while the total value ΣQ is determined to be the reference value K. Based on the above, it is determined that the heat storage material 6 has not deteriorated.

上述したS102及びS104の劣化判定処理に基づき、区画室5a,5bの蓄熱材6それぞれの劣化判定(劣化の有無の判断)が完了すると、S105で肯定判定がなされる。ここで肯定判定がなされると、区画室5a,5bにおけるそれぞれの蓄熱材6で劣化が生じているか否かを判断するために用いられるフラグF1〜F4の設定処理(図5のS106〜S112)が実行される。   When the deterioration determination (determination of presence / absence of deterioration) of each of the heat storage materials 6 in the compartments 5a and 5b is completed based on the deterioration determination process of S102 and S104 described above, an affirmative determination is made in S105. If an affirmative determination is made here, setting processing of flags F1 to F4 used to determine whether or not deterioration has occurred in the respective heat storage materials 6 in the compartments 5a and 5b (S106 to S112 in FIG. 5). Is executed.

すなわち、区画室5a内の蓄熱材6のみで劣化が生じているときには(S106:YES)、フラグF2が「1」に設定される(S107)。このときフラグF1,F3,F4はそれぞれ「0」に設定される。一方、区画室5b内の蓄熱材6のみで劣化が生じているときには(S108:YES)、フラグF3が「1」に設定される(S109)。このときフラグF1,F2,F4はそれぞれ「0」に設定される。また、区画室5a,5bの蓄熱材6で共に劣化が生じているときには(S110:YES)、フラグF4が「1」に設定される(S111)。このときフラグF1〜F3はそれぞれ「0」に設定される。なお、区画室5a,5bの蓄熱材6で共に劣化が生じていないときには(S110:NO)、フラグF1が「1」に設定される(S112)。このときフラグF2〜F4はそれぞれ「0」に設定される。   That is, when only the heat storage material 6 in the compartment 5a has deteriorated (S106: YES), the flag F2 is set to “1” (S107). At this time, the flags F1, F3, and F4 are each set to “0”. On the other hand, when only the heat storage material 6 in the compartment 5b has deteriorated (S108: YES), the flag F3 is set to “1” (S109). At this time, the flags F1, F2, and F4 are set to “0”. When both the heat storage materials 6 in the compartments 5a and 5b are deteriorated (S110: YES), the flag F4 is set to “1” (S111). At this time, the flags F1 to F3 are respectively set to “0”. When neither the heat storage material 6 in the compartments 5a, 5b has deteriorated (S110: NO), the flag F1 is set to “1” (S112). At this time, the flags F2 to F4 are respectively set to “0”.

次に、蓄熱器5における区画室5a内の蓄熱材6、及び区画室5b内の蓄熱材6への蓄熱の仕方について、蓄熱ルーチンを示す図6のフローチャートを参照して説明する。この蓄熱ルーチンは、電子制御装置21を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。   Next, how to store heat in the heat storage material 6 in the compartment 5a and the heat storage material 6 in the compartment 5b in the heat storage 5 will be described with reference to the flowchart of FIG. 6 showing the heat storage routine. This heat storage routine is periodically executed through the electronic control device 21 by, for example, a time interruption every predetermined time.

同ルーチンにおいては、まず区画室5a,5bのうちの少なくとも一方の蓄熱材6への蓄熱が可能であるか否かが判断される(S201)。詳しくは、エンジン水温センサ24によって検出される循環回路内の冷却水の温度が、区画室5a内の蓄熱材6の温度Ths1よりも高い場合や、区画室5b内の蓄熱材6の温度Ths2よりも高い場合には、上記S201の処理で肯定判定がなされる。そして、S201の処理で肯定判定がなされると、劣化判定ルーチンのS104(図4)と同様、区画室5a,5bの蓄熱材6それぞれの劣化判定(劣化の有無の判断)が完了しているか否かが判断される(S202)。   In this routine, it is first determined whether or not heat storage in at least one of the compartments 5a and 5b is possible (S201). Specifically, when the temperature of the cooling water in the circulation circuit detected by the engine water temperature sensor 24 is higher than the temperature Ths1 of the heat storage material 6 in the compartment 5a, or from the temperature Ths2 of the heat storage material 6 in the compartment 5b. Is higher, an affirmative determination is made in the process of S201. If an affirmative determination is made in the process of S201, whether or not the deterioration determination (determination of presence or absence of deterioration) of each of the heat storage materials 6 in the compartments 5a and 5b has been completed, as in S104 of the deterioration determination routine (FIG. 4). It is determined whether or not (S202).

ここで、区画室5a,5bの蓄熱材6それぞれの劣化の有無の判断が完了している旨判断されると、フラグF1が「1」であるか否か(S203)、言い換えれば区画室5a,5bの蓄熱材6で共に劣化が生じていない状況であるか否かが判断される。そして、フラグF1が「1」であって、区画室5a,5bの蓄熱材6で共に劣化が生じていない状況である旨判断されると、第1蓄熱モードでの蓄熱器5(蓄熱材6)への蓄熱が行われる(S204)。なお、この第1蓄熱モードでの蓄熱器5(蓄熱材6)への蓄熱は、S202で区画室5a,5bの蓄熱材6の劣化の有無の判断が完了していない旨判断された場合にも行われる。   Here, if it is determined that the determination of the presence or absence of deterioration of each of the heat storage materials 6 in the compartments 5a and 5b is completed, whether or not the flag F1 is “1” (S203), in other words, the compartment 5a. , 5b, it is determined whether or not the heat storage material 6 is not deteriorated. When it is determined that the flag F1 is “1” and the heat storage material 6 in the compartments 5a and 5b has not deteriorated, the heat storage device 5 (heat storage material 6 in the first heat storage mode) is determined. ) Is stored (S204). In addition, the heat storage to the heat storage device 5 (heat storage material 6) in the first heat storage mode is performed when it is determined in S202 that the determination of the deterioration of the heat storage material 6 in the compartments 5a and 5b is not completed. Is also done.

一方、S203で否定判定がなされると、フラグF2が「1」であるか否か(S205)、フラグF3が「1」であるか否か(S207)、フラグF4が「1」であるか否か(S209)といった判断が行われる。そして、フラグF2が「1」であって、区画室5aの蓄熱材6のみで劣化が生じている状況である旨判断されると、第2蓄熱モードでの蓄熱器5(蓄熱材6)への蓄熱が行われる(S206)。また、フラグF3が「1」であって、区画室5bの蓄熱材6のみで劣化が生じている状況である旨判断されると、第3蓄熱モードでの蓄熱器5(蓄熱材6)への蓄熱が行われる(S208)。また、フラグF4が「1」であって、区画室5a,5bの蓄熱材6で共に劣化が生じている状況である旨判断されると、第4蓄熱モードでの蓄熱器5(蓄熱材6)への蓄熱が行われる(S210)。   On the other hand, if a negative determination is made in S203, whether the flag F2 is “1” (S205), whether the flag F3 is “1” (S207), and whether the flag F4 is “1”. It is determined whether or not (S209). And if flag F2 is "1" and it is judged that it is in the situation where degradation has arisen only in the heat storage material 6 of the compartment 5a, to the heat storage device 5 (heat storage material 6) in 2nd heat storage mode. Is stored (S206). When it is determined that the flag F3 is “1” and the deterioration is caused only by the heat storage material 6 in the compartment 5b, the heat storage device 5 (heat storage material 6) in the third heat storage mode is determined. Is stored (S208). When it is determined that the flag F4 is “1” and the heat storage material 6 in the compartments 5a and 5b is deteriorated, the heat storage device 5 (heat storage material 6) in the fourth heat storage mode is determined. ) Is stored (S210).

以下、上記第1〜第4蓄熱モードでの蓄熱器5(蓄熱材6)への蓄熱の仕方について、各蓄熱モード毎に個別に詳しく説明する。
[第1蓄熱モード]
このモードでは、区画室5a,5b内の蓄熱材6への蓄熱を行うに当たり、各蓄熱材6のうち固相状態にあり且つ融点Tmに近い温度のものから順に蓄熱が行われる。これにより、各蓄熱材6のうち可能な限り多くの蓄熱材6を、顕熱蓄熱状態と比較して蓄熱量が多くなり且つ熱の保持性がよくなる潜熱蓄熱状態とすることができる。なお、区画室5aの蓄熱材6への蓄熱は、切換弁11の第2切換位置への切り換えを通じて、区画室5a(バイパス通路4の支流部4a)に循環回路を循環する冷却水を流すことにより実現される。また、区画室5bの蓄熱材6への蓄熱は、切換弁11の第3切換位置への切り換えを通じて、区画室5b(バイパス通路4の支流部4b)に循環回路を循環する冷却水を流すことにより実現される。
Hereinafter, how to store heat in the heat storage device 5 (heat storage material 6) in the first to fourth heat storage modes will be described in detail individually for each heat storage mode.
[First heat storage mode]
In this mode, when storing heat in the heat storage material 6 in the compartments 5a and 5b, heat storage is performed in order from the heat storage material 6 in a solid state and having a temperature close to the melting point Tm. Thereby, as many of the heat storage materials 6 as possible among the heat storage materials 6 can be brought into a latent heat storage state in which the amount of heat storage is increased and heat retention is improved as compared with the sensible heat storage state. In addition, the heat storage to the heat storage material 6 of the compartment 5a flows the cooling water which circulates through a circulation circuit to the compartment 5a (branch part 4a of the bypass passage 4) through the switching to the 2nd switching position of the switching valve 11. It is realized by. Moreover, the heat storage to the heat storage material 6 in the compartment 5b is caused to flow cooling water circulating through the circulation circuit to the compartment 5b (the branch portion 4b of the bypass passage 4) through the switching of the switching valve 11 to the third switching position. It is realized by.

ここで、例えば区画室5a,5bの蓄熱材6が共に固相状態のもとで第1蓄熱モードでの蓄熱が開始されたとすると、最初に各蓄熱材6のうち融点Tmに近い温度となっている蓄熱材6が液相状態に至るまで同蓄熱材6への蓄熱(潜熱蓄熱)が行われ、続いて他の蓄熱材6が液相状態に至るまで同蓄熱材6への蓄熱(潜熱蓄熱)が行われる。その後、最初に蓄熱を行った蓄熱材6の温度が予め定められた所定値となるまで同蓄熱材6への蓄熱(顕熱蓄熱)が行われ、続いて他の蓄熱材6の温度が予め定められた所定値となるまで同蓄熱材6への蓄熱(顕熱蓄熱)が行われる。   Here, for example, if heat storage in the first heat storage mode is started under the condition that both the heat storage materials 6 in the compartments 5a and 5b are in a solid phase, the temperature of the heat storage materials 6 is first close to the melting point Tm. Heat storage (latent heat storage) is performed on the heat storage material 6 until the stored heat storage material 6 reaches a liquid phase state, and then heat storage (latent heat) on the heat storage material 6 until another heat storage material 6 reaches a liquid phase state. Heat storage). Thereafter, heat storage (sensible heat storage) is performed on the heat storage material 6 until the temperature of the heat storage material 6 that first performs heat storage reaches a predetermined value, and then the temperature of the other heat storage material 6 is set in advance. Heat storage (sensible heat storage) is performed on the heat storage material 6 until it reaches a predetermined value.

なお、図7には、区画室5a,5bの蓄熱材6の温度Ths1,Ths2が共に融点Tm未満であり、且つ区画室5の蓄熱材6の温度Ths1が区画室5bの蓄熱材6の温度Ths2よりも低い状態からの第1蓄熱モードでの蓄熱を例に、同第1蓄熱モードでの蓄熱態様を示している。同図に示す第1蓄熱モードでの蓄熱態様において、領域Aは区画室5aにおける固相状態にある蓄熱材6を液相状態とする潜熱蓄熱のために必要な蓄熱器5への投入熱量を示し、領域Bは区画室5bにおける固相状態にある蓄熱材6を液相状態とする潜熱蓄熱のために必要な蓄熱器5への投入熱量を示している。一方、領域Cは区画室5aの蓄熱材6が固相状態から液相状態に変化した状態のもと、同蓄熱材6の温度Ths1を上記所定値まで温度上昇させる顕熱蓄熱のために必要な蓄熱器5への投入熱量を示している。また、領域Dは、区画室5bの蓄熱材6が固相状態から液相状態に変化した状態のもと、同蓄熱材6の温度Ths2を上記所定値まで温度上昇させる顕熱蓄熱のために必要な蓄熱器5への投入熱量を示している。 Incidentally, in FIG. 7, the compartment 5a, the temperature Ths1 of the heat storage material 6 5b, Ths2 is both less than the melting point Tm, and the compartments 5 a temperature Ths1 of the heat storage material 6 of the heat storage material 6 compartments 5b The heat storage mode in the first heat storage mode is shown as an example of heat storage in the first heat storage mode from a state lower than the temperature Ths2. In the heat storage mode in the first heat storage mode shown in the figure, the region A indicates the amount of heat input to the regenerator 5 necessary for latent heat storage in which the heat storage material 6 in the solid phase in the compartment 5a is in the liquid phase. Region B shows the amount of heat input to the regenerator 5 required for latent heat heat storage in which the heat storage material 6 in the solid phase state in the compartment 5b is in the liquid phase state. On the other hand, region C is necessary for sensible heat storage in which the temperature Ths1 of the heat storage material 6 is raised to the predetermined value under the state where the heat storage material 6 in the compartment 5a is changed from the solid phase state to the liquid phase state. The amount of heat input to the regenerator 5 is shown. Further, the region D is for sensible heat storage in which the temperature Ths2 of the heat storage material 6 is raised to the predetermined value under the state where the heat storage material 6 in the compartment 5b is changed from the solid phase state to the liquid phase state. The amount of heat input to the necessary heat accumulator 5 is shown.

第1蓄熱モードでの蓄熱は、区画室5a,5bの蓄熱材6のうちの一方が固相状態であり、且つ他方が液相状態である状況のもとで開始されることもある。この場合、最初に固相状態となっている蓄熱材6が液相状態となるまで、同蓄熱材6への蓄熱が行われる。続いて、区画室5a,5bの蓄熱材6のうち温度の高い方の蓄熱材6が上記所定値となるまで液相状態にある同蓄熱材6への蓄熱が行われた後、他の蓄熱材6が上記所定値となるまで液相状態にある同蓄熱材6への蓄熱が行われる。更に、第1蓄熱モードでの蓄熱は、区画室5a,5bの蓄熱材6が共に液相状態である状況のもとで開始されることもある。この場合、区画室5a,5bの蓄熱材6のうち温度の高い方の蓄熱材6が上記所定値となるまで液相状態にある同蓄熱材6への蓄熱が行われた後、他の蓄熱材6が上記所定値となるまで液相状態にある同蓄熱材6への蓄熱が行われる。   The heat storage in the first heat storage mode may be started under a situation where one of the heat storage materials 6 in the compartments 5a and 5b is in a solid phase state and the other is in a liquid phase state. In this case, heat storage to the heat storage material 6 is performed until the heat storage material 6 that is in the solid phase first enters the liquid phase. Subsequently, heat storage is performed on the heat storage material 6 in a liquid phase until the heat storage material 6 having a higher temperature among the heat storage materials 6 in the compartments 5a and 5b reaches the predetermined value, and then another heat storage material is stored. The heat storage to the heat storage material 6 in the liquid phase is performed until the material 6 reaches the predetermined value. Furthermore, the heat storage in the first heat storage mode may be started under a situation where both the heat storage materials 6 in the compartments 5a and 5b are in a liquid phase state. In this case, after heat storage is performed on the heat storage material 6 in the liquid phase until the heat storage material 6 having a higher temperature among the heat storage materials 6 in the compartments 5a and 5b reaches the predetermined value, another heat storage material 6 is stored. The heat storage to the heat storage material 6 in the liquid phase is performed until the material 6 reaches the predetermined value.

[第2蓄熱モード]
このモードでは、区画室5a,5b内の蓄熱材6への蓄熱を行うに当たり、区画室5aの蓄熱材6(劣化が生じている蓄熱材6)への蓄熱よりも、区画室5bの蓄熱材6(劣化が生じていない蓄熱材6)への蓄熱が優先的に行われる。ここで、上記劣化の生じている蓄熱材6に関しては劣化の影響から蓄熱量の低下等が生じている可能性が高いため、上記劣化の生じた蓄熱材6を可能な限り蓄熱のために利用しないようにすることが、蓄熱装置での蓄熱及び放熱を効果的なものとするうえで好ましい。このことを考慮して、区画室5aの蓄熱材6で劣化が生じている状況のもとでは、各蓄熱材6への蓄熱が上述したように行われるため、そうした状況のもとでも蓄熱装置での蓄熱及び放熱を可能な限り効果的なものとすることができる。
[Second heat storage mode]
In this mode, when storing heat in the heat storage material 6 in the compartments 5a and 5b, the heat storage material in the compartment 5b rather than the heat storage in the heat storage material 6 (the heat storage material 6 in which deterioration has occurred) in the compartment 5a. Heat storage to 6 (heat storage material 6 which has not deteriorated) is preferentially performed. Here, since the deterioration of the heat storage material 6 is likely to have a decrease in the amount of heat storage due to the influence of the deterioration, the heat storage material 6 with the deterioration is used for heat storage as much as possible. It is preferable to avoid the heat storage and heat dissipation in the heat storage device. Considering this, since the heat storage to each heat storage material 6 is performed as described above under the situation where the heat storage material 6 in the compartment 5a is deteriorated, the heat storage device even under such a situation. The heat storage and heat dissipation in can be made as effective as possible.

ここで、区画室5bの蓄熱材6が固相状態のもとで第2蓄熱モードでの蓄熱が開始されたとすると、最初に上記蓄熱材6が液相状態に至るまで同蓄熱材6への蓄熱(潜熱蓄熱)が行われ、続いて同蓄熱材6の温度Ths2が上記所定値となるまで液相状態にある上記蓄熱材6への蓄熱(顕熱蓄熱)が行われる。その後、区画室5aの蓄熱材6(劣化が生じている蓄熱材6)を顕熱蓄熱用の蓄熱材であるとみなして、上記蓄熱材6の相状態に関係なく同蓄熱材6の温度Ths1が上記所定値となるまで同蓄熱材6への蓄熱を行う。なお、このときの第2蓄熱モードでの蓄熱態様を図7に示す。同図に示す第2蓄熱モードでの蓄熱態様において、領域Bは区画室5bにおける固相状態にある蓄熱材6を液相状態とする潜熱蓄熱のために必要な蓄熱器5への投入熱量を示している。また、領域Dは、区画室5bの蓄熱材6が固相状態から液相状態に変化した状態のもと、同蓄熱材6の温度Ths2を上記所定値まで温度上昇させる顕熱蓄熱のために必要な蓄熱器5への投入熱量を示している。一方、領域Cは、区画室5aの蓄熱材6の温度Ths1を上記所定値まで温度上昇させるために必要な蓄熱器5への投入熱量を示している。   Here, if heat storage in the second heat storage mode is started under the solid state of the heat storage material 6 in the compartment 5b, the heat storage material 6 is first supplied to the heat storage material 6 until the heat storage material 6 reaches a liquid phase state. Heat storage (latent heat storage) is performed, and then heat storage (sensible heat storage) is performed on the heat storage material 6 in the liquid phase until the temperature Ths2 of the heat storage material 6 reaches the predetermined value. Thereafter, the heat storage material 6 (deteriorated heat storage material 6) in the compartment 5a is regarded as a heat storage material for sensible heat storage, and the temperature Ths1 of the heat storage material 6 regardless of the phase state of the heat storage material 6. Is stored in the heat storage material 6 until the value reaches the predetermined value. In addition, the thermal storage aspect in the 2nd thermal storage mode at this time is shown in FIG. In the heat storage mode in the second heat storage mode shown in the figure, the region B indicates the amount of heat input to the regenerator 5 necessary for latent heat storage in which the heat storage material 6 in the solid phase in the compartment 5b is in the liquid phase. Show. Further, the region D is for sensible heat storage in which the temperature Ths2 of the heat storage material 6 is raised to the predetermined value under the state where the heat storage material 6 in the compartment 5b is changed from the solid phase state to the liquid phase state. The amount of heat input to the necessary heat accumulator 5 is shown. On the other hand, the region C shows the amount of heat input to the regenerator 5 necessary for raising the temperature Ths1 of the heat storage material 6 in the compartment 5a to the predetermined value.

また、第2蓄熱モードでの蓄熱は、区画室5bの蓄熱材6が液相状態である状況のもとで開始されることもある。この場合、上記蓄熱材6の温度Ths2が上記所定値となるまで液相状態にある同蓄熱材6への蓄熱が行われ、続いて区画室5aの蓄熱材6の温度Ths1が上記所定値となるまで同蓄熱材6への蓄熱が行われる。   Further, the heat storage in the second heat storage mode may be started under the situation where the heat storage material 6 in the compartment 5b is in a liquid phase state. In this case, heat storage is performed on the heat storage material 6 in a liquid phase until the temperature Ths2 of the heat storage material 6 reaches the predetermined value, and then the temperature Ths1 of the heat storage material 6 in the compartment 5a becomes the predetermined value. Heat storage to the heat storage material 6 is performed until it becomes.

[第3蓄熱モード]
このモードでは、区画室5a,5b内の蓄熱材6への蓄熱を行うに当たり、区画室5bの蓄熱材6(劣化が生じている蓄熱材6)への蓄熱よりも、区画室5aの蓄熱材6(劣化が生じていない蓄熱材6)への蓄熱が優先的に行われる。ここで、第2蓄熱モードの説明でも述べたとおり、上記劣化の生じている蓄熱材6に関しては劣化の影響から蓄熱量の低下等が生じている可能性が高いため、上記劣化の生じた蓄熱材6を可能な限り蓄熱のために利用しないようにすることが、蓄熱装置での蓄熱を効果的なものとするうえで好ましい。このことを考慮して、区画室5bの蓄熱材6で劣化が生じている状況のもとでは、各蓄熱材6への蓄熱が上述したように行われるため、そうした状況のもとでも蓄熱装置での蓄熱及び放熱を可能な限り効果的なものとすることができる。
[Third heat storage mode]
In this mode, when storing heat in the heat storage material 6 in the compartments 5a and 5b, the heat storage material in the compartment 5a is used rather than the heat storage in the heat storage material 6 (the heat storage material 6 in which deterioration has occurred) in the compartment 5b. Heat storage to 6 (heat storage material 6 which has not deteriorated) is preferentially performed. Here, as described in the explanation of the second heat storage mode, the deterioration of the heat storage material 6 is likely to be caused by a decrease in the amount of heat storage due to the influence of the deterioration. It is preferable not to use the material 6 for heat storage as much as possible in order to make the heat storage in the heat storage device effective. Considering this, since heat storage to each heat storage material 6 is performed as described above under the situation where the heat storage material 6 in the compartment 5b is deteriorated, the heat storage device even under such a situation. The heat storage and heat dissipation in can be made as effective as possible.

ここで、区画室5aの蓄熱材6が固相状態のもとで第3蓄熱モードでの蓄熱が開始されたとすると、最初に上記蓄熱材6が液相状態に至るまで同蓄熱材6への蓄熱(潜熱蓄熱)が行われ、続いて同蓄熱材6の温度Ths1が上記所定値となるまで液相状態にある上記蓄熱材6への蓄熱(顕熱蓄熱)が行われる。その後、区画室5bの蓄熱材6(劣化が生じている蓄熱材6)を顕熱蓄熱用の蓄熱材であるとみなして、上記蓄熱材6の相状態に関係なく同蓄熱材6の温度Ths2が上記所定値となるまで同蓄熱材6への蓄熱を行う。なお、このときの第3蓄熱モードでの蓄熱態様を図7に示す。同図に示す第3蓄熱モードでの蓄熱態様において、領域Aは区画室5aにおける固相状態にある蓄熱材6を液相状態とする潜熱蓄熱のために必要な蓄熱器5への投入熱量を示している。また、領域Cは、区画室5aの蓄熱材6が固相状態から液相状態に変化した状態のもと、同蓄熱材6の温度Ths1を上記所定値まで温度上昇させる顕熱蓄熱のために必要な蓄熱器5への投入熱量を示している。一方、領域Dは、区画室5bの蓄熱材6の温度Ths2を上記所定値まで温度上昇させるために必要な蓄熱器5への投入熱量を示している。   Here, if the heat storage material 6 in the compartment 5a is in a solid phase state and heat storage in the third heat storage mode is started, the heat storage material 6 is first supplied to the heat storage material 6 until the heat storage material 6 reaches a liquid phase state. Heat storage (latent heat storage) is performed, and then heat storage (sensible heat storage) is performed on the heat storage material 6 in the liquid phase until the temperature Ths1 of the heat storage material 6 reaches the predetermined value. Thereafter, the heat storage material 6 (deteriorated heat storage material 6) in the compartment 5b is regarded as a heat storage material for sensible heat storage, and the temperature Ths2 of the heat storage material 6 regardless of the phase state of the heat storage material 6. Is stored in the heat storage material 6 until the value reaches the predetermined value. In addition, the thermal storage aspect in the 3rd thermal storage mode at this time is shown in FIG. In the heat storage mode in the third heat storage mode shown in the figure, the region A indicates the amount of heat input to the regenerator 5 required for latent heat storage in which the heat storage material 6 in the solid phase in the compartment 5a is in the liquid phase. Show. Further, the region C is for sensible heat storage in which the temperature Ths1 of the heat storage material 6 is increased to the predetermined value under the state where the heat storage material 6 in the compartment 5a is changed from the solid phase state to the liquid phase state. The amount of heat input to the necessary heat accumulator 5 is shown. On the other hand, the region D indicates the amount of heat input to the regenerator 5 that is necessary to raise the temperature Ths2 of the heat storage material 6 in the compartment 5b to the predetermined value.

また、第3蓄熱モードでの蓄熱は、区画室5aの蓄熱材6が液相状態である状況のもとで開始されることもある。この場合、上記蓄熱材6の温度Ths1が上記所定値となるまで液相状態にある同蓄熱材6への蓄熱が行われ、続いて区画室5bの蓄熱材6の温度Ths2が上記所定値となるまで上記蓄熱材6の相状態に関係なく同蓄熱材6への蓄熱が行われる。   Moreover, the heat storage in the third heat storage mode may be started under the situation where the heat storage material 6 in the compartment 5a is in a liquid phase state. In this case, heat storage is performed on the heat storage material 6 in the liquid phase until the temperature Ths1 of the heat storage material 6 reaches the predetermined value, and then the temperature Ths2 of the heat storage material 6 in the compartment 5b becomes the predetermined value. Regardless of the phase state of the heat storage material 6, the heat storage to the heat storage material 6 is performed.

[第4蓄熱モード]
このモードでは、区画室5a,5b内の蓄熱材6への蓄熱を行うに当たり、それら蓄熱材6すべてを顕熱蓄熱用の蓄熱材であるとみなして、各蓄熱材6の温度Ths1,Ths2が共に上記所定値となるまで各蓄熱材6すべてで同時に蓄熱が行われる。こうした第4蓄熱モードでの蓄熱態様を図7に示す。同図に示す第4蓄熱モードでの蓄熱態様において、領域Eは区画室5a内の蓄熱材6の温度Ths1を上記所定値まで温度上昇させる顕熱蓄熱のために必要な蓄熱器5への投入熱量を示し、領域Fは区画室5b内の蓄熱材6の温度Ths2を上記所定値まで温度上昇させる顕熱蓄熱のために必要な蓄熱器5への投入熱量を示している。こうした各蓄熱材6での蓄熱を行うことにより、第1〜第3蓄熱モードのように各蓄熱材6毎に個別に蓄熱を行う場合と比較して、その蓄熱に関する制御を簡略化することができる。なお、区画室5a,5bの蓄熱材6すべてで同時に蓄熱を行うことは、切換弁11の第4切換位置への切り換えを通じて、区画室5a,5b(バイパス通路4の支流部4a,4b)の各々に対し循環回路を循環する冷却水を同時に流すことにより実現される。
[Fourth heat storage mode]
In this mode, when performing heat storage on the heat storage material 6 in the compartments 5a, 5b, all of the heat storage materials 6 are regarded as heat storage materials for sensible heat storage, and the temperatures Ths1, Ths2 of the heat storage materials 6 are determined. Heat storage is performed simultaneously on all the heat storage materials 6 until both of them reach the predetermined value. The heat storage mode in the fourth heat storage mode is shown in FIG. In the heat storage mode in the fourth heat storage mode shown in the figure, the region E is input to the regenerator 5 necessary for sensible heat storage for raising the temperature Ths1 of the heat storage material 6 in the compartment 5a to the predetermined value. The region F indicates the amount of heat input to the regenerator 5 necessary for sensible heat storage for raising the temperature Ths2 of the heat storage material 6 in the compartment 5b to the predetermined value. By performing the heat storage in each of these heat storage materials 6, it is possible to simplify the control related to the heat storage as compared to the case where heat storage is performed individually for each heat storage material 6 as in the first to third heat storage modes. it can. In addition, performing heat storage simultaneously with all the heat storage materials 6 of the compartments 5a and 5b means that the compartments 5a and 5b (the tributaries 4a and 4b of the bypass passage 4) are switched through the switching of the switching valve 11 to the fourth switching position. This is realized by flowing cooling water circulating through the circulation circuit at the same time.

次に、蓄熱器5における区画室5a内の蓄熱材6、及び区画室5b内の蓄熱材6からの放熱の仕方について、放熱ルーチンを示す図8のフローチャートを参照して説明する。この放熱ルーチンは、電子制御装置21を通じて、例えば所定時間毎の時間割り込みにて周期的に実行される。   Next, how to radiate heat from the heat storage material 6 in the compartment 5a and the heat storage material 6 in the compartment 5b in the heat accumulator 5 will be described with reference to the flowchart of FIG. This heat radiation routine is periodically executed through the electronic control device 21 by, for example, a time interruption every predetermined time.

同ルーチンにおいては、まず区画室5a,5bのうちの少なくとも一方の蓄熱材6からの放熱が可能であるか否かが判断される(S301)。詳しくは、エンジン水温センサ24によって検出される循環回路内の冷却水の温度が、区画室5a内の蓄熱材6の温度Ths1よりも低い場合や、区画室5b内の蓄熱材6の温度Ths2よりも低い場合には、上記S301の処理で肯定判定がなされる。ここで肯定判定がなされると、蓄熱器5に対する熱の出力要求があるか否かが判断される(S302)。なお、蓄熱器5に対する熱の出力要求は、例えば、エンジン1の暖機や車室の暖房などのために循環回路を循環する冷却水(自動車の温度調節部)の温度の目標値が高くなり、その目標値に対し上記冷却水の実際の温度が低すぎる状態になったとき等になされる。そして、S302の処理で肯定判定がなされると、劣化判定ルーチンのS104(図4)と同様、区画室5a,5bの蓄熱材6それぞれの劣化判定(劣化の有無の判断)が完了しているか否かが判断される(S303)。   In this routine, it is first determined whether or not heat can be radiated from at least one of the compartments 5a and 5b (S301). Specifically, when the temperature of the cooling water in the circulation circuit detected by the engine water temperature sensor 24 is lower than the temperature Ths1 of the heat storage material 6 in the compartment 5a, or from the temperature Ths2 of the heat storage material 6 in the compartment 5b. If it is lower, an affirmative determination is made in the process of S301. If an affirmative determination is made here, it is determined whether or not there is a heat output request to the heat accumulator 5 (S302). In addition, the heat output request | requirement with respect to the thermal storage 5 becomes high, for example, the target value of the temperature of the cooling water (automobile temperature control part) which circulates through a circulation circuit for the warming-up of the engine 1, heating of a vehicle interior, etc. This is done when the actual temperature of the cooling water is too low with respect to the target value. If an affirmative determination is made in the processing of S302, whether the deterioration determination (determination of presence or absence of deterioration) of each of the heat storage materials 6 in the compartments 5a and 5b has been completed as in S104 of the deterioration determination routine (FIG. 4). It is determined whether or not (S303).

ここで、区画室5a,5bの蓄熱材6それぞれの劣化の有無の判断が完了している旨判断されると、フラグF1が「1」であるか否か(S304)、言い換えれば区画室5a,5bの蓄熱材6で共に劣化が生じていない状況であるか否かが判断される。そして、フラグF1が「1」であって、区画室5a,5bの蓄熱材6で共に劣化が生じていない状況である旨判断されると、第1放熱モードでの蓄熱器5(蓄熱材6)からの放熱が行われる(S305)。なお、この第1放熱モードでの蓄熱器5(蓄熱材6)からの放熱は、S303で区画室5a,5bの蓄熱材6の劣化の有無の判断が完了していない旨判断された場合にも行われる。   Here, if it is determined that the determination of the presence or absence of deterioration of each of the heat storage materials 6 in the compartments 5a and 5b is completed, whether or not the flag F1 is “1” (S304), in other words, the compartment 5a. , 5b, it is determined whether or not the heat storage material 6 is not deteriorated. When it is determined that the flag F1 is “1” and the heat storage material 6 in the compartments 5a and 5b is not deteriorated, the heat storage device 5 (heat storage material 6 in the first heat radiation mode) is determined. ) Is released (S305). Note that the heat release from the heat storage device 5 (heat storage material 6) in the first heat release mode is determined when it is determined in S303 that the determination of the deterioration of the heat storage material 6 in the compartments 5a and 5b has not been completed. Is also done.

一方、S304で否定判定がなされると、フラグF2が「1」であるか否か(S306)、フラグF3が「1」であるか否か(S308)、フラグF4が「1」であるか否か(S310)といった判断が行われる。そして、フラグF2が「1」であって、区画室5aの蓄熱材6のみで劣化が生じている状況である旨判断されると、第2放熱モードでの蓄熱器5(蓄熱材6)からの放熱が行われる(S307)。また、フラグF3が「1」であって、区画室5bの蓄熱材6のみで劣化が生じている状況である旨判断されると、第3放熱モードでの蓄熱器5(蓄熱材6)からの放熱が行われる(S309)。また、フラグF4が「1」であって、区画室5a,5bの蓄熱材6で共に劣化が生じている状況である旨判断されると、第4放熱モードでの蓄熱器5(蓄熱材6)からの放熱が行われる(S311)。   On the other hand, if a negative determination is made in S304, whether the flag F2 is “1” (S306), whether the flag F3 is “1” (S308), and whether the flag F4 is “1”. It is determined whether or not (S310). And if flag F2 is "1" and it is judged that it is in the situation where degradation has arisen only in the heat storage material 6 of the compartment 5a, from the heat storage device 5 (heat storage material 6) in 2nd heat radiation mode. Is radiated (S307). When it is determined that the flag F3 is “1” and the deterioration is caused only by the heat storage material 6 in the compartment 5b, the heat storage device 5 (heat storage material 6) in the third heat radiation mode Is radiated (S309). When it is determined that the flag F4 is “1” and the heat storage material 6 in the compartments 5a and 5b is deteriorated, the heat storage device 5 (heat storage material 6 in the fourth heat radiation mode) is determined. ) Is released (S311).

以下、上記第1〜第4放熱モードでの蓄熱器5(蓄熱材6)からの放熱の仕方について、各放熱モード毎に個別に詳しく説明する。
[第1放熱モード]
このモードでは、区画室5a,5b内の蓄熱材6からの放熱を行うに当たり、各蓄熱材6のうち液相状態にあり且つ温度の高いものから順に放熱が行われる。これにより、蓄熱器5に対する熱の出力要求がなされたとき、その熱の出力要求を速やかに満たすことができる。なお、区画室5aの蓄熱材6からの放熱は、切換弁11の第2切換位置への切り換えを通じて、区画室5a(バイパス通路4の支流部4a)に循環回路を循環する冷却水を流すことにより実現される。また、区画室5bの蓄熱材6からの放熱は、切換弁11の第3切換位置への切り換えを通じて、区画室5b(バイパス通路4の支流部4b)に循環回路を循環する冷却水を流すことにより実現される。
Hereinafter, how to radiate heat from the heat accumulator 5 (heat storage material 6) in the first to fourth radiating modes will be described in detail individually for each radiating mode.
[First heat dissipation mode]
In this mode, when heat is radiated from the heat storage material 6 in the compartments 5a and 5b, heat is radiated in order from the heat storage material 6 in the liquid phase and having the highest temperature. Thereby, when the heat output request | requirement with respect to the thermal accumulator 5 is made | formed, the heat output request | requirement can be satisfy | filled rapidly. In addition, the heat radiation from the heat storage material 6 in the compartment 5a causes the cooling water circulating in the circulation circuit to flow into the compartment 5a (the branch portion 4a of the bypass passage 4) through the switching of the switching valve 11 to the second switching position. It is realized by. In addition, the heat radiation from the heat storage material 6 in the compartment 5b causes the cooling water circulating in the circulation circuit to flow into the compartment 5b (the branch portion 4b of the bypass passage 4) through the switching of the switching valve 11 to the third switching position. It is realized by.

ここで、例えば区画室5a,5bの蓄熱材6が共に液相状態のもとで第1放熱モードでの放熱が開始されたとすると、最初に各蓄熱材6のうち温度の高い方の蓄熱材6の温度が循環回路を循環する冷却水の温度と等しくなるまで同蓄熱材6からの放熱が行われる。続いて、他の蓄熱材6からの放熱が、その蓄熱材6の温度と循環回路を循環する冷却水の温度とが等しくなるまで行われる。また、第1放熱モードでの放熱は、区画室5a,5bの蓄熱材6のうちの一方が液相状態であり、且つ他方が固相状態である状況のもとで開始されることもある。この場合、最初に、液相状態となっている蓄熱材6の温度が循環回路内を循環する冷却水の温度と等しくなるまで、同蓄熱材6からの放熱が行われる。続いて、固相状態となっている蓄熱材6の温度が循環回路内を循環する冷却水の温度と等しくなるまで、同蓄熱材6からの放熱が行われる。   Here, for example, if the heat storage material 6 in the compartments 5a and 5b is in the liquid phase state and the heat dissipation in the first heat dissipation mode is started, the heat storage material having the higher temperature among the heat storage materials 6 first. Heat release from the heat storage material 6 is performed until the temperature of 6 becomes equal to the temperature of the cooling water circulating in the circulation circuit. Subsequently, the heat release from the other heat storage material 6 is performed until the temperature of the heat storage material 6 and the temperature of the cooling water circulating in the circulation circuit become equal. Further, the heat radiation in the first heat radiation mode may be started under a situation where one of the heat storage materials 6 of the compartments 5a and 5b is in a liquid phase state and the other is in a solid phase state. . In this case, first, heat release from the heat storage material 6 is performed until the temperature of the heat storage material 6 in a liquid phase state becomes equal to the temperature of the cooling water circulating in the circulation circuit. Subsequently, heat release from the heat storage material 6 is performed until the temperature of the heat storage material 6 in the solid state becomes equal to the temperature of the cooling water circulating in the circulation circuit.

[第2放熱モード]
このモードでは、区画室5a,5b内の蓄熱材6からの放熱を行うに当たり、区画室5aの蓄熱材6(劣化が生じている蓄熱材6)からの放熱よりも、区画室5bの蓄熱材6(劣化が生じていない蓄熱材6)からの放熱が優先的に行われる。すなわち、区画室5bの蓄熱材6の温度Ths2が循環回路内を循環する冷却水の温度と等しくなるまで同蓄熱材6からの放熱が行われ、続いて区画室5aの蓄熱材6の温度Ths1が循環回路内を循環する冷却水の温度と等しくなるまで同蓄熱材6からの放熱が行われる。ここで、上記劣化の生じている蓄熱材6に関しては劣化の影響から蓄熱量の低下等が生じている可能性が高いため、上記劣化の生じた蓄熱材6を可能な限り放熱のために利用しないようにすることが、蓄熱装置での蓄熱及び放熱を効果的なものとするうえで好ましい。このことを考慮して、区画室5aの蓄熱材6で劣化が生じている状況のもとでは、各蓄熱材6への蓄熱が上述したように行われるため、そうした状況のもとでも蓄熱装置での蓄熱及び放熱を可能な限り効果的なものとすることができる。
[Second heat dissipation mode]
In this mode, in performing heat radiation from the heat storage material 6 in the compartments 5a and 5b, the heat storage material in the compartment 5b is more than the heat radiation from the heat storage material 6 (the heat storage material 6 in which deterioration has occurred) in the compartment 5a. 6 (heat storage material 6 with no deterioration) is preferentially radiated. That is, heat is dissipated from the heat storage material 6 until the temperature Ths2 of the heat storage material 6 in the compartment 5b becomes equal to the temperature of the cooling water circulating in the circulation circuit, and then the temperature Ths1 of the heat storage material 6 in the compartment 5a. Is released from the heat storage material 6 until the temperature becomes equal to the temperature of the cooling water circulating in the circulation circuit. Here, with respect to the heat storage material 6 in which the deterioration has occurred, there is a high possibility that a decrease in the amount of heat storage has occurred due to the influence of the deterioration, so the heat storage material 6 in which the deterioration has occurred is used for heat dissipation as much as possible. It is preferable to avoid the heat storage and heat dissipation in the heat storage device. Considering this, since the heat storage to each heat storage material 6 is performed as described above under the situation where the heat storage material 6 in the compartment 5a is deteriorated, the heat storage device even under such a situation. The heat storage and heat dissipation in can be made as effective as possible.

また、第2放熱モードでは、劣化していない蓄熱材6(区画室5bの蓄熱材6)からの放熱が優先的に行われるため、劣化している蓄熱材6(区画室5aの蓄熱材6)からの放熱は蓄熱器5に対する熱の出力要求が大きいときのみに行われる。このため、劣化により区画室5aの蓄熱材6の蓄熱量の低下が生じている状況のもとでは、同蓄熱材6からの放熱を必要性が高いときのみに限定して行うことが可能になり、上記劣化の生じている蓄熱材6に蓄えられた熱を無駄に消費することがない。   Moreover, in the 2nd heat dissipation mode, since heat dissipation from the heat storage material 6 which has not deteriorated (heat storage material 6 of the compartment 5b) is performed preferentially, the heat storage material 6 which has deteriorated (heat storage material 6 of the compartment 5a). ) Is released only when the heat output requirement for the heat accumulator 5 is large. For this reason, under the situation where the heat storage amount of the heat storage material 6 in the compartment 5a is reduced due to deterioration, it is possible to perform heat radiation from the heat storage material 6 only when the necessity is high. Therefore, the heat stored in the heat storage material 6 in which the deterioration has occurred is not wasted.

[第3放熱モード]
このモードでは、区画室5a,5b内の蓄熱材6からの放熱を行うに当たり、区画室5bの蓄熱材6(劣化が生じている蓄熱材6)からの放熱よりも、区画室5aの蓄熱材6(劣化が生じていない蓄熱材6)からの放熱が優先的に行われる。すなわち、区画室5aの蓄熱材6の温度Ths1が循環回路内を循環する冷却水の温度と等しくなるまで同蓄熱材6からの放熱が行われ、続いて区画室5bの蓄熱材6の温度Ths2が循環回路内を循環する冷却水の温度と等しくなるまで同蓄熱材6からの放熱が行われる。ここで、第2放熱モードの説明でも述べたとおり、上記劣化の生じている蓄熱材6に関しては劣化の影響から蓄熱量の低下等が生じている可能性が高いため、上記劣化の生じた蓄熱材6を可能な限り放熱のために利用しないようにすることが、蓄熱装置での蓄熱及び放熱を効果的なものとするうえで好ましい。このことを考慮して、区画室5bの蓄熱材6で劣化が生じている状況のもとでは、各蓄熱材6への蓄熱が上述したように行われるため、そうした状況のもとでも蓄熱装置での蓄熱及び放熱を可能な限り効果的なものとすることができる。
[Third heat dissipation mode]
In this mode, in performing heat radiation from the heat storage material 6 in the compartments 5a and 5b, the heat storage material in the compartment 5a rather than heat radiation from the heat storage material 6 (the heat storage material 6 in which the deterioration has occurred) in the compartment 5b. 6 (heat storage material 6 with no deterioration) is preferentially radiated. That is, heat is dissipated from the heat storage material 6 until the temperature Ths1 of the heat storage material 6 in the compartment 5a becomes equal to the temperature of the cooling water circulating in the circulation circuit, and then the temperature Ths2 of the heat storage material 6 in the compartment 5b. Is released from the heat storage material 6 until the temperature becomes equal to the temperature of the cooling water circulating in the circulation circuit. Here, as described in the description of the second heat radiation mode, the deterioration of the heat storage material 6 is likely to be caused by a decrease in the amount of heat storage due to the influence of the deterioration. It is preferable not to use the material 6 for heat dissipation as much as possible in order to make the heat storage and heat dissipation in the heat storage device effective. Considering this, since heat storage to each heat storage material 6 is performed as described above under the situation where the heat storage material 6 in the compartment 5b is deteriorated, the heat storage device even under such a situation. The heat storage and heat dissipation in can be made as effective as possible.

また、第3放熱モードでは、劣化していない蓄熱材6(区画室5aの蓄熱材6)からの放熱が優先的に行われるため、劣化している蓄熱材6(区画室5bの蓄熱材6)からの放熱は蓄熱器5に対する熱の出力要求が大きいときのみに行われる。このため、劣化により区画室5bの蓄熱材6の蓄熱量の低下が生じている状況のもとでは、同蓄熱材6からの放熱を必要性が高いときのみに限定して行うことが可能になり、上記劣化の生じている蓄熱材6に蓄えられた熱を無駄に消費することがない。   Moreover, in the 3rd heat dissipation mode, since heat dissipation from the heat storage material 6 which has not deteriorated (heat storage material 6 of the compartment 5a) is performed preferentially, the heat storage material 6 which has deteriorated (heat storage material 6 of the compartment 5b). ) Is released only when the heat output requirement for the heat accumulator 5 is large. For this reason, under the situation where the heat storage amount of the heat storage material 6 in the compartment 5b is reduced due to deterioration, it is possible to perform heat radiation from the heat storage material 6 only when the necessity is high. Therefore, the heat stored in the heat storage material 6 in which the deterioration has occurred is not wasted.

[第4放熱モード]
このモードでは、区画室5a,5b内の蓄熱材6からの放熱を行うに当たり、それら蓄熱材6すべてを顕熱蓄熱用の蓄熱材であるとみなして、各蓄熱材6の温度Ths1,Ths2が共に循環回路内を循環する冷却水の温度と等しくなるまで、各蓄熱材6すべてで同時に放熱が行われる。こうした各蓄熱材6からの放熱を行うことにより、第1〜第3放熱モードのように各蓄熱材6毎に個別に放熱を行う場合と比較して、その放熱に関する制御を簡略化することができる。なお、区画室5a,5bの蓄熱材6すべてで同時に放熱を行うことは、切換弁11の第4切換位置への切り換えを通じて、区画室5a,5b(バイパス通路4の支流部4a,4b)の各々に対し循環回路を循環する冷却水を同時に流すことにより実現される。
[Fourth heat dissipation mode]
In this mode, when performing heat radiation from the heat storage material 6 in the compartments 5a, 5b, all of the heat storage materials 6 are regarded as heat storage materials for sensible heat storage, and the temperatures Ths1, Ths2 of the heat storage materials 6 are determined. Both the heat storage materials 6 release heat simultaneously until the temperature of the cooling water circulating in the circulation circuit becomes equal. By performing heat radiation from each of these heat storage materials 6, it is possible to simplify the control relating to the heat radiation as compared to the case of performing heat radiation individually for each heat storage material 6 as in the first to third heat radiation modes. it can. It should be noted that simultaneous heat dissipation in all of the heat storage materials 6 in the compartments 5a and 5b means that the compartments 5a and 5b (the tributaries 4a and 4b of the bypass passage 4) are switched through the switching of the switching valve 11 to the fourth switching position. This is realized by flowing cooling water circulating through the circulation circuit at the same time.

以上詳述した本実施形態によれば、以下に示す効果が得られるようになる。
(1)蓄熱装置の蓄熱器5には蓄熱材6の入った複数の区画室5a,5bが形成されており、複数の区画室5a,5b内の蓄熱材6の相状態に応じて、それら蓄熱材6毎にそれぞれ個別に蓄熱及び放熱が行われる。詳しくは、複数の区画室5a,5b内の蓄熱材6への蓄熱に関しては、各蓄熱材6がそれぞれ固相状態から液相状態となるまで、それら蓄熱材6の温度Ths1,Ths2に基づいて各蓄熱材6への蓄熱がそれぞれ行われる。一方、蓄熱材6からの放熱に関しては、蓄熱器5に対する熱の出力要求に基づき、複数の区画室5a,5b内の蓄熱材6からの放熱が行われる。
According to the embodiment described in detail above, the following effects can be obtained.
(1) A plurality of compartments 5a and 5b containing a heat storage material 6 are formed in the heat accumulator 5 of the heat storage device, depending on the phase state of the heat storage material 6 in the plurality of compartments 5a and 5b. Heat storage and heat dissipation are performed individually for each heat storage material 6. Specifically, regarding the heat storage to the heat storage material 6 in the plurality of compartments 5a and 5b, the heat storage materials 6 are changed from the solid phase state to the liquid phase state based on the temperatures Ths1 and Ths2 of the heat storage materials 6 respectively. Heat storage to each heat storage material 6 is performed. On the other hand, regarding heat radiation from the heat storage material 6, heat radiation from the heat storage material 6 in the plurality of compartments 5 a and 5 b is performed based on a heat output request to the heat storage device 5.

ここで、複数の区画室5a,5b内の蓄熱材6のうちの少なくとも一つで劣化が生じているときには、その劣化の生じている蓄熱材6を顕熱蓄熱用の蓄熱材であるとみなして、その蓄熱材6に対する蓄熱(第2もしくは第3蓄熱モードでの蓄熱)が行われる。すなわち、上記劣化の生じている蓄熱材6に対しては、同蓄熱材6の相状態に関係なく、同蓄熱材6の温度が所定値に達するまで蓄熱材6への蓄熱が行われる。そして、上記蓄熱材6の温度が上記所定値まで上昇したときに同蓄熱材6への蓄熱が終了される。このため、劣化の生じている蓄熱材6に対し潜熱蓄熱を行おうとして、その蓄熱材への無駄な熱の付与が生じることは抑制される。一方、複数の区画室5a,5b内の蓄熱材6のうちの少なくとも一つで劣化が生じているときには、その劣化の生じている蓄熱材6からの放熱は、蓄熱器5に対する熱の出力要求に基づき、上記蓄熱材6が顕熱蓄熱状態であることを前提とした態様(第2もしくは第3放熱モード)で行われる。具体的には、この例では上記劣化の生じている蓄熱器5に対する熱の出力要求が大きいときのみ、その蓄熱材6からの放熱が行われる。このため、劣化により上記蓄熱材6の蓄熱量の低下が生じている状況のもとでは、同蓄熱材6からの放熱を必要性が高いときのみに限定して行うことが可能になり、上記劣化の生じている蓄熱材6に蓄えられた熱を無駄に消費することがない。   Here, when deterioration has occurred in at least one of the heat storage materials 6 in the plurality of compartments 5a and 5b, the deterioration of the heat storage material 6 is regarded as a heat storage material for sensible heat storage. Then, heat storage (heat storage in the second or third heat storage mode) is performed on the heat storage material 6. That is, with respect to the heat storage material 6 in which the deterioration has occurred, heat storage to the heat storage material 6 is performed until the temperature of the heat storage material 6 reaches a predetermined value regardless of the phase state of the heat storage material 6. And when the temperature of the said heat storage material 6 rises to the said predetermined value, the heat storage to the heat storage material 6 is complete | finished. For this reason, when it is going to perform latent heat storage with respect to the heat storage material 6 which has deteriorated, it is suppressed that provision of useless heat to the heat storage material arises. On the other hand, when deterioration has occurred in at least one of the heat storage materials 6 in the plurality of compartments 5a, 5b, the heat release from the heat storage material 6 in which the deterioration has occurred is a heat output request to the heat storage device 5. The heat storage material 6 is performed in a mode (second or third heat radiation mode) based on the premise that the heat storage material 6 is in a sensible heat storage state. Specifically, in this example, heat is radiated from the heat storage material 6 only when the heat output requirement for the heat storage 5 in which the deterioration has occurred is large. For this reason, under the situation where the heat storage amount of the heat storage material 6 is reduced due to deterioration, it is possible to perform heat dissipation from the heat storage material 6 only when the necessity is high. The heat stored in the heat storage material 6 in which deterioration has occurred is not wasted.

複数の区画室5a,5b内の蓄熱材6のうちの少なくとも一つで劣化が生じているとき、同劣化の生じている蓄熱材6への蓄熱及び同蓄熱材6からの放熱を上述したように行うことで、その蓄熱材6での蓄熱及び放熱を可能な限り効果的に行うことができ、そうした蓄熱や放熱を通じて効率よく熱を用いることができる。   When deterioration has occurred in at least one of the heat storage materials 6 in the plurality of compartments 5a, 5b, as described above, heat storage to the heat storage material 6 in which the deterioration has occurred and heat radiation from the heat storage material 6 have been described above. By performing the above, heat storage and heat dissipation in the heat storage material 6 can be performed as effectively as possible, and heat can be used efficiently through such heat storage and heat dissipation.

(2)複数の区画室5a,5b内の蓄熱材6のうちのいずれにも劣化が生じていない状況のもとでは、それら蓄熱材6に対し蓄熱を行う際に各蓄熱材6のうち固相状態にあり且つ融点Tmに近い温度のものから順に蓄熱(第1蓄熱モードでの蓄熱)が行われる。これにより、各蓄熱材6のうち可能な限り多くの蓄熱材6を、顕熱蓄熱状態と比較して蓄熱量が多くなり且つ熱の保持性がよくなる潜熱蓄熱状態とすることができる。一方、複数の区画室5a,5b内の蓄熱材のうちのいずれにも劣化が生じていない状況のもと、蓄熱器5に対する熱の出力要求に基づいて各蓄熱材6からの放熱を行う際には、各蓄熱材6のうち液相状態にあり且つ温度の高いものから順に放熱(第1放熱モードでの放熱)が行われる。これにより、蓄熱器5に対する熱の出力要求がなされたとき、その熱の出力要求を速やかに満たすことができる。   (2) Under the situation where none of the heat storage materials 6 in the plurality of compartments 5a, 5b has deteriorated, when heat storage is performed on the heat storage materials 6, the solid heat storage materials 6 are fixed. Heat storage (heat storage in the first heat storage mode) is performed in order from the one in the phase state and the temperature close to the melting point Tm. Thereby, as many of the heat storage materials 6 as possible among the heat storage materials 6 can be brought into a latent heat storage state in which the amount of heat storage is increased and heat retention is improved as compared with the sensible heat storage state. On the other hand, when heat is radiated from each heat storage material 6 based on a heat output request to the heat storage device 5 in a situation where none of the heat storage materials in the plurality of compartments 5a and 5b has deteriorated. In the heat storage material 6, heat radiation (heat radiation in the first heat radiation mode) is performed in order from the heat storage material 6 in the liquid phase and having the highest temperature. Thereby, when the heat output request | requirement with respect to the thermal accumulator 5 is made | formed, the heat output request | requirement can be satisfy | filled rapidly.

また、複数の区画室5a,5b内の蓄熱材6のうちのいずれかで劣化が生じている状況のもとでは、複数の区画室5a,5b内の蓄熱材6での蓄熱及び放熱を行う際、上記劣化が生じている蓄熱材6での蓄熱及び放熱よりも、上記劣化が生じていない他の蓄熱材6での蓄熱及び放熱が優先的に行われる。なお、こうした蓄熱及び放熱は、第2蓄熱モードもしくは第3蓄熱モード、及び、第2放熱モードもしくは第3放熱モードによって実現される。ここで、上記劣化の生じている蓄熱材6に関しては劣化の影響から蓄熱量の低下等が生じている可能性が高いため、蓄熱装置においては上記劣化の生じた蓄熱材6を可能な限り蓄熱及び放熱のために利用しないようにすることが、同装置での蓄熱及び放熱を効果的なものとするうえで好ましい。このことを考慮して、各蓄熱材6のうちのいずれかで劣化が生じている状況のもとでは、各蓄熱材6での蓄熱及び放熱が上述したように行われるため、そうした状況のもとでも蓄熱装置での蓄熱及び放熱を可能な限り効果的なものとすることができる。   Moreover, under the situation where deterioration has occurred in any of the heat storage materials 6 in the plurality of compartments 5a and 5b, heat storage and heat dissipation are performed in the heat storage materials 6 in the plurality of compartments 5a and 5b. At this time, heat storage and heat dissipation in the other heat storage material 6 in which the deterioration does not occur are preferentially performed over heat storage and heat dissipation in the heat storage material 6 in which the deterioration has occurred. Such heat storage and heat dissipation are realized by the second heat storage mode or the third heat storage mode, and the second heat dissipation mode or the third heat dissipation mode. Here, since there is a high possibility that the deterioration of the heat storage material 6 is caused by the deterioration due to the deterioration, the heat storage device 6 stores the deteriorated heat storage material 6 as much as possible. It is preferable not to use it for heat dissipation in order to effectively store heat and release heat in the apparatus. In consideration of this, since heat storage and heat dissipation in each heat storage material 6 are performed as described above under a situation where deterioration has occurred in any one of the heat storage materials 6, such a situation also occurs. However, heat storage and heat dissipation in the heat storage device can be made as effective as possible.

(3)複数の区画室5a,5b内の蓄熱材6すべてで劣化が生じているときには、それら蓄熱材6すべてを顕熱蓄熱用の蓄熱材であるとみなして、各蓄熱材6すべてで同時に蓄熱及び放熱が行われる。なお、こうした蓄熱及び放熱は、第4蓄熱モード及び第4放熱モードによって実現される。こうした各蓄熱材6での蓄熱及び放熱を行うことにより、各蓄熱材6毎に個別に蓄熱及び放熱を行う場合(第1〜第3蓄熱モード及び第1〜第3放熱モード)と比較して、それら蓄熱及び放熱に関する制御を簡略化することができる。   (3) When deterioration occurs in all of the heat storage materials 6 in the plurality of compartments 5a and 5b, all of the heat storage materials 6 are regarded as heat storage materials for sensible heat storage, and all the heat storage materials 6 are simultaneously used. Heat storage and heat dissipation are performed. Note that such heat storage and heat dissipation are realized by the fourth heat storage mode and the fourth heat dissipation mode. Compared with the case where heat storage and heat dissipation are performed individually for each heat storage material 6 by performing heat storage and heat dissipation in each of these heat storage materials 6 (first to third heat storage modes and first to third heat dissipation modes). The control relating to heat storage and heat dissipation can be simplified.

(4)蓄熱材6での劣化が生じているか否かの判断は、その蓄熱材6への蓄熱時に同蓄熱材6の温度Ths1,Ths2が融点Tmを含む判定範囲(「Tm−a」〜「Tm+a」)の下限値から上限値に達するまでに同蓄熱材6に投入された熱量の合計値ΣQが基準値K未満であるか否かに基づいてなされる。そして、上記合計値ΣQが基準値K未満であることに基づき、蓄熱材6での劣化が生じている旨判断される。これにより、蓄熱材6での劣化が生じている旨の判断を的確に行うことができる。   (4) The determination as to whether or not the heat storage material 6 has deteriorated is based on a determination range in which the temperatures Ths1 and Ths2 of the heat storage material 6 include the melting point Tm when the heat storage material 6 stores heat ("Tm-a" to This is based on whether or not the total value ΣQ of the amount of heat input to the heat storage material 6 from the lower limit value to the upper limit value of “Tm + a”) is less than the reference value K. Then, based on the fact that the total value ΣQ is less than the reference value K, it is determined that the heat storage material 6 has deteriorated. Thereby, it can be determined accurately that the heat storage material 6 has deteriorated.

なお、上記実施形態は、例えば以下のように変更することもできる。
・第1入口水温センサ22bの検出値や第2入口水温センサ23bの検出値を、エンジン水温センサ24の検出値からの推定値で代用してもよい。
In addition, the said embodiment can also be changed as follows, for example.
The detection value of the first inlet water temperature sensor 22b or the detection value of the second inlet water temperature sensor 23b may be substituted with an estimated value from the detection value of the engine water temperature sensor 24.

・バイパス通路4における支流部4aと支流部4bとの分岐部分の上流に一つの水温センサを設け、そのセンサで第1入口水温センサ22bと第2入口水温センサ23bとの両方を代用するようにしてもよい。   A single water temperature sensor is provided upstream of the branch portion of the bypass passage 4 between the branch portion 4a and the branch portion 4b, and both the first inlet water temperature sensor 22b and the second inlet water temperature sensor 23b are substituted by the sensor. May be.

・区画室5a,5bの蓄熱材6のうち一方のみに劣化が生じているとき、蓄熱や放熱のための制御の簡略化を目的として、第4蓄熱モードでの蓄熱材6の蓄熱や、第4放熱モードでの蓄熱材6からの放熱を行うようにしてもよい。   -When only one of the heat storage materials 6 in the compartments 5a and 5b has deteriorated, the heat storage of the heat storage material 6 in the fourth heat storage mode or the first You may make it perform heat dissipation from the thermal storage material 6 in 4 heat radiation mode.

・蓄熱材の入れられる区画室が三つ以上形成された蓄熱器を備える蓄熱装置に本発明を適用してもよい。
・蓄熱器5の内部を必ずしも複数の区画室で分ける必要はなく、蓄熱器5の内部を一つの蓄熱材6で満たすようにしてもよい。
-You may apply this invention to a thermal storage apparatus provided with the thermal storage in which three or more compartments in which a thermal storage material is put were formed.
The interior of the heat accumulator 5 is not necessarily divided into a plurality of compartments, and the inside of the heat accumulator 5 may be filled with one heat accumulating material 6.

1…エンジン、2…ウォータポンプ、3…メイン通路、4…バイパス通路、4a,4b…支流部、5…蓄熱器、5a,5b…区画室、6…蓄熱材、9…ヒータコア、10…排熱回収器、11…切換弁、20…空調制御コンピュータ、21…電子制御装置(制御手段)、22a…第1温度センサ、22b…第1入口水温センサ、22c…第1出口水温センサ、23a…第2温度センサ、23b…第2入口水温センサ、23c…第2出口水温センサ、24…エンジン水温センサ、25…エアフローメータ、26…回転速度センサ、27…排気温センサ。   DESCRIPTION OF SYMBOLS 1 ... Engine, 2 ... Water pump, 3 ... Main passage, 4 ... Bypass passage, 4a, 4b ... Tributary part, 5 ... Heat storage, 5a, 5b ... Compartment room, 6 ... Heat storage material, 9 ... Heater core, 10 ... Exhaust Heat recovery unit, 11 ... switching valve, 20 ... air conditioning control computer, 21 ... electronic control unit (control means), 22a ... first temperature sensor, 22b ... first inlet water temperature sensor, 22c ... first outlet water temperature sensor, 23a ... 2nd temperature sensor, 23b ... 2nd inlet water temperature sensor, 23c ... 2nd outlet water temperature sensor, 24 ... Engine water temperature sensor, 25 ... Air flow meter, 26 ... Rotational speed sensor, 27 ... Exhaust temperature sensor.

Claims (5)

潜熱蓄熱可能な蓄熱材の入った複数の区画室が形成された蓄熱器と、各区画室内の蓄熱材に対して、個別に同蓄熱材への蓄熱や同蓄熱材からの放熱を行うことのできる制御手段とを備えた蓄熱装置であり、
前記制御手段は、
前記複数の区画室内の蓄熱材のうちのいずれにも劣化が生じていない状況のもとでは、それら蓄熱材に対し蓄熱を行う際に各蓄熱材のうち固相状態にあり且つ融点に近い温度のものから順に蓄熱を行うことによって固相状態にある蓄熱材を液相状態にしてゆく一方、各蓄熱材からの放熱を行う際に各蓄熱材のうち液相状態にあり且つ温度の高いものから順に放熱を行い、
前記複数の区画室内の蓄熱材のうちのいずれかで劣化が生じている状況のもとでは、劣化が生じている蓄熱材での蓄熱放熱よりも先に、劣化が生じていない蓄熱材での蓄熱放熱を行う
ことを特徴とする蓄熱装置。
A heat storage unit with a plurality of compartments containing latent heat storage materials and a heat storage material in each compartment, and heat storage to the heat storage material and heat dissipation from the heat storage material individually. A heat storage device having a control means capable of
The control means includes
Under the situation where none of the heat storage materials in the plurality of compartments has deteriorated, when heat storage is performed on the heat storage materials, a temperature that is in a solid phase among the heat storage materials and is close to the melting point The heat storage material in the solid phase is made into a liquid phase state by performing heat storage in order from the ones on the other hand, while the heat storage material is in the liquid phase state and has a high temperature when radiating heat from each heat storage material Radiate heat sequentially from
The Under circumstances where deterioration has occurred in any of the plurality of compartments of the heat storage material, have before the heat storage and heat radiation in the heat storage material degradation is occurring, such have degradation occurs performing heat storage and heat radiation in the thermal storage material
A heat storage device characterized by that .
前記制御手段は、前記複数の区画室内の蓄熱材のうちのいずれにも劣化が生じていない状況のもとで、各蓄熱材のうち固相状態にあり且つ融点に近い温度のものから順に蓄熱を行う際には、蓄熱を行っている蓄熱材が液相状態に至るまで蓄熱を行ってから、次の蓄熱材に対する蓄熱を行うことにより、前記複数の区画室内の蓄熱材に対して1つずつ順番に蓄熱を行うThe control means stores heat in order from the heat storage material in a solid state and having a temperature close to the melting point, in a state where none of the heat storage materials in the plurality of compartments has deteriorated. When performing heat storage, heat storage is performed until the heat storage material performing heat storage reaches a liquid phase state, and then heat storage is performed on the next heat storage material, thereby providing one heat storage material in the plurality of compartments. Store heat in order
請求項1に記載の蓄熱装置。The heat storage device according to claim 1.
前記制御手段は、前記複数の区画室内の蓄熱材すべてで劣化が生じているときには、前記蓄熱材への蓄熱や前記蓄熱材からの放熱を、それら蓄熱材すべてで同時に行
請求項1又は請求項2に記載の蓄熱装置。
Wherein, said when the heat storage material degradation in all of the plurality of compartments has occurred, the heat radiation from the heat storage and the heat storage material to the heat storage material, according to claim intends row simultaneously in all its et thermal storage material The heat storage device according to claim 1 or 2 .
前記蓄熱器は、前記区画室内に内燃機関の冷却水を流入させて、前記区画室内の蓄熱材と冷却水との熱交換により、前記蓄熱材への蓄熱や前記蓄熱材からの放熱を行うものであり、The heat accumulator causes the cooling water of the internal combustion engine to flow into the compartment, and performs heat storage to the heat storage material and heat dissipation from the heat storage material by heat exchange between the heat storage material and the cooling water in the compartment. And
前記制御手段は、冷却水の流入先を切り替える切替弁を制御して各区画室に対する冷却水の流入を制御することにより、蓄熱や放熱を行わせる蓄熱材を切り替える  The said control means switches the thermal storage material which performs heat storage and heat dissipation by controlling the switching valve which switches the inflow destination of cooling water, and controlling the inflow of the cooling water with respect to each compartment
請求項1〜3のいずれか一項に記載の蓄熱装置。The heat storage device according to any one of claims 1 to 3.
前記制御手段は、蓄熱材への蓄熱時に同蓄熱材の温度が融点を含む判定範囲の下限値から上限値に達するまでに蓄熱材に投入された熱量の合計値が基準値未満であることに基づき、蓄熱材での劣化が生じている旨判断する
請求項1〜4のいずれか一項に記載の蓄熱装置。
In the control means, the total amount of heat input to the heat storage material before reaching the upper limit value from the lower limit value of the determination range including the melting point when the heat storage material stores heat is less than the reference value. The heat storage device according to any one of claims 1 to 4 , wherein the heat storage material is determined to be deteriorated based on the above.
JP2011170404A 2011-08-03 2011-08-03 Heat storage device Expired - Fee Related JP5594250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011170404A JP5594250B2 (en) 2011-08-03 2011-08-03 Heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011170404A JP5594250B2 (en) 2011-08-03 2011-08-03 Heat storage device

Publications (2)

Publication Number Publication Date
JP2013036627A JP2013036627A (en) 2013-02-21
JP5594250B2 true JP5594250B2 (en) 2014-09-24

Family

ID=47886401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011170404A Expired - Fee Related JP5594250B2 (en) 2011-08-03 2011-08-03 Heat storage device

Country Status (1)

Country Link
JP (1) JP5594250B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000203247A (en) * 1999-01-12 2000-07-25 Zexel Corp Heat accumulating unit, and heating system with same
JP4156437B2 (en) * 2003-05-09 2008-09-24 リンナイ株式会社 Thermal storage device that notifies the replacement time of the latent heat material
JP2010271004A (en) * 2009-05-25 2010-12-02 Toyota Motor Corp Heat storage device and method of detecting deterioration of thermal storage medium
JP2011033205A (en) * 2009-07-29 2011-02-17 Toshiba Corp Heat storage system, heat storage system plant and power generation system

Also Published As

Publication number Publication date
JP2013036627A (en) 2013-02-21

Similar Documents

Publication Publication Date Title
JP5187459B2 (en) Vehicle heat storage device
WO2011030394A1 (en) Cooling system for vehicle
JP5146601B2 (en) Vehicle control device
JP2009126256A (en) Cooling device for vehicle
JP2008052997A (en) Power system
US20160068043A1 (en) Heating system and method for heating a vehicle interior of a vehicle having an internal combustion engine
KR20130065435A (en) Heat storage device of vehicle
JP2006342680A (en) Cooling system of internal combustion engine
US10018103B2 (en) Cooling water control apparatus
JP2011179454A (en) Control device of vehicle
JP2014020349A (en) Cooling device for engine
JP7529615B2 (en) Thermal Management Systems for Electric Vehicles
JP5299324B2 (en) Vehicle thermal management device
JP5594250B2 (en) Heat storage device
JP2010140658A (en) Fuel cell system cooling device
JP2004247096A (en) Cooling for fuel cell vehicle
JP6443254B2 (en) Diagnostic equipment
JP5267654B2 (en) Engine cooling system
JP2011218919A (en) Heat accumulation system
JP2000203247A (en) Heat accumulating unit, and heating system with same
JP2007211657A (en) Method and device for cooling heat emission part and cooling device of hybrid car
JP2012127323A (en) Thermal control system for vehicle
JP2011230648A (en) System and method of heat management for vehicle
JP5420948B2 (en) Vehicle warm-up system
JP4001041B2 (en) Engine cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R151 Written notification of patent or utility model registration

Ref document number: 5594250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees