JP5594078B2 - Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell - Google Patents

Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell Download PDF

Info

Publication number
JP5594078B2
JP5594078B2 JP2010256721A JP2010256721A JP5594078B2 JP 5594078 B2 JP5594078 B2 JP 5594078B2 JP 2010256721 A JP2010256721 A JP 2010256721A JP 2010256721 A JP2010256721 A JP 2010256721A JP 5594078 B2 JP5594078 B2 JP 5594078B2
Authority
JP
Japan
Prior art keywords
heat treatment
film
surface electrode
sheet resistance
transparent conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010256721A
Other languages
Japanese (ja)
Other versions
JP2012109380A (en
Inventor
康徳 山野辺
文彦 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2010256721A priority Critical patent/JP5594078B2/en
Publication of JP2012109380A publication Critical patent/JP2012109380A/en
Application granted granted Critical
Publication of JP5594078B2 publication Critical patent/JP5594078B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Description

本発明は、透光性基板上に透明導電膜からなる表面電極膜を形成した表面電極付透明導電基板の製造方法及び薄膜太陽電池の製造方法に関するものである。   The present invention relates to a method for manufacturing a transparent conductive substrate with a surface electrode in which a surface electrode film made of a transparent conductive film is formed on a translucent substrate and a method for manufacturing a thin film solar cell.

ガラス基板等の透光性基板側から光を入射させて発電を行う薄膜太陽電池では、透光性基板上に、光入射側の電極(以下、「表面電極」と称する。)が形成された透明導電ガラス基板が利用される。表面電極は、酸化錫、酸化亜鉛、酸化インジウムなどの透明導電性膜が単独に、又は積層して形成される。また、薄膜太陽電池では、多結晶シリコン、微結晶シリコンのような結晶質シリコン薄膜やアモルファスシリコン薄膜が利用されている。この薄膜太陽電池の開発は、精力的に行なわれており、主に、安価な基板上に低温プロセスで良質のシリコン薄膜を形成することによる低コスト化と高性能化との両立の実現が目的とされている。   In a thin-film solar cell that generates power by making light incident from the side of a light-transmitting substrate such as a glass substrate, an electrode on the light-incident side (hereinafter referred to as “surface electrode”) is formed on the light-transmitting substrate. A transparent conductive glass substrate is used. The surface electrode is formed of a transparent conductive film such as tin oxide, zinc oxide, indium oxide or the like alone or by stacking. In thin film solar cells, crystalline silicon thin films such as polycrystalline silicon and microcrystalline silicon, and amorphous silicon thin films are used. The development of this thin film solar cell has been vigorously conducted, and the main objective is to achieve both low cost and high performance by forming a high-quality silicon thin film on a low-cost substrate using a low-temperature process. It is said that.

上述した薄膜太陽電池の一つとして、透光性基板上に、透明導電膜からなる表面電極と、p型半導体層、i型半導体層、n型半導体層が順に積層された光電変換半導体層と、光反射性金属電極を含む裏面電極とを順次形成した構造を有するものが知られている。この薄膜太陽電池では、光電変換作用が主としてこのi型半導体層内で生じるため、i型半導体層が薄いと光吸収係数が小さい長波長領域の光が十分に吸収されない。つまり、光電変換量は、本質的にi型半導体層の膜厚によって制約を受ける。そこで、i型半導体層を含む光電変換半導体層に入射した光をより有効に利用するために、光入射側の表面電極に表面凹凸構造を設けて光を光電変換半導体層内へ散乱させ、さらに裏面電極で反射した光を乱反射させる工夫がなされている。   As one of the thin film solar cells described above, a surface electrode made of a transparent conductive film, a photoelectric conversion semiconductor layer in which a p-type semiconductor layer, an i-type semiconductor layer, and an n-type semiconductor layer are sequentially stacked on a light-transmitting substrate; A structure having a structure in which a back electrode including a light-reflective metal electrode is sequentially formed is known. In this thin-film solar cell, a photoelectric conversion action mainly occurs in the i-type semiconductor layer. Therefore, if the i-type semiconductor layer is thin, light in a long wavelength region having a small light absorption coefficient is not sufficiently absorbed. That is, the photoelectric conversion amount is essentially limited by the film thickness of the i-type semiconductor layer. Therefore, in order to use light incident on the photoelectric conversion semiconductor layer including the i-type semiconductor layer more effectively, a surface uneven structure is provided on the surface electrode on the light incident side to scatter light into the photoelectric conversion semiconductor layer, A device has been devised to diffusely reflect the light reflected by the back electrode.

このような薄膜太陽電池では、一般に、その光入射側の表面電極として、ガラス基板にフッ素ドープした酸化錫薄膜を熱CVD法に基づく原料ガスの熱分解により成膜する方法(例えば、特許文献1参照。)により表面凹凸構造が形成されている。   In such a thin film solar cell, generally, a method of forming a fluorine-doped tin oxide thin film on a glass substrate as a surface electrode on the light incident side by thermal decomposition of a source gas based on a thermal CVD method (for example, Patent Document 1) The surface uneven structure is formed by reference.

しかし、表面凹凸構造を有する酸化錫膜は、500℃以上の高温プロセスを要するなどの理由によりコストが高い。また、膜の比抵抗が高いため、膜厚を厚くすると、透過率が下がり、光電変換効率が下がってしまう。   However, a tin oxide film having a surface concavo-convex structure is expensive because a high temperature process of 500 ° C. or higher is required. Further, since the specific resistance of the film is high, increasing the film thickness results in a decrease in transmittance and a decrease in photoelectric conversion efficiency.

そこで、酸化錫膜又はSnをドープした酸化インジウム(ITO)膜からなる下地電極上に、Alをドープした酸化亜鉛(AZO)膜、又はGaをドープした酸化亜鉛(GZO)膜をスパッタリングにより形成し、エッチングされ易い酸化亜鉛膜をエッチングすることで、表面凹凸構造を有する表面電極を形成する方法が提案されている(例えば、特許文献2参照。)。また、近赤外域の光透過性に優れたTiをドープした酸化インジウム(ITiO)膜からなる下地電極上に、成膜時にアーキングやパーティクルの発生が少ないAlとGaをドープした酸化亜鉛(GAZO)膜をスパッタリングにより形成し、特許文献2の技術と同様に酸化亜鉛膜をエッチングすることで表面凹凸構造を有する表面電極を形成する方法も提案されている(例えば、特許文献3参照。)。   Therefore, a zinc oxide (AZO) film doped with Al or a zinc oxide (GZO) film doped with Ga is formed by sputtering on a base electrode made of a tin oxide film or an indium oxide (ITO) film doped with Sn. There has been proposed a method of forming a surface electrode having a surface uneven structure by etching a zinc oxide film that is easily etched (see, for example, Patent Document 2). In addition, zinc and aluminum oxide doped with Al and Ga (GAZO), which generates less arcing and particles during film formation, on a base electrode made of an indium oxide (ITO) film doped with Ti having excellent light transmittance in the near infrared region. There has also been proposed a method of forming a surface electrode having a surface uneven structure by forming a film by sputtering and etching the zinc oxide film in the same manner as in the technique of Patent Document 2 (see, for example, Patent Document 3).

しかしながら、エッチングにより表面凹凸構造を形成する手法では、凹凸膜に鋭利な突起ができやすく、良好な光電変換半導体層が得難く、光電変換効率が上がらない。加えて、エッチング後の洗浄が不十分であると、半導体層に欠陥が発生し易く、この欠陥を防止するには複雑な洗浄工程を経る必要があり、量産性に乏しい。   However, in the method of forming the surface uneven structure by etching, it is easy to form sharp protrusions on the uneven film, it is difficult to obtain a good photoelectric conversion semiconductor layer, and the photoelectric conversion efficiency does not increase. In addition, if cleaning after etching is insufficient, defects are likely to occur in the semiconductor layer, and it is necessary to go through a complicated cleaning process to prevent this defect, resulting in poor mass productivity.

特表平2−503615号公報JP-T-2-503615 特開2000−294812号公報JP 2000-294812 A 特開2010−34232号公報JP 2010-34232 A

本発明は、上記従来技術の問題点に鑑みて提案されたものであり、光電変換効率の高い表面電極付透明導電基板の製造方法及び薄膜太陽電池の製造方法を提供する。   The present invention has been proposed in view of the above problems of the prior art, and provides a method for producing a transparent conductive substrate with a surface electrode and a method for producing a thin-film solar cell with high photoelectric conversion efficiency.

本件発明者らは、鋭意検討を行った結果、透光性ガラス基板上にスパッタリングにより形成された酸化亜鉛系の結晶質透明導電膜からなる凹凸膜を、所定の真空度で熱処理を行うことにより、透明導電膜の導電率が増加するとともに、光閉じ込め効果の指標であるヘイズ値(散乱透過率/全光線透過率)までもが増加することを見出した。   As a result of intensive studies, the present inventors have conducted heat treatment on a concavo-convex film made of a zinc oxide-based crystalline transparent conductive film formed by sputtering on a translucent glass substrate at a predetermined degree of vacuum. It has been found that the haze value (scattering transmittance / total light transmittance), which is an index of the light confinement effect, increases as the conductivity of the transparent conductive film increases.

すなわち、本発明に係る表面電極付透明導電基板の製造方法は、酸化インジウム系の透明導電膜が形成された透明性基板を300℃以上に設定し、ガス圧1〜10Paの環境下で、該透明導電膜上に、スパッタリング法により、表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜を有する表面電極が形成された表面電極付透明導電基板を、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施す。 That is, in the method for producing a transparent conductive substrate with a surface electrode according to the present invention, a transparent substrate on which an indium oxide-based transparent conductive film is formed is set to 300 ° C. or higher, and the gas pressure is 1 to 10 Pa in an environment. A transparent conductive substrate with a surface electrode in which a surface electrode having a zinc oxide-based crystalline transparent conductive film having a concavo-convex structure formed on the surface is formed on the transparent conductive film by a sputtering method, 7 × 10 −3 to 1 It heat-processes at 250-550 degreeC by the vacuum degree of * 10 < -6 > Pa.

また、本発明に係る薄膜太陽電池の製造方法は、透光性基板上に、表面電極と、光電変換半導体層と、裏面電極とを順に形成する薄膜太陽電池の製造方法において、酸化インジウム系の透明導電膜が形成された透明性基板を300℃以上に設定し、ガス圧1〜10Paの環境下で、該透明導電膜上に、スパッタリング法により、表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜を有する表面電極が形成された表面電極付透明導電基板を、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施す。 Moreover, the manufacturing method of the thin film solar cell which concerns on this invention is a manufacturing method of the thin film solar cell which forms a surface electrode, a photoelectric conversion semiconductor layer, and a back electrode in order on a translucent board | substrate . A transparent substrate on which a transparent conductive film is formed is set to 300 ° C. or higher, and a zinc oxide system in which a concavo-convex structure is formed on the surface of the transparent conductive film by a sputtering method in an environment with a gas pressure of 1 to 10 Pa. The transparent conductive substrate with a surface electrode on which the surface electrode having the crystalline transparent conductive film is formed is subjected to heat treatment at 250 to 550 ° C. at a vacuum degree of 7 × 10 −3 to 1 × 10 −6 Pa.

本発明によれば、透光性基板上に、表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜を成膜した後に、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施すことによって、より高いヘイズ率を実現することができる。結果として、より光閉じ込め効果の高い表面電極を提供することができ、より光電変換効率の高い薄膜太陽電池を得ることができる。 According to the present invention, a vacuum of 7 × 10 −3 to 1 × 10 −6 Pa is formed after forming a zinc oxide-based crystalline transparent conductive film having a concavo-convex structure formed on a light-transmitting substrate. A higher haze ratio can be achieved by performing heat treatment at 250 to 550 ° C. As a result, a surface electrode with a higher light confinement effect can be provided, and a thin film solar cell with higher photoelectric conversion efficiency can be obtained.

本発明の一実施の形態に係る薄膜太陽電池の構成例を示す断面図である。It is sectional drawing which shows the structural example of the thin film solar cell which concerns on one embodiment of this invention. 本発明の一実施の形態に係る薄膜太陽電池用の表面電極付透明導電基板の構成例を示す断面図であり、(A)は、透光性ガラス基板上に、表面電極として表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜が形成されている断面図であり、(B)は、透光性ガラス基板上に、表面電極として酸化インジウム系の透明導電膜と、表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜とが順に積層されている断面図である。It is sectional drawing which shows the structural example of the transparent conductive substrate with a surface electrode for thin film solar cells which concerns on one embodiment of this invention, (A) is an uneven structure on the surface as a surface electrode on a translucent glass substrate 1B is a cross-sectional view in which a zinc oxide-based crystalline transparent conductive film is formed, and (B) is a transparent glass substrate, an indium oxide-based transparent conductive film as a surface electrode, and a surface It is sectional drawing by which the zinc oxide type crystalline transparent conductive film in which the uneven structure was formed is laminated | stacked in order. 真空下での熱処理前後のヘイズ率の関係を示すグラフである。It is a graph which shows the relationship of the haze rate before and behind heat processing in a vacuum.

以下、本発明の実施の形態(以下、「本実施の形態」と称する)について、図面を参照しながら下記順序にて詳細に説明する。
1.薄膜太陽電池
1−1.表面電極付透明導電基板
1−2.光電変換半導体層
1−3.裏面電極
2.薄膜太陽電池の製造方法
2−1.表面電極付透明導電基板
2−2.光電変換半導体層
2−3.裏面電極
3.実施例
Hereinafter, embodiments of the present invention (hereinafter referred to as “present embodiments”) will be described in detail in the following order with reference to the drawings.
1. Thin film solar cell 1-1. Transparent conductive substrate with surface electrode 1-2. Photoelectric conversion semiconductor layer 1-3. Back electrode 2. 2. Manufacturing method of thin film solar cell 2-1. Transparent conductive substrate with surface electrode 2-2. Photoelectric conversion semiconductor layer 2-3. 2. Back electrode Example

<1.薄膜太陽電池>
図1は、本実施の形態に係る薄膜太陽電池の構成例を示す断面図である。薄膜太陽電池10は、透光性ガラス基板1上に、表面電極2と、光電変換半導体層3と、裏面電極4とが順に積層された構造を有する。薄膜太陽電池10に対して、光電変換されるべき光は、矢印に示すように透光性ガラス基板1側から入射される。
<1. Thin Film Solar Cell>
FIG. 1 is a cross-sectional view showing a configuration example of a thin film solar cell according to the present embodiment. The thin film solar cell 10 has a structure in which a front electrode 2, a photoelectric conversion semiconductor layer 3, and a back electrode 4 are sequentially laminated on a translucent glass substrate 1. The light to be subjected to photoelectric conversion is incident on the thin-film solar cell 10 from the translucent glass substrate 1 side as indicated by an arrow.

<1−1.表面電極付透明導電基板>
本実施の形態に係る表面電極付透明導電基板(透明導電凹凸膜)は、透光性ガラス基板1上に、表面電極2が形成されている。表面電極付透明導電基板としては、例えば、図2(A)に示す表面電極付透明導電基板11aや、図2(B)に示す表面電極付透明導電基板11bが挙げられる。
<1-1. Transparent conductive substrate with surface electrode>
In the transparent conductive substrate with a surface electrode (transparent conductive uneven film) according to the present embodiment, the surface electrode 2 is formed on the translucent glass substrate 1. Examples of the transparent conductive substrate with a surface electrode include a transparent conductive substrate 11a with a surface electrode shown in FIG. 2A and a transparent conductive substrate 11b with a surface electrode shown in FIG. 2B.

表面電極付透明導電基板11aは、透光性ガラス基板1上に、スパッタリング法により、表面電極2として、凹凸膜22としての表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜が形成されている。表面電極付透明導電基板11bは、透光性ガラス基板1上に、表面電極2として、スパッタリング法により、下地膜21としての酸化インジウム系の透明導電膜と、凹凸膜22としての表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜との順で積層された積層膜が形成されている。以下、表面電極付透明導電基板11a及び表面電極付透明導電基板11bをまとめて、単に「表面電極付透明導電基板11」とも呼ぶ。   The transparent conductive substrate 11a with a surface electrode is made of a zinc oxide crystalline transparent conductive film in which a concavo-convex structure is formed on the surface as the concavo-convex film 22 on the translucent glass substrate 1 by a sputtering method. Is formed. The transparent conductive substrate 11b with a surface electrode is formed on the translucent glass substrate 1 by a sputtering method as the surface electrode 2, and a concavo-convex structure on the surface as the concavo-convex film 22 and an indium oxide-based transparent conductive film as the base film 21. A laminated film is formed which is laminated in order with the zinc oxide-based crystalline transparent conductive film in which is formed. Hereinafter, the transparent conductive substrate with surface electrode 11a and the transparent conductive substrate with surface electrode 11b are collectively referred to simply as “transparent conductive substrate with surface electrode 11”.

(透光性ガラス基板)
透光性ガラス基板1は、太陽光のスペクトルが透過可能なように、350〜1200nmの波長域にて高い透過率を有することが望ましい。また、屋外環境下での使用を考慮して、電気的、化学的、物理的に安定であることが望ましい。このような透光性ガラス基板1としては、ソーダライムシリケートガラス、ボレートガラス、低アルカリ含有ガラス、石英ガラス、その他の各種ガラスなどを例示することができる。
(Translucent glass substrate)
The translucent glass substrate 1 desirably has a high transmittance in the wavelength region of 350 to 1200 nm so that the spectrum of sunlight can be transmitted. In consideration of use in an outdoor environment, it is desirable to be electrically, chemically and physically stable. Examples of such translucent glass substrate 1 include soda lime silicate glass, borate glass, low alkali-containing glass, quartz glass, and other various glasses.

なお、透光性ガラス基板1は、ガラスからその上面に成膜される透明導電膜からなる表面電極へのイオンの拡散を防止し、ガラス基板の種類や表面状態による膜の電気特性への影響を最小限度に抑えるために、酸化シリコン膜などのアルカリバリヤ膜をガラス基板上に施しても構わない。   The translucent glass substrate 1 prevents diffusion of ions from the glass to the surface electrode made of a transparent conductive film formed on the upper surface thereof, and the influence on the electrical properties of the film due to the type and surface state of the glass substrate. In order to minimize this, an alkali barrier film such as a silicon oxide film may be formed on the glass substrate.

(表面電極)
表面電極2は、図1に示すように、表面凹凸構造2aを有する表面電極である。表面電極2は、透光性ガラス基板1と同様に350〜1200nmの波長の光に対して80%以上の高い透過率を有することが望ましい。また、表面電極2は、後に詳述する真空下での熱処理後のシート抵抗(表面抵抗)が10Ω/□以下であることが望ましく、表面電極2のヘイズ率が15%以上、より好ましくは20%以上であることが望ましい。また、ヘイズ率の上限は、50%未満が望ましい。ヘイズ率が50%を超えると、シリコンからなる発電層での再結合や欠陥の増大により、発電効率が落ちてしまう。
(Surface electrode)
As shown in FIG. 1, the surface electrode 2 is a surface electrode having a surface uneven structure 2a. The surface electrode 2 desirably has a high transmittance of 80% or more with respect to light having a wavelength of 350 to 1200 nm, similarly to the light-transmitting glass substrate 1. Further, the surface electrode 2 desirably has a sheet resistance (surface resistance) after heat treatment under vacuum, which will be described in detail later, of 10Ω / □ or less, and the haze ratio of the surface electrode 2 is 15% or more, more preferably 20 % Or more is desirable. Further, the upper limit of the haze ratio is preferably less than 50%. If the haze ratio exceeds 50%, the power generation efficiency decreases due to recombination and an increase in defects in the power generation layer made of silicon.

表面電極2は、例えば、図2(A)に示すように、凹凸膜22単体で構成することができる。また、表面電極2は、例えば、図2(B)に示すように、下地膜21と、凹凸膜22との順で積層された積層体で構成することができる。下地膜21は、後に詳述するように、酸化インジウム系の透明導電膜であるため、酸化亜鉛系の透明導電膜よりも体積抵抗率が小さい。そのため、図2(B)に示す表面電極2のように、透光性ガラス基板1と凹凸膜22との間に、下地膜21を位置させることにより、同じ抵抗率であれば、図2(A)に示すように表面電極2を凹凸膜22単体で構成するよりも、凹凸膜22の厚さを薄くすることができる。結果として、図2(B)に示す表面電極2は、全体としての厚さが薄くなり、透光性の面で有利となる。   For example, as shown in FIG. 2 (A), the surface electrode 2 can be composed of the concavo-convex film 22 alone. Moreover, the surface electrode 2 can be comprised by the laminated body laminated | stacked in order of the base film 21 and the uneven | corrugated film | membrane 22, for example, as shown to FIG. 2 (B). As will be described later in detail, since the base film 21 is an indium oxide-based transparent conductive film, the volume resistivity is lower than that of the zinc oxide-based transparent conductive film. Therefore, as in the case of the surface electrode 2 shown in FIG. 2B, by positioning the base film 21 between the translucent glass substrate 1 and the concavo-convex film 22, the same resistivity is obtained as shown in FIG. As shown in A), the thickness of the concavo-convex film 22 can be made thinner than when the surface electrode 2 is composed of the concavo-convex film 22 alone. As a result, the surface electrode 2 shown in FIG. 2B is thin as a whole, which is advantageous in terms of translucency.

表面凹凸構造2aの凹凸の程度は、表面凹凸を示す指標であるヘイズ率が20%以上であることが好ましく、また、算術平均粗さ(Ra)が40〜120nmであることが好ましい。このようなヘイズ率及び算術平均粗さ(Ra)の表面凹凸構造2aを有する表面電極2によれば、光閉じ込め効果が高くなり、薄膜太陽電池10の光電変換効率を向上させることができる。   The degree of unevenness of the surface uneven structure 2a is preferably such that the haze ratio, which is an index indicating surface unevenness, is 20% or more, and the arithmetic average roughness (Ra) is preferably 40 to 120 nm. According to the surface electrode 2 having the surface concavo-convex structure 2 a having such a haze ratio and arithmetic average roughness (Ra), the light confinement effect is enhanced and the photoelectric conversion efficiency of the thin-film solar cell 10 can be improved.

(下地膜)
下地膜21は、Ti、Sn、Gaから選ばれる少なくとも1種をドープした酸化インジウム系のアモルファス質透明導電膜である。本明細書において、アモルファス質とは、X線解析における回折ピーク強度が結晶質の回折ピーク強度の20%以下のものをいう。このような酸化インジウム系のアモルファス質透明導電膜として、例えば、Tiをドープした酸化インジウム(ITiO)膜を用いることができる。ITiO膜は、近赤外域の光の透過率が高く、アモルファス質の膜を容易に形成することができ、また、その上に形成される酸化亜鉛系結晶の成長を助長させることができる。ITiO膜において、Tiをドープする量は、0.5〜2.0質量%とすることが好ましい。
(Undercoat)
The base film 21 is an indium oxide-based amorphous transparent conductive film doped with at least one selected from Ti, Sn, and Ga. In the present specification, amorphous means a material whose diffraction peak intensity in X-ray analysis is 20% or less of the crystalline diffraction peak intensity. As such an indium oxide-based amorphous transparent conductive film, for example, an indium oxide (ITO) film doped with Ti can be used. The ITiO film has a high light transmittance in the near infrared region, can easily form an amorphous film, and can promote the growth of a zinc oxide-based crystal formed thereon. In the ITiO film, the amount of doping of Ti is preferably 0.5 to 2.0% by mass.

また、酸化インジウム系のアモルファス質透明導電膜として、例えば、Sn、Gaをドープした酸化インジウム(ITGO)膜を用いてもよい。ITGO膜も、アモルファス質の膜を容易に形成することができ、また、その上に形成される酸化亜鉛系結晶の成長を助長させることができる。ITGO膜において、Sn、Gaをドープする量は、3.0〜15質量%とすることが好ましい。   Further, for example, an indium oxide (ITGO) film doped with Sn or Ga may be used as the indium oxide-based amorphous transparent conductive film. As the ITGO film, an amorphous film can be easily formed, and the growth of a zinc oxide-based crystal formed thereon can be promoted. In the ITGO film, the doping amount of Sn and Ga is preferably 3.0 to 15% by mass.

さらに、酸化インジウム系のアモルファス質透明導電膜として、例えば、Ti、Snをドープした酸化インジウム(ITiTO)膜を用いてもよい。ITiTO膜は、ITiO膜に比べて、酸化亜鉛系結晶の成長をより一層助長させることができる。ITiTO膜において、Ti、Snをドープする量は、0.01〜2.0質量%とすることが好ましい。   Furthermore, for example, an indium oxide (ITiTO) film doped with Ti or Sn may be used as the indium oxide-based amorphous transparent conductive film. The IToTO film can further promote the growth of the zinc oxide-based crystal as compared with the ITO film. In the IToTO film, the amount of doping Ti and Sn is preferably 0.01 to 2.0% by mass.

下地膜21の膜厚は、200〜500nmであることが好ましく、より好ましくは300〜400nmである。膜厚が200nmを下回ると、下地膜21によるヘイズ率増加の効果が著しく小さくなってしまう。また、膜厚が500nmを上回ると、透過率が減少し、ヘイズ率増加による光閉じ込め効果を相殺してしまう。   The film thickness of the base film 21 is preferably 200 to 500 nm, more preferably 300 to 400 nm. When the film thickness is less than 200 nm, the effect of increasing the haze ratio by the base film 21 is significantly reduced. On the other hand, when the film thickness exceeds 500 nm, the transmittance decreases, and the light confinement effect due to the increase in the haze ratio is offset.

(凹凸膜)
凹凸膜22は、Al、Ga、B、In、F、Si、Ge、Ti、Zr、Hfから選ばれる少なくとも1種をドープした酸化亜鉛系の結晶質透明導電膜である。このような酸化亜鉛系の結晶質透明導電膜としては、例えば、AlとGaとを共にドープした酸化亜鉛(GAZO)膜、Alをドープした酸化亜鉛(AZO)膜、Gaをドープした酸化亜鉛(GZO)膜が挙げられる。これらの酸化亜鉛膜の中でも、GAZO膜が、スパッタリングによる成膜の際にアーキングが発生し難いため、より好ましい。GAZO膜において、AlとGaをドープする量は、0.1〜0.5質量%とすることが好ましい。また、GZO膜において、Gaをドープする量は、0.2〜6.0質量%とすることが好ましい。
(Uneven film)
The uneven film 22 is a zinc oxide-based crystalline transparent conductive film doped with at least one selected from Al, Ga, B, In, F, Si, Ge, Ti, Zr, and Hf. Examples of such a zinc oxide-based crystalline transparent conductive film include a zinc oxide (GAZO) film doped with both Al and Ga, a zinc oxide (AZO) film doped with Al, and a zinc oxide doped with Ga ( GZO) film. Among these zinc oxide films, a GAZO film is more preferable because arcing hardly occurs during film formation by sputtering. In the GAZO film, the amount of doping Al and Ga is preferably 0.1 to 0.5% by mass. Further, in the GZO film, the amount of Ga doping is preferably 0.2 to 6.0% by mass.

凹凸膜22の膜厚は、300〜2000nmであることが好ましく、より好ましくは400〜1600nmである。膜厚が300nmよりも小さいと、凹凸が大きくならず、表面電極2のヘイズ率が10%を下回ることがある。また、膜厚が2000nmを超えると、透過率が著しく低下する。   The film thickness of the uneven film 22 is preferably 300 to 2000 nm, more preferably 400 to 1600 nm. When the film thickness is smaller than 300 nm, the unevenness is not increased, and the haze ratio of the surface electrode 2 may be less than 10%. On the other hand, if the film thickness exceeds 2000 nm, the transmittance is remarkably lowered.

<1−2.光電変換半導体層>
光電変換半導体層3は、表面電極2上に、p型半導体層31と、i型半導体層32と、n型半導体層33とが順に積層されている。なお、p型半導体層31とn型半導体層33とは、その順番が逆でも良いが、通常、太陽電池では光の入射側にp型半導体層が配置される。
<1-2. Photoelectric conversion semiconductor layer>
In the photoelectric conversion semiconductor layer 3, a p-type semiconductor layer 31, an i-type semiconductor layer 32, and an n-type semiconductor layer 33 are sequentially stacked on the surface electrode 2. Note that the order of the p-type semiconductor layer 31 and the n-type semiconductor layer 33 may be reversed, but in a solar cell, the p-type semiconductor layer is usually disposed on the light incident side.

p型半導体層31は、例えば不純物原子としてB(ボロン)をドープした微結晶シリコンの薄膜からなる。また、微結晶シリコンの代わりに、多結晶シリコン、非晶質シリコン、シリコンカーバイド、シリコンゲルマニウムなどの材料を用いてもよい。また、不純物原子は、Bに限られず、アルミニウムなどを用いてもよい。   The p-type semiconductor layer 31 is made of, for example, a microcrystalline silicon thin film doped with B (boron) as an impurity atom. Further, instead of microcrystalline silicon, a material such as polycrystalline silicon, amorphous silicon, silicon carbide, or silicon germanium may be used. Further, the impurity atom is not limited to B, and aluminum or the like may be used.

i型半導体層32は、例えば、ドープされていない微結晶シリコンの薄膜からなる。また、微結晶シリコンの代わりに、多結晶シリコン、非晶質シリコン、シリコンカーバイド、シリコンゲルマニウムなどの材料を用いてもよい。また、微量の不純物を含む弱p型半導体、又は弱n型半導体で光電変換機能を十分に備えたシリコン系の薄膜材料を用いてもよい。   The i-type semiconductor layer 32 is made of, for example, an undoped microcrystalline silicon thin film. Further, instead of microcrystalline silicon, a material such as polycrystalline silicon, amorphous silicon, silicon carbide, or silicon germanium may be used. Alternatively, a silicon-based thin film material that is a weak p-type semiconductor containing a small amount of impurities or a weak n-type semiconductor and has a sufficient photoelectric conversion function may be used.

n型半導体層33は、例えば、不純物原子としてP(リン)がドープされたn型微結晶シリコンからなる。また、微結晶シリコンの代わりに、多結晶シリコン、非晶質シリコン、シリコンカーバイド、シリコンゲルマニウムなどの材料を用いてもよい。また、不純物原子は、Pに限られず、N(窒素)などを用いてもよい。   The n-type semiconductor layer 33 is made of, for example, n-type microcrystalline silicon doped with P (phosphorus) as impurity atoms. Further, instead of microcrystalline silicon, a material such as polycrystalline silicon, amorphous silicon, silicon carbide, or silicon germanium may be used. The impurity atom is not limited to P, and N (nitrogen) or the like may be used.

<1−3.裏面電極>
裏面電極4は、n型半導体層33上に、透明導電性酸化膜41と光反射性金属電極42とが順に形成されている。
<1-3. Back electrode>
In the back electrode 4, a transparent conductive oxide film 41 and a light reflective metal electrode 42 are sequentially formed on the n-type semiconductor layer 33.

透明導電性酸化膜41は、必ずしも必要とされないが、n型半導体層33と光反射性金属電極42との付着性を高めることで、光反射性金属電極42の反射効率を高め、且つn型半導体層33を化学変化から保護する機能を有している。   The transparent conductive oxide film 41 is not necessarily required. However, by improving the adhesion between the n-type semiconductor layer 33 and the light-reflective metal electrode 42, the reflection efficiency of the light-reflective metal electrode 42 is improved, and the n-type semiconductor layer 41 is n-type. It has a function of protecting the semiconductor layer 33 from chemical changes.

透明導電性酸化膜41は、酸化亜鉛膜、酸化インジウム膜、酸化錫膜などから選択される少なくとも1種で形成される。特に酸化亜鉛膜においてはAl、Gaのうち、少なくとも1種類を、酸化インジウム膜においてはSn、Ti、W、Ce、Ga、Moのうち、少なくとも1種類をドープすることで導電性を高めることが好ましい。また、n型半導体層33に隣接する透明導電性酸化膜41の比抵抗は、1.5×10−3Ωcm以下であることが好ましい。 The transparent conductive oxide film 41 is formed of at least one selected from a zinc oxide film, an indium oxide film, a tin oxide film, and the like. In particular, the conductivity is improved by doping at least one of Al and Ga in the zinc oxide film and at least one of Sn, Ti, W, Ce, Ga and Mo in the indium oxide film. preferable. The specific resistance of the transparent conductive oxide film 41 adjacent to the n-type semiconductor layer 33 is preferably 1.5 × 10 −3 Ωcm or less.

<2.薄膜太陽電池の製造方法>
次に、上述した本実施の形態に係る薄膜太陽電池10の製造方法について説明する。薄膜太陽電池10は、図1に示すように、透光性ガラス基板1上に、表面電極2と、光電変換半導体層3と、裏面電極4とを順に形成する。先ず、薄膜太陽電池10を構成する表面電極付透明導電基板11の製造方法について説明する。
<2. Manufacturing method of thin film solar cell>
Next, the manufacturing method of the thin film solar cell 10 according to the present embodiment described above will be described. As shown in FIG. 1, the thin-film solar cell 10 is formed with a front electrode 2, a photoelectric conversion semiconductor layer 3, and a back electrode 4 in this order on a translucent glass substrate 1. First, the manufacturing method of the transparent conductive substrate 11 with a surface electrode which comprises the thin film solar cell 10 is demonstrated.

<2−1.表面電極付透明導電基板>
図2(A)に示す表面電極付透明導電基板11aの製造方法では、例えば、アルゴン等の不活性ガス雰囲気中において、高ガス圧環境下で、スパッタリング法により、透光性ガラス基板1上に、表面電極2としての凹凸膜22を形成する。
<2-1. Transparent conductive substrate with surface electrode>
In the method for manufacturing the transparent conductive substrate with surface electrode 11a shown in FIG. 2 (A), for example, on the translucent glass substrate 1 by sputtering in an inert gas atmosphere such as argon under a high gas pressure environment. Then, an uneven film 22 is formed as the surface electrode 2.

凹凸膜22を成膜する際のガス圧は、1〜10Paとするのが好ましい。ガス圧が10Paよりも高いと、ヘイズ率が上昇するのと引き換えに成膜レートが極端に低下してしまう。ガス圧が1Paよりも低いと、膜表面への凹凸形状の生成が起りにくくなり、ヘイズ率が極端に低下してしまう。   The gas pressure when forming the uneven film 22 is preferably 1 to 10 Pa. When the gas pressure is higher than 10 Pa, the film formation rate is extremely reduced in exchange for an increase in the haze rate. When the gas pressure is lower than 1 Pa, it becomes difficult to generate an uneven shape on the film surface, and the haze ratio is extremely reduced.

また、凹凸膜22のスパッタリングを行う際の基板温度は、300℃以上とするが、300〜550℃とするのが好ましい。基板温度の上限は、透光性ガラス基板1の軟化点以下であれば最大800℃まで適用可能である。一般の太陽電池用途の透光性ガラス基板の場合、軟化点は600〜650℃のものが多く、これらを用いる場合、550℃を超えると軟化点温度に近づくため、基板の強度が低下し、結果として製造歩留まりを低下させることができる。   Moreover, although the substrate temperature at the time of sputtering of the uneven | corrugated film | membrane 22 shall be 300 degreeC or more, it is preferable to set it as 300-550 degreeC. As long as the upper limit of the substrate temperature is equal to or lower than the softening point of the translucent glass substrate 1, a maximum of 800 ° C. is applicable. In the case of a light-transmitting glass substrate for general solar cell use, the softening point is often from 600 to 650 ° C., and when these are used, the temperature of the substrate decreases when the temperature exceeds 550 ° C. As a result, the manufacturing yield can be reduced.

図2(B)に示す表面電極付透明導電基板11bの製造方法では、まず、透光性ガラス基板1の温度を20〜70℃の範囲に保持し、導入ガスとして例えばアルゴンと酸素との混合ガスを用い、スパッタリング法により、下地膜21を形成する。透光性ガラス基板1の温度を20℃より低くしても、酸化インジウム系のアモルファス質透明導電膜を得ることができるが、スパッタリング装置内に透光性ガラス基板を冷却する機構を設ける必要があり、コスト増となり好ましくない。また、透光性ガラス基板1の温度が70℃を超えると、酸化インジウム系のアモルファス質透明導電膜を得ることが困難となる。   In the method for manufacturing the transparent conductive substrate 11b with surface electrode shown in FIG. 2 (B), first, the temperature of the translucent glass substrate 1 is maintained in the range of 20 to 70 ° C., and mixed with, for example, argon and oxygen as the introduced gas. A base film 21 is formed by sputtering using a gas. Even if the temperature of the translucent glass substrate 1 is lower than 20 ° C., an indium oxide-based amorphous transparent conductive film can be obtained, but it is necessary to provide a mechanism for cooling the translucent glass substrate in the sputtering apparatus. There is an increase in cost, which is not preferable. Moreover, when the temperature of the translucent glass substrate 1 exceeds 70 ° C., it is difficult to obtain an indium oxide-based amorphous transparent conductive film.

次に、下地膜21上に凹凸膜22を形成する。表面電極付透明導電基板11bにおける凹凸膜22は、上述した表面電極付透明導電基板11aと同様にして、アルゴン等の不活性ガス雰囲気中において、高ガス圧環境下で、スパッタリングにより下地膜21上に成膜することができる。   Next, the uneven film 22 is formed on the base film 21. The concavo-convex film 22 on the transparent conductive substrate with surface electrode 11b is formed on the base film 21 by sputtering in a high gas pressure environment in an inert gas atmosphere such as argon in the same manner as the transparent conductive substrate with surface electrode 11a described above. It can be formed into a film.

次に、得られた表面電極付透明導電基板11を、7×10−3〜1×10−6Paの真空度の環境下で、250〜550℃で熱処理を施す。このような圧力と温度で熱処理を行うことで、酸化亜鉛結晶中にある不安定な酸素結合が取り除かれてキャリアが生成して、表面電極2を構成する透明導電膜の導電率が増加し、より高いヘイズ率を実現できる。 Next, the obtained transparent conductive substrate 11 with a surface electrode is subjected to heat treatment at 250 to 550 ° C. in an environment of a vacuum degree of 7 × 10 −3 to 1 × 10 −6 Pa. By performing heat treatment at such pressure and temperature, unstable oxygen bonds in the zinc oxide crystal are removed and carriers are generated, and the conductivity of the transparent conductive film constituting the surface electrode 2 is increased. A higher haze ratio can be realized.

表面電極付透明導電基板11の熱処理では、例えば、真空ポンプを用い、試料である表面電極付透明導電基板11を基板ホルダーに固定した後、真空チャンバー内に配置し、表面電極付透明導電基板11を加熱する。加熱方法としては、例えば、ランプヒーターにより加熱する方法が挙げられる。   In the heat treatment of the transparent conductive substrate 11 with a surface electrode, for example, using a vacuum pump, the transparent conductive substrate 11 with a surface electrode as a sample is fixed to a substrate holder, and then placed in a vacuum chamber. Heat. Examples of the heating method include a method of heating with a lamp heater.

表面電極付透明導電基板11を熱処理する際の真空度が7×10−3Pa未満の場合には、十分な還元効果が得られず、結果として余剰な酸素結合部分が残留してしまう。そのため、表面電極2のシート抵抗が10Ω/□を上回るとともに、表面電極2のヘイズ率が向上しない。熱処理時の真空度が1×10−6Paを超える場合には、シート抵抗が10Ω/□を上回るとともに、表面電極2のヘイズ率が向上しない。また、表面電極付透明導電基板11を熱処理する際の真空度が1×10−6Pa超える場合には、排気時間が極端に長くなり、生産性が悪く、工業的には適用が困難となる。 When the degree of vacuum when heat-treating the transparent conductive substrate 11 with a surface electrode is less than 7 × 10 −3 Pa, a sufficient reduction effect cannot be obtained, and as a result, an excess oxygen bonding portion remains. Therefore, the sheet resistance of the surface electrode 2 exceeds 10Ω / □, and the haze ratio of the surface electrode 2 is not improved. When the degree of vacuum during the heat treatment exceeds 1 × 10 −6 Pa, the sheet resistance exceeds 10Ω / □ and the haze ratio of the surface electrode 2 does not improve. Moreover, when the vacuum degree at the time of heat-processing the transparent conductive substrate 11 with a surface electrode exceeds 1 * 10 < -6 > Pa, exhaust time becomes extremely long, productivity is bad, and it becomes difficult to apply industrially. .

表面電極付透明導電基板11を熱処理する際の加熱温度が250℃未満の場合には、十分な還元効果が得られなくなり、結果として余剰な酸素結合部分が残留し、シート抵抗が10Ω/□を上回るとともに、表面電極2のヘイズ率が向上しない。加熱温度が550℃を超えると、膜が過剰に還元されてシート抵抗が10Ω/□を上回ってしまい、表面電極2のヘイズ率が向上しない。   When the heating temperature at the time of heat-treating the transparent conductive substrate 11 with a surface electrode is less than 250 ° C., a sufficient reduction effect cannot be obtained, and as a result, an excess oxygen bonding portion remains and the sheet resistance becomes 10Ω / □. While exceeding, the haze rate of the surface electrode 2 is not improved. When the heating temperature exceeds 550 ° C., the film is excessively reduced and the sheet resistance exceeds 10Ω / □, and the haze ratio of the surface electrode 2 is not improved.

熱処理における加熱時間は、加熱温度によって異なり、適宜調整することができる。例えば、加熱温度が250℃の場合には30分以上とし、加熱温度が550℃の場合には5分以上とする。   The heating time in the heat treatment varies depending on the heating temperature and can be adjusted as appropriate. For example, when the heating temperature is 250 ° C., it is 30 minutes or more, and when the heating temperature is 550 ° C., it is 5 minutes or more.

このように、本実施の形態に係る表面電極付透明導電基板の製造方法では、透光性ガラス基板1上に、表面電極2として、凹凸膜22、又は、下地膜21と凹凸膜22とを成膜した後に、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施す。これにより、より高いヘイズ率を実現することができ、結果として、より光閉じ込め効果の高い表面電極2を提供することができる。 Thus, in the manufacturing method of the transparent conductive substrate with a surface electrode according to the present embodiment, the concavo-convex film 22 or the base film 21 and the concavo-convex film 22 are formed on the translucent glass substrate 1 as the surface electrode 2. After film formation, heat treatment is performed at 250 to 550 ° C. under a vacuum degree of 7 × 10 −3 to 1 × 10 −6 Pa. Thereby, a higher haze ratio can be realized, and as a result, the surface electrode 2 having a higher light confinement effect can be provided.

図3は、真空下での熱処理(真空アニール処理)前後のヘイズ率の関係を示すグラフである。具体的に、図3は、初期ヘイズ値の異なる表面電極付透明導電基板11を用意し、1×10−4Paの真空度で、250℃又は500℃の熱処理温度で、熱処理した際の効果の結果を示すグラフである。この表面電極付透明導電基板11は、透光性ガラス基板1と、下地膜21としてのITiTO膜と、凹凸膜22としてのGAZO膜とが順に積層されている。グラフの横軸は、熱処理前の表面電極付透明導電基板11のヘイズ率を示し、グラフの縦軸は、熱処理後の表面電極付透明導電基板11のヘイズ率を示す。図3のグラフ中の破線は、熱処理前後のヘイズ率の改善比を説明するための基準線である。熱処理の効果がなかった場合、この破線の上に測定点が存在することになる。 FIG. 3 is a graph showing the relationship of the haze ratio before and after heat treatment (vacuum annealing treatment) under vacuum. Specifically, FIG. 3 shows the effect when heat-treated at a heat treatment temperature of 250 ° C. or 500 ° C. at a vacuum degree of 1 × 10 −4 Pa with a transparent conductive substrate 11 with surface electrodes having different initial haze values. It is a graph which shows the result. In this transparent conductive substrate 11 with surface electrodes, a light-transmissive glass substrate 1, an ITiTO film as a base film 21, and a GAZO film as an uneven film 22 are laminated in this order. The horizontal axis of the graph represents the haze ratio of the transparent conductive substrate 11 with surface electrode before heat treatment, and the vertical axis of the graph represents the haze ratio of the transparent conductive substrate 11 with surface electrode after heat treatment. The broken line in the graph of FIG. 3 is a reference line for explaining the improvement ratio of the haze ratio before and after the heat treatment. When there is no heat treatment effect, a measurement point exists on the broken line.

図3に示す結果によれば、表面電極付透明導電基板11に対する熱処理は、ヘイズ率を高める効果があるものの、熱処理前(初期)にヘイズがない表面電極付透明導電基板11に対してはヘイズ率を高める効果がないことが分かる。また、熱処理の温度を250℃とした場合よりも、熱処理の温度を500℃とした場合の方が、表面電極付透明導電基板11のヘイズ率を高める効果が大きいことが分かる。   According to the results shown in FIG. 3, the heat treatment for the transparent conductive substrate 11 with surface electrode has the effect of increasing the haze ratio, but the haze for the transparent conductive substrate 11 with surface electrode that does not have haze before the heat treatment (initial). It can be seen that there is no effect of increasing the rate. It can also be seen that the effect of increasing the haze ratio of the transparent conductive substrate 11 with a surface electrode is greater when the temperature of the heat treatment is 500 ° C. than when the temperature of the heat treatment is 250 ° C.

<2−2.光電変換半導体層>
次に、表面電極付透明導電基板11における表面電極2上に、例えば、下地温度を400℃以下に設定したプラズマCVD(Chemical Vapor Deposition)法を用いて、光電変換半導体層3を形成する。このプラズマCVD法は、一般によく知られている平行平板型のRFプラズマCVDを用いてもよいし、周波数150MHz以下のRF帯からVHF帯までの高周波電源を利用するプラズマCVD法でもよい。
<2-2. Photoelectric conversion semiconductor layer>
Next, the photoelectric conversion semiconductor layer 3 is formed on the surface electrode 2 in the transparent conductive substrate with surface electrode 11 by using, for example, a plasma CVD (Chemical Vapor Deposition) method in which a base temperature is set to 400 ° C. or less. As this plasma CVD method, a generally well-known parallel plate type RF plasma CVD may be used, or a plasma CVD method using a high-frequency power source having a frequency of 150 MHz or less from the RF band to the VHF band may be used.

光電変換半導体層3は、p型半導体層31と、i型半導体層32と、n型半導体層33とを順に積層して形成される。なお、必要に応じて、各半導体層に、パルスレーザ光を照射(レーザアニール)し、結晶化分率やキャリア濃度の制御を行なってもよい。   The photoelectric conversion semiconductor layer 3 is formed by sequentially stacking a p-type semiconductor layer 31, an i-type semiconductor layer 32, and an n-type semiconductor layer 33. If necessary, each semiconductor layer may be irradiated with pulsed laser light (laser annealing) to control the crystallization fraction and the carrier concentration.

<2−3.裏面電極>
次に、光電変換半導体層3上に裏面電極4を形成する。裏面電極4は、透明導電性酸化膜41と、光反射性金属電極42とを順に積層して形成される。
<2-3. Back electrode>
Next, the back electrode 4 is formed on the photoelectric conversion semiconductor layer 3. The back electrode 4 is formed by sequentially laminating a transparent conductive oxide film 41 and a light reflective metal electrode 42.

透明導電性酸化膜41は、真空蒸着、スパッタなどの方法によって形成され、ZnO、ITO等の金属酸化物で形成することが好ましい。   The transparent conductive oxide film 41 is formed by a method such as vacuum deposition or sputtering, and is preferably formed of a metal oxide such as ZnO or ITO.

光反射性金属電極42は、真空蒸着、スパッタなどの方法によって形成され、Ag、Au、Al、Cu及びPtの中から選択される1種、又は、これらを含む合金で形成することが好ましい。例えば、光反射性の高いAgを100〜330℃、より好ましくは200〜300℃の温度で真空蒸着によって形成することが好ましい。   The light-reflective metal electrode 42 is formed by a method such as vacuum deposition or sputtering, and is preferably formed of one selected from Ag, Au, Al, Cu, and Pt, or an alloy containing these. For example, Ag having high light reflectivity is preferably formed by vacuum deposition at a temperature of 100 to 330 ° C, more preferably 200 to 300 ° C.

以上のように、本実施の形態に係る薄膜太陽電池10の製造方法では、透光性ガラス基板1上に、表面電極2として、凹凸膜22、又は、下地膜21と凹凸膜22とを成膜した後に、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施すことにより、表面電極付透明導電基板11を製造する。これにより、エッチング手法を用いなくても良好な凹凸からなる表面電極2を形成することができ、より高いヘイズ率を実現することができる。結果として、より光閉じ込め効果の高い表面電極2を提供することができ、より光電変換効率の高い薄膜太陽電池10を得ることができる。 As described above, in the method for manufacturing the thin-film solar cell 10 according to the present embodiment, the uneven film 22 or the base film 21 and the uneven film 22 are formed as the surface electrode 2 on the translucent glass substrate 1. After film-forming, the transparent conductive substrate 11 with a surface electrode is manufactured by heat-processing at 250-550 degreeC with the vacuum degree of 7 * 10 < -3 > -1 * 10 < -6 > Pa. Thereby, even if it does not use an etching method, the surface electrode 2 which consists of favorable unevenness | corrugation can be formed, and a higher haze rate can be implement | achieved. As a result, the surface electrode 2 having a higher light confinement effect can be provided, and the thin film solar cell 10 having a higher photoelectric conversion efficiency can be obtained.

以下に実施例を用いて本発明を説明するが、本発明は、これらの実施例に限定されるものではない。   Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples.

(実施例1)
以下の製造条件により、酸化インジウム系の透明導電膜からなる下地膜と酸化亜鉛系の結晶質透明導電膜からなる凹凸膜との積層構造による表面電極付透明導電基板を作製した。
Example 1
Under the following manufacturing conditions, a transparent conductive substrate with a surface electrode having a laminated structure of a base film made of an indium oxide-based transparent conductive film and an uneven film made of a zinc oxide-based crystalline transparent conductive film was produced.

先ず、透光性ガラス基板1としてソーダライムシリケートガラス基板を用い、このガラス基板上に、表面電極2として、下地膜21と凹凸膜22とを順に形成した。下地膜21としては、酸化インジウムに酸化チタンを1質量%、酸化錫を0.01質量%ドープしたITiTO膜を用い、凹凸膜22としては、酸化亜鉛に酸化ガリウム0.58質量%、酸化アルミニウム0.32質量%をドープしたGAZO膜を用いた。   First, a soda lime silicate glass substrate was used as the translucent glass substrate 1, and a base film 21 and a concavo-convex film 22 were sequentially formed as a surface electrode 2 on the glass substrate. As the base film 21, an ITiTO film doped with 1% by mass of titanium oxide and 0.01% by mass of tin oxide in indium oxide is used. As the uneven film 22, 0.58% by mass of gallium oxide in zinc oxide and aluminum oxide are used. A GAZO film doped with 0.32% by mass was used.

成膜は、DCマグネトロンスパッタ法を用いた。使用したターゲットは、φ6インチサイズで、基板とターゲットとの間隔を60mmとした。   For the film formation, a DC magnetron sputtering method was used. The target used was a 6 inch size, and the distance between the substrate and the target was 60 mm.

ソーダライムシリケートガラス基板の温度を25℃に設定し、導入ガスとしてアルゴンと酸素の混合ガス(アルゴン:酸素=99:1)を用い、スパッタリング法により、膜厚が200nmとなるようにITiTO膜を成膜した。次に、ソーダライムシリケートガラス基板の温度を300℃に設定し、スパッタパワーDC400W、導入ガスをアルゴンガス100%とし、ガス圧を7Paに調整し、総膜厚が1200nmとなるようにGAZO膜を形成した。   The temperature of the soda lime silicate glass substrate is set to 25 ° C., a mixed gas of argon and oxygen (argon: oxygen = 99: 1) is used as an introduction gas, and an ITiTO film is formed by sputtering to have a film thickness of 200 nm. A film was formed. Next, the temperature of the soda lime silicate glass substrate is set to 300 ° C., the sputtering power is DC 400 W, the introduced gas is 100% argon gas, the gas pressure is adjusted to 7 Pa, and the GAZO film is formed so that the total film thickness becomes 1200 nm. Formed.

表面電極の全光透過率は、日本分光製V−670を用いて測定した。表面電極のシート抵抗は、表面抵抗計ロレスタAP(三菱化学(株)製、MCP−T400)を用いて測定した。表面電極のヘイズ値は、ヘイズメーター(村上色彩技術研究所製、HR−200)を用いて測定した。成膜直後の表面電極は、シート抵抗が9.7Ω/□、全光透過率が83.4%、ヘイズ値が14.7%であった。   The total light transmittance of the surface electrode was measured using JASCO V-670. The sheet resistance of the surface electrode was measured using a surface resistance meter Loresta AP (manufactured by Mitsubishi Chemical Corporation, MCP-T400). The haze value of the surface electrode was measured using a haze meter (manufactured by Murakami Color Research Laboratory, HR-200). The surface electrode immediately after film formation had a sheet resistance of 9.7Ω / □, a total light transmittance of 83.4%, and a haze value of 14.7%.

真空下での熱処理の方法について説明する。真空ポンプとして、ULVAC社製クライオポンプCRYO−U10PUを用い、試料をSUS製の基板ホルダーに固定した後、真空チャンバー内に配置した。始めは、基板の加熱を行わずに、真空ポンプとチャンバーとをつなぐメインバルブを全開のままで真空引きを開始し、1×10−5Paに到達した時点で基板の加熱を開始した。加熱方法は、ランプヒーターによりSUSホルダーの背面側から加熱して250℃になるよう制御した。加熱開始と同時に真空度が低下するが、このときからメインバルブの開閉度の調整により真空度を7×10−3Paになるように制御を開始し、基板温度と真空度が安定したところから1時間熱処理を行った。熱処理が終了したら、ランプヒーターの電源を落として、100℃以下まで基板温度が低下するまで放置したのち、真空を割って試料を取り出した。 A method of heat treatment under vacuum will be described. A cryopump CRYO-U10PU manufactured by ULVAC was used as a vacuum pump, and the sample was fixed to a SUS substrate holder and then placed in a vacuum chamber. Initially, without heating the substrate, evacuation was started with the main valve connecting the vacuum pump and the chamber fully opened, and heating of the substrate was started when the pressure reached 1 × 10 −5 Pa. The heating method was controlled to 250 ° C. by heating from the back side of the SUS holder with a lamp heater. The degree of vacuum decreases at the same time as heating is started. From this point, control is started so that the degree of vacuum becomes 7 × 10 −3 Pa by adjusting the degree of opening and closing of the main valve, and the substrate temperature and degree of vacuum are stabilized. Heat treatment was performed for 1 hour. When the heat treatment was completed, the lamp heater was turned off and allowed to stand until the substrate temperature decreased to 100 ° C. or lower, and then the sample was taken out by breaking the vacuum.

その結果、真空での熱処理後に、シート抵抗値が8.6Ω/□、全光透過率が83.2%、ヘイズ率が19.1%となり、シート抵抗とヘイズ率が改善した。全光透過率が熱処理前後で殆ど変化しなかった。   As a result, after the heat treatment in vacuum, the sheet resistance value was 8.6Ω / □, the total light transmittance was 83.2%, and the haze ratio was 19.1%, and the sheet resistance and the haze ratio were improved. The total light transmittance hardly changed before and after the heat treatment.

(実施例2〜4)
実施例2では、実施例1と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例2)、450℃(実施例3)、550℃(実施例4)としたこと以外は、実施例1と同様に熱処理を行った。
(Examples 2 to 4)
In Example 2, the surface electrode manufactured on the glass substrate in the same procedure as in Example 1 was subjected to heat treatment in a vacuum chamber at 350 ° C. (Example 2), 450 ° C. (Example 3), and 550. The heat treatment was performed in the same manner as in Example 1 except that the temperature was changed to ° C. (Example 4).

実施例2では、熱処理後にシート抵抗値が8.4Ω/□、全光透過率が83.1%、ヘイズ率が20.1%となった。実施例3では、熱処理後にシート抵抗値が7.7Ω/□、全光透過率が83.0%、ヘイズ率が21.0%となった。実施例4では、熱処理後にシート抵抗値が7.3Ω/□、全光透過率が82.8%、ヘイズ率が22.0%となった。実施例2〜4では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Example 2, the sheet resistance value after heat treatment was 8.4Ω / □, the total light transmittance was 83.1%, and the haze ratio was 20.1%. In Example 3, the sheet resistance value after heat treatment was 7.7Ω / □, the total light transmittance was 83.0%, and the haze ratio was 21.0%. In Example 4, the sheet resistance value after heat treatment was 7.3Ω / □, the total light transmittance was 82.8%, and the haze ratio was 22.0%. In Examples 2 to 4, the sheet resistance and the haze ratio were improved, and the total light transmittance was hardly changed before and after the heat treatment.

(実施例5)
実施例5では、実施例1と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−6Paとしたこと以外は、実施例1と同様にして、熱処理を行った。
(Example 5)
In Example 5, when heat-treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 1, the degree of vacuum in the vacuum chamber was set to 1 × 10 −6 Pa. Similarly, heat treatment was performed.

実施例5では、熱処理後にシート抵抗値が7.3Ω/□、全光透過率が82.8%、ヘイズ率が22.9%となった。実施例5では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Example 5, the sheet resistance value after heat treatment was 7.3Ω / □, the total light transmittance was 82.8%, and the haze ratio was 22.9%. In Example 5, sheet resistance and haze ratio improved, and the total light transmittance hardly changed before and after heat treatment.

(実施例6〜8)
実施例6〜8では、実施例1と同様な手順でガラス基板上に製作した透明表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例6)、450℃(実施例7)、550℃(実施例8)としたこと以外は、実施例5と同様に熱処理を行った。
(Examples 6 to 8)
In Examples 6-8, the temperature at the time of heat-treating the transparent surface electrode manufactured on the glass substrate in the same procedure as Example 1 in a vacuum chamber is 350 degreeC (Example 6), 450 degreeC (Example 7). ) Heat treatment was performed in the same manner as in Example 5 except that the temperature was 550 ° C. (Example 8).

実施例6では、熱処理後にシート抵抗値が6.7Ω/□、全光透過率が82.7%、ヘイズ率が24.1%となった。実施例7では、熱処理後にシート抵抗値が6.5Ω/□、全光透過率が82.6%、ヘイズ率が22.9%となった。実施例8では、熱処理後にシート抵抗値が6.1Ω/□、全光透過率が82.4%、ヘイズ率が26.4%となった。実施例6〜8では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Example 6, the sheet resistance value after heat treatment was 6.7Ω / □, the total light transmittance was 82.7%, and the haze ratio was 24.1%. In Example 7, after the heat treatment, the sheet resistance value was 6.5Ω / □, the total light transmittance was 82.6%, and the haze ratio was 22.9%. In Example 8, the sheet resistance value was 6.1Ω / □, the total light transmittance was 82.4%, and the haze ratio was 26.4% after the heat treatment. In Examples 6 to 8, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(比較例1)
比較例1では、実施例1と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−2Paとしたこと以外は、実施例1と同様にして、熱処理を行った。
(Comparative Example 1)
In the comparative example 1, when heat-treating the surface electrode manufactured on the glass substrate in the same procedure as the example 1, the vacuum degree in the vacuum chamber was set to 1 × 10 −2 Pa, and the example 1 Similarly, heat treatment was performed.

比較例1では、熱処理後にシート抵抗値が10.5Ω/□、全光透過率が83.5%、ヘイズ率が14.7%となった。比較例1では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 1, the sheet resistance value after heat treatment was 10.5Ω / □, the total light transmittance was 83.5%, and the haze ratio was 14.7%. In Comparative Example 1, the effect of improving sheet resistance and haze ratio was not observed.

(比較例2〜4)
比較例2〜4では、実施例1と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(比較例2)、450℃(比較例3)、550℃(比較例4)としたこと以外は、比較例1と同様に熱処理を行った。
(Comparative Examples 2 to 4)
In Comparative Examples 2-4, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 1 in a vacuum chamber is 350 degreeC (comparative example 2), 450 degreeC (comparative example 3). Heat treatment was performed in the same manner as in Comparative Example 1 except that the temperature was 550 ° C. (Comparative Example 4).

比較例2では、熱処理後にシート抵抗値が10.1Ω/□、全光透過率が83.5%、ヘイズ率が15.4%となった。比較例3では、熱処理後にシート抵抗値が10.0Ω/□、全光透過率が83.4%、ヘイズ率が14.7%となった。比較例4では、熱処理後にシート抵抗値が10.7Ω/□、全光透過率が83.6%、ヘイズ率が16.9%となった。   In Comparative Example 2, the sheet resistance value after the heat treatment was 10.1Ω / □, the total light transmittance was 83.5%, and the haze ratio was 15.4%. In Comparative Example 3, the sheet resistance value after the heat treatment was 10.0Ω / □, the total light transmittance was 83.4%, and the haze ratio was 14.7%. In Comparative Example 4, the sheet resistance value after heat treatment was 10.7Ω / □, the total light transmittance was 83.6%, and the haze ratio was 16.9%.

比較例2、3では、シート抵抗とヘイズ率の改善効果が見られなかった。比較例4では、シート抵抗の改善効果が見られなかった。   In Comparative Examples 2 and 3, the effect of improving sheet resistance and haze ratio was not observed. In Comparative Example 4, the effect of improving sheet resistance was not observed.

(比較例5、6)
比較例5、6では、実施例1と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例5)、600℃(比較例6)としたこと以外は、実施例1と同様に熱処理を行った。
(Comparative Examples 5 and 6)
In Comparative Examples 5 and 6, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 1 in the vacuum chamber was 200 ° C. (Comparative Example 5) and 600 ° C. (Comparative Example 6). A heat treatment was performed in the same manner as in Example 1 except that.

比較例5では、熱処理後にシート抵抗値が12.3Ω/□、全光透過率が84.1%、ヘイズ率が13.2%となった。比較例5では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 5, the sheet resistance value after the heat treatment was 12.3Ω / □, the total light transmittance was 84.1%, and the haze ratio was 13.2%. In Comparative Example 5, the effect of improving sheet resistance and haze ratio was not observed.

比較例6では、熱処理後にシート抵抗値が11.5Ω/□、全光透過率が83.9%、ヘイズ率が17.6%となった。比較例6では、シート抵抗の改善効果が見られなかった。   In Comparative Example 6, the sheet resistance value after heat treatment was 11.5Ω / □, the total light transmittance was 83.9%, and the haze ratio was 17.6%. In Comparative Example 6, the effect of improving the sheet resistance was not observed.

(比較例7、8)
比較例7、8では、実施例1と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例7)、600℃(比較例8)としたこと以外は、実施例5と同様に熱処理を行った。
(Comparative Examples 7 and 8)
In Comparative Examples 7 and 8, the temperature when heat treating the surface electrode produced on the glass substrate in the same procedure as in Example 1 in the vacuum chamber was 200 ° C. (Comparative Example 7) and 600 ° C. (Comparative Example 8). A heat treatment was performed in the same manner as in Example 5 except that.

比較例7では、熱処理後にシート抵抗値が11.5Ω/□、全光透過率が83.7%、ヘイズ率が14.6%となった。比較例7では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 7, the sheet resistance value after heat treatment was 11.5Ω / □, the total light transmittance was 83.7%, and the haze ratio was 14.6%. In Comparative Example 7, the effect of improving sheet resistance and haze ratio was not observed.

比較例8では、熱処理後にシート抵抗値が17.8Ω/□、全光透過率が83.4%、ヘイズ率が19.4%となった。比較例8では、シート抵抗の改善効果が見られなかった。   In Comparative Example 8, the sheet resistance value after heat treatment was 17.8Ω / □, the total light transmittance was 83.4%, and the haze ratio was 19.4%. In Comparative Example 8, the effect of improving sheet resistance was not observed.

Figure 0005594078
Figure 0005594078

(実施例9)
実施例9では、下地膜21として、酸化インジウムに酸化チタンを1質量%ドープしたITiO膜を用い、凹凸膜22としては、酸化亜鉛に酸化ガリウム0.58質量%、酸化アルミニウム0.32質量%をドープしたGAZO膜を用いた。
Example 9
In Example 9, an ITiO film in which 1% by mass of titanium oxide is doped into indium oxide is used as the base film 21, and the uneven film 22 is 0.58% by mass of gallium oxide and 0.32% by mass of aluminum oxide in zinc oxide. A GAZO film doped with is used.

実施例9では、ソーダライムシリケートガラス基板の温度を25℃に設定し、導入ガスとしてアルゴンと酸素の混合ガス(アルゴン:酸素=99:1)を用い、スパッタリング法により、膜厚が250nmとなるようにITiO膜を成膜した。次に、ソーダライムシリケートガラス基板の温度を300℃に設定し、スパッタパワーDC400W、導入ガスをアルゴンガス100%とし、ガス圧を7Paに調整し、総膜厚が1250nmとなるようにGAZO膜を形成した。   In Example 9, the temperature of the soda lime silicate glass substrate is set to 25 ° C., a mixed gas of argon and oxygen (argon: oxygen = 99: 1) is used as the introduction gas, and the film thickness is 250 nm by sputtering. Thus, an ITiO film was formed. Next, the temperature of the soda lime silicate glass substrate is set to 300 ° C., the sputtering power is DC 400 W, the introduced gas is argon gas 100%, the gas pressure is adjusted to 7 Pa, and the GAZO film is formed so that the total film thickness becomes 1250 nm. Formed.

このようにして得られたガラス基板上に製作した表面電極を真空チャンバー内で250℃に加熱しながら、同時に真空度が7×10−3Paになるように1時間保持して熱処理を行った。 The surface electrode manufactured on the glass substrate thus obtained was heated to 250 ° C. in a vacuum chamber, and at the same time, heat treatment was performed while maintaining the degree of vacuum at 7 × 10 −3 Pa for 1 hour. .

実施例9では、熱処理後に、シート抵抗値が8.9Ω/□、全光透過率が83.8%、ヘイズ率が17.8%となった、実施例9では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Example 9, after heat treatment, the sheet resistance value was 8.9Ω / □, the total light transmittance was 83.8%, and the haze ratio was 17.8%. In Example 9, the sheet resistance and haze ratio were The total light transmittance was hardly changed before and after the heat treatment.

(実施例10〜12)
実施例10〜12では、実施例9と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例10)、450℃(実施例11)、550℃(実施例12)としたこと以外は、実施例9と同様に熱処理を行った。
(Examples 10 to 12)
In Examples 10-12, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 9 in a vacuum chamber is 350 degreeC (Example 10), 450 degreeC (Example 11). Heat treatment was performed in the same manner as in Example 9 except that the temperature was 550 ° C. (Example 12).

実施例10では、熱処理後にシート抵抗値が8.5Ω/□、全光透過率が83.7%、ヘイズ率が18.6%となった。実施例11では、熱処理後にシート抵抗値が8.4Ω/□、全光透過率が83.6%、ヘイズ率が19.5%となった。実施例12では、熱処理後にシート抵抗値が7.6Ω/□、全光透過率が83.4%、ヘイズ率が20.4%となった。   In Example 10, after the heat treatment, the sheet resistance value was 8.5Ω / □, the total light transmittance was 83.7%, and the haze ratio was 18.6%. In Example 11, after the heat treatment, the sheet resistance value was 8.4Ω / □, the total light transmittance was 83.6%, and the haze ratio was 19.5%. In Example 12, the sheet resistance value after heat treatment was 7.6Ω / □, the total light transmittance was 83.4%, and the haze ratio was 20.4%.

実施例10〜12では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Examples 10 to 12, the sheet resistance and the haze ratio were improved, and the total light transmittance was hardly changed before and after the heat treatment.

(実施例13)
実施例13では、熱処理する際に、真空チャンバー内の真空度を1×10−6Paとしたこと以外は、実施例9と同様にして、熱処理を行った。
(Example 13)
In Example 13, the heat treatment was performed in the same manner as in Example 9 except that the degree of vacuum in the vacuum chamber was set to 1 × 10 −6 Pa when the heat treatment was performed.

実施例13では、熱処理後にシート抵抗値が7.8Ω/□、全光透過率が83.5%、ヘイズ率が21.3%となった。実施例13では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Example 13, the sheet resistance value after heat treatment was 7.8Ω / □, the total light transmittance was 83.5%, and the haze ratio was 21.3%. In Example 13, sheet resistance and haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例14〜16)
実施例14〜16では、真空チャンバー内で熱処理する際の温度を350℃(実施例14)、450℃(実施例15)、550℃(実施例16)としたこと以外は、実施例13と同様に熱処理を行った。
(Examples 14 to 16)
In Examples 14-16, the temperature at the time of heat treatment in the vacuum chamber was 350 ° C. (Example 14), 450 ° C. (Example 15), and 550 ° C. (Example 16). Similarly, heat treatment was performed.

実施例14では、熱処理後にシート抵抗値が7.1Ω/□、全光透過率が83.3%、ヘイズ率が22.4%となった。実施例15では、熱処理後にシート抵抗値が6.9Ω/□、全光透過率が83.2%、ヘイズ率が21.3%となった。実施例16では、熱処理後にシート抵抗値が6.4Ω/□、全光透過率が83.1%、ヘイズ率が24.5%となった。実施例14〜16では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理前後で殆ど変化しなかった。   In Example 14, the sheet resistance value after heat treatment was 7.1 Ω / □, the total light transmittance was 83.3%, and the haze ratio was 22.4%. In Example 15, the sheet resistance value after heat treatment was 6.9Ω / □, the total light transmittance was 83.2%, and the haze ratio was 21.3%. In Example 16, the sheet resistance value after the heat treatment was 6.4Ω / □, the total light transmittance was 83.1%, and the haze ratio was 24.5%. In Examples 14 to 16, the sheet resistance and the haze ratio were improved, and the total light transmittance was hardly changed before and after the heat treatment.

(比較例9)
比較例9では、実施例9と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−2Paとしたこと以外は、実施例9と同様にして、熱処理を行った。
(Comparative Example 9)
In Comparative Example 9, when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 9, the vacuum degree in the vacuum chamber was set to 1 × 10 −2 Pa, and Example 9 and Similarly, heat treatment was performed.

比較例9では、熱処理後にシート抵抗値が10.1Ω/□、全光透過率が84.0%、ヘイズ率が14.8%となった。比較例9では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 9, the sheet resistance value after the heat treatment was 10.1Ω / □, the total light transmittance was 84.0%, and the haze ratio was 14.8%. In Comparative Example 9, the effect of improving the sheet resistance and haze ratio was not observed.

(比較例10〜12)
比較例10〜12では、実施例9と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(比較例10)、450℃(比較例11)、550℃(比較例12)としたこと以外は、比較例9と同様に熱処理を行った。
(Comparative Examples 10-12)
In Comparative Examples 10-12, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 9 in a vacuum chamber is 350 degreeC (comparative example 10), 450 degreeC (comparative example 11). Heat treatment was performed in the same manner as in Comparative Example 9 except that the temperature was 550 ° C. (Comparative Example 12).

比較例10では、熱処理後にシート抵抗値が10.6Ω/□、全光透過率が84.1%、ヘイズ率が15.5%となった。比較例11では、熱処理後にシート抵抗値が10.1Ω/□、全光透過率が84.0%、ヘイズ率が15.3%となった。比較例10、11では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 10, the sheet resistance value after the heat treatment was 10.6Ω / □, the total light transmittance was 84.1%, and the haze ratio was 15.5%. In Comparative Example 11, the sheet resistance value after heat treatment was 10.1Ω / □, the total light transmittance was 84.0%, and the haze ratio was 15.3%. In Comparative Examples 10 and 11, no effect of improving sheet resistance and haze ratio was observed.

比較例12では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が83.9%、ヘイズ率が17.0%となった。比較例12では、シート抵抗の改善効果が見られなかった。   In Comparative Example 12, the sheet resistance value after the heat treatment was 10.2 Ω / □, the total light transmittance was 83.9%, and the haze ratio was 17.0%. In Comparative Example 12, the effect of improving sheet resistance was not observed.

(比較例13、14)
比較例13、14では、真空チャンバー内で熱処理する際の温度を200℃(比較例13)、600℃(比較例14)としたこと以外は、実施例9と同様に熱処理を行った。
(Comparative Examples 13 and 14)
In Comparative Examples 13 and 14, the heat treatment was performed in the same manner as in Example 9 except that the temperature during the heat treatment in the vacuum chamber was 200 ° C. (Comparative Example 13) and 600 ° C. (Comparative Example 14).

比較例13では、熱処理後にシート抵抗値が12.1Ω/□、全光透過率が84.6%、ヘイズ率が14.7%となった。比較例14では、熱処理後にシート抵抗値が20.5Ω/□、全光透過率が84.4%、ヘイズ率が15.2%となった。比較例13、14では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 13, the sheet resistance value after the heat treatment was 12.1Ω / □, the total light transmittance was 84.6%, and the haze ratio was 14.7%. In Comparative Example 14, the sheet resistance value after heat treatment was 20.5Ω / □, the total light transmittance was 84.4%, and the haze ratio was 15.2%. In Comparative Examples 13 and 14, the effect of improving sheet resistance and haze ratio was not observed.

(比較例15、16)
比較例15、16では、実施例9と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例15)、600℃(比較例16)としたこと以外は、実施例13と同様に熱処理を行った。
(Comparative Examples 15 and 16)
In Comparative Examples 15 and 16, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 9 in the vacuum chamber was 200 ° C. (Comparative Example 15) and 600 ° C. (Comparative Example 16). A heat treatment was performed in the same manner as in Example 13 except that.

比較例15では、熱処理後にシート抵抗値が11.4Ω/□、全光透過率が84.2%、ヘイズ率が16.0%となった。比較例15では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 15, the sheet resistance value after heat treatment was 11.4Ω / □, the total light transmittance was 84.2%, and the haze ratio was 16.0%. In Comparative Example 15, the effect of improving sheet resistance and haze ratio was not observed.

比較例16では、熱処理後にシート抵抗値が15.4Ω/□、全光透過率が84.0%、ヘイズ率が21.3%となった。比較例16では、シート抵抗の改善効果が見られなかった。   In Comparative Example 16, the sheet resistance value after heat treatment was 15.4Ω / □, the total light transmittance was 84.0%, and the haze ratio was 21.3%. In Comparative Example 16, the effect of improving sheet resistance was not observed.

Figure 0005594078
Figure 0005594078

(実施例17)
実施例17では、下地膜21として、酸化ガリウムを3.4質量%、酸化錫を10質量%ドープしたITGO膜を用い、凹凸膜22として、酸化亜鉛に酸化ガリウム0.58質量%、酸化アルミニウム0.32質量%をドープしたGAZO膜を用いた。
(Example 17)
In Example 17, an ITGO film doped with 3.4% by mass of gallium oxide and 10% by mass of tin oxide was used as the base film 21, and 0.58% by mass of gallium oxide in zinc oxide and aluminum oxide were used as the concavo-convex film 22. A GAZO film doped with 0.32% by mass was used.

ソーダライムシリケートガラス基板の温度を25℃に設定し、導入ガスとしてアルゴンと酸素の混合ガス(アルゴン:酸素=99:1)を用い、スパッタリング法により、膜厚が150nmとなるようにITiO膜を成膜した。次に、ソーダライムシリケートガラス基板の温度を300℃に設定し、スパッタパワーDC400W、導入ガスをアルゴンガス100%とし、ガス圧を7Paに調整し、総膜厚が1150nmとなるようにGAZO膜を形成した。   The temperature of the soda lime silicate glass substrate is set to 25 ° C., and a mixed gas of argon and oxygen (argon: oxygen = 99: 1) is used as an introduction gas, and an ITiO film is formed by sputtering to have a film thickness of 150 nm. A film was formed. Next, the temperature of the soda lime silicate glass substrate is set to 300 ° C., the sputtering power is DC 400 W, the introduced gas is 100% argon gas, the gas pressure is adjusted to 7 Pa, and the GAZO film is formed so that the total film thickness becomes 1150 nm. Formed.

このようにして得られたガラス基板上に製作した表面電極を真空チャンバー内で250℃に加熱しながら、同時に真空度が7×10−3Paになるように1時間保持して熱処理を行った。 The surface electrode manufactured on the glass substrate thus obtained was heated to 250 ° C. in a vacuum chamber, and at the same time, heat treatment was performed while maintaining the degree of vacuum at 7 × 10 −3 Pa for 1 hour. .

実施例17では、熱処理後に、シート抵抗値が8.5Ω/□、全光透過率が82.2%、ヘイズ率が18.3%となった。実施例17では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 17, the sheet resistance value was 8.5Ω / □, the total light transmittance was 82.2%, and the haze ratio was 18.3% after the heat treatment. In Example 17, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例18〜20)
実施例18〜20では、実施例17と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例18)、450℃(実施例19)、550℃(実施例20)としたこと以外は、実施例17と同様に熱処理を行った。
(Examples 18 to 20)
In Examples 18-20, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 17 in a vacuum chamber is 350 degreeC (Example 18), 450 degreeC (Example 19). A heat treatment was performed in the same manner as in Example 17 except that the temperature was 550 ° C. (Example 20).

実施例18では、熱処理後にシート抵抗値が8.3Ω/□、全光透過率が82.2%、ヘイズ率が19.2%となった。実施例19では、熱処理後にシート抵抗値が7.6Ω/□、全光透過率が82.0%、ヘイズ率が20.1%となった。実施例20では、熱処理後にシート抵抗値が7.4Ω/□、全光透過率が81.9%、ヘイズ率が21.0%となった。実施例18〜20では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 18, after the heat treatment, the sheet resistance value was 8.3Ω / □, the total light transmittance was 82.2%, and the haze ratio was 19.2%. In Example 19, the sheet resistance value after heat treatment was 7.6Ω / □, the total light transmittance was 82.0%, and the haze ratio was 20.1%. In Example 20, the sheet resistance value after heat treatment was 7.4Ω / □, the total light transmittance was 81.9%, and the haze ratio was 21.0%. In Examples 18 to 20, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例21)
実施例21では、実施例17と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−6Paとしたこと以外は、実施例17と同様にして、熱処理を行った。
(Example 21)
In Example 21, when heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 17, the degree of vacuum in the vacuum chamber was set to 1 × 10 −6 Pa, and Example 17 Similarly, heat treatment was performed.

実施例21では、熱処理後にシート抵抗値が7.2Ω/□、全光透過率が81.9%、ヘイズ率が21.9%となった。実施例21では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 21, the sheet resistance value after heat treatment was 7.2 Ω / □, the total light transmittance was 81.9%, and the haze ratio was 21.9%. In Example 21, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例22〜24)
実施例22〜24では、実施例17と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例22)、450℃(実施例23)、550℃(実施例24)としたこと以外は、実施例21と同様に熱処理を行った。
(Examples 22 to 24)
In Examples 22-24, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 17 in a vacuum chamber is 350 degreeC (Example 22), 450 degreeC (Example 23). Heat treatment was performed in the same manner as in Example 21 except that the temperature was 550 ° C. (Example 24).

実施例22では、熱処理後にシート抵抗値が6.9Ω/□、全光透過率が81.8%、ヘイズ率が23.0%となった。実施例23では、熱処理後にシート抵抗値が6.6Ω/□、全光透過率が81.7%、ヘイズ率が21.9%となった。実施例24では、熱処理後にシート抵抗値が6.0Ω/□、全光透過率が81.4%、ヘイズ率が25.2%となった。実施例22〜24では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 22, the sheet resistance value after heat treatment was 6.9Ω / □, the total light transmittance was 81.8%, and the haze ratio was 23.0%. In Example 23, the sheet resistance value after heat treatment was 6.6Ω / □, the total light transmittance was 81.7%, and the haze ratio was 21.9%. In Example 24, the sheet resistance value after heat treatment was 6.0Ω / □, the total light transmittance was 81.4%, and the haze ratio was 25.2%. In Examples 22 to 24, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(比較例17)
比較例17では、実施例17と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−2Paとしたこと以外は、実施例17と同様にして、熱処理を行った。
(Comparative Example 17)
In the comparative example 17, when heat-treating the surface electrode manufactured on the glass substrate in the same procedure as the example 17, the vacuum degree in the vacuum chamber was set to 1 × 10 −2 Pa, and the example 17 Similarly, heat treatment was performed.

比較例17では、熱処理後にシート抵抗値が10.7Ω/□、全光透過率が82.6%、ヘイズ率が14.6%となり、シート抵抗とヘイズ率の改善効果は見られなかった。   In Comparative Example 17, the sheet resistance value after heat treatment was 10.7Ω / □, the total light transmittance was 82.6%, and the haze ratio was 14.6%, and no effect of improving the sheet resistance and haze ratio was observed.

(比較例18〜20)
比較例18〜20では、実施例17と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(比較例18)、450℃(比較例19)、550℃(比較例20)で熱処理したこと以外は、比較例17と同様に熱処理を行った。
(Comparative Examples 18-20)
In Comparative Examples 18-20, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 17 in the vacuum chamber was 350 ° C. (Comparative Example 18) and 450 ° C. (Comparative Example 19). The heat treatment was performed in the same manner as in Comparative Example 17 except that the heat treatment was performed at 550 ° C. (Comparative Example 20).

比較例18では、熱処理後にシート抵抗値が10.1Ω/□、全光透過率が82.5%、ヘイズ率が15.3%となった。比較例19では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が84.0%、ヘイズ率が14.6%となった。比較例20では、熱処理後にシート抵抗値が10.4Ω/□、全光透過率が82.6%、ヘイズ率が16.8%となった。比較例18〜20では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 18, the sheet resistance value after the heat treatment was 10.1Ω / □, the total light transmittance was 82.5%, and the haze ratio was 15.3%. In Comparative Example 19, the sheet resistance value after the heat treatment was 10.2 Ω / □, the total light transmittance was 84.0%, and the haze ratio was 14.6%. In Comparative Example 20, the sheet resistance value after the heat treatment was 10.4Ω / □, the total light transmittance was 82.6%, and the haze ratio was 16.8%. In Comparative Examples 18 to 20, the effect of improving sheet resistance and haze ratio was not observed.

(比較例21、22)
比較例21、22では、実施例17と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例21)、600℃(比較例22)としたこと以外は、実施例17と同様に熱処理を行った。
(Comparative Examples 21 and 22)
In Comparative Examples 21 and 22, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 17 in the vacuum chamber was 200 ° C. (Comparative Example 21), 600 ° C. (Comparative Example 22). A heat treatment was performed in the same manner as in Example 17 except that.

比較例21では、熱処理後にシート抵抗値が11.5Ω/□、全光透過率が83.2%、ヘイズ率が16.2%となった。比較例22では、熱処理後にシート抵抗値が14.4Ω/□、全光透過率が82.9%、ヘイズ率が14.3%となった。比較例21、22では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 21, the sheet resistance value after heat treatment was 11.5Ω / □, the total light transmittance was 83.2%, and the haze ratio was 16.2%. In Comparative Example 22, the sheet resistance value was 14.4Ω / □, the total light transmittance was 82.9%, and the haze ratio was 14.3% after the heat treatment. In Comparative Examples 21 and 22, the sheet resistance and the haze ratio were not improved.

(比較例23、24)
比較例23、24では、実施例17と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例23)、600℃(比較例24)としたこと以外は、実施例21と同様に熱処理を行った。
(Comparative Examples 23 and 24)
In Comparative Examples 23 and 24, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 17 in the vacuum chamber was 200 ° C. (Comparative Example 23) and 600 ° C. (Comparative Example 24). A heat treatment was performed in the same manner as in Example 21 except that.

比較例23では、熱処理後にシート抵抗値が10.7Ω/□、全光透過率が82.8%、ヘイズ率が15.8%となった。比較例23では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 23, the sheet resistance value after heat treatment was 10.7Ω / □, the total light transmittance was 82.8%, and the haze ratio was 15.8%. In Comparative Example 23, the effect of improving sheet resistance and haze ratio was not observed.

比較例24では、熱処理後にシート抵抗値が25.7Ω/□、全光透過率が82.5%、ヘイズ率が21.0%となった。比較例24では、シート抵抗の改善効果が見られなかった。   In Comparative Example 24, the sheet resistance value after heat treatment was 25.7Ω / □, the total light transmittance was 82.5%, and the haze ratio was 21.0%. In Comparative Example 24, the effect of improving sheet resistance was not observed.

Figure 0005594078
Figure 0005594078

(実施例25)
実施例25では、下地膜21を用いず、凹凸膜22として、酸化亜鉛に酸化アルミニウム2.0質量%をドープしたAZO膜を用いた。ソーダライムシリケートガラス基板の温度を300℃に設定し、スパッタパワーDC400W、導入ガスをアルゴンガス100%とし、ガス圧を7Paに調整し、総膜厚が2400nmとなるようにAZO膜を形成した。得られたガラス基板上に製作した表面電極を真空チャンバー内で250℃に加熱しながら、同時に真空度が7×10−3Paになるように1時間保持して熱処理を行った。
(Example 25)
In Example 25, the base film 21 was not used, and the uneven film 22 was an AZO film in which zinc oxide was doped with 2.0% by mass of aluminum oxide. The temperature of the soda lime silicate glass substrate was set to 300 ° C., the sputtering power was DC 400 W, the introduced gas was argon gas 100%, the gas pressure was adjusted to 7 Pa, and an AZO film was formed to a total film thickness of 2400 nm. The surface electrode manufactured on the obtained glass substrate was heated to 250 ° C. in a vacuum chamber, and at the same time, held for 1 hour so that the degree of vacuum was 7 × 10 −3 Pa, and was subjected to heat treatment.

実施例25では、熱処理後に、シート抵抗値が8.8Ω/□、全光透過率が81.3%、ヘイズ率が17.1%となった。実施例25では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 25, after the heat treatment, the sheet resistance value was 8.8Ω / □, the total light transmittance was 81.3%, and the haze ratio was 17.1%. In Example 25, the sheet resistance and the haze ratio were improved, and the total light transmittance was hardly changed before and after the heat treatment.

(実施例26〜28)
実施例26〜28では、実施例25と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例26)、450℃(実施例27)、550℃(実施例28)としたこと以外は、実施例25と同様に熱処理を行った。
(Examples 26 to 28)
In Examples 26 to 28, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 25 in the vacuum chamber was 350 ° C. (Example 26) and 450 ° C. (Example 27). A heat treatment was performed in the same manner as in Example 25 except that the temperature was 550 ° C. (Example 28).

実施例26では、熱処理後にシート抵抗値が8.7Ω/□、全光透過率が81.2%、ヘイズ率が18.0%となった。実施例27では、熱処理後にシート抵抗値が8.5Ω/□、全光透過率が81.1%、ヘイズ率が18.8%となった。実施例28では、熱処理後にシート抵抗値が8.4Ω/□、全光透過率が81.0%、ヘイズ率が19.7%となった。実施例26〜28では、シート抵抗とヘイズ率が改善し、全光透過率は殆ど変化しなかった。   In Example 26, the sheet resistance value after heat treatment was 8.7Ω / □, the total light transmittance was 81.2%, and the haze ratio was 18.0%. In Example 27, the sheet resistance value after thermal treatment was 8.5Ω / □, the total light transmittance was 81.1%, and the haze ratio was 18.8%. In Example 28, the sheet resistance value after heat treatment was 8.4Ω / □, the total light transmittance was 81.0%, and the haze ratio was 19.7%. In Examples 26 to 28, the sheet resistance and the haze ratio were improved, and the total light transmittance was hardly changed.

(実施例29)
実施例29では、実施例25と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−6Paとしたこと以外は、実施例25と同様にして、熱処理を行った。
(Example 29)
In Example 29, except that the degree of vacuum in the vacuum chamber was set to 1 × 10 −6 Pa when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 25, Similarly, heat treatment was performed.

実施例29では、熱処理後にシート抵抗値が8.1Ω/□、全光透過率が80.9%、ヘイズ率が20.6%となった。実施例29では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 29, the sheet resistance value after heat treatment was 8.1Ω / □, the total light transmittance was 80.9%, and the haze ratio was 20.6%. In Example 29, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例30〜32)
実施例30〜32では、実施例25と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例30)、450℃(実施例31)、550℃(実施例32)としたこと以外は、実施例29と同様に熱処理を行った。
(Examples 30 to 32)
In Examples 30 to 32, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 25 in the vacuum chamber was 350 ° C. (Example 30), 450 ° C. (Example 31). Heat treatment was performed in the same manner as in Example 29 except that the temperature was 550 ° C. (Example 32).

実施例30では、熱処理後にシート抵抗値が7.6Ω/□、全光透過率が80.8%、ヘイズ率が21.6%となった。実施例31では、熱処理後にシート抵抗値が7.3Ω/□、全光透過率が80.7%、ヘイズ率が20.6%となった。実施例32では、熱処理後にシート抵抗値が6.8Ω/□、全光透過率が80.5%、ヘイズ率が23.6%となった。実施例30〜32では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 30, the sheet resistance value after heat treatment was 7.6Ω / □, the total light transmittance was 80.8%, and the haze ratio was 21.6%. In Example 31, the sheet resistance value after heat treatment was 7.3Ω / □, the total light transmittance was 80.7%, and the haze ratio was 20.6%. In Example 32, the sheet resistance value after heat treatment was 6.8Ω / □, the total light transmittance was 80.5%, and the haze ratio was 23.6%. In Examples 30 to 32, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(比較例25)
比較例25では、実施例25と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−2Paとしたこと以外は、実施例25と同様にして、熱処理を行った。
(Comparative Example 25)
In Comparative Example 25, when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 25, except that the degree of vacuum in the vacuum chamber was 1 × 10 −2 Pa, Example 25 and Similarly, heat treatment was performed.

比較例25では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が81.3%、ヘイズ率が14.9%となった。比較例25では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 25, the sheet resistance value after the heat treatment was 10.2 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 14.9%. In Comparative Example 25, the effect of improving sheet resistance and haze ratio was not observed.

(比較例26〜28)
比較例26〜28では、実施例25と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(比較例26)、450℃(比較例27)、550℃(比較例28)としたこと以外は、比較例25と同様に熱処理を行った。
(Comparative Examples 26 to 28)
In Comparative Examples 26 to 28, the temperatures at which the surface electrodes manufactured on the glass substrate in the same procedure as in Example 25 were heat-treated in a vacuum chamber were 350 ° C. (Comparative Example 26) and 450 ° C. (Comparative Example 27). Heat treatment was performed in the same manner as in Comparative Example 25 except that the temperature was 550 ° C. (Comparative Example 28).

比較例26では、熱処理後にシート抵抗値が11.0Ω/□、全光透過率が81.4%、ヘイズ率が15.6%となった。比較例27では、熱処理後にシート抵抗値が10.6Ω/□、全光透過率が81.4%、ヘイズ率が14.9%となった。比較例28では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が81.3%、ヘイズ率が17.1%となった。比較例26〜28では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 26, the sheet resistance value after heat treatment was 11.0Ω / □, the total light transmittance was 81.4%, and the haze ratio was 15.6%. In Comparative Example 27, the sheet resistance value after the heat treatment was 10.6 Ω / □, the total light transmittance was 81.4%, and the haze ratio was 14.9%. In Comparative Example 28, the sheet resistance value after heat treatment was 10.2 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 17.1%. In Comparative Examples 26 to 28, the effect of improving sheet resistance and haze ratio was not observed.

(比較例29、30)
比較例29、30では、実施例25と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例29)、600℃(比較例30)としたこと以外は、実施例25と同様に熱処理を行った。
(Comparative Examples 29 and 30)
In Comparative Examples 29 and 30, the temperature at which the surface electrode manufactured on the glass substrate in the same procedure as in Example 25 was heat-treated in the vacuum chamber was 200 ° C. (Comparative Example 29) and 600 ° C. (Comparative Example 30). A heat treatment was performed in the same manner as in Example 25 except that.

比較例29では、熱処理後にシート抵抗値が12.1Ω/□、全光透過率が81.9%、ヘイズ率が16.2%となった。比較例30では、熱処理後にシート抵抗値が56.8Ω/□、全光透過率が81.8%、ヘイズ率が14.3%となった。比較例29、30では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 29, the sheet resistance value after heat treatment was 12.1Ω / □, the total light transmittance was 81.9%, and the haze ratio was 16.2%. In Comparative Example 30, the sheet resistance value after heat treatment was 56.8Ω / □, the total light transmittance was 81.8%, and the haze ratio was 14.3%. In Comparative Examples 29 and 30, the sheet resistance and the haze ratio were not improved.

(比較例31、32)
比較例31、32では、実施例25と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例31)、600℃(比較例32)としたこと以外は、実施例29と同様に熱処理を行った。
(Comparative Examples 31, 32)
In Comparative Examples 31 and 32, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 25 in the vacuum chamber was 200 ° C. (Comparative Example 31) and 600 ° C. (Comparative Example 32). A heat treatment was performed in the same manner as in Example 29 except that.

比較例31では、熱処理後にシート抵抗値が11.3Ω/□、全光透過率が81.5%、ヘイズ率が16.1%となった。比較例31では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 31, the sheet resistance value after heat treatment was 11.3Ω / □, the total light transmittance was 81.5%, and the haze ratio was 16.1%. In Comparative Example 31, no effect of improving sheet resistance and haze ratio was observed.

比較例32では、熱処理後にシート抵抗値が45.2Ω/□、全光透過率が81.3%、ヘイズ率が21.5%となった。比較例32では、シート抵抗の改善効果が見られなかった。   In Comparative Example 32, the sheet resistance value after heat treatment was 45.2 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 21.5%. In Comparative Example 32, the effect of improving sheet resistance was not observed.

Figure 0005594078
Figure 0005594078

(実施例33)
実施例33では、下地膜21を用いず、凹凸膜22として、酸化亜鉛に酸化ガリウム0.58質量%、酸化アルミニウム0.32質量%をドープしたGAZO膜を用いた。ソーダライムシリケートガラス基板の温度を300℃に設定し、スパッタパワーDC400W、導入ガスをアルゴンガス100%とし、ガス圧を7Paに調整し、総膜厚が2100nmとなるようにAZO膜を形成した。得られた表面電極を真空チャンバー内で250℃に加熱しながら、同時に真空度が7×10−3Paになるように1時間保持して熱処理を行った。
(Example 33)
In Example 33, the underlying film 21 was not used, and a GAZO film in which zinc oxide was doped with 0.58 mass% gallium oxide and 0.32 mass% aluminum oxide was used as the uneven film 22. The temperature of the soda lime silicate glass substrate was set to 300 ° C., the sputtering power was DC 400 W, the introduced gas was argon gas 100%, the gas pressure was adjusted to 7 Pa, and an AZO film was formed to a total film thickness of 2100 nm. The obtained surface electrode was heated to 250 ° C. in a vacuum chamber, and at the same time, kept for 1 hour so that the degree of vacuum was 7 × 10 −3 Pa.

実施例33では、熱処理後に、シート抵抗値が8.7Ω/□、全光透過率が81.3%、ヘイズ率が16.8%となった。実施例33では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 33, the sheet resistance value was 8.7 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 16.8% after the heat treatment. In Example 33, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例34〜36)
実施例34〜36では、実施例33と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例34)、450℃(実施例35)、550℃(実施例36)としたこと以外は、実施例33と同様に熱処理を行った。
(Examples 34 to 36)
In Examples 34 to 36, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 33 in the vacuum chamber was 350 ° C. (Example 34), 450 ° C. (Example 35). A heat treatment was performed in the same manner as in Example 33 except that the temperature was 550 ° C. (Example 36).

実施例34では、熱処理後にシート抵抗値が8.7Ω/□、全光透過率が81.1%、ヘイズ率が17.6%となった。実施例35では、熱処理後にシート抵抗値が8.5Ω/□、全光透過率が81.1%、ヘイズ率が18.5%となった。実施例36では、熱処理後にシート抵抗値が8.4Ω/□、全光透過率が81.0%、ヘイズ率が19.3%となった。実施例34〜36では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 34, the sheet resistance value after heat treatment was 8.7Ω / □, the total light transmittance was 81.1%, and the haze ratio was 17.6%. In Example 35, the sheet resistance value after thermal treatment was 8.5Ω / □, the total light transmittance was 81.1%, and the haze ratio was 18.5%. In Example 36, the sheet resistance value after heat treatment was 8.4Ω / □, the total light transmittance was 81.0%, and the haze ratio was 19.3%. In Examples 34 to 36, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例37)
実施例37では、実施例33と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−6Paとしたこと以外は、実施例33と同様にして、熱処理を行った。
(Example 37)
In Example 37, except that the degree of vacuum in the vacuum chamber was set to 1 × 10 −6 Pa when heat treating the surface electrode manufactured on the glass substrate in the same procedure as Example 33, Similarly, heat treatment was performed.

実施例37では、熱処理後にシート抵抗値が8.2Ω/□、全光透過率が81.0%、ヘイズ率が20.1%となった。実施例37では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 37, the sheet resistance value after thermal treatment was 8.2Ω / □, the total light transmittance was 81.0%, and the haze ratio was 20.1%. In Example 37, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例38〜40)
実施例38〜40では、実施例33と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例38)、450℃(実施例39)、550℃(実施例40)としたこと以外は、実施例37と同様に熱処理を行った。
(Examples 38 to 40)
In Examples 38-40, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 33 in a vacuum chamber is 350 degreeC (Example 38), 450 degreeC (Example 39). Heat treatment was performed in the same manner as in Example 37 except that the temperature was 550 ° C. (Example 40).

実施例38では、熱処理後にシート抵抗値が7.8Ω/□、全光透過率が80.9%、ヘイズ率が21.2%となった。実施例39では、熱処理後にシート抵抗値が7.2Ω/□、全光透過率が80.7%、ヘイズ率が20.1%となった。実施例40では、熱処理後にシート抵抗値が6.8Ω/□、全光透過率が80.6%、ヘイズ率が23.2%となった。実施例38〜40では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後殆ど変化しなかった。   In Example 38, the sheet resistance value after heat treatment was 7.8Ω / □, the total light transmittance was 80.9%, and the haze ratio was 21.2%. In Example 39, the sheet resistance value after heat treatment was 7.2Ω / □, the total light transmittance was 80.7%, and the haze ratio was 20.1%. In Example 40, the sheet resistance value after heat treatment was 6.8Ω / □, the total light transmittance was 80.6%, and the haze ratio was 23.2%. In Examples 38 to 40, the sheet resistance and the haze ratio were improved, and the total light transmittance was hardly changed before and after the heat treatment.

(比較例33)
比較例33では、実施例33と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−2Paとしたこと以外は、実施例33と同様にして、熱処理を行った。
(Comparative Example 33)
In Comparative Example 33, when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 33, the degree of vacuum in the vacuum chamber was set to 1 × 10 −2 Pa. Similarly, heat treatment was performed.

比較例33では、熱処理後にシート抵抗値が10.6Ω/□、全光透過率が81.4%、ヘイズ率が14.6%となった。比較例33では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 33, the sheet resistance value after heat treatment was 10.6 Ω / □, the total light transmittance was 81.4%, and the haze ratio was 14.6%. In Comparative Example 33, the effect of improving sheet resistance and haze ratio was not observed.

(比較例34〜36)
比較例34〜36では、実施例33と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(比較例34)、450℃(比較例35)、550℃(比較例36)としたこと以外は、比較例33と同様に熱処理を行った。
(Comparative Examples 34 to 36)
In Comparative Examples 34 to 36, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 33 in the vacuum chamber was 350 ° C. (Comparative Example 34) and 450 ° C. (Comparative Example 35). Heat treatment was performed in the same manner as Comparative Example 33 except that the temperature was 550 ° C. (Comparative Example 36).

比較例34では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が81.3%、ヘイズ率が15.3%となった。比較例35では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が81.3%、ヘイズ率が14.6%となった。比較例36では、熱処理後にシート抵抗値が10.6Ω/□、全光透過率が81.4%、ヘイズ率が16.8%となった。比較例34〜36では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 34, the sheet resistance value after the heat treatment was 10.2 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 15.3%. In Comparative Example 35, the sheet resistance value after the heat treatment was 10.2 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 14.6%. In Comparative Example 36, the sheet resistance value after heat treatment was 10.6 Ω / □, the total light transmittance was 81.4%, and the haze ratio was 16.8%. In Comparative Examples 34 to 36, the sheet resistance and the haze ratio were not improved.

(比較例37、38)
比較例37、38では、実施例33と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例37)、600℃(比較例38)としたこと以外は、実施例33と同様に熱処理を行った。
(Comparative Examples 37 and 38)
In Comparative Examples 37 and 38, the temperature at the time of heat-treating the surface electrode produced on the glass substrate in the same procedure as in Example 33 in the vacuum chamber was 200 ° C. (Comparative Example 37) and 600 ° C. (Comparative Example 38). A heat treatment was performed in the same manner as in Example 33 except that.

比較例37では、熱処理後にシート抵抗値が12.1Ω/□、全光透過率が81.9%、ヘイズ率が16.2%となった。比較例38では、熱処理後にシート抵抗値が22.3Ω/□、全光透過率が81.7%、ヘイズ率が14.3%となった。比較例37、38では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 37, the sheet resistance value after heat treatment was 12.1Ω / □, the total light transmittance was 81.9%, and the haze ratio was 16.2%. In Comparative Example 38, the sheet resistance value after heat treatment was 22.3Ω / □, the total light transmittance was 81.7%, and the haze ratio was 14.3%. In Comparative Examples 37 and 38, the effect of improving sheet resistance and haze ratio was not observed.

(比較例39、40)
比較例39、40では、実施例33と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例39)、600℃(比較例40)としたこと以外は、実施例37と同様に熱処理を行った。
(Comparative Examples 39 and 40)
In Comparative Examples 39 and 40, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 33 in the vacuum chamber was 200 ° C. (Comparative Example 39) and 600 ° C. (Comparative Example 40). Except for the above, heat treatment was performed in the same manner as in Example 37.

比較例39では、熱処理後にシート抵抗値が11.8Ω/□、全光透過率が81.6%、ヘイズ率が15.8%となった。比較例39では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 39, the sheet resistance value after heat treatment was 11.8Ω / □, the total light transmittance was 81.6%, and the haze ratio was 15.8%. In Comparative Example 39, the effect of improving sheet resistance and haze ratio was not observed.

比較例40では、熱処理後にシート抵抗値が15.3Ω/□、全光透過率が81.3%、ヘイズ率が21.0%となった。比較例40では、シート抵抗の改善効果が見られなかった。   In Comparative Example 40, the sheet resistance value after thermal treatment was 15.3Ω / □, the total light transmittance was 81.3%, and the haze ratio was 21.0%. In Comparative Example 40, the effect of improving the sheet resistance was not observed.

Figure 0005594078
Figure 0005594078

(実施例41)
実施例41では、下地膜21を用いず、凹凸膜22として、酸化亜鉛に酸化ガリウム3.4質量%をドープしたGZO膜を用いた。ソーダライムシリケートガラス基板の温度を300℃に設定し、スパッタパワーDC400W、導入ガスをアルゴンガス100%とし、ガス圧を7Paに調整し、総膜厚が2200nmとなるようにAZO膜を形成した。得られた表面電極を真空チャンバー内で250℃に加熱しながら、同時に真空度が7×10−3Paになるように1時間保持して熱処理を行った。
(Example 41)
In Example 41, the base film 21 was not used, and the uneven film 22 was a GZO film in which zinc oxide was doped with 3.4% by mass of gallium oxide. The temperature of the soda lime silicate glass substrate was set to 300 ° C., the sputtering power was DC 400 W, the introduced gas was argon gas 100%, the gas pressure was adjusted to 7 Pa, and an AZO film was formed to a total film thickness of 2200 nm. The obtained surface electrode was heated to 250 ° C. in a vacuum chamber, and at the same time, kept for 1 hour so that the degree of vacuum was 7 × 10 −3 Pa.

実施例41では、熱処理後に、シート抵抗値が9.2Ω/□、全光透過率が81.2%、ヘイズ率が17.2%となった。実施例41では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 41, the sheet resistance value was 9.2Ω / □, the total light transmittance was 81.2%, and the haze ratio was 17.2% after the heat treatment. In Example 41, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例42〜44)
実施例42〜44では、実施例41と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例42)、450℃(実施例43)、550℃(実施例44)としたこと以外は、実施例41と同様に熱処理を行った。
(Examples 42 to 44)
In Examples 42 to 44, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 41 in the vacuum chamber was 350 ° C. (Example 42), 450 ° C. (Example 43). A heat treatment was performed in the same manner as in Example 41 except that the temperature was 550 ° C. (Example 44).

実施例42では、熱処理後にシート抵抗値が9.0Ω/□、全光透過率が81.2%、ヘイズ率が18.1%となった。実施例43では、熱処理後にシート抵抗値が8.7Ω/□、全光透過率が81.1%、ヘイズ率が18.9%となった。実施例44では、熱処理後にシート抵抗値が8.4Ω/□、全光透過率が81.0%、ヘイズ率が19.8%となった。実施例42〜44では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 42, the sheet resistance value after thermal treatment was 9.0Ω / □, the total light transmittance was 81.2%, and the haze ratio was 18.1%. In Example 43, the sheet resistance value after heat treatment was 8.7 Ω / □, the total light transmittance was 81.1%, and the haze ratio was 18.9%. In Example 44, the sheet resistance value after heat treatment was 8.4Ω / □, the total light transmittance was 81.0%, and the haze ratio was 19.8%. In Examples 42 to 44, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例45)
実施例45では、実施例41と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内の真空度を1×10−6Paとしたこと以外は、実施例41と同様に熱処理を行った。
(Example 45)
In Example 45, the surface electrode manufactured on the glass substrate in the same procedure as in Example 41 was subjected to heat treatment in the same manner as in Example 41 except that the degree of vacuum in the vacuum chamber was 1 × 10 −6 Pa. went.

実施例45では、熱処理後にシート抵抗値が7.9Ω/□、全光透過率が80.9%、ヘイズ率が20.6%となった。実施例45では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 45, the sheet resistance value after heat treatment was 7.9Ω / □, the total light transmittance was 80.9%, and the haze ratio was 20.6%. In Example 45, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(実施例46〜48)
実施例46〜48では、実施例41と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(実施例46)、450℃(実施例47)、550℃(実施例48)としたこと以外は、実施例45と同様に熱処理を行った。
(Examples 46 to 48)
In Examples 46 to 48, the temperature at the time of heat-treating the surface electrode manufactured on the glass substrate in the same procedure as Example 41 in the vacuum chamber was 350 ° C. (Example 46), 450 ° C. (Example 47). A heat treatment was performed in the same manner as in Example 45 except that the temperature was 550 ° C. (Example 48).

実施例46では、熱処理後にシート抵抗値が7.8Ω/□、全光透過率が80.9%、ヘイズ率が21.7%となった。実施例47では、熱処理後にシート抵抗値が7.1Ω/□、全光透過率が80.7%、ヘイズ率が20.6%となった。実施例48では、熱処理後にシート抵抗値が6.9Ω/□、全光透過率が80.6%、ヘイズ率が23.7%となった。実施例46〜48では、シート抵抗とヘイズ率が改善し、全光透過率が熱処理の前後で殆ど変化しなかった。   In Example 46, the sheet resistance value after heat treatment was 7.8Ω / □, the total light transmittance was 80.9%, and the haze ratio was 21.7%. In Example 47, the sheet resistance value after heat treatment was 7.1 Ω / □, the total light transmittance was 80.7%, and the haze ratio was 20.6%. In Example 48, the sheet resistance value after heat treatment was 6.9Ω / □, the total light transmittance was 80.6%, and the haze ratio was 23.7%. In Examples 46 to 48, the sheet resistance and the haze ratio improved, and the total light transmittance hardly changed before and after the heat treatment.

(比較例41)
比較例41では、実施例41と同様な手順でガラス基板上に製作した表面電極を熱処理する際に、真空チャンバー内の真空度を1×10−2Paとしたこと以外は、実施例41と同様にして、熱処理を行った。
(Comparative Example 41)
In Comparative Example 41, except that the degree of vacuum in the vacuum chamber was set to 1 × 10 −2 Pa when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 41, Similarly, heat treatment was performed.

比較例41では、熱処理後にシート抵抗値が11.0Ω/□、全光透過率が81.4%、ヘイズ率が14.8%となった。比較例41では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 41, the sheet resistance value after heat treatment was 11.0Ω / □, the total light transmittance was 81.4%, and the haze ratio was 14.8%. In Comparative Example 41, the effect of improving sheet resistance and haze ratio was not observed.

(比較例42〜44)
比較例42〜44では、実施例41と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を350℃(比較例42)、450℃(比較例43)、550℃(比較例44)としたこと以外は、比較例41と同様に熱処理を行った。
(Comparative Examples 42-44)
In Comparative Examples 42 to 44, the temperatures at which the surface electrodes manufactured on the glass substrate in the same procedure as in Example 41 were heat-treated in the vacuum chamber were 350 ° C. (Comparative Example 42) and 450 ° C. (Comparative Example 43). Heat treatment was performed in the same manner as in Comparative Example 41 except that the temperature was 550 ° C. (Comparative Example 44).

比較例42では、熱処理後にシート抵抗値が10.3Ω/□、全光透過率が81.2%、ヘイズ率が15.4%となった。比較例43では、熱処理後にシート抵抗値が10.2Ω/□、全光透過率が81.2%、ヘイズ率が14.3%となった。比較例44では、熱処理後にシート抵抗値が10.4Ω/□、全光透過率が81.1%、ヘイズ率が16.9%となった。比較例42〜44では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 42, the sheet resistance value after the heat treatment was 10.3Ω / □, the total light transmittance was 81.2%, and the haze ratio was 15.4%. In Comparative Example 43, the sheet resistance value after the heat treatment was 10.2 Ω / □, the total light transmittance was 81.2%, and the haze ratio was 14.3%. In Comparative Example 44, the sheet resistance value after the heat treatment was 10.4Ω / □, the total light transmittance was 81.1%, and the haze ratio was 16.9%. In Comparative Examples 42 to 44, the sheet resistance and the haze ratio were not improved.

(比較例45、46)
比較例45、46では、実施例41と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例45)、600℃(比較例46)としたこと以外は、実施例41と同様に熱処理を行った。
(Comparative Examples 45 and 46)
In Comparative Examples 45 and 46, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 41 in the vacuum chamber was 200 ° C. (Comparative Example 45) and 600 ° C. (Comparative Example 46). A heat treatment was performed in the same manner as in Example 41 except that.

比較例45では、熱処理後にシート抵抗値が12.1Ω/□、全光透過率が81.9%、ヘイズ率が15.2%となった。比較例46では、熱処理後にシート抵抗値が26.7Ω/□、全光透過率が81.7%、ヘイズ率が14.2%となった。比較例45、46では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 45, the sheet resistance value after the heat treatment was 12.1Ω / □, the total light transmittance was 81.9%, and the haze ratio was 15.2%. In Comparative Example 46, the sheet resistance value after heat treatment was 26.7Ω / □, the total light transmittance was 81.7%, and the haze ratio was 14.2%. In Comparative Examples 45 and 46, the sheet resistance and the haze ratio were not improved.

(比較例47、48)
比較例47、48では、実施例41と同様な手順でガラス基板上に製作した表面電極を、真空チャンバー内で熱処理する際の温度を200℃(比較例47)、600℃(比較例48)としたこと以外は、実施例45と同様に熱処理を行った。
(Comparative Examples 47 and 48)
In Comparative Examples 47 and 48, the temperature when heat treating the surface electrode manufactured on the glass substrate in the same procedure as in Example 41 in the vacuum chamber was 200 ° C. (Comparative Example 47) and 600 ° C. (Comparative Example 48). A heat treatment was performed in the same manner as in Example 45 except that.

比較例47では、熱処理後にシート抵抗値が11.8Ω/□、全光透過率が81.5%、ヘイズ率が15.9%となった。比較例47では、シート抵抗とヘイズ率の改善効果が見られなかった。   In Comparative Example 47, the sheet resistance value after heat treatment was 11.8Ω / □, the total light transmittance was 81.5%, and the haze ratio was 15.9%. In Comparative Example 47, the effect of improving sheet resistance and haze ratio was not observed.

比較例48では、熱処理後にシート抵抗値が16.3Ω/□、全光透過率が81.3%、ヘイズ率が21.2%となった。比較例48では、シート抵抗の改善効果が見られなかった。   In Comparative Example 48, the sheet resistance value after heat treatment was 16.3 Ω / □, the total light transmittance was 81.3%, and the haze ratio was 21.2%. In Comparative Example 48, the effect of improving sheet resistance was not observed.

Figure 0005594078
Figure 0005594078

表1〜6に示すように、実施例1〜48では、表面電極付透明導電基板を7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施すことにより、シート抵抗とヘイズ率とを改善することができた。また、実施例1〜48では、熱処理の前後で1.25倍以上ヘイズ率を向上させることができた。さらに、実施例1〜48で得られた表面電極(透明導電膜)の透明度については、若干低下傾向にあるが、実用上問題のない範囲であることが確認された。 As shown in Tables 1 to 6, in Examples 1 to 48, the transparent conductive substrate with a surface electrode was subjected to heat treatment at 250 to 550 ° C. at a vacuum degree of 7 × 10 −3 to 1 × 10 −6 Pa. The sheet resistance and haze ratio could be improved. Moreover, in Examples 1-48, the haze rate was able to be improved 1.25 times or more before and after heat processing. Further, the transparency of the surface electrodes (transparent conductive film) obtained in Examples 1 to 48 was slightly reduced, but it was confirmed that it was within a range that had no practical problems.

一方、比較例1〜48では、熱処理時の真空度が、7×10−3Pa未満又は1×10−6Paを超えているため、表面抵抗やヘイズ率の改善が見られなかった。また、比較例1〜48では、熱処理温度が、250℃未満又は550℃を超えているため、シート抵抗とヘイズ率とを改善することができなかった。 On the other hand, in Comparative Examples 1 to 48, since the degree of vacuum at the time of heat treatment was less than 7 × 10 −3 Pa or more than 1 × 10 −6 Pa, the surface resistance and the haze ratio were not improved. Moreover, in Comparative Examples 1-48, since the heat processing temperature was less than 250 degreeC or exceeded 550 degreeC, sheet resistance and the haze rate were not able to be improved.

1 透光性ガラス基板、2 表面電極、2a 表面凹凸構造、21 下地膜、22 凹凸膜、3 光電変換半導体層、11 表面電極付透明導電基板、31 p型半導体層、32 i型半導体層、33 n型半導体層、4 裏面電極、41 透明導電性酸化物、42 光反射性金属電極 DESCRIPTION OF SYMBOLS 1 Translucent glass substrate, 2 surface electrode, 2a surface uneven structure, 21 base film, 22 uneven film, 3 photoelectric conversion semiconductor layer, 11 transparent conductive substrate with surface electrode, 31 p-type semiconductor layer, 32 i-type semiconductor layer, 33 n-type semiconductor layer, 4 back electrode, 41 transparent conductive oxide, 42 light reflective metal electrode

Claims (4)

酸化インジウム系の透明導電膜が形成された透明性基板を300℃以上に設定し、ガス圧1〜10Paの環境下で、該透明導電膜上に、スパッタリング法により、表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜を有する表面電極が形成された表面電極付透明導電基板を、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施すことを特徴とする表面電極付透明導電基板の製造方法。 A transparent substrate on which an indium oxide-based transparent conductive film is formed is set to 300 ° C. or higher, and an uneven structure is formed on the surface by sputtering on the transparent conductive film in an environment with a gas pressure of 1 to 10 Pa. A transparent conductive substrate with a surface electrode on which a surface electrode having a zinc oxide-based crystalline transparent conductive film is formed is heat-treated at 250 to 550 ° C. at a vacuum degree of 7 × 10 −3 to 1 × 10 −6 Pa. The manufacturing method of the transparent conductive substrate with a surface electrode characterized by performing. 前記表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜が、Al、Ga、B、In、F、Si、Ge、Ti、Zr、Hfから選ばれる少なくとも1種をドープした酸化亜鉛からなることを特徴とする請求項1記載の表面電極付透明導電基板の製造方法。 The zinc oxide crystalline transparent conductive film having a concavo-convex structure formed on the surface is doped with at least one selected from Al, Ga, B, In, F, Si, Ge, Ti, Zr, and Hf. claim 1 Symbol placement method for producing a transparent conductive substrate with a surface electrode, characterized in that it consists of. 前記酸化インジウム系の透明導電膜が、Ti、Sn、Gaから選ばれる少なくとも1種をドープした酸化インジウムからなることを特徴とする請求項1又は2記載の表面電極付透明導電基板の製造方法。 3. The method for producing a transparent conductive substrate with a surface electrode according to claim 1, wherein the indium oxide-based transparent conductive film is made of indium oxide doped with at least one selected from Ti, Sn, and Ga. 透光性基板上に、表面電極と、光電変換半導体層と、裏面電極とを順に形成する薄膜太陽電池の製造方法において、
酸化インジウム系の透明導電膜が形成された透明性基板を300℃以上に設定し、ガス圧1〜10Paの環境下で、該透明導電膜上に、スパッタリング法により、表面に凹凸構造が形成された酸化亜鉛系の結晶質透明導電膜を有する前記表面電極が形成された表面電極付透明導電基板を、7×10−3〜1×10−6Paの真空度で、250〜550℃で熱処理を施すことを特徴とする薄膜太陽電池の製造方法。
In the method for manufacturing a thin-film solar cell, in which a front electrode, a photoelectric conversion semiconductor layer, and a back electrode are sequentially formed on a translucent substrate
A transparent substrate on which an indium oxide-based transparent conductive film is formed is set to 300 ° C. or higher, and an uneven structure is formed on the surface by sputtering on the transparent conductive film in an environment with a gas pressure of 1 to 10 Pa. A transparent conductive substrate with a surface electrode on which the surface electrode having a zinc oxide-based crystalline transparent conductive film is formed is heat-treated at a vacuum degree of 7 × 10 −3 to 1 × 10 −6 Pa at 250 to 550 ° C. A method for producing a thin-film solar cell, comprising:
JP2010256721A 2010-11-17 2010-11-17 Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell Expired - Fee Related JP5594078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010256721A JP5594078B2 (en) 2010-11-17 2010-11-17 Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010256721A JP5594078B2 (en) 2010-11-17 2010-11-17 Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell

Publications (2)

Publication Number Publication Date
JP2012109380A JP2012109380A (en) 2012-06-07
JP5594078B2 true JP5594078B2 (en) 2014-09-24

Family

ID=46494691

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010256721A Expired - Fee Related JP5594078B2 (en) 2010-11-17 2010-11-17 Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell

Country Status (1)

Country Link
JP (1) JP5594078B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107910094A (en) * 2016-11-15 2018-04-13 汉能联创移动能源投资有限公司 Nesa coating and preparation method, sputtering target and transparent conductive substrate and solar cell
CN111341864A (en) * 2020-04-03 2020-06-26 扬州工业职业技术学院 Thin-film solar cell based on ultrathin germanium quantum dots and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3801342B2 (en) * 1998-02-12 2006-07-26 シャープ株式会社 Solar cell substrate, manufacturing method thereof, and semiconductor element
JP5099739B2 (en) * 2006-10-12 2012-12-19 財団法人高知県産業振興センター Thin film transistor and manufacturing method thereof
JP2011176242A (en) * 2010-02-25 2011-09-08 Mitsubishi Heavy Ind Ltd Thin-film photoelectric conversion device

Also Published As

Publication number Publication date
JP2012109380A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
JP5381912B2 (en) Transparent conductive substrate with surface electrode and method for producing the same, thin film solar cell and method for producing the same
US8415194B2 (en) Rear electrode structure for use in photovoltaic device such as CIGS/CIS photovoltaic device and method of making same
JP5835200B2 (en) Transparent conductive glass substrate with surface electrode and method for producing the same, thin film solar cell and method for producing the same
JP5093503B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JPWO2003036657A1 (en) SUBSTRATE WITH TRANSPARENT CONDUCTIVE OXIDE FILM, PROCESS FOR PRODUCING THE SAME, AND PHOTOELECTRIC CONVERSION ELEMENT
CN101563477A (en) Reactive sputter deposition of a transparent conductive film
JP5423648B2 (en) Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell
TWI568008B (en) Production method of transparent conductive film and method for manufacturing thin film solar cell
JP5165765B2 (en) Manufacturing method of solar cell
US20130133734A1 (en) Photovoltaic cell
JP2008277387A (en) Method of manufacturing photoelectric conversion device
JP2002222972A (en) Laminated solar battery
JP5533448B2 (en) Transparent conductive film laminate and manufacturing method thereof, thin film solar cell and manufacturing method thereof
JP5594078B2 (en) Method for producing transparent conductive substrate with surface electrode and method for producing thin film solar cell
WO2022247570A1 (en) Heterojunction solar cell and preparation method therefor
JP5093502B2 (en) Thin film solar cell and surface electrode for thin film solar cell
JP5056651B2 (en) Thin film solar cell and surface electrode for thin film solar cell
EP2752883B1 (en) Thin film solar cell module and its production process
KR20120021849A (en) Method for preparing of azo thin film using electron-beam
JP2002222969A (en) Laminated solar battery
JP2010103347A (en) Thin film photoelectric converter
JP2011198964A (en) Thin-film photoelectric converter and method of manufacturing the same
JP2012244029A (en) Thin film solar cell substrate and manufacturing method thereof and thin film solar cell
JP2015201525A (en) Photoelectric conversion device and manufacturing method of the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140721

R150 Certificate of patent or registration of utility model

Ref document number: 5594078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees