WO2017038966A1 - Bio-information output device, bio-information output method and program - Google Patents

Bio-information output device, bio-information output method and program Download PDF

Info

Publication number
WO2017038966A1
WO2017038966A1 PCT/JP2016/075768 JP2016075768W WO2017038966A1 WO 2017038966 A1 WO2017038966 A1 WO 2017038966A1 JP 2016075768 W JP2016075768 W JP 2016075768W WO 2017038966 A1 WO2017038966 A1 WO 2017038966A1
Authority
WO
WIPO (PCT)
Prior art keywords
reliability
biological information
biological
information
subject
Prior art date
Application number
PCT/JP2016/075768
Other languages
French (fr)
Japanese (ja)
Inventor
貴政 木暮
俊秀 椎野
Original Assignee
パラマウントベッド株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016171167A external-priority patent/JP6697985B2/en
Application filed by パラマウントベッド株式会社 filed Critical パラマウントベッド株式会社
Priority to US15/757,484 priority Critical patent/US11096589B2/en
Publication of WO2017038966A1 publication Critical patent/WO2017038966A1/en
Priority to US17/378,035 priority patent/US20210338087A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/0245Detecting, measuring or recording pulse rate or heart rate by using sensing means generating electric signals, i.e. ECG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/113Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb occurring during breathing

Definitions

  • the present invention relates to a biological information output device and the like.
  • Various devices are known for displaying and recording biological information such as heart rate and respiration rate of a patient who is a subject.
  • a wearable electrocardiograph or a respiratory examination device that is worn on the patient, or a non-wearable device that measures by vibration or the like is known.
  • JP 2011-206285 A Japanese Patent Laid-Open No. 7-284482
  • the calculated biological information (respiration rate, heart rate, etc.) is reliable unless there is excessive noise in the measurement data due to large body movements or wearing off, or when the input signal is extremely small. All are displayed regardless of whether it is high or low. For example, even in the above-described patent document, since the reliability of the calculated biological information is displayed without being judged, it has not been understood how much the displayed biological information can be trusted. Furthermore, there are many devices that continue to display previous values even when excessive noise is mixed.
  • the accuracy of the displayed / recorded data is higher than the display / recording of biological information with low reliability. It is preferable not to record.
  • the present invention aims to output only reliable biological information out of the calculated biological information or perform identification display by reliability, thereby achieving reliability. It is to provide a biological information output device or the like that can be easily determined as high biological information.
  • the biological information output device of the present invention is A biological signal acquisition means for acquiring a biological signal of the subject; Biological information calculation means for calculating biological information from the acquired biological signal; Reliability determination means for determining the reliability of the calculated biological information; Biometric information output means that outputs the biological information when the reliability determination means determines that the reliability is high, and does not output the biological information when it is determined that the reliability is low; It is characterized by providing.
  • the biological information output device of the present invention is A biological signal acquisition means for acquiring a biological signal of the subject; Reliability determination means for determining the reliability of the biological information calculated by the biological information calculation means; Biometric information output means for outputting information related to reliability determined by the reliability determination means in addition to the biometric information as reliability information; It is characterized by providing.
  • the biological information output method of the present invention includes: A biological signal acquisition step of acquiring a biological signal of the subject; A reliability determination step of determining the reliability of the biological information calculated by the biological information calculation means; When it is determined that the reliability is high by the reliability determination step, the biological information is output, and when it is determined that the reliability is low, the biological information output step that does not output the biological information; It is characterized by having.
  • the biological information is calculated from the biological signal of the subject.
  • the reliability of the calculated biological information is determined, and when the reliability determining unit determines that the reliability is high, the biological information is output, but when the reliability is determined to be low, the biological information is output. Will not. Thereby, a user who uses biometric information can use only highly reliable biometric information.
  • reliability information may be output as reliability information added to biological information.
  • the user can use not only highly reliable biometric information but also the user according to the reliability when he / she wants to use it even if the reliability is low.
  • FIG. 1 is a diagram for explaining the overall outline of the biological information output system 1.
  • the biological information output system 1 includes a detection device 3 placed between a floor portion of a bed 10 and a mattress 20, and a processing device 5 for processing a value output from the detection device 3. It is configured with.
  • the detection device 3 and the processing device 5 constitute a biological information output device.
  • the detection device 3 detects body movement (vibration) as a biological signal of the patient P via the mattress 20. To detect. Based on the detected vibration, the biological information of the patient P is calculated. In the present embodiment, the calculated biological information (for example, respiratory rate, heart rate) can be output and displayed as the biological information of the patient P.
  • the detection device 3 may be integrally formed by providing a storage unit, a display unit, and the like.
  • the processing apparatus 5 may be a general-purpose apparatus, the processing apparatus 5 is not limited to an information processing apparatus such as a computer, and may be configured by an apparatus such as a tab red or a smartphone.
  • the target person may be a person who is undergoing medical treatment or needs care. Moreover, even if it is a healthy person who does not require care, it may be an elderly person, a child, a disabled person, a person, and an animal.
  • the detection device 3 is configured in a sheet shape so as to be thin. Thereby, even if it is placed between the bed 10 and the mattress 20, it can be used without making the patient P feel uncomfortable.
  • the detection apparatus 3 should just acquire the patient's P biological signal (a body motion, a respiratory motion, a cardiac motion, etc.).
  • the heart rate and the respiratory rate are acquired and calculated based on the body movement.
  • the detection is performed using an infrared sensor, or the body movement of the patient P is detected using the acquired image or the like.
  • an actuator with a strain gauge may be used.
  • the biological information output system 1 (biological information output device) will be described with reference to FIG.
  • the biological information output system 1 in the present embodiment has a configuration including a detection device 3 and a processing device 5, and each functional unit (processing) can be realized by any means other than the biological signal acquisition unit 200. good.
  • the biological information output system 1 includes a control unit 100, a biological signal acquisition unit 200, a biological information calculation unit 300, an input unit 400, an output unit 450, a storage unit 500, and a patient state acquisition unit 600. It is configured.
  • the control unit 100, the biological signal acquisition unit 200, and the storage unit 500 are provided in the detection device 3, and the control unit 100, the biological information calculation unit 300, the input unit 400, the output unit 450, and the storage
  • the unit 500 is provided in the processing device 5.
  • the patient state acquisition unit 600 may use the biological signal acquisition unit 200 or may be provided separately in the bed 10.
  • the control unit 100 is a functional unit for controlling the operation of the biological information output system 1, and is configured by a control circuit necessary for the biological information output system 1, such as a CPU.
  • the control unit 100 implements various processes by reading and executing various programs stored in the storage unit 500. In the present embodiment, the control unit 100 operates as a whole, but is provided in each of the detection device 3 and the processing device 5.
  • the biological signal acquisition unit 200 is a functional unit for acquiring a biological signal of the patient P.
  • body motion which is a type of biological signal
  • the acquired body motion is output as body motion data.
  • various biological information of the patient P can be calculated.
  • the patient's bed resting state for example, whether or not the patient P is in bed, staying in bed, getting out of bed, sitting on the edge, etc.
  • sleeping state for example, whether or not the patient P is in bed, staying in bed, getting out of bed, sitting on the edge, etc.
  • sleeping state sleep state
  • the biological signal acquisition unit 200 acquires, for example, a patient's vibration (body motion) using a pressure sensor and acquires respiration and heartbeat from the vibration, but the patient's center of gravity position (body motion) using a load sensor. ) May be used to acquire a biological signal, or by providing a microphone, biological information may be acquired based on the sound picked up by the microphone. What is necessary is just to be able to acquire a patient's biological signal using any sensor.
  • the biological signal acquisition unit 200 may be connected to a device such as the detection device 3 or may be configured to receive a biological signal from an external device.
  • the biological information calculation unit 300 is a functional unit for calculating the biological information (respiration rate, heart rate, etc.) of the patient P.
  • a respiratory component / heart rate component may be extracted from the body motion acquired from the biological signal acquisition unit 200, and the respiratory rate and heart rate may be obtained based on the respiratory interval and the heart rate interval.
  • the periodicity of body motion may be analyzed (Fourier transform or the like), and the respiration rate and heart rate may be calculated from the peak frequency.
  • the input unit 400 is a functional unit for a measurer to input various conditions and to input an operation for starting measurement.
  • it is realized by any input means such as a hardware key or a software key.
  • the output unit 450 is a functional unit for outputting biological information such as a sleep state, a heart rate, and a respiratory rate, or notifying abnormality of the biological information.
  • the output unit 450 may be a display device such as a display, or may be a notification device (sound output device) that notifies an alarm or the like. Further, it may be an external storage device that stores data, a transmission device that transmits data through a communication path, or the like. Moreover, the communication apparatus in the case of reporting to another apparatus may be sufficient.
  • the storage unit 500 is a functional unit that stores various data and programs for operating the biological information output system 1.
  • the control unit 100 implements various functions by reading and executing a program stored in the storage unit 500.
  • the storage unit 500 is configured by, for example, a semiconductor memory, a magnetic disk device, or the like.
  • biometric information data 510 is stored in the storage unit 500.
  • the biological information data 510 stores the respiratory rate and heart rate calculated from the acquired biological signal (body motion).
  • the respiratory rate and the heart rate are stored, but either one may be used.
  • Other information for example, change in respiratory amplitude may be used as long as the biological information can be calculated by the biological information calculation unit 300.
  • the patient status acquisition unit 600 is a functional unit for acquiring the patient status.
  • the patient's state (bed bed state, bed leaving / bed in, etc.) is acquired by a load sensor or the like provided on the bed 10.
  • the patient state may be acquired based on the biological signal acquired by the biological signal acquisition unit 200.
  • body movement is acquired.
  • body motion data is acquired as a type of biological signal from the biological signal acquisition unit 200 (step S102).
  • the body motion data can be acquired by detecting vibration, for example.
  • the biological information calculation unit 300 calculates biological information (step S104).
  • the body motion acquired as a biological signal is separated into a respiratory component and a heart rate component, and a heart rate and a respiratory rate are calculated as biological information.
  • various methods are conceivable as methods for calculating the heart rate and the respiration rate. For example, body motion data is filtered to extract a respiration component, and a respiration interval is obtained for each respiration. Then, the respiration rate is calculated based on the respiration interval. Further, the body motion data is filtered, the heartbeat component is extracted, and the heartbeat interval is obtained for each beat. Then, the heart rate is calculated based on the heart rate interval.
  • It may be calculated by analyzing the periodicity of body motion data and obtaining the respiration rate and heart rate from the peak frequency.
  • a value calculated based on body motion data every 5 seconds is used. Specifically, it is calculated every 5 seconds based on the heart rate and respiratory rate calculated during a predetermined time. In this embodiment, the heart rate and the respiration rate are calculated, but any one value may be calculated.
  • a reliability judgment process for judging the reliability of the calculated heart rate and respiratory rate is executed (step S106).
  • various methods can be considered as a method for calculating the reliability. In the present embodiment, for example, any one of the following methods is used.
  • Reliability evaluation is performed based on calculation conditions when calculating biological information.
  • the patient state acquisition unit 600 determines that the reliability is low, for example, when the patient is not in the bedded state, that is, when the patient is getting out of bed or when the patient is in the sitting position.
  • the external device is connected externally to a device such as a bed slip prevention air mat, it is determined that the reliability is low when the external device generates vibration. That is, the state determination means for determining the patient's state is used to perform the reliability evaluation.
  • Reliability evaluation in biological information calculation process Reliability is evaluated in the process of calculating biological information. For example, it is evaluated that the reliability is low when there are large variations in breath / inspiration and pulsation intervals (standard deviation, coefficient of variation, etc.). In addition, reliability is evaluated based on the magnitude and variation of the amplitude of the filtered waveform. That is, when there is variation in amplitude, it is evaluated that the reliability is low.
  • the heartbeat (breathing) intervals are usually almost equal within a short time. Therefore, when the variation in the heartbeat (respiration) interval is large, it is determined that there is no detection or erroneous detection, and it is evaluated that the reliability is low.
  • the reliability is evaluated based on the difference between the values calculated from the plurality of sensors. That is, it is evaluated that the reliability of the plurality of sensors is low when the difference is large.
  • the reliability should be evaluated based on the degree of protrusion of the peak of the frequency spectrum and the variation in the detection values of the values of multiple sensors. Is also possible.
  • the reliability when the average value of the past several times (for example, the calculated biometric information 5 times) is calculated and the value is far from the average value or the slope (differential value) is steep, the reliability is low. You may judge. Further, the reliability may be output in stages. For example, if the reliability is considerably low when the biometric information calculated last time is 2 times or more (or less than 1/2), 1.5 times or more and less than 2 times (or 1/2 or more and 3 minutes) Less than 2), it may be determined that the reliability is slightly low.
  • the calculated heart rate and respiratory rate exceed a predetermined threshold or less than the threshold, it is determined that the reliability is low. For example, when the respiratory rate is 0 or 1, or when the heart rate exceeds 200, it is determined that the reliability is low.
  • the threshold may be set by the measurer, or may be set according to the patient's age and health condition.
  • Step S108 when it is determined that the reliability is low, the heart rate and the respiratory rate, which are biological information, are not output (Step S108; No ⁇ Step S102). On the other hand, if it is determined that the reliability is high, the heart rate and the respiratory rate are output (step S108; Yes ⁇ step S110).
  • a destination which outputs a heart rate and a respiration rate you may display on the screen display which is an example of the output part 450, for example, and it is good also as displaying on another terminal (for example, a tablet, a smart phone, etc.). Further, it may be transmitted to a server or a management device, or may be recorded on a recording medium. That is, the heart rate and the respiratory rate are output to any device, recording medium, and transmission destination.
  • step S112 it is determined whether or not the output heart rate and respiratory rate are abnormal (step S112). If it is determined that there is an abnormality, the abnormality is notified (step S112; Yes ⁇ step S114).
  • abnormal refers to a state in which a staff member such as a medical worker or a care worker is notified, for example, when the heart rate is higher than a predetermined threshold, when the respiratory rate is lower than a predetermined threshold, A case where the calculation frequency of the low reliability value in the section is high.
  • FIG. 4 is an example of a screen example when the output unit 450 performs screen display in the above-described embodiment.
  • the patient name for example, “Taro Yamada”
  • the heart rate for example, “75”
  • the respiratory rate for example, “22”
  • the patient state for example, “Sleep Display”
  • the heart rate is not displayed as shown in FIG.
  • the display is “ ⁇ ”, the staff or the like can confirm that the measurement is abnormal and the measurement is not performed correctly.
  • the heart rate was measured for 20 subjects.
  • the measurement condition is that the average measurement time per person is 2 hours and 16 minutes, and the total measurement time is 45 hours and 27 minutes.
  • a heart rate measuring device a non-wearable type of vibration, Paramount Bed Co., Ltd. sleep SCAN (registered trademark) capable of detecting a heartbeat, and an electrocardiograph (ECG) that measures by attaching electrodes to the body. ) was used.
  • the matching rate between the wearing type and the non-wearing type was 98.9%.
  • the measurement rate was 86.0% (39 hours 6 minutes).
  • the matching rate between the wearing type and the non-wearing type was 99.3%.
  • the measurement rate was 84.9% (38 hours 36 minutes).
  • the displayed data has a high proportion of highly accurate data. Therefore, when a staff member or the like confirms biometric information, a correct value can be confirmed. Further, when the notification process is performed according to the biological information (respiration rate, heart rate, etc.), there is an effect that unnecessary notification operation is not performed by the biological information with low reliability.
  • step S108 even if it is determined in step S108 that there is no reliability, the heart rate and respiration rate are output (step S108 ⁇ step S110). That is, when step S108 in FIG. 3 is No, the process returns to step S102, but in the present embodiment, the process proceeds to step S110.
  • reliability information that is information related to the determined reliability is output together with the output data. For example, the user can easily determine the reliability of the biological information by attaching a flag or adding an additional display.
  • the heart rate value is displayed in a “reliable state”.
  • the data is output, but since the low reliability is identified and displayed, the user can appropriately display the patient's The state can be determined.
  • the display may be changed according to the reliability information. For example, it is possible to change the display method such as black when displaying biological information with high reliability, and gray when displaying biological information with low reliability. Further, when there are a plurality of reliability levels, for example, by changing the color density, brightness, and color temperature, it is also possible to provide information related to reliability to the user.
  • step S108 For data with low reliability, it is possible to perform a process such as not performing the notification process or displaying but not recording the data. Specifically, when it is determined in step S108 that there is no reliability (step S108; No), in the present embodiment, the process proceeds to step S110.
  • step S110 the heart rate and the respiration rate are output, but by not executing the processing in steps S112 and S114, it is possible to realize a process in which abnormality notification is not performed.
  • the third embodiment is a process of storing biological information together with a process of determining reliability.
  • the flow of processing in the third embodiment is shown in FIG.
  • the process of FIG. 6 is a replacement of the process of the first embodiment shown in FIG. 3, and the same process is denoted by the same reference numeral and the description thereof is omitted.
  • the biological information (eg, heart rate / respiration rate) calculated in step S104 is stored in the storage unit 500.
  • the calculated biological information is stored regardless of the reliability, but the output biological information is reliable (step S108; Yes ⁇ step S110).
  • the reliability is determined based on the stored biological information.
  • step S202 may be executed after step S106, or may be processed in parallel with step S106.
  • the biological information is stored for use in other processes, and the reliability determination unit determines the reliability based on the biological information calculated in step S104.
  • the detection device 3 in the above-described embodiment may be simply placed on the mattress 20 to detect the body movement of the patient P.
  • a system can be simply realized by using a smartphone or the like. That is, it is sufficient if the reliability of the biological information can be determined based on the finally acquired biological signal and the calculated biological information.
  • the body movement is described as an example of the biological signal.
  • the temperature (measures the temperature of the nasal breath to calculate the respiration rate), the blood flow (measures the pulse by the amount of absorbed light).
  • Other biological signals such as and the like may be used.
  • biosignal / biological information for example, a signal such as an electroencephalogram or perspiration can be used.

Abstract

The present invention is configured to determine the reliability of bio-information calculated for a subject, output the bio-information when the reliability thereof is determined to be high and not to output the bio-information when the reliability thereof is determined to be low. By doing so, only high reliability bio-information among the calculated bio-information is output or an identification display is carried out according to reliability, via which a bio-information output device or the like capable of easily judging bio-information with high reliability can be provided.

Description

生体情報出力装置、生体情報出力方法及びプログラムBiological information output device, biological information output method, and program
 本発明は、生体情報出力装置等に関する。 The present invention relates to a biological information output device and the like.
 被測定者である患者の心拍数や呼吸数といった生体情報を表示・記録するために、種々の装置が知られている。例えば、患者自身に装着する装着型の心電計や呼吸検査装置や、振動等により測定する非装着型の装置が知られている。 Various devices are known for displaying and recording biological information such as heart rate and respiration rate of a patient who is a subject. For example, a wearable electrocardiograph or a respiratory examination device that is worn on the patient, or a non-wearable device that measures by vibration or the like is known.
 ここで、測定する生体情報として、より正確なものを表示する為に、例えばある一定区間の測定データから、ある指標を用いてノイズを除去し、除去後に残った測定データからその区間での生体情報の数値を算出するといった発明が知られている(例えば、特許文献1、特許文献2参照)。しかし、このように算出された数値の信頼性は不明であり、信頼性の低いデータも多く含まれている。 Here, in order to display more accurate biological information to be measured, for example, noise is removed from measurement data in a certain section using a certain index, and the living body in that section is measured from the measurement data remaining after the removal. An invention of calculating numerical values of information is known (see, for example, Patent Document 1 and Patent Document 2). However, the reliability of the numerical values calculated in this way is unknown, and many data with low reliability are included.
特開2011-206285号公報JP 2011-206285 A 特開平7-284482号公報Japanese Patent Laid-Open No. 7-284482
 従来、算出された生体情報(呼吸数・心拍数など)については、大きな体動や装着外れにより測定データに過大なノイズが混入した場合や入力信号が極端に小さい場合などを除き、信頼性が高いか低いかに関わらず全て表示されている。例えば、上述した特許文献でも、算出された生体情報の信頼性は判断せずに表示しているため、表示されている生体情報をどの程度信頼して良いか解らなかった。さらに、過大なノイズが混入した場合なども以前の値を引き続き表示し続ける装置も多い。 Conventionally, the calculated biological information (respiration rate, heart rate, etc.) is reliable unless there is excessive noise in the measurement data due to large body movements or wearing off, or when the input signal is extremely small. All are displayed regardless of whether it is high or low. For example, even in the above-described patent document, since the reliability of the calculated biological information is displayed without being judged, it has not been understood how much the displayed biological information can be trusted. Furthermore, there are many devices that continue to display previous values even when excessive noise is mixed.
 医療や介護の現場や医学的研究において、信頼性が低い生体情報が表示・記録されるより、表示・記録されるデータの精度が高いことが要求されており、誤った情報をできる限り表示・記録させないことが好ましい。 In the field of medical and nursing care and medical research, it is required that the accuracy of the displayed / recorded data is higher than the display / recording of biological information with low reliability. It is preferable not to record.
 例えば、病院においては心拍数や呼吸数が異常値となればアラームが通報され、患者のもとに駆けつけなければならない。信頼性の低いデータは異常値となりやすく不必要なアラーム(誤報)により医療スタッフの負担が増大してしまう。特に、非装着型の装置では心電計のような装着型の装置と比較して信頼性の低いデータが多くなる傾向があり、誤報による医療スタッフの負担増大が問題となる。 For example, in a hospital, if the heart rate or respiratory rate becomes an abnormal value, an alarm is reported and the patient must be rushed to. Unreliable data tends to be abnormal values, and an unnecessary alarm (false alarm) increases the burden on the medical staff. In particular, non-wearable devices tend to have more unreliable data than wearable devices such as electrocardiographs, and the burden on medical staff due to false alarms becomes a problem.
 上述した課題に鑑み、本発明が目的とするところは、算出された生体情報のうち、信頼性の高い生体情報のみを出力したり、信頼性によって識別表示を行ったりすることにより、信頼性の高い生体情報と容易に判断することが可能な生体情報出力装置等を提供することである。 In view of the above-described problems, the present invention aims to output only reliable biological information out of the calculated biological information or perform identification display by reliability, thereby achieving reliability. It is to provide a biological information output device or the like that can be easily determined as high biological information.
 上述した課題に鑑み、本発明の生体情報出力装置は、
 対象者の生体信号を取得する生体信号取得手段と、
 前記取得された生体信号から生体情報を算出する生体情報算出手段と、
 前記算出された生体情報の信頼性を判定する信頼性判定手段と、
 前記信頼性判定手段により信頼性が高いと判定された場合は前記生体情報を出力し、信頼性が低いと判定された場合は前記生体情報を出力しない生体情報出力手段と、
 を備えることを特徴とする。
In view of the above-described problems, the biological information output device of the present invention is
A biological signal acquisition means for acquiring a biological signal of the subject;
Biological information calculation means for calculating biological information from the acquired biological signal;
Reliability determination means for determining the reliability of the calculated biological information;
Biometric information output means that outputs the biological information when the reliability determination means determines that the reliability is high, and does not output the biological information when it is determined that the reliability is low;
It is characterized by providing.
 本発明の生体情報出力装置は、
 対象者の生体信号を取得する生体信号取得手段と、
 前記生体情報算出手段により算出された前記生体情報の信頼性を判定する信頼性判定手段と、
 前記信頼性判定手段により判定された信頼性に関する情報を、信頼性情報として前記生体情報に付加して出力する生体情報出力手段と、
 を備えることを特徴とする。
The biological information output device of the present invention is
A biological signal acquisition means for acquiring a biological signal of the subject;
Reliability determination means for determining the reliability of the biological information calculated by the biological information calculation means;
Biometric information output means for outputting information related to reliability determined by the reliability determination means in addition to the biometric information as reliability information;
It is characterized by providing.
 本発明の生体情報出力方法は、
 対象者の生体信号を取得する生体信号取得ステップと、
 前記生体情報算出手段により算出された生体情報の信頼性を判定する信頼性判定ステップと、
 前記信頼性判定ステップにより信頼性が高いと判定された場合は前記生体情報を出力し、信頼性が低いと判定された場合は前記生体情報を出力しない生体情報出力ステップと、
 を有することを特徴とする。
The biological information output method of the present invention includes:
A biological signal acquisition step of acquiring a biological signal of the subject;
A reliability determination step of determining the reliability of the biological information calculated by the biological information calculation means;
When it is determined that the reliability is high by the reliability determination step, the biological information is output, and when it is determined that the reliability is low, the biological information output step that does not output the biological information;
It is characterized by having.
 本発明によれば、対象者の生体信号から生体情報を算出する。この、算出された生体情報の信頼性を判定し、信頼性判定手段により信頼性が高いと判定された場合は生体情報を出力するが、信頼性が低いと判定された場合は生体情報を出力しないこととなる。これにより、生体情報を利用する利用者は、信頼性の高い生体情報のみを利用することが可能となる。 According to the present invention, the biological information is calculated from the biological signal of the subject. The reliability of the calculated biological information is determined, and when the reliability determining unit determines that the reliability is high, the biological information is output, but when the reliability is determined to be low, the biological information is output. Will not. Thereby, a user who uses biometric information can use only highly reliable biometric information.
 また、信頼性に関する情報を信頼性情報として生体情報に付加して出力しても良い。これによって、利用者は信頼性の高い生体情報のみを利用出来るだけでなく、仮に信頼性が低くても利用したい場合に、信頼性に応じた利用をすることが可能となる。 Also, reliability information may be output as reliability information added to biological information. As a result, the user can use not only highly reliable biometric information but also the user according to the reliability when he / she wants to use it even if the reliability is low.
第1実施形態における全体を説明するための図である。It is a figure for demonstrating the whole in 1st Embodiment. 第1実施形態における機能構成を説明するための図である。It is a figure for demonstrating the function structure in 1st Embodiment. 第1実施形態における動作を説明するための処理フローである。It is a processing flow for demonstrating the operation | movement in 1st Embodiment. 第1実施形態における画面表示の一例である。It is an example of the screen display in 1st Embodiment. 第2実施形態における画面表示の一例である。It is an example of the screen display in 2nd Embodiment. 第3実施形態における動作を説明するための処理フローである。It is a processing flow for demonstrating the operation | movement in 3rd Embodiment.
 以下、図面を参照して本発明を実施するための最良の形態について説明する。具体的には、本発明の生体情報出力装置を適用した生体情報出力システムについて説明するが、本発明が適用される範囲は当該実施形態に限定されるものではない。 Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. Specifically, a biological information output system to which the biological information output device of the present invention is applied will be described, but the scope to which the present invention is applied is not limited to the embodiment.
 [1.第1実施形態]
 [1.1 システム全体]
 図1は、生体情報出力システム1の全体概要について説明するための図である。図1に示すように、生体情報出力システム1は、ベッド10の床部と、マットレス20の間に載置される検出装置3と、検出装置3より出力される値を処理するため処理装置5を備えて構成されている。この検出装置3、処理装置5とで生体情報出力装置を構成している。
[1. First Embodiment]
[1.1 Overall system]
FIG. 1 is a diagram for explaining the overall outline of the biological information output system 1. As shown in FIG. 1, the biological information output system 1 includes a detection device 3 placed between a floor portion of a bed 10 and a mattress 20, and a processing device 5 for processing a value output from the detection device 3. It is configured with. The detection device 3 and the processing device 5 constitute a biological information output device.
 マットレス20に、生体情報を測定される対象者(以下、一例として「患者P」とする)が在床すると、マットレス20を介して患者Pの生体信号として体動(振動)を検出装置3が検出する。そして、検出された振動に基づいて、患者Pの生体情報が算出される。本実施形態においては、算出された生体情報(例えば、呼吸数、心拍数)を、患者Pの生体情報として出力・表示することができる。なお、例えば検出装置3に記憶部、表示部等を設けることにより一体に形成されてもよい。また、処理装置5は、汎用的な装置で良いため、コンピュータ等の情報処理装置に限られず、例えばタブレッドやスマートフォン等といった装置で構成されてもよい。 When a subject whose biological information is to be measured (hereinafter referred to as “patient P” as an example) is present on the mattress 20, the detection device 3 detects body movement (vibration) as a biological signal of the patient P via the mattress 20. To detect. Based on the detected vibration, the biological information of the patient P is calculated. In the present embodiment, the calculated biological information (for example, respiratory rate, heart rate) can be output and displayed as the biological information of the patient P. For example, the detection device 3 may be integrally formed by providing a storage unit, a display unit, and the like. Moreover, since the processing apparatus 5 may be a general-purpose apparatus, the processing apparatus 5 is not limited to an information processing apparatus such as a computer, and may be configured by an apparatus such as a tab red or a smartphone.
 また、対象者としては、病気療養中の者であったり、介護が必要なものであったりしてもよい。また、介護が必要でない健康な者であっても、高齢者でも子供でも、障害者でも、人でなくても動物でも良い。 In addition, the target person may be a person who is undergoing medical treatment or needs care. Moreover, even if it is a healthy person who does not require care, it may be an elderly person, a child, a disabled person, a person, and an animal.
 ここで、検出装置3は、厚さが薄くなるようにシート状に構成されている。これにより、ベッド10と、マットレス20の間に載置されたとしても、患者Pに違和感を覚えさせることなく使用できることとなる。 Here, the detection device 3 is configured in a sheet shape so as to be thin. Thereby, even if it is placed between the bed 10 and the mattress 20, it can be used without making the patient P feel uncomfortable.
 なお、検出装置3は、患者Pの生体信号(体動や呼吸運動や心弾動等)を取得できればよい。本実施形態においては、体動に基づいて心拍数や呼吸数を取得・算出しているが、例えば赤外線センサを用いて検出したり、取得された映像等により患者Pの体動を検出したり、歪みゲージ付きアクチュエータを利用したりしても良い。 In addition, the detection apparatus 3 should just acquire the patient's P biological signal (a body motion, a respiratory motion, a cardiac motion, etc.). In the present embodiment, the heart rate and the respiratory rate are acquired and calculated based on the body movement. For example, the detection is performed using an infrared sensor, or the body movement of the patient P is detected using the acquired image or the like. Alternatively, an actuator with a strain gauge may be used.
 [1.2 機能構成]
 続いて、生体情報出力システム1(生体情報出力装置)の機能構成について、図2を用いて説明する。本実施形態における生体情報出力システム1は、検出装置3と、処理装置5とを含む構成となっており、各機能部(処理)は、生体信号取得部200以外についてはどちらで実現されても良い。
[1.2 Functional configuration]
Next, the functional configuration of the biological information output system 1 (biological information output device) will be described with reference to FIG. The biological information output system 1 in the present embodiment has a configuration including a detection device 3 and a processing device 5, and each functional unit (processing) can be realized by any means other than the biological signal acquisition unit 200. good.
 生体情報出力システム1は、制御部100と、生体信号取得部200と、生体情報算出部300と、入力部400と、出力部450と、記憶部500と、患者状態取得部600とを含んで構成されている。図1の場合であれば、制御部100、生体信号取得部200及び記憶部500は検出装置3に備えられており、制御部100、生体情報算出部300、入力部400、出力部450、記憶部500は処理装置5に備えられている。また、患者状態取得部600は、生体信号取得部200を利用しても良いし、ベッド10に別に設けられても良い。 The biological information output system 1 includes a control unit 100, a biological signal acquisition unit 200, a biological information calculation unit 300, an input unit 400, an output unit 450, a storage unit 500, and a patient state acquisition unit 600. It is configured. In the case of FIG. 1, the control unit 100, the biological signal acquisition unit 200, and the storage unit 500 are provided in the detection device 3, and the control unit 100, the biological information calculation unit 300, the input unit 400, the output unit 450, and the storage The unit 500 is provided in the processing device 5. The patient state acquisition unit 600 may use the biological signal acquisition unit 200 or may be provided separately in the bed 10.
 制御部100は、生体情報出力システム1の動作を制御するための機能部であり、CPU等、生体情報出力システム1に必要な制御回路によって構成されている。制御部100は、記憶部500に記憶されている各種プログラムを読み出して実行することにより各種処理を実現することとなる。なお、本実施形態においては、制御部100は全体として動作しているが、検出装置3、処理装置5のそれぞれに設けられるものである。 The control unit 100 is a functional unit for controlling the operation of the biological information output system 1, and is configured by a control circuit necessary for the biological information output system 1, such as a CPU. The control unit 100 implements various processes by reading and executing various programs stored in the storage unit 500. In the present embodiment, the control unit 100 operates as a whole, but is provided in each of the detection device 3 and the processing device 5.
 生体信号取得部200は、患者Pの生体信号を取得するための機能部である。本実施形態では、一例として、患者Pの体動を検出するセンサを利用して生体信号の一種である体動が取得される。そして、取得された体動は、体動データとして出力される。この体動データに基づいて、患者Pの種々の生体情報を算出することができる。更に、体動データに基づいて患者Pの臥床状態(例えば、患者Pが臥床しているか否か、在床、離床や端座位等)を取得したり、睡眠状態(睡眠、覚醒)を取得したりすることも可能である。 The biological signal acquisition unit 200 is a functional unit for acquiring a biological signal of the patient P. In the present embodiment, as an example, body motion, which is a type of biological signal, is acquired using a sensor that detects body motion of the patient P. The acquired body motion is output as body motion data. Based on this body motion data, various biological information of the patient P can be calculated. Further, based on the body motion data, the patient's bed resting state (for example, whether or not the patient P is in bed, staying in bed, getting out of bed, sitting on the edge, etc.) or sleeping state (sleeping, awakening) is obtained. It is also possible to do.
 なお、本実施形態における生体信号取得部200は、例えば、圧力センサにより患者の振動(体動)を取得し、振動から呼吸や心拍を取得するが、荷重センサにより、患者の重心位置(体動)の変化により生体信号を取得することとしても良いし、マイクロフォンを設けることにより、マイクロフォンが拾う音に基づいて生体情報を取得しても良い。何れかのセンサを用いて、患者の生体信号を取得出来れば良い。 Note that the biological signal acquisition unit 200 according to the present embodiment acquires, for example, a patient's vibration (body motion) using a pressure sensor and acquires respiration and heartbeat from the vibration, but the patient's center of gravity position (body motion) using a load sensor. ) May be used to acquire a biological signal, or by providing a microphone, biological information may be acquired based on the sound picked up by the microphone. What is necessary is just to be able to acquire a patient's biological signal using any sensor.
 すなわち、生体信号取得部200は、検出装置3のような装置が接続されても良いし、外部の装置から生体信号を受信する構成としても良い。 That is, the biological signal acquisition unit 200 may be connected to a device such as the detection device 3 or may be configured to receive a biological signal from an external device.
 生体情報算出部300は、患者Pの生体情報(呼吸数・心拍数など)を算出するための機能部である。本実施形態では、生体信号取得部200より取得された体動から呼吸成分・心拍成分を抽出し、呼吸間隔、心拍間隔に基づいて呼吸数、心拍数を求めても良い。また、体動の周期性を分析(フーリエ変換等)し、ピーク周波数から呼吸数、心拍数を算出してもよい。 The biological information calculation unit 300 is a functional unit for calculating the biological information (respiration rate, heart rate, etc.) of the patient P. In the present embodiment, a respiratory component / heart rate component may be extracted from the body motion acquired from the biological signal acquisition unit 200, and the respiratory rate and heart rate may be obtained based on the respiratory interval and the heart rate interval. Alternatively, the periodicity of body motion may be analyzed (Fourier transform or the like), and the respiration rate and heart rate may be calculated from the peak frequency.
 入力部400は、測定者が種々の条件を入力したり、測定開始の操作入力を行う為の機能部である。例えば、ハードウェアキーや、ソフトウェアキーといった何れかの入力手段により実現される。 The input unit 400 is a functional unit for a measurer to input various conditions and to input an operation for starting measurement. For example, it is realized by any input means such as a hardware key or a software key.
 出力部450は、睡眠状態や、心拍数、呼吸数といった生体情報を出力したり、生体情報の異常を報知したりするための機能部である。出力部450としては、ディスプレイ等の表示装置であっても良いし、警報等を報知する報知装置(音出力装置)であっても良い。また、データを記憶する外部記憶装置や、データを通信路で送信する送信装置等であっても良い。また、他の装置に対して通報する場合の通信装置であっても良い。 The output unit 450 is a functional unit for outputting biological information such as a sleep state, a heart rate, and a respiratory rate, or notifying abnormality of the biological information. The output unit 450 may be a display device such as a display, or may be a notification device (sound output device) that notifies an alarm or the like. Further, it may be an external storage device that stores data, a transmission device that transmits data through a communication path, or the like. Moreover, the communication apparatus in the case of reporting to another apparatus may be sufficient.
 記憶部500は、生体情報出力システム1が動作するための各種データ及びプログラムを記憶しておく機能部である。制御部100は、記憶部500に記憶されているプログラムを読み出して実行することにより、各種機能を実現することとなる。ここで、記憶部500は、例えば半導体メモリや、磁気ディスク装置等により構成されている。ここで、記憶部500には、生体情報データ510が記憶されている。 The storage unit 500 is a functional unit that stores various data and programs for operating the biological information output system 1. The control unit 100 implements various functions by reading and executing a program stored in the storage unit 500. Here, the storage unit 500 is configured by, for example, a semiconductor memory, a magnetic disk device, or the like. Here, biometric information data 510 is stored in the storage unit 500.
 生体情報データ510は、取得された生体信号(体動)から算出される呼吸数や、心拍数が記憶されている。なお、本実施形態では、呼吸数と心拍数とが記憶されるが、どちらか一方でも良い。また、生体情報算出部300により算出可能な生体情報であれば他の情報(例えば、呼吸振幅の変動等)であっても良い。 The biological information data 510 stores the respiratory rate and heart rate calculated from the acquired biological signal (body motion). In the present embodiment, the respiratory rate and the heart rate are stored, but either one may be used. Other information (for example, change in respiratory amplitude) may be used as long as the biological information can be calculated by the biological information calculation unit 300.
 患者状態取得部600は、患者の状態を取得する為の機能部である。例えば、ベッド10に設けられた荷重センサ等により、患者の状態(臥床状態、離床・在床等)を取得する。なお、上述したように、生体信号取得部200において取得された生体信号に基づいて患者状態を取得しても良い。 The patient status acquisition unit 600 is a functional unit for acquiring the patient status. For example, the patient's state (bed bed state, bed leaving / bed in, etc.) is acquired by a load sensor or the like provided on the bed 10. As described above, the patient state may be acquired based on the biological signal acquired by the biological signal acquisition unit 200.
 [1.3 処理の流れ]
 続いて、本実施形態における生体情報出力システム1(生体情報出力装置)の処理の流れについて図3を用いて説明する。まず、体動を取得する。具体的には、生体信号取得部200より生体信号の一種として体動データを取得する(ステップS102)。体動データとしては、例えば振動を検出することにより取得することが可能となる。
[1.3 Process flow]
Next, the flow of processing of the biological information output system 1 (biological information output device) in this embodiment will be described with reference to FIG. First, body movement is acquired. Specifically, body motion data is acquired as a type of biological signal from the biological signal acquisition unit 200 (step S102). The body motion data can be acquired by detecting vibration, for example.
 つづいて、生体情報算出部300は、生体情報を算出する(ステップS104)。本実施形態では、生体信号として取得された体動を呼吸成分と心拍成分に分離し、生体情報として心拍数、呼吸数を算出する。 Subsequently, the biological information calculation unit 300 calculates biological information (step S104). In this embodiment, the body motion acquired as a biological signal is separated into a respiratory component and a heart rate component, and a heart rate and a respiratory rate are calculated as biological information.
 ここで、心拍数、呼吸数の算出方法としては、種々の方法が考えられるが、例えば、体動データをフィルタリングし、呼吸成分を抽出し、呼吸間隔を1呼吸毎に求める。そして、呼吸間隔に基づいて呼吸数が算出される。また、体動データをフィルタリングし、心拍成分を抽出し、心拍間隔を1拍動毎に求める。そして、心拍間隔に基づいて心拍数が算出される。 Here, various methods are conceivable as methods for calculating the heart rate and the respiration rate. For example, body motion data is filtered to extract a respiration component, and a respiration interval is obtained for each respiration. Then, the respiration rate is calculated based on the respiration interval. Further, the body motion data is filtered, the heartbeat component is extracted, and the heartbeat interval is obtained for each beat. Then, the heart rate is calculated based on the heart rate interval.
 また、体動データの周期性の分析を行い、ピーク周波数から呼吸数や心拍数を求めるといった方法により算出しても良い。 Also, it may be calculated by analyzing the periodicity of body motion data and obtaining the respiration rate and heart rate from the peak frequency.
 また、例えば、本実施形態では5秒毎に体動データに基づいて算出された値を利用する。具体的には、所定時間の間に算出された心拍数や、呼吸数に基づいて5秒間毎に算出する。なお、本実施形態では、心拍数と呼吸数とを算出するが、何れか一つの値を算出しても良い。 Also, for example, in the present embodiment, a value calculated based on body motion data every 5 seconds is used. Specifically, it is calculated every 5 seconds based on the heart rate and respiratory rate calculated during a predetermined time. In this embodiment, the heart rate and the respiration rate are calculated, but any one value may be calculated.
 つづいて、算出された心拍数、呼吸数の信頼性を判断する信頼性判断処理を実行する(ステップS106)。ここで、信頼性を算出する方法としては、種々の方法が考えられるが、本実施形態では例えば以下の何れかの方法を利用する。 Subsequently, a reliability judgment process for judging the reliability of the calculated heart rate and respiratory rate is executed (step S106). Here, various methods can be considered as a method for calculating the reliability. In the present embodiment, for example, any one of the following methods is used.
 (1)算出条件による信頼性評価
 生体情報を算出する場合の算出条件に基づいて信頼性評価を行う。例えば、患者状態取得部600により、例えば、患者が臥床状態ではない場合、すなわち、離床しているときや、患者が座位の状態のときには、信頼性が低いと判定する。また、床ずれ予防用エアマットなどの機器と外部接続している場合には、当該外部機器が振動を発生しているときには、信頼性が低いと判定する。つまり、信頼性評価を行うのに、患者の状態を判定する状態判定手段を利用する。
(1) Reliability evaluation based on calculation conditions Reliability evaluation is performed based on calculation conditions when calculating biological information. For example, the patient state acquisition unit 600 determines that the reliability is low, for example, when the patient is not in the bedded state, that is, when the patient is getting out of bed or when the patient is in the sitting position. In addition, when the external device is connected externally to a device such as a bed slip prevention air mat, it is determined that the reliability is low when the external device generates vibration. That is, the state determination means for determining the patient's state is used to perform the reliability evaluation.
 (2)生体情報算出過程における信頼性評価
 生体情報を算出する過程において信頼性を評価する。例えば、呼気・吸気や拍動間隔のばらつき(標準偏差や変動係数等)が大きい場合に信頼性が低いと評価する。また、フィルタ後の波形の振幅の大きさ・ばらつきに基づき、信頼性を評価する。すなわち、振幅のばらつきがある場合は信頼性が低いと評価する。
(2) Reliability evaluation in biological information calculation process Reliability is evaluated in the process of calculating biological information. For example, it is evaluated that the reliability is low when there are large variations in breath / inspiration and pulsation intervals (standard deviation, coefficient of variation, etc.). In addition, reliability is evaluated based on the magnitude and variation of the amplitude of the filtered waveform. That is, when there is variation in amplitude, it is evaluated that the reliability is low.
 例えば、通常は短時間内の心拍(呼吸)間隔はほぼ等しくなる。したがって、心拍(呼吸)間隔のばらつきが大きい場合は、未検出や誤検出があると判定され、信頼性が低いと評価する。 For example, the heartbeat (breathing) intervals are usually almost equal within a short time. Therefore, when the variation in the heartbeat (respiration) interval is large, it is determined that there is no detection or erroneous detection, and it is evaluated that the reliability is low.
 また、複数のセンサを設けている場合には、複数のセンサから算出された値の差異に基づいて信頼性を評価する。すなわち、複数のセンサについて、差異が大きい場合には信頼性が低いと評価する。 Also, when a plurality of sensors are provided, the reliability is evaluated based on the difference between the values calculated from the plurality of sensors. That is, it is evaluated that the reliability of the plurality of sensors is low when the difference is large.
 また、体動データの周期性の分析により生体情報を算出している場合には、例えば、周波数スペクトルのピークの突出程度や、複数のセンサの値の検出値のばらつきから信頼性を評価することも可能である。 In addition, when biological information is calculated by analyzing periodicity of body motion data, for example, the reliability should be evaluated based on the degree of protrusion of the peak of the frequency spectrum and the variation in the detection values of the values of multiple sensors. Is also possible.
 (3)算出された呼吸数・心拍数の信頼性評価
 算出された心拍数、呼吸数が、以前に算出された値から大きく乖離した場合には信頼性が低いと判定する。例えば、心拍数において今まで算出されていた値から2倍以上の値が算出されている場合や、呼吸数が閾値以上に変動した場合等である。
(3) Reliability Evaluation of Calculated Respiration Rate / Heart Rate If the calculated heart rate and respiration rate greatly deviate from previously calculated values, it is determined that the reliability is low. For example, there are a case where a value more than double of the heart rate calculated so far is calculated, or a case where the respiratory rate fluctuates more than a threshold value.
 また、過去数回(例えば算出された生体情報5回)の平均値を算出し、当該平均値から大きく離れた値であったり、傾き(微分値)が急峻な場合には信頼性が低いと判定しても良い。また、信頼性としては、段階的に出力しても良い。例えば、前回算出された生体情報から2倍以上(又は2分の1以下)となった場合には信頼性はかなり低いと、1.5倍以上2倍未満(又は2分の1以上3分の2未満)の場合には信頼性が少し低いと判定しても良い。 In addition, when the average value of the past several times (for example, the calculated biometric information 5 times) is calculated and the value is far from the average value or the slope (differential value) is steep, the reliability is low. You may judge. Further, the reliability may be output in stages. For example, if the reliability is considerably low when the biometric information calculated last time is 2 times or more (or less than 1/2), 1.5 times or more and less than 2 times (or 1/2 or more and 3 minutes) Less than 2), it may be determined that the reliability is slightly low.
 算出された心拍数、呼吸数が、所定の閾値を超えたり、閾値未満の場合は、信頼性が低いと判定する。例えば、呼吸数が0や1の場合であったり、心拍数が200を超えている場合等は、信頼性が低いと判定する。なお、当該閾値は測定者によって設定されても良いし、患者の年齢、健康状態により設定されるものであっても良い。 判定 す る If the calculated heart rate and respiratory rate exceed a predetermined threshold or less than the threshold, it is determined that the reliability is low. For example, when the respiratory rate is 0 or 1, or when the heart rate exceeds 200, it is determined that the reliability is low. The threshold may be set by the measurer, or may be set according to the patient's age and health condition.
 このように、信頼性が低いと判定された場合には、生体情報である心拍数、呼吸数を出力しない(ステップS108;No→ステップS102)。他方、信頼性が高いと判定された場合には、心拍数、呼吸数を出力する(ステップS108;Yes→ステップS110)。なお、心拍数、呼吸数を出力する先としては、例えば出力部450の一例である画面表示に表示してもよいし、他端末(例えばタブレットやスマートフォン等)に表示させる事としても良い。また、サーバや管理装置に送信したり、記録媒体に記録したりしてもよい。すなわち、心拍数、呼吸数が何れかの装置、記録媒体、送信先に出力されることとなる。 Thus, when it is determined that the reliability is low, the heart rate and the respiratory rate, which are biological information, are not output (Step S108; No → Step S102). On the other hand, if it is determined that the reliability is high, the heart rate and the respiratory rate are output (step S108; Yes → step S110). In addition, as a destination which outputs a heart rate and a respiration rate, you may display on the screen display which is an example of the output part 450, for example, and it is good also as displaying on another terminal (for example, a tablet, a smart phone, etc.). Further, it may be transmitted to a server or a management device, or may be recorded on a recording medium. That is, the heart rate and the respiratory rate are output to any device, recording medium, and transmission destination.
 ここで、出力されている心拍数、呼吸数に異常があるか否かを判定する(ステップS112)。異常があると判定された場合には異常を報知する(ステップS112;Yes→ステップS114)。ここで、異常があるとは、医療従事者等のスタッフや、介護職員等に報知する状態である場合をいい、例えば心拍数が所定閾値以上高い場合、呼吸数が所定閾値より低い場合、所定区間における信頼性の低い値の算出頻度が高い場合等をいう。 Here, it is determined whether or not the output heart rate and respiratory rate are abnormal (step S112). If it is determined that there is an abnormality, the abnormality is notified (step S112; Yes → step S114). Here, the term “abnormal” refers to a state in which a staff member such as a medical worker or a care worker is notified, for example, when the heart rate is higher than a predetermined threshold, when the respiratory rate is lower than a predetermined threshold, A case where the calculation frequency of the low reliability value in the section is high.
 [1.4 画面例]
 図4は、上述した実施形態において、出力部450において画面表示を行っている場合の画面例の一例である。例えば、図4(a)に示すように、患者氏名(例えば、「山田太郎」)と、心拍数(例えば、「75」)と、呼吸数(例えば、「22」)と、患者状態(例えば、「睡眠中表示」)とが画面に表示されている。
[1.4 Screen example]
FIG. 4 is an example of a screen example when the output unit 450 performs screen display in the above-described embodiment. For example, as shown in FIG. 4A, the patient name (for example, “Taro Yamada”), the heart rate (for example, “75”), the respiratory rate (for example, “22”), and the patient state (for example, , “Sleep Display”) is displayed on the screen.
 このとき、心拍数の信頼性が低いと判定された場合は、図4(b)のように、心拍数が非表示となる。図4(b)の場合は、表示が「-」となることで、異常状態であって、正しく測定されていないことをスタッフ等が確認することができる。 At this time, if it is determined that the reliability of the heart rate is low, the heart rate is not displayed as shown in FIG. In the case of FIG. 4B, when the display is “−”, the staff or the like can confirm that the measurement is abnormal and the measurement is not performed correctly.
 [1.5 効果]
 ここで、本実施形態を適用した場合について効果を説明する。例えば20名の被験者を対象として、心拍数の計測を行った。ここで、計測条件は、1名あたりの計測時間は平均2時間16分であり、計測時間の合計は45時間27分である。また、心拍数計測機器としては、非装着型の振動を検出して心拍を検出可能なパラマウントベッド株式会社製眠りSCAN(登録商標)と、身体に電極を装着して測定する心電計(ECG)とを用いた。
[1.5 Effect]
Here, an effect is demonstrated about the case where this embodiment is applied. For example, the heart rate was measured for 20 subjects. Here, the measurement condition is that the average measurement time per person is 2 hours and 16 minutes, and the total measurement time is 45 hours and 27 minutes. Moreover, as a heart rate measuring device, a non-wearable type of vibration, Paramount Bed Co., Ltd. sleep SCAN (registered trademark) capable of detecting a heartbeat, and an electrocardiograph (ECG) that measures by attaching electrodes to the body. ) Was used.
 ここで、信頼性があるなしにかかわらず出力した場合、装着型と非装着型との一致率は98.9%となった。なお、計測率は86.0%(39時間6分)であった。これと比較し、信頼性がないものは出力しなった場合、装着型と非装着型との一致率は99.3%となった。なお、計測率は84.9%(38時間36分)であった。 Here, when outputting regardless of whether there is reliability, the matching rate between the wearing type and the non-wearing type was 98.9%. The measurement rate was 86.0% (39 hours 6 minutes). Compared with this, when the unreliable one was not output, the matching rate between the wearing type and the non-wearing type was 99.3%. The measurement rate was 84.9% (38 hours 36 minutes).
 本検討では、1拍毎の心拍間隔のばらつきの変動係数が一定閾値を超えていた場合、5秒毎に算出された直前3回の心拍数の平均値に対して40以上の変動があった場合に信頼性がないと判定し出力しなかった。この効果は大きくないように見えるかもしれないが、信頼性の低い心拍数は異常値(極端に高すぎる・低すぎる値)となる確率が高いことを考慮すると効果は大きい。また、本検討は実験室における臥床状態で実施したものであるが、実際の入院環境では信頼性を低下させる様々なノイズが混入することが考えられるため、効果はさらに大きくなる。 In this study, when the variation coefficient of the variation in the heartbeat interval for each beat exceeded a certain threshold, there was a variation of 40 or more with respect to the average value of the last three heart rates calculated every 5 seconds. The case was judged to be unreliable and was not output. Although this effect may not appear to be significant, it is significant considering the high probability that an unreliable heart rate will be an abnormal value (extremely too high or too low). Moreover, although this examination was implemented in the bedrock state in a laboratory, since various noises which reduce reliability may be mixed in an actual hospitalization environment, an effect becomes still larger.
 このように、本実施形態によれば、表示されるデータは精度の高いデータの占める割合が高いものとなる。したがって、スタッフ等が生体情報を確認するときに、正しい値を確認することが可能となる。また、生体情報(呼吸数、心拍数など)に応じて報知処理を行っている場合には、信頼性の低い生体情報によって不必要な報知動作が行われないといった効果がある。 Thus, according to the present embodiment, the displayed data has a high proportion of highly accurate data. Therefore, when a staff member or the like confirms biometric information, a correct value can be confirmed. Further, when the notification process is performed according to the biological information (respiration rate, heart rate, etc.), there is an effect that unnecessary notification operation is not performed by the biological information with low reliability.
 [2.第2実施形態]
 つづいて第2実施形態について説明する。第1実施形態では、信頼性が低い生体情報については出力しないこととして説明したが、本実施形態は信頼性が低くても出力を行う場合について説明する。
[2. Second Embodiment]
Next, the second embodiment will be described. In the first embodiment, it has been described that biological information with low reliability is not output. However, in the present embodiment, a case where output is performed even when reliability is low will be described.
 すなわち、ステップS108において、信頼がないと判定された場合でも、心拍数、呼吸数の出力は行う(ステップS108→ステップS110)。すなわち、図3のステップS108がNoの場合、ステップS102に処理が戻るが、本実施形態では、ステップS110に遷移する。このとき、出力されたデータに判定された信頼性に関する情報である信頼性情報を併せて出力する。例えば、フラグを付したり、付加表示をつけたりすることにより、当該生体情報の信頼性を利用者は容易に判定することが可能となる。 That is, even if it is determined in step S108 that there is no reliability, the heart rate and respiration rate are output (step S108 → step S110). That is, when step S108 in FIG. 3 is No, the process returns to step S102, but in the present embodiment, the process proceeds to step S110. At this time, reliability information that is information related to the determined reliability is output together with the output data. For example, the user can easily determine the reliability of the biological information by attaching a flag or adding an additional display.
 例えば、図5の表示のように、心拍数に「?」が付加されて表示されている。これは心拍数の情報に、「信頼性が低い」フラグ(信頼性情報)が付されており、当該フラグに基づいて表示されている。 For example, as shown in FIG. 5, “?” Is added to the heart rate and displayed. This is indicated by a “low reliability” flag (reliability information) attached to the heart rate information, based on the flag.
 これにより、利用者は当該心拍数の値が「信頼性が低い」状態で表示されていることが解る。このように、本実施形態によれば、仮に信頼性が低いと判定されたデータであっても出力されるが、信頼性が低いことが識別表示されているため、利用者は適切に患者の状態を判断することが可能となる。 This allows the user to understand that the heart rate value is displayed in a “reliable state”. As described above, according to the present embodiment, even if it is determined that the data is determined to be low in reliability, the data is output, but since the low reliability is identified and displayed, the user can appropriately display the patient's The state can be determined.
 また、信頼性情報に応じて表示を変えることにしても良い。例えば、信頼性が高い生体情報を表示する場合は黒色、信頼性が低い生体情報を表示する場合はグレーといった表示方法を変えることも可能である。また、信頼度が複数有る場合には、例えば色の濃さや、明るさ、色温度を変化させることで、利用者に信頼性に関する情報を併せて提供する事としても良い。 Also, the display may be changed according to the reliability information. For example, it is possible to change the display method such as black when displaying biological information with high reliability, and gray when displaying biological information with low reliability. Further, when there are a plurality of reliability levels, for example, by changing the color density, brightness, and color temperature, it is also possible to provide information related to reliability to the user.
 なお、信頼性が低いデータについては、報知処理を実行しないとしたり、表示はしても記録はしないといった処理を行うことも可能となる。具体的には、ステップS108において、信頼性がないと判定された場合には(ステップS108;No)、本実施形態ではステップS110に遷移する。そして、ステップS110において心拍数、呼吸数の出力はするが、ステップS112及びステップS114の処理を実行しないことにより、異常報知は行わないといった処理を実現することができる。 For data with low reliability, it is possible to perform a process such as not performing the notification process or displaying but not recording the data. Specifically, when it is determined in step S108 that there is no reliability (step S108; No), in the present embodiment, the process proceeds to step S110. In step S110, the heart rate and the respiration rate are output, but by not executing the processing in steps S112 and S114, it is possible to realize a process in which abnormality notification is not performed.
 [3.第3実施形態]
 つづいて、第3実施形態について説明する。第3実施形態は、信頼性を判定する処理と併せて生体情報を記憶する処理である。ここで、第3実施形態における処理の流れを図6に示す。図6の処理は、図3で示した第1実施形態の処理を置き換えたものであり、同一の処理には同一の符号を付して、その説明を省略する。
[3. Third Embodiment]
Subsequently, the third embodiment will be described. The third embodiment is a process of storing biological information together with a process of determining reliability. Here, the flow of processing in the third embodiment is shown in FIG. The process of FIG. 6 is a replacement of the process of the first embodiment shown in FIG. 3, and the same process is denoted by the same reference numeral and the description thereof is omitted.
 具体的には、図6に示すように、ステップS104において算出された生体情報(例えば、心拍数・呼吸数)を、記憶部500に記憶する。これにより、算出された生体情報は、信頼性に関わらず記憶されるが、出力される生体情報は信頼性があるものとなる(ステップS108;Yes→ステップS110)。 Specifically, as shown in FIG. 6, the biological information (eg, heart rate / respiration rate) calculated in step S104 is stored in the storage unit 500. Thus, the calculated biological information is stored regardless of the reliability, but the output biological information is reliable (step S108; Yes → step S110).
 ここで、信頼性判定処理(ステップS106)は、記憶された生体情報に基づいて信頼性が判定される。 Here, in the reliability determination process (step S106), the reliability is determined based on the stored biological information.
 なお、ステップS202は、ステップS106の後に実行されてもよいし、ステップS106と並列処理されても良い。この場合、生体情報は他の処理で利用するために記憶され、信頼性判定手段は、ステップS104において算出された生体情報に基づいて信頼性が判定される。 Note that step S202 may be executed after step S106, or may be processed in parallel with step S106. In this case, the biological information is stored for use in other processes, and the reliability determination unit determines the reliability based on the biological information calculated in step S104.
 [4.変形例]
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も特許請求の範囲に含まれる。
[4. Modified example]
The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and the design and the like within the scope of the present invention are also within the scope of the claims. include.
 なお、上述した実施形態における検出装置3は、簡易的にマットレス20の上に載置して、患者Pの体動を検出しても良い。この場合、例えばスマートフォン等を利用することにより、簡易的にシステムを実現することが可能となる。すなわち、最終的に取得された生体信号と、算出された生体情報とに基づいて、生体情報の信頼性を判定できる構成で有れば良い。 Note that the detection device 3 in the above-described embodiment may be simply placed on the mattress 20 to detect the body movement of the patient P. In this case, for example, a system can be simply realized by using a smartphone or the like. That is, it is sufficient if the reliability of the biological information can be determined based on the finally acquired biological signal and the calculated biological information.
 また、生体信号としては、本実施形態では体動を一例に説明したが、例えば、温度(鼻息の温度を測って呼吸数を算出する)、血流(光の吸収量で脈拍を測定する)等といった、他の生体信号を利用しても良い。 In the present embodiment, the body movement is described as an example of the biological signal. For example, the temperature (measures the temperature of the nasal breath to calculate the respiration rate), the blood flow (measures the pulse by the amount of absorbed light). Other biological signals such as and the like may be used.
 また、生体信号・生体情報としては、例えば脳波、発汗といった信号を利用することも可能である。 Further, as the biosignal / biological information, for example, a signal such as an electroencephalogram or perspiration can be used.
1 生体情報出力システム
3 検出装置
5 処理装置
10 ベッド
20 マットレス
 100 制御部
 200 生体信号取得部
 300 生体情報算出部
 400 入力部
 450 出力部
 500 記憶部
  510 生体情報データ
 600 患者状態取得部
DESCRIPTION OF SYMBOLS 1 Biological information output system 3 Detection apparatus 5 Processing apparatus 10 Bed 20 Mattress 100 Control part 200 Biological signal acquisition part 300 Biometric information calculation part 400 Input part 450 Output part 500 Storage part 510 Biological information data 600 Patient state acquisition part

Claims (10)

  1.  対象者の生体信号を取得する生体信号取得手段と、
     前記取得された生体信号から生体情報を算出する生体情報算出手段と、
     前記算出された生体情報の信頼性を判定する信頼性判定手段と、
     前記信頼性判定手段により信頼性が高いと判定された場合は前記生体情報を出力し、信頼性が低いと判定された場合は前記生体情報を出力しない生体情報出力手段と、
     を備えることを特徴とする生体情報出力装置。
    A biological signal acquisition means for acquiring a biological signal of the subject;
    Biological information calculation means for calculating biological information from the acquired biological signal;
    Reliability determination means for determining the reliability of the calculated biological information;
    Biometric information output means that outputs the biological information when the reliability determination means determines that the reliability is high, and does not output the biological information when it is determined that the reliability is low;
    A biological information output device comprising:
  2.  前記生体信号取得手段は、前記対象者の体動を検出することにより前記生体信号を取得し、
     前記生体情報算出手段は、前記検出された体動に基づいて、前記生体情報を算出することを特徴とする請求項1に記載の生体情報出力装置。
    The biological signal acquisition means acquires the biological signal by detecting body movement of the subject,
    The biological information output apparatus according to claim 1, wherein the biological information calculation unit calculates the biological information based on the detected body movement.
  3.  前記生体情報算出手段は、前記対象者の心拍数及び/又は呼吸数を算出することを特徴とする請求項1又は2に記載の生体情報出力装置。 The biological information output device according to claim 1 or 2, wherein the biological information calculation means calculates a heart rate and / or a respiratory rate of the subject.
  4.  前記生体情報算出手段は、前記生体情報として前記対象者の心拍及び/又は呼吸の間隔を取得し、
     前記信頼性判定手段は、前記間隔のばらつきが大きいか否かによって信頼性を判定することを特徴とする請求項1又は2に記載の生体情報出力装置。
    The biological information calculating means acquires the heart rate and / or breathing interval of the subject as the biological information,
    The biological information output apparatus according to claim 1, wherein the reliability determination unit determines the reliability depending on whether the variation in the interval is large.
  5.  前記対象者の状態を判定する状態判定手段を更に備え、
     前記信頼性判定手段は、前記状態判定手段により判定された対象者の状態に応じて前記生体情報の信頼性を判定することを特徴とする請求項1から4の何れか一項に記載の生体情報出力装置。
    Further comprising a state determination means for determining the state of the subject,
    The living body according to any one of claims 1 to 4, wherein the reliability determining unit determines the reliability of the biological information according to the state of the subject determined by the state determining unit. Information output device.
  6.  前記状態判定手段は、前記対象者が臥床状態であるか否かを判定し、
     前記信頼性判定手段は、前記対象者が臥床状態でない場合は、信頼性が低いと判定する請求項5に記載の生体情報出力装置。
    The state determination means determines whether or not the subject is in a bedridden state,
    The biological information output device according to claim 5, wherein the reliability determination unit determines that the reliability is low when the subject is not in a bedded state.
  7.  前記算出された生体情報を記憶する生体情報記憶手段を更に備え、
     前記信頼性判定手段は、前記記憶された生体情報を読み出して、生体情報の信頼性を判定することを特徴とする請求項1から6の何れか一項に記載の生体情報出力装置。
    Further comprising biological information storage means for storing the calculated biological information,
    The biometric information output device according to any one of claims 1 to 6, wherein the reliability determination unit reads the stored biometric information and determines the reliability of the biometric information.
  8.  対象者の生体信号を取得する生体信号取得手段と、
     前記取得された生体信号から生体情報を算出する生体情報算出手段と、
     前記生体情報算出手段により算出された前記生体情報の信頼性を判定する信頼性判定手段と、
     前記信頼性判定手段により判定された信頼性に関する情報を、信頼性情報として前記生体情報に付加して出力する生体情報出力手段と、
     を備えることを特徴とする生体情報出力装置。
    A biological signal acquisition means for acquiring a biological signal of the subject;
    Biological information calculation means for calculating biological information from the acquired biological signal;
    Reliability determination means for determining the reliability of the biological information calculated by the biological information calculation means;
    Biometric information output means for outputting information related to reliability determined by the reliability determination means in addition to the biometric information as reliability information;
    A biological information output device comprising:
  9.  対象者の生体信号を取得する生体信号取得ステップと、
     前記取得された生体信号から生体情報を算出する生体情報算出ステップと、
     前記算出された生体情報の信頼性を判定する信頼性判定ステップと、
     前記信頼性判定ステップにより信頼性が高いと判定された場合は前記生体情報を出力し、信頼性が低いと判定された場合は前記生体情報を出力しない生体情報出力ステップと、
     を有することを特徴とする生体情報出力方法。
    A biological signal acquisition step of acquiring a biological signal of the subject;
    A biological information calculation step of calculating biological information from the acquired biological signal;
    A reliability determination step of determining the reliability of the calculated biological information;
    When it is determined that the reliability is high by the reliability determination step, the biological information is output, and when it is determined that the reliability is low, the biological information output step that does not output the biological information;
    A biological information output method comprising:
  10.  請求項9に記載の生体情報出力方法をコンピュータに実現させるためのプログラム。 A program for causing a computer to realize the biometric information output method according to claim 9.
PCT/JP2016/075768 2015-09-04 2016-09-02 Bio-information output device, bio-information output method and program WO2017038966A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/757,484 US11096589B2 (en) 2015-09-04 2016-09-02 Bio-information output device, bio-information output method and program
US17/378,035 US20210338087A1 (en) 2015-09-04 2021-07-16 Bio-information output device, bio-information output method and program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015175002 2015-09-04
JP2015-175002 2015-09-04
JP2016171167A JP6697985B2 (en) 2015-09-04 2016-09-01 Biometric information output device
JP2016-171167 2016-09-01

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/757,484 A-371-Of-International US11096589B2 (en) 2015-09-04 2016-09-02 Bio-information output device, bio-information output method and program
US17/378,035 Continuation US20210338087A1 (en) 2015-09-04 2021-07-16 Bio-information output device, bio-information output method and program

Publications (1)

Publication Number Publication Date
WO2017038966A1 true WO2017038966A1 (en) 2017-03-09

Family

ID=58187694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/075768 WO2017038966A1 (en) 2015-09-04 2016-09-02 Bio-information output device, bio-information output method and program

Country Status (1)

Country Link
WO (1) WO2017038966A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049667A1 (en) * 2017-09-06 2019-03-14 株式会社村上開明堂 Heartbeat detection device, heartbeat detection method, and program
CN109549638A (en) * 2018-11-30 2019-04-02 上海与德通讯技术有限公司 It is a kind of intelligently to nurse method, apparatus, system and storage medium
CN109846466A (en) * 2017-11-30 2019-06-07 八乐梦医用床有限公司 Abnormity determining device, electronic equipment and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142162A (en) * 2006-12-07 2008-06-26 Seiko Epson Corp Arm-attachable type biological information measuring device
WO2013086564A1 (en) * 2011-12-12 2013-06-20 Medvet Science Pty Ltd Method and apparatus for detecting the onset of hypoglycaemia
WO2014196119A1 (en) * 2013-06-06 2014-12-11 セイコーエプソン株式会社 Device for processing biological information, and method for processing biological information
JP2015012948A (en) * 2013-07-04 2015-01-22 パラマウントベッド株式会社 Sleep evaluation device, sleep evaluation method, and sleep evaluation program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008142162A (en) * 2006-12-07 2008-06-26 Seiko Epson Corp Arm-attachable type biological information measuring device
WO2013086564A1 (en) * 2011-12-12 2013-06-20 Medvet Science Pty Ltd Method and apparatus for detecting the onset of hypoglycaemia
WO2014196119A1 (en) * 2013-06-06 2014-12-11 セイコーエプソン株式会社 Device for processing biological information, and method for processing biological information
JP2015012948A (en) * 2013-07-04 2015-01-22 パラマウントベッド株式会社 Sleep evaluation device, sleep evaluation method, and sleep evaluation program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049667A1 (en) * 2017-09-06 2019-03-14 株式会社村上開明堂 Heartbeat detection device, heartbeat detection method, and program
CN111050640A (en) * 2017-09-06 2020-04-21 株式会社村上开明堂 Heartbeat detection device, heartbeat detection method, and program
JPWO2019049667A1 (en) * 2017-09-06 2020-12-17 株式会社村上開明堂 Heart rate detector, heart rate detection method and program
CN109846466A (en) * 2017-11-30 2019-06-07 八乐梦医用床有限公司 Abnormity determining device, electronic equipment and computer readable storage medium
CN109846466B (en) * 2017-11-30 2022-09-20 八乐梦医用床有限公司 Abnormality determination device, electronic apparatus, and computer-readable storage medium
CN109549638A (en) * 2018-11-30 2019-04-02 上海与德通讯技术有限公司 It is a kind of intelligently to nurse method, apparatus, system and storage medium

Similar Documents

Publication Publication Date Title
JP6947875B2 (en) Biological information output device
CN108778099B (en) Method and apparatus for determining a baseline of one or more physiological characteristics of a subject
US20150272500A1 (en) Comfortable and personalized monitoring device, system, and method for detecting physiological health risks
US11547364B2 (en) Abnormality notification system, abnormality notification method, and program
JP7106729B2 (en) Abnormality judgment device and program used for it
WO2017038966A1 (en) Bio-information output device, bio-information output method and program
CA3100475C (en) Apparatus and a method for monitoring a patient during his sleep
JP6556783B2 (en) Abnormality reporting system and program
JP7325576B2 (en) Terminal device, output method and computer program
KR102503149B1 (en) Apparatus and method for measuring biometric information
JP4665490B2 (en) Life support device
JP7083052B2 (en) Abnormality notification system and smartphone
Nakasho et al. Implementation of a vital signs monitoring system in combination with a bed-leaving detection system
Wu et al. A portable monitoring system with automatic event detection for sleep apnea level-IV evaluation
US20240099592A1 (en) Monitoring of breathing and heart function
JP2017158635A (en) Body motion wave analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16841995

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15757484

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16841995

Country of ref document: EP

Kind code of ref document: A1