JP5593480B2 - Apnea / hypopnea determination device - Google Patents

Apnea / hypopnea determination device Download PDF

Info

Publication number
JP5593480B2
JP5593480B2 JP2010018357A JP2010018357A JP5593480B2 JP 5593480 B2 JP5593480 B2 JP 5593480B2 JP 2010018357 A JP2010018357 A JP 2010018357A JP 2010018357 A JP2010018357 A JP 2010018357A JP 5593480 B2 JP5593480 B2 JP 5593480B2
Authority
JP
Japan
Prior art keywords
signal
apnea
biological
detecting
heartbeat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010018357A
Other languages
Japanese (ja)
Other versions
JP2011156029A (en
Inventor
新 根本
沙世 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SLEEP SYSTEM LABORATORY INC.
Original Assignee
SLEEP SYSTEM LABORATORY INC.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SLEEP SYSTEM LABORATORY INC. filed Critical SLEEP SYSTEM LABORATORY INC.
Priority to JP2010018357A priority Critical patent/JP5593480B2/en
Publication of JP2011156029A publication Critical patent/JP2011156029A/en
Application granted granted Critical
Publication of JP5593480B2 publication Critical patent/JP5593480B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

本発明は、被験者を非接触無拘束で生体信号を検出し、その信号から心拍信号、呼吸信号、体動信号を抽出し、被験者の睡眠状態と無呼吸、低呼吸の判定を行う手法と、その装置に関するものである。   The present invention detects a biological signal in a non-contact unconstrained manner for a subject, extracts a heartbeat signal, a respiratory signal, and a body motion signal from the signal, and determines a sleep state, apnea, and hypopnea of the subject, It relates to the device.

近年、無呼吸症により昼間眠くなる、昼間活力がないなどの症状が数多く報告されている。この中で特に居眠り運転などは社会的な問題を生じ、深刻な事態を引き起こす場合があり、無呼吸症の治療の必要性は高まっている。   In recent years, many symptoms such as sleepiness during the day due to apnea and lack of vitality during the day have been reported. Among them, snoozing driving causes social problems and may cause serious situations, and the need for treatment of apnea is increasing.

我が国の10歳以上の人口のうち、不眠症もしくは不眠傾向のある者は約2220万人と推定されており、このうち病院で治療が必要な不眠症患者は222万人に上る。さらに無呼吸症患者は約15万人いると推定されている。 It is estimated that there are about 22.2 million people in Japan who are over 10 years old who have insomnia or insomnia. Of these, 2.22 million patients need in-hospital treatment. In addition, there are an estimated 150,000 patients with apnea.

無呼吸症とは、7時間の睡眠中に10秒以上の無呼吸状態が30回以上起こる、もしくは睡眠1時間あたりに無呼吸状態や低呼吸状態が5回以上起こるものとして定義されている。   Apnea is defined as 30 or more apneas of 10 seconds or more during 7 hours of sleep, or 5 or more apneas or hypopneas per hour of sleep.

呼吸がなくなる原因には2種類あり、中枢神経の異常と気道が舌で閉塞される2種類である。無呼吸症の原因の大部分は、深い睡眠状態に移行するときに、気道が舌で閉塞されてしまうためである。これにより深い睡眠に入れず十分な睡眠が取れなくなってしまい、日中も眠さを感じる症状が起こる。 There are two types of respiratory loss, central nervous system abnormalities and airway obstruction with the tongue. Most of the causes of apnea are because the airways are blocked by the tongue when transitioning to a deep sleep state. This makes it difficult to get enough sleep without going into deep sleep, causing symptoms that make you feel sleepy during the day.

睡眠判定をするのには、通常脳波測定であるポリソノグラフ(PSG法)と鼻出口に流速測定装置を取り付けて呼吸測定をする方法が一般的にとられるが、この方法は被験者の負担が大きく、通常の睡眠状態とは異なってしまう可能性があることが指摘されている。PSG法以外では、血液中の酸素濃度を測定し、血中酸素量の変化で無呼吸を測定する方法や、胸やおなかの動きなどを記録する装置も考案されているが、いずれも被験者を拘束するため、被験者の負担が大きい。また以上の方法はすべて、被験者が大きく動いたり、装置が外れてしまったりすると計測が行えないという問題がある。   To determine sleep, a polysonograph (PSG method), which is usually an electroencephalogram measurement, and a method of measuring breathing by attaching a flow velocity measurement device to the nasal outlet are generally taken, but this method has a large burden on the subject, It has been pointed out that it may be different from the normal sleep state. Other than the PSG method, a method for measuring oxygen concentration in the blood and measuring apnea based on changes in the amount of oxygen in the blood and a device for recording chest and tummy movements have been devised. Because it is restrained, the burden on the subject is large. In addition, all of the above methods have a problem that measurement cannot be performed if the subject moves greatly or the device is disconnected.

睡眠の状態や無呼吸状態の計測を、被験者に負担をかけず長期間にわたって正確に行うことは、無呼吸症の解明や治療をするにあたって非常に重要であり、居眠り運転などの社会問題を解決するのに有効であると考えられている。しかし、被験者に負担をかけず長期間確実に、睡眠の計測および睡眠状態や無呼吸状態を判定する装置はないのが現状である。 Accurate measurement of sleep and apnea conditions over a long period of time without burdening the subject is extremely important in elucidating and treating apnea and solves social problems such as snooze driving It is thought that it is effective to do. However, there is currently no device for measuring sleep and determining a sleep state or apnea state reliably for a long period of time without placing a burden on the subject.

本発明は上記の問題点を鑑み、被験者の睡眠を妨げることなく、睡眠状態の推移と無呼吸の判定を長時間にわたって測定、判定及び記録が可能であり、かつ被験者の睡眠測定を平易に行うことができ、被験者が日常的に使用できる運用費用の無呼吸状態計測装置を提供することを目的とする。特に本発明では、被験者の睡眠時の無呼吸および低呼吸状態を定量的に判定できる装置を提供することを目的とする。 In view of the above problems, the present invention can measure, determine and record the transition of sleep state and apnea over a long period of time without disturbing the sleep of the subject, and easily perform the sleep measurement of the subject. An object of the present invention is to provide an apnea measurement apparatus that can be used daily and can be used by subjects. In particular, an object of the present invention is to provide an apparatus that can quantitatively determine apnea and hypopnea states during sleep of a subject.

上記目的を達成するため、本発明の第1の解決手段の無呼吸・低呼吸判定装置は、無拘束、非接触で生体振動を検出する生体振動検出手段と、前記生体振動検出手段の出力信号から生体信号を検出する生体信号検出手段と、前記生体信号検出手段により得られた生体信号のうち、呼吸信号を検出する呼吸信号検出手段と、前記生体信号検出手段により得られた生体信号のうち、心拍信号を検出する心拍信号検出手段と、前記呼吸信号検出手段により得られた呼吸信号に対して利得制御を行うことによってピーク値を一定に制御して得られる波形を求める呼吸波形演算手段と、前記心拍信号検出手段により得られた心拍信号に対して利得制御を行うことによってピーク値を一定に制御し、そのときの利得の値を用いて心拍信号の強度を演算する心拍信号強度演算手段と、前記心拍信号強度演算手段によって算出された心拍信号の強度の所定時間内の分散値を求める心拍信号強度分散値算出手段と、前記心拍信号強度分散値算出手段で得られた心拍信号強度の分散値から睡眠段階を判定する睡眠段階判定手段と、前記睡眠段階判定手段によって判定された睡眠段階と前記呼吸波形演算手段によって検出された呼吸波形とに基づいて、無呼吸状態及び低呼吸状態を判定する無呼吸・低呼吸判定手段と、前記心拍信号検出手段により得られた心拍信号のうち、前記心拍信号強度演算手段による利得制御を行う時間よりも短時間に心拍信号の強度が変化して飽和状態になる回数が、単位時間あたり所定回数を超えた場合について体動があったと判定することによって体動を検出する体動検出手段と、前記体動検出手段によって体動が検出された場合に前記呼吸波形演算手段による利得制御をロックし、前記体動検出手段によって体動が検出されなくなった場合に前記呼吸波形演算手段による利得制御のロックを解除する制御手段とを備えることを特徴とする。In order to achieve the above object, an apnea / hypopnea determination apparatus according to the first solving means of the present invention includes a biological vibration detection means for detecting biological vibrations without restriction and non-contact, and an output signal of the biological vibration detection means. Among the biological signals obtained by the biological signal detection means for detecting a biological signal from the biological signal obtained by the biological signal detection means for detecting the respiratory signal among the biological signals obtained by the biological signal detection means and the biological signal detection means A heartbeat signal detecting means for detecting a heartbeat signal, and a respiratory waveform calculating means for obtaining a waveform obtained by controlling the peak value constant by performing gain control on the respiratory signal obtained by the respiratory signal detecting means; The peak value is controlled to be constant by performing gain control on the heartbeat signal obtained by the heartbeat signal detection means, and the intensity of the heartbeat signal is calculated using the gain value at that time. Obtained by a beat signal intensity calculating means, a heartbeat signal intensity dispersion value calculating means for obtaining a dispersion value of the heartbeat signal intensity calculated by the heartbeat signal intensity calculating means within a predetermined time, and the heartbeat signal intensity dispersion value calculating means. Based on the sleep stage determination means for determining the sleep stage from the variance value of the heartbeat signal intensity, the sleep stage determined by the sleep stage determination means and the respiratory waveform detected by the respiratory waveform calculation means Among the heartbeat signals obtained by the apnea / hypopnea determination means for determining the hypopnea state and the heartbeat signal detection means, the heartbeat signal is detected in a shorter time than the time for performing gain control by the heartbeat signal intensity calculation means. A body motion detector that detects body motion by determining that body motion has occurred when the number of times the intensity changes and becomes saturated exceeds a predetermined number of times per unit time. And when the body motion is detected by the body motion detector, the gain control by the breathing waveform calculator is locked, and when the body motion is not detected by the body motion detector, the gain by the respiratory waveform calculator is And a control means for releasing the control lock .

上記の解決方法によれば、無拘束の生体信号検出手段から心拍信号を検出し、その信号を演算処理することにより睡眠状態を判定する睡眠状態判定装置であるので、被験者に負担をかけることなく睡眠状態を長期間にわたって計測することが可能である。また、被験者に装置を直接取り付けるということがないため、非計測時と同様の睡眠状態を計測することが可能となる。 According to the above solution, since the sleep state determination device determines the sleep state by detecting the heartbeat signal from the unconstrained biological signal detection means and performing arithmetic processing on the signal, the subject is not burdened. It is possible to measure the sleep state over a long period of time. In addition, since the device is not directly attached to the subject, it is possible to measure a sleep state similar to that at the time of non-measurement.

本発明の第2の解決手段は、第1の解決手段の高精度呼吸測定装置であって、生体の信号を振動として計測し、心拍信号、呼吸信号および体動信号を測定するものである。 The second solving means of the present invention is the high-precision respiratory measurement apparatus of the first solving means, which measures a biological signal as vibration and measures a heartbeat signal, a respiratory signal, and a body motion signal.

本発明第3の解決手段は、第1の解決手段の無呼吸状態の判定法であって、生体信号の心拍信号強度のばらつきが浅い睡眠と判定されるレベルであり、かつ体動信号が見られない時に、呼吸信号波形の面積の絶対値積分値が一定以下でありかつ、変化量を表す短時間の呼吸信号偏差が一定値以下である時に、無呼吸状態を判定するものである。 The third solving means of the present invention is an apnea determination method according to the first solving means, wherein the variation in the heart rate signal intensity of the biological signal is determined to be shallow sleep, and the body motion signal is observed. When the absolute value integrated value of the area of the respiratory signal waveform is not more than a certain value and the short-time breathing signal deviation representing the amount of change is not more than a certain value, the apnea condition is determined.

本発明の第4の解決手段は、第3の解決手段の浅い睡眠判定装置と判定法であって、浅い睡眠判定装置は、微差圧センサと生体信号検出部とからなり、生体信号検出部の内部に収容されている空気の圧力変化を微圧線差でもって検出する事により、生体信号を検出し、信号の整形と増幅により心拍信号を検出する事を特徴としており、非拘束な構成の生体信号検出部であるため、被験者の身体および精神に負担をかけることなく睡眠を測定することが可能である。 The fourth solution of the present invention is the shallow sleep determination device and the determination method of the third solution, and the shallow sleep determination device includes a micro differential pressure sensor and a biological signal detection unit, and a biological signal detection unit It is characterized by detecting a change in the pressure of air contained in the inside with a slight pressure line difference, detecting a biological signal, and detecting a heartbeat signal by shaping and amplifying the signal. Therefore, it is possible to measure sleep without placing a burden on the subject's body and mind.

浅い睡眠判定の判定法は、前記睡眠判定装置より得られた心拍信号を、AGC制御した際の係数の逆数の信号を心拍強度信号とし、この心拍強度信号の60秒間のばらつきを求めたのち300秒間の平均をとり、ばらつきが一定帯域にあるときに浅い睡眠であると判定するものである。 The shallow sleep determination method uses the heart rate signal obtained from the sleep determination device as a heart rate intensity signal, which is the reciprocal of the coefficient when the AGC control is performed. The average of the second is taken, and it is determined that the sleep is shallow when the variation is in a certain band.

本発明の第5の解決手段は、第1の解決手段の無呼吸・低呼吸判定装置と前記判定方法であって、判定装置は前記第4の装置と同様のものを用いて生体信号を検出し、信号の成型と増幅により心拍信号と呼吸信号を検出したのち、心拍信号の急激な変化を用いて体動を判定して呼吸信号のAGC制御のロックと解除を行い、安定した呼吸信号を検出することを特徴としており、非拘束な構成の生体信号検出部であるため、被験者の身体および精神に負担をかけることなく睡眠を測定することが可能である。
無呼吸・低呼吸判定法は、前記無呼吸・低呼吸判定装置より得られた呼吸信号の波形の変動と積分値が一定秒間で一定値以下である時に無呼吸および低呼吸の判定を行うものである。
The fifth solving means of the present invention is the apnea / hypopnea determining device and the determining method of the first solving means, wherein the determining device detects a biological signal using the same device as the fourth device After detecting the heart rate signal and the respiratory signal by shaping and amplifying the signal, the body movement is judged using the sudden change of the heart rate signal, and the AGC control of the respiratory signal is locked and released, and a stable respiratory signal is obtained. Since it is a biological signal detection unit having a non-restraining configuration, it is possible to measure sleep without placing a burden on the body and spirit of the subject.
The apnea / hypopnea determination method determines apnea / hypopnea when the waveform variation and the integrated value of the respiratory signal obtained from the apnea / hypopnea determination device are below a certain value for a certain period of time. It is.

本発明の第6の解決手段は、第1の解決手段の体動検出装置と前記判定方法であって、判定装置は前記第4の装置と同様のものを用い、生体信号を検出し、信号の整形と増幅により心拍信号を検出することを特徴としており、非拘束な構成の生体信号検出部であるため、被験者の身体および精神に負担をかけることなく睡眠を測定することが可能である。 The sixth solving means of the present invention is the body motion detection device and the determination method of the first solving means, wherein the determination device is similar to the fourth device, detects a biological signal, Since the heartbeat signal is detected by shaping and amplifying the signal, and the biological signal detection unit has an unconstrained configuration, it is possible to measure sleep without placing a burden on the body and spirit of the subject.

体動判定法は、前記体動検出装置より得られた心拍信号のうち、AGC制御時間より短い時間において急激な信号強度変化により心拍信号強度が飽和状態になる回数が、一秒間あたり5回を超える場合について体動信号であると判定するものである。 In the body motion determination method, the number of times the heart rate signal intensity is saturated due to a sudden change in signal intensity in a time shorter than the AGC control time among the heart rate signals obtained from the body motion detection device is 5 times per second. If it exceeds, it is determined as a body motion signal.

本発明の睡眠状態判定装置は、国際睡眠判定基準の脳波測定によるポリソノグラフ(PSG法)との整合性をすでに確認しており、高精度であることが保証されているものである。 The sleep state determination device of the present invention has been confirmed to be consistent with the polysonograph (PSG method) based on electroencephalogram measurement according to the international sleep determination standard, and is guaranteed to be highly accurate.

前記装置を用い、さらに呼吸を安定して測定するために、体動を早期に検出し、体動がある場合は生体信号のピーク値を一定値に保つためのAGC制御をロックし、体動終了後解除する機能を加え、無呼吸・低呼吸判定装置を発明した。これにより、安定した呼吸測定が可能となる。 In order to measure respiration more stably using the above device, body movement is detected at an early stage, and when there is body movement, AGC control for keeping the peak value of the biological signal at a constant value is locked, Added a function to release after completion, and invented an apnea / hypopnea determination device. Thereby, stable respiration measurement is possible.

前記装置で計測した生体信号を用いて、浅い睡眠であり、体動がなく、呼吸の波形の一定時間の変動および積分値が一定値以下である場合を無呼吸状態および低呼吸状態と判定する。無呼吸は一晩の睡眠中に10秒以上の無呼吸状態が30回以上起こる、もしくは一時間の睡眠中に10秒以上の無呼吸状態もしくはそれに準ずる低呼吸状態が5回以上起こるものとして定義されており、前記装置で計測した生体信号を用いて無呼吸・低呼吸の判定を行い図示することで容易に無呼吸の判定を行うことが可能である。   Using the biological signal measured by the device, it is determined that an apnea state and a hypopnea state are shallow sleep, no body movement, and a fluctuation of a respiration waveform for a certain period of time and an integrated value being a certain value or less. . Apnea is defined as 30 or more apneas of 10 seconds or more during an overnight sleep, or 5 or more apneas or similar hypopneas of 10 seconds or more during an hour of sleep It is possible to determine apnea easily by determining apnea / hypopnea using the biological signal measured by the device and illustrating the result.

前記装置は構成がシンプルであるため、使用環境を選ばないという特徴がある。また、被験者を拘束しないため、被験者の身体および心理的負担が少なく、計測を行うことによって睡眠状態が変化するという問題が起こらない。 Since the apparatus has a simple configuration, it has a feature that the use environment is not selected. Moreover, since the subject is not restrained, the subject's body and psychological burden are small, and the problem that the sleep state changes by performing the measurement does not occur.

図をもって本発明の睡眠状態判定装置について詳細に説明する。なお、本発明は本実施例によって限定されるものではない。 The sleep state determination apparatus of the present invention will be described in detail with reference to the drawings. In addition, this invention is not limited by a present Example.

図1は本発明の睡眠段階判定装置、無呼吸・低呼吸判定装置、体動検出装置の実施例における生体信号検出手段の構成と、その検収信号から睡眠状態を判定する工程を説明する説明図であり、図2は図1に示す生体信号検出手段を矢印方向からみた側面図である。図3は図1に示す生体信号検出手段とは別の生体信号検出手段を示す説明図である。 FIG. 1 is an explanatory diagram for explaining the configuration of a biological signal detection means in the embodiment of the sleep stage determination device, apnea / hypopnea determination device, and body motion detection device of the present invention, and the process of determining the sleep state from the inspection signal FIG. 2 is a side view of the biological signal detection means shown in FIG. 1 as viewed from the direction of the arrow. FIG. 3 is an explanatory view showing another biological signal detection means different from the biological signal detection means shown in FIG.

図1は、本発明の睡眠段階判定装置、無呼吸・低呼吸判定装置及び体動検出装置の生体信号検出手段の構成とその検出手段から睡眠段階を判定する工程を示すブロック図を示しており、図2には図1中の矢印方向から見た一部断面図が示されている。図1に示す生体信号検出手段1は、被験者を拘束することなく被験者の微細な生体信号を検出する検出手段であり、信号増幅整形手段2により、信号をあとの処理工程で処理できるように生体検出手段1で検出された信号を増幅し、不要な信号をバンドパスフィルタなどにより除去する。この装置の詳細と性能は「特許公開2003−126052」および「特許公開2000−271103」で立証されている。 FIG. 1 is a block diagram showing the configuration of the biological signal detection means of the sleep stage determination apparatus, apnea / hypopnea determination apparatus and body movement detection apparatus of the present invention and the process of determining the sleep stage from the detection means 2 is a partial cross-sectional view as seen from the direction of the arrow in FIG. The biological signal detection means 1 shown in FIG. 1 is a detection means for detecting a minute biological signal of the subject without restraining the subject, and the biological amplification is performed so that the signal can be processed in a later processing step by the signal amplification shaping means 2. The signal detected by the detection means 1 is amplified, and unnecessary signals are removed by a band pass filter or the like. Details and performance of this device are demonstrated in “Patent Publication 2003-126052” and “Patent Publication 2000-271103”.

睡眠段階判定は図1の6における手段によって得られる、心拍信号強度の60秒間のばらつきに対し300秒間の移動平均をとったものが3~6%の範囲にあるときに浅い睡眠であると判定する。この判定は国際睡眠判定基準の脳波等測定によるポリソノグラフ(PSG法)における脳波のδ波の状態との整合性をとった値であり信頼性は保証されている。   Sleep stage determination is determined to be shallow sleep when the average of 300 seconds of moving average for 60 seconds of variation in heart rate signal intensity obtained by means of 6 in Fig. 1 is in the range of 3-6% To do. This determination is a value that is consistent with the state of the δ wave of the electroencephalogram in the polysonograph (PSG method) based on the electroencephalogram measurement of the international sleep determination standard, and the reliability is guaranteed.

図3は本発明の体動検出法のブロック図である。体動検出には心拍信号を用い、検出された心拍信号のうち定常状態の心拍信号とは異なる波形を検出することによって判定する。心拍信号は約一秒間以内で一回分であるが、体動が含まれると、信号が非常に短時間で心拍信号とは異なる変動を示す。体動は心拍よりも大きな動きでありかつAGC制御間隔に比べ非常に短い時間で起こるため、心拍信号は飽和して表示される(実施例:図4)。心拍信号が一秒間に5回以上飽和状態に達する時に、これを体動だと判定する。 FIG. 3 is a block diagram of the body motion detection method of the present invention. The body motion is detected by using a heartbeat signal, and the detected heartbeat signal is determined by detecting a waveform different from the steady-state heartbeat signal. Although the heart rate signal is one time within about one second, when the body motion is included, the signal shows a variation different from the heart rate signal in a very short time. Since the body movement is a movement larger than the heartbeat and occurs in a very short time compared to the AGC control interval, the heartbeat signal is displayed saturated (example: FIG. 4). When the heart rate signal reaches saturation more than 5 times per second, it is determined as body movement.

図5は本発明の無呼吸・低呼吸判定法を示したフローチャートである。呼吸信号は心拍に比べ変化が遅いため、AGC制御が20秒に一度行われる。このため、体動が起こり呼吸信号にも影響が及んだ場合、AGC制御によって増幅率が減少してしまう時間が心拍信号に比べ長い。このことから、無呼吸状態でなくても呼吸波形の振幅が極めて小さい状態が続いてしまうことになり、判定が困難であった。 FIG. 5 is a flowchart showing the apnea / hypopnea determination method of the present invention. Since the respiratory signal changes more slowly than the heartbeat, AGC control is performed once every 20 seconds. For this reason, when body movement occurs and the respiratory signal is affected, the time during which the amplification factor is reduced by AGC control is longer than that of the heartbeat signal. For this reason, even if it is not an apnea state, the state where the amplitude of the respiratory waveform is extremely small continues, and the determination is difficult.

呼吸波形の判定の困難さを解決するため、図3の13で条件を満たすと、直ちに呼吸信号のAGC制御をロックし、図3の14で体動信号と判定する。体動信号の検出はAGC制御ロック中も常に行われており、最後の体動信号検出から120秒後にAGC制御が解除されるようにAGC制御の調整を行う。これにより呼吸信号を安定して検出することが可能となる。 In order to solve the difficulty in determining the respiratory waveform, if the condition 13 in FIG. 3 is satisfied, the AGC control of the respiratory signal is immediately locked, and the body movement signal is determined in 14 in FIG. The detection of the body motion signal is always performed even when the AGC control is locked, and the AGC control is adjusted so that the AGC control is canceled 120 seconds after the last body motion signal detection. Thereby, it becomes possible to detect a respiratory signal stably.

この呼吸波形を、8秒間の変動値および18秒間の積分値を演算することにより無呼吸および低呼吸状態の判定条件を算出する。呼吸波形の変動値は8秒間の呼吸波形値の分散(標準偏差等)を演算することにより得る。変動値の算出方法のフローチャートは図7の27に示す。この偏差の値が一定値以下であれば、波形の変動が小さいということができる。波形の変動が小さいということはすなわち、無呼吸および低呼吸状態であることに等しい。一方、正常な呼吸および覚醒に近い状態での呼吸波形の振幅の変動は非常に大きいため、無呼吸および低呼吸状態とそれ以外の状態の区別が可能である。無呼吸および低呼吸はそれぞれ閾値を設けて、無呼吸および低呼吸の範囲に値がある場合に、各状態と判定する。閾値は正常>低呼吸>無呼吸となるように設定する。ただし、呼吸波形の変動値のみでは、無呼吸および低呼吸状態が起こる付近での体動やいびきにより呼吸波形にも影響が出てくるため、無呼吸および低呼吸状態の正しい判定はできない。 By calculating the fluctuation value for 8 seconds and the integral value for 18 seconds, the determination condition for apnea and hypopnea state is calculated. The fluctuation value of the respiratory waveform is obtained by calculating the variance (standard deviation, etc.) of the respiratory waveform value for 8 seconds. A flowchart of the calculation method of the fluctuation value is shown in 27 of FIG. If the value of this deviation is below a certain value, it can be said that the fluctuation of the waveform is small. Small fluctuations in the waveform are equivalent to apnea and hypopnea conditions. On the other hand, since the fluctuation of the amplitude of the respiratory waveform in a state close to normal breathing and awakening is very large, it is possible to distinguish apnea and hypopnea states from other states. Apnea and hypopnea are each set as a threshold value, and each state is determined when there is a value in the apnea and hypopnea ranges. The threshold is set so that normal> hypopnea> apnea. However, only the fluctuation value of the respiratory waveform affects the respiratory waveform due to body movement and snoring in the vicinity where the apnea and the hypopnea state occur, and therefore the apnea and the hypopnea state cannot be correctly determined.

無呼吸および低呼吸状態の正しい判定を行うために、呼吸波形を18秒間絶対積分演算することにより無呼吸および低呼吸状態の判定条件を算出する。積分値の算出方法のフローチャートは図7の28に示す。呼吸波形値のサンプリングは20msecであるので、18秒間分の値の絶対値の総和をとることで積分値とする。無呼吸状態での積分値は変動が少ないため、一定値以下となる。低呼吸状態での積分値は、無呼吸状態の積分値以上であり、かつ一定値以下である。無呼吸および低呼吸はそれぞれ閾値を設けて、無呼吸および低呼吸の範囲に値がある場合に、各状態と判定する。閾値は正常>低呼吸>無呼吸となるように設定する。積分値は体動やいびきなどによる影響を受けにくいが、測定値にオフセットがかかっている場合は値が大きくなる場合があり、積分値だけで正しい判定ができない場合がある。このことを考慮して、変動値と積分値の両方ANDを条件とすることでより正確な判定をすることができるようにする。 In order to make a correct determination of apnea and hypopnea, the determination condition of apnea and hypopnea is calculated by performing an absolute integration operation on the respiratory waveform for 18 seconds. The flowchart of the method for calculating the integral value is shown in 28 of FIG. Since the sampling of the respiration waveform value is 20 msec, the integrated value is obtained by taking the sum of the absolute values of the values for 18 seconds. The integrated value in the apnea state is less than a certain value because there is little fluctuation. The integral value in the hypopnea state is not less than the integral value in the apnea state and not more than a certain value. Apnea and hypopnea are each set as a threshold value, and each state is determined when there is a value in the apnea and hypopnea ranges. The threshold is set so that normal> hypopnea> apnea. The integral value is not easily affected by body movement or snoring, but if the measured value is offset, the value may become large, and correct determination may not be possible only with the integral value. Considering this, it is possible to make a more accurate determination by using both the variation value and the integral value as conditions.

演算により得られた、体動信号、睡眠状態、呼吸波形の変動及び積分値のすべての条件を用いて判定を行う。まず、体動信号を検出し、体動のない区間のみで判定を行う(図7の29)。次に図7の30で示すように、睡眠状態を判定する心拍強度偏差が浅い睡眠であることを示す3%〜6%である場合においてのみ判定を行う。最後に、図7の31、32で示すように呼吸波形の変動値および積分値の値によって、無呼吸状態、低呼吸状態、正常状態の三つを判別する。 The determination is made using all the conditions of the body motion signal, sleep state, respiratory waveform fluctuation and integral value obtained by the calculation. First, a body motion signal is detected, and a determination is made only in a section where there is no body motion (29 in FIG. 7). Next, as indicated by 30 in FIG. 7, the determination is made only when the heartbeat intensity deviation for determining the sleep state is 3% to 6% indicating shallow sleep. Finally, as shown by 31 and 32 in FIG. 7, three types of an apnea state, a hypopnea state, and a normal state are discriminated based on the fluctuation value and the integral value of the respiratory waveform.

図5は本発明の装置の実施例における各生体信号と無呼吸・低呼吸判定結果および判定に用いる条件である呼吸変動、心拍偏差、呼吸区間積分を、無呼吸状態を判定した場合の例を示した時系列データである。図6は前記のデータの、無呼吸状態でない場合の例を示した時系列データである。 FIG. 5 shows an example in which the apnea state is determined based on each biological signal, apnea / hypopnea determination result, and breathing fluctuation, heart rate deviation, and breathing interval integration which are the conditions used for the determination in the embodiment of the apparatus of the present invention. It is the time series data shown. FIG. 6 is time-series data showing an example of the above data when not in an apnea state.

図5は本発明の装置の実施例における各生体信号と無呼吸・低呼吸判定結果および判定に用いる条件である呼吸変動、心拍偏差、呼吸区間積分を、無呼吸状態と判定した場合の例を示した時系列グラフである。図5の18にあらわされるように呼吸変動が一定値以下であり、図5の19にあらわされるように、心拍偏差が浅い睡眠状態と判定される値を満たしており、呼吸区間積分が一定値以下の場合に判定(図5の20)が無呼吸状態であると判定をしている(図5の17)。また、体動が検出されている場合(図5の16)は判定がされていない。無呼吸状態は40秒ほど断続的に続いており、無呼吸状態が一定時間続くと、体動が起きている。しかし睡眠の状態は浅い睡眠状態を継続しており、この結果は不眠症によって深い睡眠に移行できず浅い睡眠が続き、よく眠れていないという感覚を抱くという現象によく一致している。また、無呼吸状態が終わるときには、比較的小さく短時間の体動が起きることが観察できるが、これも大きく息をついたり、寝苦しさで体を動かしたりなどの現象と一致し、この結果の正しさを示している。 FIG. 5 shows an example in which each biological signal, apnea / hypopnea determination result, and respiratory fluctuation, heart rate deviation, and respiratory interval integration, which are the conditions used for the determination in the embodiment of the apparatus of the present invention, are determined to be an apnea state. It is the shown time series graph. As shown in 18 of FIG. 5, the respiratory fluctuation is below a certain value, and as shown in 19 of FIG. 5, the heart rate deviation satisfies the value determined to be a shallow sleep state, and the respiratory interval integral is a constant value. In the following cases, the determination (20 in FIG. 5) is determined to be an apnea state (17 in FIG. 5). In addition, when body movement is detected (16 in FIG. 5), the determination is not made. The apnea state continues intermittently for about 40 seconds, and the body movement occurs when the apnea state continues for a certain time. However, the sleep state continues to be a shallow sleep state, and this result is in good agreement with the phenomenon of inability to shift to deep sleep due to insomnia, followed by a shallow sleep and a feeling of not being able to sleep well. In addition, when the apnea is over, it can be observed that body movements occur in a relatively small amount of time, but this also coincides with phenomena such as taking a large breath and moving the body due to sleeplessness. It shows correctness.

図6は本発明実施例における各生体信号と無呼吸・低呼吸判定結果および判定に用いる条件である呼吸変動、心拍偏差、呼吸区間積分を、無呼吸状態でないと判定した場合の例を示した時系列グラフである。心拍偏差(図6の25)が一定値以下となっており深い睡眠状態であると判定される状態であるが、体動信号(図6の22)が検出されておらず、また、心拍・呼吸信号共に安定しており、深い睡眠状態と一致する。この状態に置いて、無呼吸・低呼吸状態であるとの判定は出ていない(図6の23)ことより、本発明により、無呼吸状態、低呼吸状態、正常状態の判定ができていることを示している。 FIG. 6 shows an example in which each biological signal, apnea / hypopnea determination result and respiratory fluctuation, heart rate deviation, and respiratory interval integration, which are the conditions used for the determination in the embodiment of the present invention, are determined not to be in an apnea state. It is a time series graph. Although the heart rate deviation (25 in Fig. 6) is below a certain value and is determined to be in a deep sleep state, no body motion signal (22 in Fig. 6) has been detected, Both respiratory signals are stable, consistent with deep sleep. In this state, since it is not determined that the patient is in an apnea / hypopnea state (23 in FIG. 6), the present invention can determine the apnea state, the hypopnea state, and the normal state. It is shown that.

無呼吸症候群は社会的に大きな問題を引き起こす病気でありながら、その検査方法は被験者に直接センサを取りつけて行う方法しか行われていない。しかし、接触式の検査は被験者の身体および精神に多大な負荷がかかっていた。また、被験者が拘束をされることで通常の睡眠状態を計測できないという問題点や、計測機器が被験者の睡眠中に外れてしまうと計測ができないという問題点もあった。さらに、精密な検査を行う場合複数のセンサを取り付ける必要があり、検査を簡単に日常的に行うことが不可能であった。   Apnea syndrome is a disease that causes major social problems, but the only method of testing is to attach a sensor directly to the subject. However, the contact-type examination put a great burden on the subject's body and spirit. In addition, there is a problem that the normal sleep state cannot be measured because the subject is restrained, and there is a problem that the measurement cannot be performed if the measuring device is disconnected during the sleep of the subject. Furthermore, when performing a precise inspection, it is necessary to attach a plurality of sensors, and it is impossible to carry out the inspection easily and on a daily basis.

本発明ではこれらの問題点を解決するために、無侵襲、無拘束、非接触の計測装置及び判定方法を考案した。この計測法により、被験者への負担が減るばかりでなく、日常的な計測が可能となり、無呼吸症候群の治療や研究が容易になると考えられる。また、計測の際には、布団の下に装置を敷くだけでよいため、非常に簡単に誰でも検査が行え、検査の効率化、コスト削減が可能となる。 In order to solve these problems, the present invention devised a non-invasive, non-constrained, non-contact measuring device and determination method. This measurement method not only reduces the burden on the subject, but also makes it possible to perform daily measurement, and facilitates the treatment and research of apnea syndrome. In addition, since it is only necessary to lay a device under the futon when measuring, anyone can perform inspection very easily, and the inspection efficiency and cost can be reduced.

先行特許調査比較と見解:特許調査Prior Patent Search Comparison and Views: Patent Search

特開2007-283030号公報 睡眠時呼吸状態判定装置JP, 2007-283030, A Sleep breathing state judging device

本発明との違いは、無呼吸状態の判定において、
が呼吸信号の分散の演算により条件を求めているのに対し、本発明の手法では、睡眠の状態及び呼吸の変動と積分値の三つの条件を用いて判定を行っている点にある。三つの条件を用いることで、正確に無呼吸状態の判定が可能となった。また、本発明のおける各種の演算は繁雑な計算を必要とせず、簡単に判定を行うことが可能である。
The difference with the present invention is that in determining the apnea state,
However, in the method of the present invention, the determination is performed using three conditions of sleep state, respiratory fluctuation, and integral value. By using three conditions, the apnea state can be accurately determined. In addition, various operations according to the present invention do not require complicated calculations and can be easily determined.

特開2008-054759号公報 無呼吸検出装置JP 2008-054759 A apnea detection device

本発明との違いは、呼吸信号の検出において、
がひずみゲージ式センサを用いているのに対し、本発明は中空チューブ内部を伝播する生体信号をマイクロフォンで検出するという点にある。また、 では無呼吸の判定を、呼吸による信号の有無のみにより判定しているが、本発明では呼吸の変動及び積分値、さらに睡眠の状態の三つの条件を用いて判定を行っているため、信頼性が高く、低呼吸状態の検出も行うことができるという点で異なっている。
The difference from the present invention is that in the detection of the respiratory signal,
However, the present invention is to detect a biological signal propagating through the hollow tube with a microphone. Also, In the present invention, the determination of apnea is made only by the presence or absence of a signal due to respiration, but in the present invention, the determination is made using the three conditions of fluctuation and integral value of respiration, and sleep state. However, it is different in that a low respiratory state can be detected.

特開2006-320734号公報 睡眠検査装置および睡眠時無呼吸検査装置JP, 2006-320734, A Sleep test device and sleep apnea test device

本発明との違いは、計測手法に関して、
が加速度センサを被験者に取り付けるのに対し、本発明は、被験者を拘束せずに計測を行い、またその計測方法は布団等の下に引いた中空チューブ内部を伝播する生体信号振動をマイクロフォンで検出するという点にある。また、 において無呼吸状態の検出は、呼吸波形の分散を求めることによってのみ行われているが、本発明では、呼吸波形の変動及び分散値と睡眠の状態の三つの条件を用いて判定を行っているため、信頼性が高いという点で異なっている。
The difference between the present invention and the measurement method is that
In contrast to attaching an acceleration sensor to a subject, the present invention measures without restraining the subject, and the measurement method detects a biological signal vibration propagating inside a hollow tube drawn under a futon with a microphone. It is in the point to do. Also, In the present invention, the apnea state is detected only by determining the variance of the respiratory waveform. However, in the present invention, the determination is performed using the three conditions of the fluctuation of the respiratory waveform and the variance value and the sleep state. Therefore, it differs in that it is highly reliable.

本発明の睡眠状態判定装置、体動検出装置および無呼吸・低呼吸判定装置の構成図である。It is a block diagram of the sleep state determination apparatus of this invention, a body movement detection apparatus, and an apnea / hypopnea determination apparatus. 生体検出手段の側方から見た断面図である。It is sectional drawing seen from the side of a biological detection means. 体動検出手段の詳細を示すブロック図である。It is a block diagram which shows the detail of a body movement detection means. 体動検出によりAGC制御をロックした場合における呼吸波形の改善をAGC制御をロックしなかった場合と比較した時系列グラフである。It is a time series graph which compared the improvement of the respiration waveform when AGC control is locked by body motion detection compared with the case where AGC control is not locked. 無呼吸状態の場合の呼吸波形、心拍波形、判定結果、呼吸変動、心拍強度分散および呼吸積分値を時系列データで描画したグラフである。It is the graph which drawn the respiration waveform in the case of an apnea state, a heartbeat waveform, a determination result, a respiration fluctuation | variation, a heartbeat intensity dispersion | distribution, and a respiration integral value by time series data. 正常な状態の場合の呼吸波形、心拍波形、判定結果、呼吸変動、心拍強度分散および呼吸積分値を時系列データで描画したグラフである。6 is a graph in which a respiration waveform, a heartbeat waveform, a determination result, a respiration variation, a heartbeat intensity variance, and a respiration integral value in a normal state are drawn as time series data. 無呼吸判定法のステップを説明するフロー図である。It is a flowchart explaining the step of the apnea determination method.

1.
生体信号検出手段
2.
信号増幅整形手段
3.
信号整形フィルタ
4.
心拍信号検出手段
5.
呼吸信号検出手段
6.
心拍強度信号検出手段
7.
呼吸信号変動演算
8.
呼吸信号積分演算
9.
体動信号検出
10.
睡眠段階判定手段
11.
無呼吸・低呼吸状態判定手段
12.
データ記憶出力手段
13.
体動検出条件
14.
体動検出判定
15.
呼吸波形
16.
体動信号
17.
無呼吸・低呼吸状態判定
18.
呼吸波形変動値
19.
睡眠深度判定値
20.
呼吸波形積分値
21.
呼吸波形
22.
心拍信号
23.
無呼吸・低呼吸状態判定
24.
睡眠深度判定値
25.
呼吸波形積分値
26.
呼吸波形変動演算部
27.
呼吸波形積分値演算部
28.
体動検出判定
29.
睡眠深度判定
30.
呼吸波形変動値による睡眠状態判定
31.
呼吸波形積分値による睡眠状態判定
32.
呼吸波形
33.
心拍波形
34.
体動信号
35.
呼吸波形
36.
体動波形
37.
体動信号
1.
Biological signal detection means
2.
Signal amplification shaping means
3.
Signal shaping filter
Four.
Heart rate signal detection means
Five.
Respiration signal detection means
6.
Heart rate intensity signal detection means
7.
Respiration signal fluctuation calculation
8.
Respiration signal integration calculation
9.
Body motion signal detection
Ten.
Sleep stage determination means
11.
Apnea / hypopnea status determination means
12.
Data storage output means
13.
Body motion detection conditions
14.
Body motion detection judgment
15.
Respiratory waveform
16.
Body motion signal
17.
Apnea / hypopnea status
18.
Respiration waveform fluctuation value
19.
Sleep depth judgment value
20.
Respiratory waveform integral value
twenty one.
Respiratory waveform
twenty two.
Heart rate signal
twenty three.
Apnea / hypopnea status
twenty four.
Sleep depth judgment value
twenty five.
Respiratory waveform integral value
26.
Respiration waveform fluctuation calculator
27.
Respiratory waveform integral value calculator
28.
Body motion detection judgment
29.
Sleep depth judgment
30.
Sleep state judgment by respiratory waveform fluctuation value
31.
Sleep state judgment by respiratory waveform integral value
32.
Respiratory waveform
33.
Heart rate waveform
34.
Body motion signal
35.
Respiratory waveform
36.
Body motion waveform
37.
Body motion signal

Claims (1)

無拘束、非接触生体振動を検出する生体振動検出手段と、
生体振動検出手段の出力信号から生体信号を検出する生体信号検出手段と、
前記生体信号検出手段により得られた生体信号のうち、呼吸信号を検出する呼吸信号検出手段と、
前記生体信号検出手段により得られた生体信号のうち、心拍信号を検出する心拍信号検出手段と、
前記呼吸信号検出手段により得られた呼吸信号に対して利得制御を行うことによってピーク値を一定に制御して得られる波形を求める呼吸波形演算手段と、
前記心拍信号検出手段により得られた心拍信号に対して利得制御を行うことによってピーク値を一定に制御し、そのときの利得の値を用いて心拍信号の強度を演算する心拍信号強度演算手段と、
前記心拍信号強度演算手段によって算出された心拍信号の強度の所定時間内の分散値を求める心拍信号強度分散値算出手段と、
前記心拍信号強度分散値算出手段で得られた心拍信号強度の分散値から睡眠段階を判定する睡眠段階判定手段と、
前記睡眠段階判定手段によって判定された睡眠段階と前記呼吸波形演算手段によって検出された呼吸波形とに基づいて、無呼吸状態及び低呼吸状態を判定する無呼吸・低呼吸判定手段と、
前記心拍信号検出手段により得られた心拍信号のうち、前記心拍信号強度演算手段による利得制御を行う時間よりも短時間に心拍信号の強度が変化して飽和状態になる回数が、単位時間あたり所定回数を超えた場合について体動があったと判定することによって体動を検出する体動検出手段と、
前記体動検出手段によって体動が検出された場合に前記呼吸波形演算手段による利得制御をロックし、前記体動検出手段によって体動が検出されなくなった場合に前記呼吸波形演算手段による利得制御のロックを解除する制御手段とを備えることを特徴とする無呼吸・低呼吸判定装置
And biological vibration detecting means for detecting a biological vibration unrestrained, non-contact,
A biological signal detecting means for detecting a biological signal from the output signal of the previous SL biological vibration detecting means,
Among the biological signals obtained by the biological signal detection means, a respiratory signal detection means for detecting a respiratory signal;
Among the biological signals obtained by the biological signal detection means, a heartbeat signal detection means for detecting a heartbeat signal;
Respiration waveform calculating means for obtaining a waveform obtained by controlling the peak value to be constant by performing gain control on the respiration signal obtained by the respiration signal detecting means;
A heartbeat signal intensity calculating means for controlling the peak value to be constant by performing gain control on the heartbeat signal obtained by the heartbeat signal detecting means, and calculating the intensity of the heartbeat signal using the gain value at that time; ,
A heart rate signal intensity variance value calculating means for obtaining a variance value within a predetermined time of the intensity of the heart rate signal calculated by the heart rate signal intensity calculating means;
A sleep stage determination means for determining a sleep stage from the dispersion value of the heartbeat signal intensity obtained by the heartbeat signal intensity dispersion value calculation means;
Based on the sleep stage determined by the sleep stage determination means and the respiratory waveform detected by the respiratory waveform calculation means, an apnea / hypopnea determination means for determining an apnea state and a hypopnea state;
Of the heartbeat signals obtained by the heartbeat signal detection means, the number of times that the intensity of the heartbeat signal changes and becomes saturated in a shorter time than the time for performing gain control by the heartbeat signal intensity calculation means is predetermined per unit time Body movement detecting means for detecting body movement by determining that there has been body movement when the number of times is exceeded,
When body motion is detected by the body motion detecting means, the gain control by the respiratory waveform calculating means is locked, and when body motion is no longer detected by the body motion detecting means, the gain control by the respiratory waveform calculating means is controlled. An apnea / hypopnea determination apparatus, comprising: a control unit that releases the lock .
JP2010018357A 2010-01-29 2010-01-29 Apnea / hypopnea determination device Expired - Fee Related JP5593480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010018357A JP5593480B2 (en) 2010-01-29 2010-01-29 Apnea / hypopnea determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010018357A JP5593480B2 (en) 2010-01-29 2010-01-29 Apnea / hypopnea determination device

Publications (2)

Publication Number Publication Date
JP2011156029A JP2011156029A (en) 2011-08-18
JP5593480B2 true JP5593480B2 (en) 2014-09-24

Family

ID=44588570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010018357A Expired - Fee Related JP5593480B2 (en) 2010-01-29 2010-01-29 Apnea / hypopnea determination device

Country Status (1)

Country Link
JP (1) JP5593480B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004219B1 (en) * 2018-05-11 2019-07-30 주식회사 라이프시맨틱스 A system of detecting sleep disturbance using a microvibration sensor and a sound sensor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6013002B2 (en) * 2012-03-30 2016-10-25 フクダ電子株式会社 Biological signal display device and control method thereof
JP6589108B2 (en) * 2014-12-19 2019-10-16 株式会社スリープシステム研究所 Apnea and / or hypopnea diagnostic device
JP6586557B2 (en) * 2015-04-20 2019-10-09 株式会社スリープシステム研究所 Sleep stage determination device and sleep stage determination method
WO2018055996A1 (en) * 2016-09-20 2018-03-29 シャープ株式会社 Computer, method for acquiring respiration rate, and information processing system
CN107049283B (en) * 2017-06-02 2020-09-18 南京理工大学 Sleep apnea detection system based on self-adaptive residual comparison algorithm
KR102088392B1 (en) * 2017-12-14 2020-04-28 주식회사 허브테크 System and methodof monitoing sleep apnea using radar
JP7044970B2 (en) * 2018-04-05 2022-03-31 ダイキン工業株式会社 Apnea determination device
CN115040109B (en) * 2022-06-20 2024-03-22 徐州工程学院 Breathing pattern classification method and system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000271103A (en) * 1999-03-24 2000-10-03 Arata Nemoto Apnea detecting apparatus
JP2008080071A (en) * 2006-09-26 2008-04-10 Cb System Kaihatsu:Kk Evaluation device for quality of sleep
JP4925333B2 (en) * 2007-11-13 2012-04-25 パナソニック株式会社 Gain control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102004219B1 (en) * 2018-05-11 2019-07-30 주식회사 라이프시맨틱스 A system of detecting sleep disturbance using a microvibration sensor and a sound sensor

Also Published As

Publication number Publication date
JP2011156029A (en) 2011-08-18

Similar Documents

Publication Publication Date Title
JP5593480B2 (en) Apnea / hypopnea determination device
JP7303854B2 (en) Evaluation device
US7150718B2 (en) Sleep state estimation device and program product for providing a computer with a sleep state estimation function
JP5070701B2 (en) Method and apparatus for analyzing respiratory signal obtained by changing load of test subject applied to bedding
Sabil et al. Comparison of apnea detection using oronasal thermal airflow sensor, nasal pressure transducer, respiratory inductance plethysmography and tracheal sound sensor
Glos et al. Characterization of respiratory events in obstructive sleep apnea using suprasternal pressure monitoring
JP5352814B2 (en) Autonomic nerve component index estimating apparatus and autonomic nerve component index estimating method
JP2006020810A (en) Device and program for estimating state of sleeping
CN103445781A (en) Apparatus for determining respiratory condition
JP6315576B2 (en) Sleep breathing sound analysis apparatus and method
WO2016076253A1 (en) Sleep state determination device, sleep state determination method, and program
JP6589108B2 (en) Apnea and / or hypopnea diagnostic device
JP4859778B2 (en) Measuring device for sleep apnea syndrome
EP3200686B1 (en) Device for assessing respiratory data in a monitored subject
Penzel et al. Physics and applications for tracheal sound recordings in sleep disorders
EP2989979B1 (en) Respiratory waveform recognition method and system
Chung et al. REM sleep estimation only using respiratory dynamics
Koo et al. Validation of a polyvinylidene fluoride impedance sensor for respiratory event classification during polysomnography
JP2008080071A (en) Evaluation device for quality of sleep
JP5652764B2 (en) Sleep state determination device and sleep state determination program
WO2017038966A1 (en) Bio-information output device, bio-information output method and program
JP2019136526A (en) Sleeping state determination device and sleeping state determination method
JP2007151979A (en) Subject's health condition monitoring device
Kagawa et al. Non-contact screening system for sleep apnea-hypopnea syndrome using the time-varying baseline of radar amplitudes
WO2015198494A1 (en) Apnea and/or hypopnea diagnostic device and apnea and/or hypopnea diagnostic method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140617

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140625

R150 Certificate of patent or registration of utility model

Ref document number: 5593480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees