JP5592490B2 - Cyanovirin-N mutant, modified derivative thereof and application thereof - Google Patents

Cyanovirin-N mutant, modified derivative thereof and application thereof Download PDF

Info

Publication number
JP5592490B2
JP5592490B2 JP2012527184A JP2012527184A JP5592490B2 JP 5592490 B2 JP5592490 B2 JP 5592490B2 JP 2012527184 A JP2012527184 A JP 2012527184A JP 2012527184 A JP2012527184 A JP 2012527184A JP 5592490 B2 JP5592490 B2 JP 5592490B2
Authority
JP
Japan
Prior art keywords
lcvn
sequence
cyanovirin
mpeg
mutant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012527184A
Other languages
Japanese (ja)
Other versions
JP2013503609A (en
Inventor
シオン、シェン
チェン、ウェイ
クィアン、チュイウェン
ワン、イフェイ
海雄 北里
Original Assignee
ジナン ユニバーシティ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジナン ユニバーシティ filed Critical ジナン ユニバーシティ
Publication of JP2013503609A publication Critical patent/JP2013503609A/en
Application granted granted Critical
Publication of JP5592490B2 publication Critical patent/JP5592490B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/195Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • A61P31/18Antivirals for RNA viruses for HIV
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Virology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Gastroenterology & Hepatology (AREA)
  • AIDS & HIV (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Description

本発明は、生物医薬領域に該当し、具体的に、シアノビリン-N(CVN)変異体、そのPEG修飾誘導体及びそれらの製薬中の応用に関する。   The present invention falls within the biopharmaceutical field and specifically relates to cyanovirin-N (CVN) variants, PEG-modified derivatives thereof and their pharmaceutical applications.

シアノビリン-N(Cyanovirin-N、CVN)は、米国の科学者BODYらがシアノバクテリアから溶出した、抗HIV活性を有するタンパク質である。CVNは、ヒト免疫不全ウイルスHIV-1のエンベロープ糖蛋白であるgp120と特異的且つ高親和性に結合して、抗ウイルス活性を発揮し、この特徴によれば、ウイルスの変異の干渉を受けることもなく、同時に、広範囲スペクトル性の抗ウイルス性、安定性等の特徴を有する。それは、CVNタンパク質が価値ある抗ウイルス薬となり得ることを示している。[非特許文献1: BOYD M R, GUSTAFSON K R, MCMAHON J B, et al. Discovery of cyanovirin-N, a novel human immuno-deficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development [J]. Antimicrobial Agents and Chemotherapy, 1997, 41(7): 1521-30.] 。しかし、該タンパク質の分子量が比較的小さく、且つ分子中には、二つのジスルフィド結合を有するため、該タンパク質を大腸菌で発現するのは難しく、産生量が少ない。原核生物由来の低分子タンパク質薬物として、半減期の短さ、細胞毒性、免疫応答の誘起等の欠点を有する。   Cyanovirin-N (Cynovirin-N, CVN) is a protein having anti-HIV activity that is eluted from cyanobacteria by US scientists BODY and others. CVN binds specifically and with high affinity to gp120, which is the envelope glycoprotein of human immunodeficiency virus HIV-1, and exhibits antiviral activity. At the same time, it has features such as broad spectrum antiviral properties and stability. It shows that CVN protein can be a valuable antiviral drug. [Non-Patent Document 1: BOYD MR, GUSTAFSON KR, MCMAHON JB, et al. Discovery of cyanovirin-N, a novel human immuno-deficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development [J] Antimicrobial Agents and Chemotherapy, 1997, 41 (7): 1521-30.]. However, since the molecular weight of the protein is relatively small and the molecule has two disulfide bonds, it is difficult to express the protein in Escherichia coli and the production amount is small. As a low molecular weight protein drug derived from prokaryotes, it has drawbacks such as short half-life, cytotoxicity, induction of immune response and the like.

ポリエチレングリコール(PEG)は、無毒、無免疫の水溶性ポリマーであり、共有結合を介してタンパク質を修飾する。このPEG修飾は、医薬品のプロセスで、乏しい安定性や短い半減期等を有するタンパク質やペプチドの問題を解決又は改善するために用いる有効な方法である。(非特許文献2:IANG Z Y, XU S W, WANG Y Q. Chemistry for pegylation of protein and peptide molecules [J]. Chinese Journal of Organic Chemistry, 2003, 23( 12 ): 1340-7.)。PEG-マレイミドを利用して酸性条件下で、CVNを修飾することは、既に文献で報告されている。Zappeらは、62番目のグルタミンをシステインに置き換えた変異体(CVN(Q62C))を選択して、mPEG-マレイミド(mPEG-MAL)を用いて中性PH条件下で修飾した結果、その薬物性が有効に改善されたことを示している(非特許文献3:ZAPPE H, SNELL M E, BOSSARD M J. PEGylation of cyanovirin-N, an entry inhibitor of HIV [J]. Advanced Drug Delivery Reviews, 2008, 60(1): 79-87.)。   Polyethylene glycol (PEG) is a non-toxic, non-immune, water-soluble polymer that modifies proteins through covalent bonds. This PEG modification is an effective method used to solve or ameliorate the problems of proteins and peptides having poor stability and short half-life in pharmaceutical processes. (Nonpatent literature 2: IANG ZY, XUSW, WANGYQ. Chemistry for pegylation of protein and peptide molecules [J]. Chinese Journal of Organic Chemistry, 2003, 23 (12): 1340-7.). The modification of CVN under acidic conditions using PEG-maleimide has already been reported in the literature. Zappe et al. Selected a mutant (CVN (Q62C)) in which the 62nd glutamine was replaced with cysteine and modified it with mPEG-maleimide (mPEG-MAL) under neutral PH conditions. (Non-patent Document 3: ZAPPE H, SNELL ME, BOSSARD M J. PEGylation of cyanovirin-N, an entry inhibitor of HIV [J]. Advanced Drug Delivery Reviews, 2008, 60 (1): 79-87.).

具体的に、Zappeらの修飾策略は、62及び14番目のグルタミンをシステインに置き換えた変異体において、それぞれ20KD及び30KDのmPEG-マレイミドを選択して、中性PH及びアルカリ性に寄るPH条件下で、それを修飾したことである。その結果は、14番目のグルタミンをシステインに置き換えた変異体(CVN(Q14C))の修飾効率が非常に低いのに対して、62番目のグルタミンをシステインに置き換えた変異体(CVN(Q62C))が中性PHで、CVN変異体とmPEG-MALのモル比が1:3である条件下で、修飾率が比較的に高い。しかし、CVN(Q62C)の抗HIVの活性は、未変異のCVNより低く、且つ選択された修飾サイトがCVNの内部であるので、mPEG-マレイミド30KDa(mPEG-MAL-30KDa)の修飾を経た変異体は、抗HIVの活性が殆ど失われていた。   Specifically, Zappe et al.'S modification strategy selected 20 KD and 30 KD mPEG-maleimide in mutants in which the 62nd and 14th glutamine were replaced with cysteine, respectively, under PH conditions approaching neutral PH and alkalinity. , It has been modified. As a result, the modification efficiency of the mutant in which the 14th glutamine was replaced with cysteine (CVN (Q14C)) was very low, whereas the mutant in which the 62nd glutamine was replaced with cysteine (CVN (Q62C)). Is a neutral PH, and the modification rate is relatively high under the condition where the molar ratio of CVN mutant to mPEG-MAL is 1: 3. However, since the anti-HIV activity of CVN (Q62C) is lower than that of unmutated CVN, and the selected modification site is inside CVN, mutation through the modification of mPEG-maleimide 30KDa (mPEG-MAL-30KDa) The body had almost lost anti-HIV activity.

BOYD M R, GUSTAFSON K R, MCMAHON J B, et al. Discovery of cyanovirin-N, a novel human immuno-deficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development [J]. Antimicrobial Agents and Chemotherapy, 1997, 41(7): 1521-30.BOYD MR, GUSTAFSON KR, MCMAHON JB, et al. Discovery of cyanovirin-N, a novel human immuno-deficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: Potential applications to microbicide development [J]. Antimicrobial Agents and Chemotherapy, 1997, 41 (7): 1521-30. IANG Z Y, XU S W, WANG Y Q. Chemistry for pegylation of protein and peptide molecules [J]. Chinese Journal of Organic Chemistry, 2003, 23( 12 ): 1340-7.IANG Z Y, XU SW, WANG Y Q. Chemistry for pegylation of protein and peptide molecules [J]. Chinese Journal of Organic Chemistry, 2003, 23 (12): 1340-7. ZAPPE H, SNELL M E, BOSSARD M J. PEGylation of cyanovirin-N, an entry inhibitor of HIV [J]. Advanced Drug Delivery Reviews, 2008, 60(1): 79-87.ZAPPE H, SNELL ME, BOSSARD M J. PEGylation of cyanovirin-N, an entry inhibitor of HIV [J]. Advanced Drug Delivery Reviews, 2008, 60 (1): 79-87.

先行技術に存在する欠陥や欠点に対して、本発明の目的として、まずは、より宿主に発現しやすく、より純化しやすく、且つ更なる修飾に有利である、CVN変異体を提供することにある。   In order to overcome the deficiencies and disadvantages existing in the prior art, an object of the present invention is to provide a CVN mutant that is easier to express in the host, easier to purify, and advantageous for further modification. .

本発明のもうひとつの目的としては、タンパク質自身の細胞毒性及び免疫原性を低下させて、より応用に適応できる、CVN変異体の修飾誘導物を提供することにある。   Another object of the present invention is to provide a modified derivative of a CVN mutant that can be adapted to more applications by reducing the cytotoxicity and immunogenicity of the protein itself.

本発明のもう一つの目的としては、前記変異体及び修飾誘導物をエイズの予防及び/又は治療用薬物の製造への使用である。   Another object of the present invention is to use the mutants and modified derivatives for the manufacture of a drug for preventing and / or treating AIDS.

前記目的を実現するために、本発明は、以下の技術を提供する。   In order to achieve the above object, the present invention provides the following techniques.

アミノ配列がA配列とB配列からなり、A配列がB配列のN末端に位置し、
A配列が
a.シーケンス表のSEQ ID NO: 1、
b.シーケンス表のSEQ ID NO: 1のアミノ残基配列について、ひとつ又はいくつかのアミノ酸を置換、欠失、挿入することにより得られた、親水性でフレキシブルな特性を有するもの、
の内いずれかひとつであり、
B配列が、
c.シーケンス表のSEQ ID NO: 2、
d.シーケンス表のSEQ ID NO: 2のアミノ残基配列について、ひとつ又はいくつかのアミノ酸をそのN末端の前の三つの残基を変更せずに置換、欠失、挿入することにより得られた特異的な抗HIVウイルス活性を有するもの、
の内何れか一つであることを特徴とするシアノビリン-N変異体。
The amino sequence consists of an A sequence and a B sequence, the A sequence is located at the N-terminus of the B sequence,
A array is
a. Sequence table SEQ ID NO: 1,
b. SEQ ID NO: 1 in the sequence table, which has hydrophilic and flexible properties obtained by substituting, deleting, or inserting one or several amino acids for the amino acid residue sequence of 1.
Any one of
B array is
c. SEQ ID NO of sequence table: 2,
d. Specificity obtained by substituting, deleting, or inserting one or several amino acids in the amino acid sequence of SEQ ID NO: 2 in the sequence table without changing the three residues before the N-terminus Having typical anti-HIV virus activity,
A cyanovirin-N mutant characterized by being any one of the above.

また、本発明は、シアノビリン-N変異体のコードされたヌクレオチド配列を提供する。
前記コードされたヌクレオチド配列は、
e.シーケンス表のSEQ ID NO: 3、
f.ストリンジェンシー条件下において、シーケンス表のSEQ ID NO: 3に限定したDNA配列とハイブリダイズできるヌクレオチド配列、
の内何れかひとつの配列を含有することが好ましい。
ここで、ストリンジェンシー条件とは、低塩濃度且つ高温であるハイブリダイゼーション条件であることを指し、例えば、0.1×SSC、0.1%SDS及び温度65℃の条件である。
The present invention also provides the encoded nucleotide sequence of the cyanovirin-N variant.
The encoded nucleotide sequence is:
e. SEQ ID NO of sequence table: 3,
f. A nucleotide sequence capable of hybridizing with a DNA sequence limited to SEQ ID NO: 3 in the sequence table under stringency conditions;
It is preferable to contain any one of the sequences.
Here, the stringency condition refers to a hybridization condition with a low salt concentration and a high temperature, for example, 0.1 × SSC, 0.1% SDS, and a temperature of 65 ° C.

前記ヌクレオチド配列を、主に、宿主での目的蛋白の発現に用い、前記ヌクレオチド配列を含有する発現ベクター、細胞系、宿主菌等は共に、通常の技術手段を通して得ることができる。タンパク質が宿主から純化される過程も、通常の方法を用いても良い。   The nucleotide sequence is mainly used for the expression of the target protein in the host, and the expression vector, cell line, host fungus and the like containing the nucleotide sequence can be obtained through ordinary technical means. The process in which the protein is purified from the host may also use a normal method.

純化した蛋白を得た上、本発明は、また、前記CVN変異体のN末端にPEG修飾を行い、その修飾サイトが一般的にN末端のグリシン残基のα-アミノ基に対する部位である、CVN変異体修飾誘導物を提供する。   In addition to obtaining a purified protein, the present invention also performs PEG modification on the N-terminus of the CVN mutant, and the modification site is generally a site for the α-amino group of the N-terminal glycine residue. CVN variant modified derivatives are provided.

前記PEG修飾の修飾剤としては、mPEG-ALD(モノメトキシポリエチレングリコールアルデヒド)を用いることが好ましい。前記mPEG-ALDの分子量は、10KD〜20KDであることが好ましい。   As the modifier for PEG modification, mPEG-ALD (monomethoxypolyethyleneglycolaldehyde) is preferably used. The molecular weight of the mPEG-ALD is preferably 10 KD to 20 KD.

前記変異体及び修飾誘導物共に、エイズの予防及び/又は治療の薬物の製造に応用することができる。同様な抗ウイルスの機構に基づいて、本発明の変異体及び修飾誘導物は、その他のウイルス微生物による病気の予防及び/又は治療用薬物の製造に使用することができる。   Both the mutant and the modified derivative can be applied to the manufacture of a drug for preventing and / or treating AIDS. Based on similar antiviral mechanisms, the variants and modified derivatives of the present invention can be used in the manufacture of drugs for the prevention and / or treatment of diseases caused by other viral microorganisms.

先行技術に対して、本発明は、次の有益な効果を有する。   In contrast to the prior art, the present invention has the following beneficial effects.

本発明が提供したCVN変異体及びその修飾誘導体は、試験管内組換えCVNの抗ウイルス機能をより実現させるためのものであり、組換えL-CVNの抗HIV活性は向上した(WST法及び細胞融合法)。本発明において製造したLCVN末端に親水性でフレキシブルなペプチド配列を導入したため、N末端の規定サイトでのアミノ基修飾を行うことができる。我々の実験結果は、LCVNがN末端規定サイトがアミノ基で修飾された後、活性のある修飾物を得ることだけではなく、修飾物の抗ウイスル活性を一層向上させたことを証明した。   The CVN mutant and its modified derivative provided by the present invention are for realizing the antiviral function of recombinant CVN in vitro, and the anti-HIV activity of recombinant L-CVN is improved (WST method and cell Fusion method). Since the hydrophilic and flexible peptide sequence was introduced into the LCVN terminal produced in the present invention, amino group modification at the N-terminal defined site can be performed. Our experimental results demonstrated that LCVN not only obtained an active modification after the N-terminal defining site was modified with an amino group, but further improved the anti-viral activity of the modification.

pET3c-6His-SUMO-LCVN組換えプラスミド図である。It is a pET3c-6His-SUMO-LCVN recombinant plasmid figure. 組換えpET3c-6His-SUMO-LCVNプラスミドの制限酵素処理及びPCR分析結果である。ここで、M: DL2000 DNA marker、レーン1: pET3c -6His-SUMO-LCVN / Nde I+BamH I; レーン2: PCR産物である。It is a restriction enzyme treatment and PCR analysis result of the recombinant pET3c-6His-SUMO-LCVN plasmid. Here, M: DL2000 DNA marker, Lane 1: pET3c-6His-SUMO-LCVN / Nde I + BamHI; Lane 2: PCR product. SDS-PAGE電気泳動のBL21/pET3c-6His-SUMO-LCVNの蛋白発現特性結果。ここで、各レーンは、左から右へ順次、IPTG未添加、IPTG誘導20h、誘導発現粉砕物の遠心上澄液、誘導発現粉砕物の遠心沈殿、である。The protein expression characteristic result of BL21 / pET3c-6His-SUMO-LCVN of SDS-PAGE electrophoresis. Here, in each lane, from left to right, IPTG is not added, IPTG induction 20h, centrifugal supernatant of the induced expression pulverized product, and centrifugal precipitation of the induced expression pulverized product. 抽出タンパクLCVNの解析結果である。各レーンは、左から右へ順次、Sumo-LCVN融合タンパク、Sumo プロテアーゼ処理後のSumo-LCVN融合タンパク、LCVN タンパクである。(*)Sumo-LCVN 融合タンパクを示す。(**)LCVN タンパクを示す。It is an analysis result of extracted protein LCVN. Each lane is, sequentially from left to right, Sumo-LCVN fusion protein, Sumo-LCVN fusion protein after treatment with Sumo protease, and LCVN protein. (*) Sumo-LCVN fusion protein. (**) Indicates LCVN protein. 組換えLCVN の純度に関するRP-HPLC分析。RP-HPLC analysis for purity of recombinant LCVN. 異なるpH及び混合比条件下での、10K mPEG-ALD修飾LCVNの Tricine-SDS-PAGE電気泳動パターン。ここで、左から右へ、レーン1はタンパクマーカー、レーン2、3、4はそれぞれ、PH3.5で、LCVNと10K mPEG-ALDのモル比が1:1、 1:3、1:5の時の修飾物の電気泳動パターン、レーン5、6、7はそれぞれ、PH4.0で、LCVNと10K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターン、レーン8、9、10はそれぞれ、PH5.0で、LCVNと10K mPEG-ALDのモル比が1:1、1:3、1:5 の時の修飾物の電気泳動パターン、レーン11、12、13はそれぞれ、PH6.0で、LCVNと10K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターン、レーン14、15、16はそれぞれ、PH7.0で、LCVNと10K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターンである。Tricine-SDS-PAGE electrophoresis pattern of 10K mPEG-ALD modified LCVN under different pH and mixing ratio conditions. Here, from left to right, lane 1 is a protein marker, lanes 2, 3, and 4 are PH 3.5, respectively, and the molar ratio of LCVN to 10K mPEG-ALD is 1: 1, 1: 3, and 1: 5. Electrophoretic pattern of the modified product, lanes 5, 6, and 7 are PH 4.0 and the modified product when the molar ratio of LCVN to 10K mPEG-ALD is 1: 1, 1: 3, and 1: 5, respectively. Electrophoresis patterns, lanes 8, 9, and 10 are PH 5.0, and the modified electrophoresis patterns and lanes when the molar ratio of LCVN to 10K mPEG-ALD is 1: 1, 1: 3, and 1: 5, respectively. 11, 12, and 13 are PH 6.0, and the electrophoretic pattern of the modified product when the molar ratio of LCVN to 10K mPEG-ALD is 1: 1, 1: 3, 1: 5, lanes 14, 15, 16 Are electrophoretic patterns of the modified products when the pH is 7.0 and the molar ratio of LCVN to 10K mPEG-ALD is 1: 1, 1: 3, and 1: 5, respectively. 異なるPH 及び混合比条件下での、10K mPEG-ALD修飾LCVNの修飾率の比較図である。It is a comparison figure of the modification rate of 10K mPEG-ALD modification LCVN under different PH and mixing ratio conditions. 異なるPH及び混合比条件下での、20K mPEG-ALD修飾LCVNのTricine-SDS-PAGE電気泳動パターン。ここで、左から右へ、レーン1は、タンパク マーカー、レーン2、3、4はそれぞれ、PH3.5で、LCVNと20K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターン、レーン5、6、7はそれぞれ、PH4.0で、LCVNと20K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターン、レーン8、 9、10はそれぞれ、PH5.0で、LCVNと20K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターン、レーン11、12、13はそれぞれ、PH6.0で、LCVNと20K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターン、レーン14、15、16はそれぞれ、PH7.0で、LCVNと20K mPEG-ALDのモル比が1:1、1:3、1:5の時の修飾物の電気泳動パターンである。Tricine-SDS-PAGE electrophoresis pattern of 20K mPEG-ALD modified LCVN under different PH and mixing ratio conditions. Here, from left to right, lane 1 is the protein marker, lanes 2, 3, and 4 are PH 3.5, respectively, and the molar ratio of LCVN to 20K mPEG-ALD is 1: 1, 1: 3, 1: 5. Electrophoretic pattern of the modified product at the time of lanes 5, lanes 5, 6 and 7 are PH 4.0 and the modified product when the molar ratio of LCVN to 20K mPEG-ALD is 1: 1, 1: 3, 1: 5, respectively. Electrophoretic patterns of lanes 8, 9, and 10 are PH 5.0 and the electrophoretic patterns of the modified products when the molar ratio of LCVN to 20K mPEG-ALD is 1: 1, 1: 3, and 1: 5, Lanes 11, 12, and 13 are PH 6.0 and the electrophoresis pattern of the modified product when the molar ratio of LCVN to 20K mPEG-ALD is 1: 1, 1: 3, and 1: 5, and lanes 14, 15, 16 are the electrophoretic patterns of the modified products when PH is 7.0 and the molar ratio of LCVN to 20K mPEG-ALD is 1: 1, 1: 3, 1: 5. 異なるPH及び混合比条件下での、20K mPEG-ALD修飾LCVNの修飾率の比較図である。It is a comparison figure of the modification rate of 20K mPEG-ALD modification LCVN under different PH and mixing ratio conditions. 異なる反応時間での、10K mPEG-ALD修飾LCVNのTricine-SDS-PAGE 電気泳動パターン。ここで、レーン1は、タンパク マーカー ,レーン2-8の それぞれは、反応後1h、3h、5h、7h、9h、12hおよび24h のサンプル電気泳動結果。レーン9 は、未修飾のLCVNである。Tricine-SDS-PAGE electrophoresis pattern of 10K mPEG-ALD modified LCVN at different reaction times. Here, lane 1 is a protein marker, and lanes 2-8 are sample electrophoresis results 1 h, 3 h, 5 h, 7 h, 9 h, 12 h and 24 h after the reaction. Lane 9 is unmodified LCVN. 異なる反応時間での、20K mPEG-ALD修飾LCVNのTricine-SDS-PAGE電気泳動パターン。ここで、レーン1は、タンパク マーカー、レーン2-8は それぞれ、反応後1h、3h、5h、7h、9h、12hおよび24h のサンプル電気泳動結果。レーン9 は、未修飾の LCVNである。Tricine-SDS-PAGE electrophoresis pattern of 20K mPEG-ALD modified LCVN at different reaction times. Here, lane 1 is a protein marker, and lanes 2-8 are sample electrophoresis results 1 h, 3 h, 5 h, 7 h, 9 h, 12 h and 24 h after the reaction, respectively. Lane 9 is unmodified LCVN. 10K mPEG-ALD修飾LCVNの分離・精製のためのSP-Sepharose溶出曲線。SP-Sepharose elution curve for separation and purification of 10K mPEG-ALD modified LCVN. 10K mPEG-ALD修飾LCVNの、SP-Sepharose分離精製を経た各組成の Tricine-SDS-PAGE電気泳動パターン。ここで、レーン1は、タンパクマーカー、レーン2-5はそれぞれ、修飾反応混合物、ペネトレーションピーク、80mM NaCl 含有buffer A の溶出ピーク、400mM NaCl含有buffer Aの溶出ピークである。Tricine-SDS-PAGE electrophoresis pattern of 10K mPEG-ALD modified LCVN of each composition after SP-Sepharose separation and purification. Here, lane 1 is a protein marker, and lanes 2-5 are a modification reaction mixture, a penetration peak, an elution peak of buffer A containing 80 mM NaCl, and an elution peak of buffer A containing 400 mM NaCl, respectively. 20K mPEG-ALD修飾LCVN修の、SP-Sepharose分離精製を経た溶出曲線。Elution curve of 20K mPEG-ALD modified LCVN modified through SP-Sepharose separation and purification. 20K mPEG-ALD修飾LCVNの、SP-Sepharose分離精製を経た各組成の Tricine-SDS- PAGE電気泳動パターンであり、レーン1は、タンパクマーカー、レーン2-5 は、修飾反応の混合物、ペネトレーションピーク、70mM NaCl 含有buffer A の溶出ピーク、400mM NaCl 含有buffer Aの溶出ピークである。20K mPEG-ALD modified LCVN is a Tricine-SDS-PAGE electrophoresis pattern of each composition after SP-Sepharose separation and purification. Lane 1 is a protein marker, Lane 2-5 is a mixture of modification reaction, penetration peak, The elution peak of buffer A containing 70 mM NaCl and the elution peak of buffer A containing 400 mM NaCl. 異なる濃度のLCVN及びその修飾物で処理した後の、MT-4細胞生残率(%)である。MT-4 cell survival rate (%) after treatment with different concentrations of LCVN and its modifications. 異なる濃度のLCVN及びその修飾物で処理した後の、MT-4細胞生残率(%)である。MT-4 cell survival rate (%) after treatment with different concentrations of LCVN and its modifications. 異なる濃度のLCVN及びその修飾物で処理した後の、MT-4細胞生残率(%)である。MT-4 cell survival rate (%) after treatment with different concentrations of LCVN and its modifications. 異なる濃度のLCVN及びその修飾物で処理した後の、MT-4細胞生残率(%)である。MT-4 cell survival rate (%) after treatment with different concentrations of LCVN and its modifications. CVNおよびLCVNの、HIV-1/IIIB 増殖抑制率(%)である。It is the HIV-1 / IIIB growth inhibition rate (%) of CVN and LCVN. CVNおよびLCVNの、HIV-1/IIIB 増殖抑制率(%)である。It is the HIV-1 / IIIB growth inhibition rate (%) of CVN and LCVN. LCVN及びそのPEG修飾物の抗ヒト免疫不全ウイルス活性を示す。ここで、(a)は、位相差顕微鏡写真で、24h培養後の(1)MOLT-4細胞、(2)MOLT-4/IIIB細胞、 (3) MOLT-4とMOLT-4/IIIBの共培養細胞、(4)疑似処理(MOCK)の共培養細胞、(5)−(8)は、濃度113nMの、CVN、LCVN、10kPEG-LCVN、20kPEG-LCVNで処理後の、共培養細胞。黒色矢印で示すのが、HIV誘導で見られる融合巨大細胞である。 (b)は、CNV、LCVN、10kPEG-LCVN、20kPEG-LCVNの、各融合抑制活性であり、すべての実験は少なくとも、3回の独立実験後の統計処理結果である。1 shows the anti-human immunodeficiency virus activity of LCVN and its PEG-modified products. Here, (a) is a phase-contrast micrograph of (1) MOLT-4 cells, (2) MOLT-4 / IIIB cells, (3) MOLT-4 and MOLT-4 / IIIB Cultured cells, (4) mock-treated (MOCK) co-cultured cells, (5)-(8) are co-cultured cells after treatment with CVN, LCVN, 10 kPEG-LCVN, 20 kPEG-LCVN at a concentration of 113 nM. The black arrows show the fused giant cells seen with HIV induction. (b) is each fusion inhibitory activity of CNV, LCVN, 10 kPEG-LCVN, and 20 kPEG-LCVN, and all experiments are statistical processing results after at least three independent experiments. LCVN 及びそのPEG 修飾物の抗HSV-1活性に関するCPE観察結果である。A、正常対照、 B、ウイルス対照、C、陽性薬物ACV対照(1μg/ml)、D、L-CVNサンプル(1.562μg/ml)、E、SUMO-L-CVNサンプル(3.125μg/ml)、F、mPEG-ALD-10kDa-L-CVN(3.125μg/ml)、G、mPEG-ALD-20kDa-L-CVN(3.125μg/ml)。It is a CPE observation result regarding the anti-HSV-1 activity of LCVN and its PEG modification product. A, normal control, B, virus control, C, positive drug ACV control (1 μg / ml), D, L-CVN sample (1.562 μg / ml), E, SUMO-L-CVN sample (3.125 μg / ml) ), F, mPEG-ALD-10 kDa-L-CVN (3.125 μg / ml), G, mPEG-ALD-20 kDa-L-CVN (3.125 μg / ml).

以下、本発明をより理解するために、本発明のいくつかの好ましい実施例を挙げたが、本発明の実施形態がこれに限られるものではない。   Hereinafter, in order to better understand the present invention, some preferred examples of the present invention are given, but the embodiments of the present invention are not limited thereto.

本発明の実施例に関わる主な材料は、次の通りである。宿主菌大腸菌BL21(DE3)(Novagen社から購入 )、プラスミドpET3c( Novagen社から購入)、pET3c-SUMO-CVNは本室で保存するもの(その構築方法については既に特許出願を提出し、“その発明の名称は、「組換え藍藻の抗ウイルスタンパクの製造方法及び応用」であり、その出願番号は 200810198926.0である”、プラスミドの構築も公知の遺伝子工学方法を用いてもよく、その基本構想は、先ずPCR方法を通してSUMO-CVN 融合配列を得て、pET3cベクターと連結してからプラスミドpET3c-SUMO-CVNを得たことである。 )、SUMOプロテアーゼ(海基生物有限会社から購入)、Taqポリメラーゼ、T4 DNAリガーゼ、DNA分子量標準、各種制限酵素は、タカラから購入、タンパク質分子量標準品 (ポリ研究所バイオテック株式会社から購入)、プライマーは上海生工生物会社から購入、Ni2+Sepharose Fast Flow、SP Sepharose Fast FlowはGE Healthcare会社から購入、MTT、WST はアメリカ SIGMA 社から購入、単純ヘルペスウイルス1型(HSV-1)F株は 武漢大学ウイルス研究所から購入(CGMCC No.0396 )、Vero 細胞(CCL-81(商標))、MOLT-4細胞(CRL-1582(商標))、MT-4細胞(CRL-1942(商標))、HIV-I/IIIBウイルス(CRL-1973(商標)) 等は、ATCCから購入、mPEG-ALD(10K)およびmPEG-ALD(20K)は北京凱正生物工程発展有限会社から購入。 The main materials related to the examples of the present invention are as follows. The host bacteria E. coli BL21 (DE3) (purchased from Novagen), plasmid pET3c (purchased from Novagen), and pET3c-SUMO-CVN are stored in this room. The title of the invention is “Production method and application of recombinant cyanobacterial antiviral protein”, and its application number is 200810198926.0 ”. The construction of the plasmid may be performed by a known genetic engineering method, and its basics. The concept is that the SUMO-CVN fusion sequence was first obtained through the PCR method and ligated with the pET3c vector, and then the plasmid pET3c-SUMO-CVN was obtained.), SUMO protease (purchased from Marine Chemicals Co., Ltd.), Taq polymerase, T4 DNA ligase, DNA molecular weight standard, various restriction enzymes are purchased from Takara, protein molecular weight standard (purchased from Polylab Biotech Co., Ltd.), primers are Shanghai Purchased from biotech company, Ni 2+ Sepharose Fast Flow, SP Sepharose Fast Flow purchased from GE Healthcare company, MTT, WST purchased from SIGMA, USA Herpes simplex virus type 1 (HSV-1) F strain is Wuhan University virus Purchased from the laboratory (CGMCC No. 0396), Vero cells (CCL-81 ™), MOLT-4 cells (CRL-1582 ™), MT-4 cells (CRL-1942 ™), HIV- I / IIIB virus (CRL-1973 (trademark)), etc. were purchased from ATCC, and mPEG-ALD (10K) and mPEG-ALD (20K) were purchased from Beijing Zhengzheng Biological Process Development Co., Ltd.

NTA-0 buffer(20mmol/L Tris-HCl、pH 8.0、0.15mol/L NaCl)、NTA-20 buffer (20mmol/L Tris-HCl、pH 8.0、0.15mol/L NaCl、20mmol/Lイミダゾール)、NTA-250 buffer(20mmol/L Tris-HCl、pH 8.0、0.15mol/L NaCl、250mmol/L イミダゾール)、消化緩衝液(20mmol/L Tris-HCl、pH 8.0、0.15mol/L NaCl)、buffer A (20mmol/L NaAc-Ac、 pH 4.0)。   NTA-0 buffer (20 mmol / L Tris-HCl, pH 8.0, 0.15 mol / L NaCl), NTA-20 buffer (20 mmol / L Tris-HCl, pH 8.0, 0.15 mol / L NaCl, 20 mmol) / L imidazole), NTA-250 buffer (20 mmol / L Tris-HCl, pH 8.0, 0.15 mol / L NaCl, 250 mmol / L imidazole), digestion buffer (20 mmol / L Tris-HCl, pH 8.0) 0.15 mol / L NaCl), buffer A (20 mmol / L NaAc-Ac, pH 4.0).

実施例
1.組換えプラスミドpET3c-6His-SUMO-LCVNの構築
SUMO-L-CVN遺伝子の構築合成を二つのステップに分けて行ない、先ず二回のPCRを通して、L-CVN遺伝子を合成し、第一回PCR はpET3c-SUMO-CVNプラスミドを鋳型とし、F1-CVN、R-CVNを上下流プライマー とする。反応システムが鋳型1ngであり、上下流プライマーが各1μM、20μl Taq PCR MasterMixで、40μlまで水を加え、反応混合物を94℃で1min変性し、55℃までにアニーリングし、1min 保持し、72℃で1min伸長し、29 回サイクルを行った。反応物は、1%アガロースゲル電気泳動を行ない、ゲルから目的フラグメントを回収し、次のPCR 鋳型とする。第二回PCRは前回のPCR産物を鋳型とし、F2-CVN、R-CVNが上下流プライマーペアであり(その中、F2-CVNプライマーには、コードされた15個アミノ酸残基のフレキシブルなペプチドを含有する)、L-CVN全長配列を合成した。SUMO全長配列はPCR方法を通してpET3c-SUMO-CVNから合成した。SUMO配列末端とL-CVN配列前端の26bp重複相補配列を利用して、PCRを行ない、SUMO配列およびL-CVN配列を伸長鋳型とし、F-SUMO、R-CVNが上下流プライマーであり、通常の PCR条件下において、反応を行ない、反応物が1%アガロースゲル電気泳動を行ない、またゲルを回収し、SUMO-L-CVN全長配列を得た。
Example
1. Construction of recombinant plasmid pET3c-6His-SUMO-LCVN
The construction and synthesis of SUMO-L-CVN gene is divided into two steps. First, L-CVN gene is synthesized through two rounds of PCR. In the first round, pET3c-SUMO-CVN plasmid is used as a template and F1- Use CVN and R-CVN as upstream and downstream primers. The reaction system is 1 ng of template, the upstream and downstream primers are 1 μM each, 20 μl Taq PCR MasterMix, water is added to 40 μl, the reaction mixture is denatured at 94 ° C. for 1 min, annealed to 55 ° C., kept for 1 min, 72 ° C. 1 min, and 29 cycles were performed. The reaction product is subjected to 1% agarose gel electrophoresis, the target fragment is recovered from the gel, and used as the next PCR template. The second round PCR uses the previous PCR product as a template, and F2-CVN and R-CVN are upstream / downstream primer pairs (of which the F2-CVN primer is a flexible peptide with 15 amino acid residues encoded) L-CVN full-length sequence was synthesized. The SUMO full-length sequence was synthesized from pET3c-SUMO-CVN through the PCR method. PCR is carried out using the 26 bp overlapping complementary sequence at the end of the SUMO sequence and the front end of the L-CVN sequence, the SUMO sequence and the L-CVN sequence are used as extension templates, and F-SUMO and R-CVN are the upstream and downstream primers. Under the PCR conditions, the reaction was carried out, the reaction product was subjected to 1% agarose gel electrophoresis, and the gel was recovered to obtain the full-length SUMO-L-CVN sequence.

プラスミドpET3Cおよび6His-SUMO-LCVN全長配列それぞれは、Nde IおよびBamH Iの二つの酵素で消化され、消化産物を1%アガロースゲルで電気泳動し、その消化産物を回収し、TDNAリガーゼで産物を連結し、大腸菌JM109コンピテントセルに組み込んで、アンピシリン含有 LB平板上に塗布し、37℃で一晩培養し、プラスミドを溶出し、PCRで増幅した後、Nde IとBamH I二つの酵素で消化してから鑑定し、陽性プラスミドをInvitrogen社に送り、シークエンスを行う。 Each plasmid pET3C and 6His-SUMO-LCVN full length sequence, is digested with the two enzymes Nde I and BamH I, the digestion product was electrophoresed on a 1% agarose gel, recovered its digestion product, with T 4 DNA ligase The product was ligated, incorporated into E. coli JM109 competent cells, spread on LB plates containing ampicillin, cultured overnight at 37 ° C., the plasmid was eluted, amplified by PCR, then Nde I and BamH I two enzymes After digestion with, identify and send the positive plasmid to Invitrogen and sequence.

2.LCVN工程菌(組換え菌)のフラスコ振とう培養、タンパク精製および純度測定
シークエンシングが正しいプラスミドを大腸菌BL21(DE3)に転換し、工程菌 BL21[pET3c-6His-SUMO-LCVN]を得て、単細胞クローンを選択して培養して発現誘導し、 菌体を収集し、タンパクをSDS-PAGE 電気泳動で分析した。その結果は、BL21[pET3c-6His-SUMO-LCVN]陽性クローン菌株を誘導した後、大きさが約28kDaである融合タンパクを発現し、未誘導コントロール群は、相応位置で肉眼で見られる発現がなく、超音波で菌体を粉砕した後、融合タンパクが上澄液に存在し、可溶性発現となり、ゲル光密度スキャンを経て,可溶性目的タンパクが上澄液総タンパクの28.3±3.4 %を占めることを示す(図3)。
2. Flask shaking culture, protein purification and purity measurement of LCVN process bacteria (recombinant bacteria)
The correct sequencing plasmid is transformed into E. coli BL21 (DE3) to obtain the process bacterium BL21 [pET3c-6His-SUMO-LCVN], single cell clones are selected and cultured to induce expression, and the cells are collected. The protein was analyzed by SDS-PAGE electrophoresis. As a result, after inducing a BL21 [pET3c-6His-SUMO-LCVN] -positive clonal strain, a fusion protein having a size of about 28 kDa was expressed. After pulverizing the cells with ultrasound, the fusion protein is present in the supernatant and becomes soluble, and after gel light density scanning, the soluble target protein is 28.3 ± 3.4 of the total supernatant protein. % (FIG. 3).

高発現菌株を選択して、アンピシリン含有(100mg/L)LB培地1Lに接種し、37℃、 180rpmでOD600=0.6〜1.0までに培養し、温度を20℃に下げ、終濃度が0.5mMになるよう、IPTGを添加し、24h誘導発現した。4℃、6000xg、10minで遠心して菌体を収集し、一回凍結融解した後、菌体を沈殿し、1:10比率でNTA-10 bufferに再びサスペンションし、超音波で粉砕し(工作時間5s、間欠時間5s、99回を1循環とし、3循環を重複した)、4℃、25000xg、 30minで遠心して上澄液を収集した。   Highly expressing strains are selected and inoculated into 1 L of ampicillin-containing (100 mg / L) LB medium, cultured at 37 ° C. and 180 rpm to OD600 = 0.6 to 1.0, the temperature is lowered to 20 ° C., and the final concentration IPTG was added to induce expression for 24 hours. The cells are collected by centrifugation at 4 ° C., 6000 × g for 10 min, and once frozen and thawed, the cells are precipitated, suspended again in NTA-10 buffer at a 1:10 ratio, and pulverized with ultrasonic waves (working time) The supernatant was collected by centrifugation at 4 ° C., 25000 × g, 30 min.

上澄液を、カラム体積が20mlであるNi-NTAの親和クロマトグラフィーに入れ、流速が0.6ml/minで、NTA-0 bufferで基準線まで洗い、流速が1ml/minでNTA-20 bufferで要らないタンパクを洗浄し、NTA-250 bufferで目的タンパクを溶出した。純化した後の目的タンパク6His-SUMO-LCVNがSephadex G-25分子篩でイミダゾールを除去した後、SUMOプロテアーゼでの消化を行ない、SUMO 融合タンパクを除去した。   The supernatant is put into Ni-NTA affinity chromatography with a column volume of 20 ml, washed to the baseline with NTA-0 buffer at a flow rate of 0.6 ml / min, and NTA-20 buffer at a flow rate of 1 ml / min. The unnecessary protein was washed and the target protein was eluted with NTA-250 buffer. After purification, target protein 6His-SUMO-LCVN removed imidazole with Sephadex G-25 molecular sieve, and then digested with SUMO protease to remove SUMO fusion protein.

濃度が1mg/mlになるよう、 6His-SUMO-LCVNを調整し、1U SUMOプロテアーゼ/mgを添加し、タンパクを融合し、30℃で、1h消化した。6His-SUMO標識、SUMOプロテアーゼ共に、6×His標識を含有するため、消化した後のサンプルを再びNi-NTA親和クロマトグラフィーに入れ、精製を行ない、6His標識付けのSUMO、未消化の6His-SUMO-LCVNおよびSUMOプロテアーゼを除去し、非融合の目的タンパクLCVNを得て、G-25分子篩カラムを経て塩を除去した後、凍結乾燥してLCVN製品を得て、物理的科学的特性を測定、活性測定又はPEG修飾用に供す。   6His-SUMO-LCVN was adjusted so that the concentration was 1 mg / ml, 1 U SUMO protease / mg was added, the protein was fused, and digested at 30 ° C. for 1 h. Since both 6His-SUMO labeling and SUMO protease contain 6xHis labeling, the digested sample is again put into Ni-NTA affinity chromatography and purified, 6His-tagged SUMO, undigested 6His-SUMO -Remove LCVN and SUMO protease, obtain non-fusion target protein LCVN, remove salt through G-25 molecular sieve column, freeze-dry to obtain LCVN product, measure physical and scientific properties, Used for activity measurement or PEG modification.

図3は、工程菌BL21[pET3c-6His-SUMO-LCVN]がIPTG誘導を経た後のタンパク発現図であり、その図から、誘導後、分子量が28kDである場所に明確な太いタンパク帯が現れ(レーン3)、それが6His-SUMO-LCVNの論理分子量と一致し、超音波で粉砕した後、目的タンパクが菌体粉砕後の上澄液に位置し、含量が菌体の可溶性タンパクの40%を占めることがわかった(バンド2)。図 4 は、SDS-PAGE分析LCVN精製過程であり、その中の、*で示す場所が6His-SUMO-LCVN融合タンパクであり、**で示す場所がLCVNタンパクである。図5は、LCVN製品の逆相高速液体クロマトグラフィ ー(RP-HPLC)純度分析結果であり、カラム型はC-18リバース柱で、測定器波長が280nm、流動相A:0.1%トリフルオロ酢酸(TFA)含有超純水、流動相B:アセトニトリル、40%-60%のBで勾配溶離を行ない、保留時間が4-6minの間で、LCVNの溶出ピークが出た。   Fig. 3 is a protein expression diagram after the IPTG induction of the process fungus BL21 [pET3c-6His-SUMO-LCVN]. From the figure, a clear thick protein band appears in the place where the molecular weight is 28 kD after the induction. (Lane 3), which matches the logical molecular weight of 6His-SUMO-LCVN, and after pulverization with ultrasonic waves, the target protein is located in the supernatant after pulverization of the cell, and the content is 40 of the soluble protein of the cell. % (Band 2). FIG. 4 shows the purification process of SDS-PAGE analysis LCVN, in which the location indicated by * is the 6His-SUMO-LCVN fusion protein and the location indicated by ** is the LCVN protein. Fig. 5 shows the results of LCVN product reverse phase high performance liquid chromatography (RP-HPLC) purity analysis. The column type is a C-18 reverse column, the measuring instrument wavelength is 280 nm, and the fluid phase A is 0.1% trifluoro. Gradient elution was performed with acetic acid (TFA) -containing ultrapure water, fluid phase B: acetonitrile, 40% -60% B, and an elution peak of LCVN was obtained with a retention time of 4-6 min.

3.LCVN工程菌の中規模発酵およびタンパク製造
工程菌BL21[pET3c-6His-SUMO-LCVN]から、単細胞クローンを選択して培養を行ない、試験管で誘導発現し、高発現菌株を選択して中規模発酵した。それぞれは三角フラスコ中で一および二種を適度の濃度までに培養し、10%接種量で発酵培地15Lに接種した。自動的に温度を37℃に制御し、適度の溶存酸素レベルをキープするよう、適宜回転速度および通気量を調整し、PH が7.0〜7.2になるよう、NaOHおよび HClで調整した。菌体の密度(OD600)が12程度になった時に、温度を20℃に下げ、終濃度が0.5mMになるよう、IPTGを添加し、20h誘導発現した。100ml/min、9000g連続的に遠心して菌体を収集し、15Lの発酵培地で約550g の湿菌体を得ることができ、収集した菌体を-20℃の冷凍庫で保存した。
3. Medium scale fermentation and protein production of LCVN process bacteria
A single cell clone was selected from the process bacterium BL21 [pET3c-6His-SUMO-LCVN], cultured, induced and expressed in a test tube, and a high-expressing strain was selected and subjected to medium-scale fermentation. In each Erlenmeyer flask, one and two species were cultured to an appropriate concentration and inoculated into 15 L of fermentation medium at a 10% inoculum. The temperature was automatically controlled at 37 ° C, and the rotation speed and air flow rate were adjusted as appropriate so as to keep a moderate dissolved oxygen level, and adjusted with NaOH and HCl so that the pH was 7.0 to 7.2. . When the cell density (OD 600 ) reached about 12, the temperature was lowered to 20 ° C., IPTG was added so that the final concentration was 0.5 mM, and expression was induced for 20 hours. The cells were collected by continuous centrifugation at 9000 g at 100 ml / min, and about 550 g of wet cells could be obtained with 15 L of fermentation medium, and the collected cells were stored in a freezer at −20 ° C.

菌体沈殿を1:10の比率でNTA-0 bufferにサスペンションし、超音波で粉砕し(工作時間5s、間欠時間5s、99回を1循環とし、3循環を重複した)、4℃、25000xg、30minで遠心して上澄液を収集した。上澄液を、カラム体積が20mlであるNi-NTAの充填料に入れ、流速が1ml/minで、NTA-0 bufferで基準線まで洗い、流速が1ml/minでNTA-20 bufferで要らないタンパクを洗浄し、NTA-250 bufferで目的タンパクを溶出した。精製した後の目的タンパク6His-SUMO-LCVNがSephadex G-25分子篩でイミダゾールを除去した後、SUMOプロテアーゼでの消化を行ない、SUMO 融合タンパクを除去した。   Suspension of bacterial cell suspension in NTA-0 buffer at a ratio of 1:10 and pulverization with ultrasonic waves (working time 5s, intermittent time 5s, 99 cycles for 1 cycle, 3 cycles overlapped), 4 ° C, 25000xg The supernatant was collected by centrifugation at 30 min. The supernatant is put into a Ni-NTA packing with a column volume of 20 ml, washed at the flow rate of 1 ml / min to the baseline with NTA-0 buffer, and the flow rate of 1 ml / min is not required with NTA-20 buffer. The protein was washed and the target protein was eluted with NTA-250 buffer. The purified target protein 6His-SUMO-LCVN removed imidazole with Sephadex G-25 molecular sieve and then digested with SUMO protease to remove SUMO fusion protein.

濃度が1mg/mlになるよう、 6His-SUMO-LCVNを調整し、1U SUMOプロテアーゼ/mgを添加し、タンパクを融合し、30℃で、1h消化した。6His-SUMO標識、SUMOプロテアーゼ共に、6×His標識を含有するため、消化した後のサンプルを再びNi-NTA親和クロマトグラフィーに入れ、精製を行ない、6His標識付けのSUMO、未消化の6His-SUMO-LCVNおよびSUMOプロテアーゼを除去し、非融合の目的タンパクLCVNを得て、G-25分子篩カラムを経て緩衝液を交換した後、制限量が3KDである限外ろ過を用いLCVNタンパクを濃縮し、物理的化学的特性測定、活性測定又はPEG修飾用に供す。   6His-SUMO-LCVN was adjusted so that the concentration was 1 mg / ml, 1 U SUMO protease / mg was added, the protein was fused, and digested at 30 ° C. for 1 h. Since both 6His-SUMO labeling and SUMO protease contain 6xHis labeling, the digested sample is again put into Ni-NTA affinity chromatography and purified, 6His-tagged SUMO, undigested 6His-SUMO -LCVN and SUMO protease were removed, non-fusion target protein LCVN was obtained, buffer solution was exchanged through G-25 molecular sieve column, LCVN protein was concentrated using ultrafiltration with a restriction amount of 3KD, Used for physicochemical property measurement, activity measurement or PEG modification.

4.LCVNタンパクの PEG修飾
薬用タンパクに対するPEG修飾を行うのは、その薬物動態学的特性、安定性および免疫原性等の多種類の製薬特性を改善する有効な方法である。タンパク質がPEG 修飾に提供できるサイトは、側鎖アミノ基、 N端アミノ基、側鎖カルボキシ基、C端カルボキシ基、側鎖メルカプト基等の多種類を含有する。先行技術のカルボキシ基修飾技術は、非特異的架橋反応を生じやすいため、アミノ基修飾がよく用いられ、その技術発展もより成熟している。Zappe等の研究結果は、野生型CVNの側鎖アミノ基又はN 端アミノ基に対する修飾は該タンパクの活性を破壊したことを示し、よって、著者が先ずCVNに対して部位特異的突然変異を行って、Q62C変異体を得、そして、62サイトで導入したCysに側鎖メルカプト基修飾を行ない、活性のあるタンパクを得た。自然のCVNでは、既に、存在する4個のCys残基の間で2組のジスルフィド結合を形成し、また、溶液中において、タンパク質のジスルフィド結合が動的異性およびバランス状態に置かれ、よって、Q62C変異を導入した後,導入したCysがジスルフィド結合の正しい配合に干渉しないことを避けにくく、或いは非62サイトのCys 修飾になってしまい、著者の最後の実験結果もCVN Q62変異体及びその修飾物の活性がすべて野生型CVNより低いことを示した。
4). PEG modification of LCVN protein
Performing PEG modifications to medicinal proteins is an effective way to improve many types of pharmaceutical properties such as their pharmacokinetic properties, stability and immunogenicity. Sites that proteins can provide for PEG modification contain many types such as side chain amino group, N-terminal amino group, side chain carboxy group, C-terminal carboxy group, side chain mercapto group and the like. In the prior art carboxy group modification technology, non-specific cross-linking reaction is likely to occur, so amino group modification is often used, and its technological development is more mature. The results of Zappe et al. Show that modifications to the side chain amino group or N-terminal amino group of wild-type CVN disrupted the activity of the protein, so the authors first performed site-specific mutations on CVN. Thus, a Q62C mutant was obtained, and Cys introduced at 62 site was modified with a side chain mercapto group to obtain an active protein. Natural CVN already forms two sets of disulfide bonds between the four Cys residues present, and in solution the protein disulfide bonds are placed in dynamic isomerism and balance, thus After introducing the Q62C mutation, it is difficult to avoid that the introduced Cys does not interfere with the correct formulation of the disulfide bond, or it becomes a non-62 site Cys modification, and the author's last experimental result is also the CVN Q62 mutant and its modification All the activity of the product was lower than that of wild type CVN.

本発明では、製造したLCVN末端に親水性でフレキシブルな15ペプチド配列を導入したため、N 末端の部位特異的アミノ基修飾を試みてもよい。我々の実験結果は、LCVNがN末端の部位特異的アミノ基修飾をした後、活性のある修飾物を得ることだけではなく、しかも修飾物の抗ウイルス活性を一層向上することを証明した。   In the present invention, since a hydrophilic and flexible 15 peptide sequence is introduced into the produced LCVN terminal, site-specific amino group modification at the N terminal may be attempted. Our experimental results have demonstrated that LCVN not only obtains active modification after N-terminal site-specific amino group modification, but also further improves the antiviral activity of the modification.

アミノ基に対するPEG修飾の方法は、極めて多く、選択できる修飾剤も多く、本発明ではmPEG-ALD(10K)およびmPEG-ALD(20K)を選択して修飾剤とし、基質:修飾剤の比率、修飾pH、修飾反応時間等三つの方面から、LCVNの最適PEG修飾条件を選択した。   There are many PEG modification methods for amino groups, and many modifying agents can be selected. In the present invention, mPEG-ALD (10K) and mPEG-ALD (20K) are selected as the modifying agents, and the ratio of substrate: modifying agent, The optimal PEG modification conditions for LCVN were selected from three aspects, including modification pH and modification reaction time.

選択pHが3.5、4.0、5.0、60、7.0、イオン強度が20mMのNa-Ac緩衝液、反応システム中のLCVNの濃度が5mg/ml、LCVNとmPEG-ALD(10K)のモル比がそれぞれ1:1、1:3、1:5を選択し、NaCNBHの終濃度は5mg/mlである。室温において、振動器で振動反応させ、反応3h後、サンプリングし、電気泳動で修飾反応の効果を観察した。mPEG-ALD(10K)でLCVN修飾した単純修飾物がSDS-PAGEにおける発現分子量が約30KDであり、SDS-PAGEの分析結果は、pH4.0、LCVNとmPEG-ALD(10K)のモル比が 1:3である条件において、単純修飾率が最も高いことを示した(図 6)。 Selected pH 3.5, 4.0, 5.0, 60, 7.0, Na-Ac buffer with ionic strength 20 mM, LCVN concentration in reaction system 5 mg / ml, LCVN and mPEG-ALD ( 10K) molar ratios of 1: 1, 1: 3, 1: 5 are selected, respectively, and the final concentration of NaCNBH 3 is 5 mg / ml. At room temperature, the reaction was vibrated with a vibrator. After 3 hours of reaction, sampling was performed, and the effect of the modification reaction was observed by electrophoresis. A simple modified product of LCVN modified with mPEG-ALD (10K) has an expression molecular weight of about 30 KD on SDS-PAGE, and the analysis result of SDS-PAGE shows that the molar ratio of LCVN to mPEG-ALD (10K) is 4.0. In the condition of 1: 3, the simple modification rate was the highest (FIG. 6).

同様な方法で、mPEG-ALD(20K)のLCVN修飾の最適修飾pHおよび供給比を研究した。 mPEG-ALD(20K)でLCVNを修飾した後、単純修飾物がSDS-PAGEにおける発現分子量が 約50KDであり、実験結果は、pH5.0、LCVNとmPEG-ALD(20K) のモル比が1:1である条件において、単純修飾率が最も高いことを示した(図 18)。   In a similar manner, the optimal modification pH and feed ratio of LCVN modification of mPEG-ALD (20K) was studied. After modifying LCVN with mPEG-ALD (20K), the simple modified product has an expressed molecular weight of about 50 KD on SDS-PAGE. The experimental result shows that the molar ratio of LCVN to mPEG-ALD (20K) is 1 It shows that the simple modification rate is the highest under the condition of: 1 (FIG. 18).

最適の修飾pHおよび供給比を確定した上で、mPEG-ALD(10K)およびmPEG-ALD(20K) のLCVN修飾を、それぞれ反応1h、3h、5h、7h、9h、12hと24hでサンプリングし、Tricine-SDS-PAGE電気泳動の最適の反応時間を観察した。SDS-PAGEの分析結果は、反応時間がmPEG-ALD(10K)およびmPEG-ALD(20K)のLCVN修飾反応に顕著な影響なく、時間コストを総合的に考慮すれば、最適の修飾反応時間が室温振動で、反応2hとすることが好ましいことを示した(図10および図11)。   After determining the optimal modification pH and feed ratio, the LCVN modifications of mPEG-ALD (10K) and mPEG-ALD (20K) were sampled at reactions 1h, 3h, 5h, 7h, 9h, 12h and 24h, respectively. The optimal reaction time of Tricine-SDS-PAGE electrophoresis was observed. The results of SDS-PAGE analysis show that the reaction time has no significant effect on the LCVN modification reaction of mPEG-ALD (10K) and mPEG-ALD (20K). It was shown that reaction 2h is preferable by room temperature vibration (FIGS. 10 and 11).

5.LCVNのPEG修飾物の分離精製
LCVNがPEG-ALDで修飾した後、 反応混合物には、主に、未修飾のLCVN、余ったPEG、PEGで多めに修飾したLCVN、PEG単純修飾のLCVNが存する。AKTA prime に加え、 分離精製システムを用いて、SP sepharoseクロマトグラフィーで単純修飾のmPEG-ALD-LCVNを分離精製し、流動相が20mMであるNa-Ac緩衝液(buffer A)とし、サンプルを入れる前に、まず、カラム体積の5倍のbufferAでカラムをバランスさせ、サンプルを入れてから、貫通ピークを収集し、そして、異なる濃度のNaCl含有bufferAで溶出を行い、各溶出ピークを収集した。流速は1ml/min、測定波長は、280nmである。収集したサンプルをSDS-PAGEゲル電気泳動で測定した。
5. Separation and purification of PEG-modified products of LCVN
After LCVN is modified with PEG-ALD, the reaction mixture mainly contains unmodified LCVN, excess PEG, LCVN modified with a large amount of PEG, and LCVN with simple PEG modification. In addition to AKTA prime, a simple purification mPEG-ALD-LCVN is separated and purified by SP sepharose chromatography using a separation and purification system to obtain a Na-Ac buffer (buffer A) with a fluid phase of 20 mM, and a sample is added. Prior to this, the column was first balanced with 5 times the column volume of bufferA, a sample was added, the penetration peak was collected, and elution was carried out with different concentrations of NaCl-containing bufferA to collect each elution peak. The flow rate is 1 ml / min and the measurement wavelength is 280 nm. Collected samples were measured by SDS-PAGE gel electrophoresis.

mPEG-ALD(10K)で LCVNを修飾した混合物は、SP sepharose陽イオンクロマトグラフィーで精製した後、修飾剤mPEG-ALDおよび多めに修飾された産物はSP sepharoseと 結合せず、貫通し、80mM NaCl含有buffer Aの溶出産物が単純修飾の mPEG-ALD(10K)-LCVNであり、400mM NaCl含有buffer Aの溶出産物は未修飾のLCVNである。図12は、mPEG-ALD(10K)-LCVNの分離精製の溶出曲線であり、ピーク1 が修飾剤および多めに修飾した産物、ピーク2 が単純修飾物、ピーク3が未修飾基質である。図13がSDS-PAGEで各溶出組成を分析した図であり、レーンM がタンパク質分子量標準、レーン Aが反応サンプルで、未修飾基質、単純修飾物および多めに修飾した産物が見られ、レーン1は貫通ピーク、レーン2は単純修飾物、言い換えれば、目的タンパクmPEG-ALD(10K)-LCVNであり、レーン3が未修飾物である。 After the LCVN-modified mixture with mPEG-ALD (10K) was purified by SP sepharose cation chromatography, the modifier mPEG-ALD and the over-modified product did not bind to SP sepharose and penetrated, 80 mM NaCl. The elution product of buffer A containing simple modified mPEG-ALD (10K) -LCVN, and the elution product of buffer A containing 400 mM NaCl is unmodified LCVN. FIG. 12 is an elution curve of separation and purification of mPEG-ALD (10K) -LCVN. Peak 1 is a modifying agent and a product that has been modified a lot, Peak 2 is a simple modified product, and Peak 3 is an unmodified substrate. FIG. 13 is an analysis of each elution composition by SDS-PAGE. Lane M is the protein molecular weight standard, Lane A is the reaction sample, and unmodified substrate, simple modified product, and more modified product are seen. Lane 1 Is the penetration peak, lane 2 is a simple modification, in other words, the target protein mPEG-ALD (10K) -LCVN, and lane 3 is an unmodified product.

mPEG-ALD(20K)でLCVNを修飾した混合物は、SP sepharose陽イオンクロマトグラフィーで精製した後、修飾剤mPEG-ALDも多めに修飾した産物もサンプルの貫通ピークに存在し、70mM NaCl含有buffer Aの溶出産物が単純修飾の mPEG-ALD(20K)-LCVN、400mM NaCl含有buffer A の溶出産物が未修飾のLCVNである。 The mixture of LCVN modified with mPEG-ALD (20K) was purified by SP sepharose cation chromatography, and then the product modified with a large amount of modifier mPEG-ALD was also present in the penetration peak of the sample. The eluted product of buffer A containing 400 mM NaCl is unmodified LCVN. The modified product is simple modified mPEG-ALD (20K) -LCVN.

図14は、mPEG-ALD(20K)-LCVNの分離精製の溶出曲線であり、ピーク1が修飾剤および多めに修飾した産物、ピーク2が単純修飾物、ピーク3が未修飾基質である。図15は、 SDS-PAGEで各溶出組成を分析した図であり、レーンMがタンパク質分子量標準、レーンAが反応サンプルで、未修飾基質、単純修飾物および多めに修飾した産物が見られ、レーン1は貫通ピーク、レーン2は単純修飾物、言い換えれば、目的タンパク mPEG-ALD(10K)-LCVNであり、レーン3が400mM NaClの溶出組成であり、未修飾物が見られたが、部分的な単純修飾物も含有する。 FIG. 14 is an elution curve of separation and purification of mPEG-ALD (20K) -LCVN, where peak 1 is a modifying agent and a product that has been modified a lot, peak 2 is a simple modified product, and peak 3 is an unmodified substrate. FIG. 15 is an analysis of each elution composition by SDS-PAGE. Lane M is the protein molecular weight standard, Lane A is the reaction sample, and unmodified substrates, simple modifications, and more modified products are seen. 1 through peak, lane 2 is a simple modification products, in other words, a desired protein mPEG-ALD (10K) -LCVN, lane 3 is the elution the composition of 400 mM NaCl, although unmodified product was observed, partial Simple modified products are also included.

応用実施例1 WST法でT 細胞に対するLCVNの細胞毒性の測定
CVN、LCVN及びPEG修飾物を、RPMI-1640培養液で5倍シリーズ希釈したRPMI-1640培養液とし、96ウェルの細胞培養プレートに入れ、ウェル毎に50μlで、CVNおよびLCVNの希釈範囲を10μg/mlから 0.04μg/mlとし、PEG修飾でLCVNの希釈範囲を50μg/mlから0.19μg/mlとする。MT-4細胞濃度を1×10/mlまでに調製し、ウェル毎に100μlで、均一してから、37℃で静置し、5% CO細胞培養箱で培養し、同時に細胞対照および陽性薬物対照(63nM アジドチミジン、AZT)を設け、サンプルごとに、平行的に三つの重複ウェルを測定した。四日後、培養プレートのウェル毎に10μl WST-1(水溶性テトラゾール、5mmol/L)溶液を入れ、引き続き4時間培養し、プレートリーダーに置き、吸光度(A)を読み取り、波長450/650nmで、細胞生残率(Relative percentage、RP、%)を計算し、 RPに基づいて、50% 毒性濃度(CC50 )を計算した。
Application Example 1 Measurement of LCVN cytotoxicity against T cells by WST method
CVN, LCVN, and PEG-modified products are RPMI-1640 medium diluted 5-fold with RPMI-1640 medium, put into a 96-well cell culture plate, 50 μl per well, and 10 μg of CVN and LCVN dilution range. / ml to 0.04 μg / ml and PEG modification to reduce the LCVN dilution range from 50 μg / ml to 0.19 μg / ml. The MT-4 cell concentration is adjusted to 1 × 10 5 / ml, homogenized with 100 μl per well, then allowed to stand at 37 ° C. and cultured in a 5% CO 2 cell culture box, simultaneously with cell control and A positive drug control (63 nM azidothymidine, AZT) was provided and three duplicate wells were measured in parallel for each sample. After 4 days, 10 μl WST-1 (water-soluble tetrazole, 5 mmol / L) solution was added to each well of the culture plate, followed by culturing for 4 hours, placing in a plate reader, reading the absorbance (A), at a wavelength of 450/650 nm, Cell survival rate (Relative percentage, RP,%) was calculated, and 50% toxic concentration (CC 50 ) was calculated based on RP.

細胞生残率 (Relative percentage、%)=薬物処理群A値/細胞対照群A値×100%
図16は、異なる濃度のCVN、LCVN及びその修飾物等の4種類のタンパクでMT-4を処理した後の細胞生残率を示す図であり、図中において、N.C.が未処理のコントロール細胞を指し、コントロール細胞の密度が100%とする。AZTは陽性対照薬物、63nM アジドチミジンである。計算後の50%毒性濃度を表2に示す。
Cell survival rate (Relative percentage,%) = drug treatment group A value / cell control group A value × 100%
FIG. 16 is a diagram showing the cell survival rate after treating MT-4 with four types of proteins such as CVN, LCVN, and modified products thereof at different concentrations. In the figure, NC is an untreated control cell. And the density of control cells is 100%. AZT is a positive control drug, 63 nM azidothymidine. The calculated 50% toxic concentrations are shown in Table 2.

応用実施例2 WST 法によるLCVNの抗ヒト免疫不全ウイルス活性の測定
CVN、LCVN及びPEG修飾物を、5倍シリーズ希釈したRPMI-1640培養液とし、96ウェルの細胞培養プレートに入れ、ウェル毎に50μlを入れた。MT-4細胞濃度を1×10/mlまでに調製し、ウェル毎に100μlで、均一してから、HIV-1/IIIBウイルスサスペンション液50μlを添加し、力価が100TCID50である。37℃で静置し、5% CO細胞培養箱に培養し、同時に細胞対照、ウイルス対照および陽性薬物対照(アジドチミジン、AZT)を設け、サンプルごとに、平行的に三つの重複孔を測定した。四日後、培養プレートにウェル毎に10μl WST-1(水溶性テトラゾール、5mmol/L)溶液を入れ、引き続き4時間培養し、プレートリーダーに置き、吸光度(A)を読み取り、波長が450/650nmである。
Application Example 2 Measurement of anti-human immunodeficiency virus activity of LCVN by WST method
CVN, LCVN, and PEG-modified products were used as RPMI-1640 culture solutions diluted in 5-fold series, placed in a 96-well cell culture plate, and 50 μl per well. The MT-4 cell concentration is adjusted to 1 × 10 5 / ml, homogenized with 100 μl per well, 50 μl of HIV-1 / IIIB virus suspension solution is added, and the titer is 100 TCID50. The cells were allowed to stand at 37 ° C. and cultured in a 5% CO 2 cell culture box. At the same time, cell control, virus control and positive drug control (azidothymidine, AZT) were provided, and three overlapping pores were measured in parallel for each sample. . Four days later, 10 μl WST-1 (water-soluble tetrazole, 5 mmol / L) solution was added to the culture plate for each well, followed by culturing for 4 hours, placing on a plate reader, reading the absorbance (A), and the wavelength being 450/650 nm. is there.

細胞生残率(Relative percentage、%=薬物処理組A値/細胞対照組A値×100%
ウイルス抑制率(%)=(薬物処理組 A450/650-ウイルス対照組A450/650)/(細胞対照組 A450/650-ウイルス対照組 A450/650)×100%
Reed-Muench 法で50%抑制濃度(IC50)を計算し、 実施例×の50% 毒性濃度 (CC50)に基づいて、選択指数(TI)を計算した。TI=CC50/IC50。
Cell survival rate (Relative percentage,% = drug treatment group A value / cell control group A value x 100%
Virus inhibition rate (%) = (Drug treatment group A 450 / 650- Virus control group A 450/650 ) / (Cell control group A 450 / 650 -Virus control group A 450/650 ) x 100%
The 50% inhibitory concentration (IC50) was calculated by the Reed-Muench method, and the selectivity index (TI) was calculated based on the 50% toxic concentration (CC50) of Example x. TI = CC50 / IC50.

表3から分るように、陽性薬物AZTに対して、HIV-1/IIIB増殖に対するCVN、LCVNの抑制活性がより高い。
As can be seen from Table 3, the positive drug AZT has higher inhibitory activity of CVN and LCVN on the proliferation of HIV-1 / IIIB.

応用実施例3 融合抑制法でLCVN及びそのPEG修飾物の抗ヒト免疫不全ウイルス活性の測定
従来の研究により、T細胞間に伝播するHIV感染は、主に感染細胞表面発現のgp120の介入を通して、未感染の細胞の受容体と結合し、融合細胞を形成することにより発生したことが示されている。CVNは、特異的にgp120と結合し、 感染細胞と正常細胞の間の融合を抑制し、ウイルスの伝播を阻止する。よって、我々は、細胞融合を応用して、阻害モデルを適用し、 LCVN及びその誘導物の抗ウイルス活性を測定する[Tochikura TS, Nakashima H, Tanabe A, Yamamoto N. Human immunodeficiency virus (HIV)-induced cell fusion: quantification and its application for the simple and rapid screening of anti-HIV substances in vitro. Virology, 1988, 164(2): 542-546]。
Application Example 3 Measurement of anti-human immunodeficiency virus activity of LCVN and its PEG-modified products by fusion inhibition method
Previous studies have shown that HIV infection that propagates between T cells occurred by binding to receptors on uninfected cells, mainly through the intervention of infected cell surface expressed gp120, to form fused cells. Has been. CVN specifically binds to gp120, suppresses fusion between infected and normal cells and prevents viral spread. Therefore, we apply cell fusion, apply an inhibition model, and measure the antiviral activity of LCVN and its derivatives [Tochikura TS, Nakashima H, Tanabe A, Yamamoto N. Human immunodeficiency virus (HIV)- induced cell fusion: quantification and its application for the simple and rapid screening of anti-HIV substances in vitro. Virology, 1988, 164 (2): 542-546].

対数期まで生長したMOLT-4細胞およびMOLT-4/IIIB細胞の密度が1×10/mlになるまで調製し、それぞれ250μlの細胞サスペンション液を取り、等体積で混合し、24ウェルの細胞培養プレート中(細胞総数が5×10/500μl/ ウェルである)に添加し、CVN、LCVN及びその PEG修飾物を4倍シリーズ希釈した牛胎児血清および抗生物質含有RPMI-1640培地とし,受薬物の種類毎に、3つの濃度(452nM、113nM、28nM)を選定し、等体積加で細胞サスペンション液に入れ、同時に各種対照組を設け、全てのサンプルを並行的に2個の重複ウェルとし、37℃、5%COで24 時間培養した。24h後、細胞サスペンション液を取り、 トリパン青で染色した後、細胞カウントプレートに入れ、顕微鏡で生存したMOLT-4細胞数をカウントした。MOLT-4/IIIB細胞がHIV-I/IIIBウイルス顆粒を耐えずに生じるため、しかも、正常のMOLT-4細胞との融合により、大きい多核細胞(合胞体)を形成し、正常の宿主細胞を感染し、細胞をカウントするに際して、融合細胞がカウントプレートに入らないため、細胞カウントプレートにおける正常の大きさのMOLT-4又はMOLT-4/IIIB細胞数をカウントし、また、形成した合胞体の細胞数を推算することができ、投薬共培養組の細胞数および共培養しなかったMOLT-4細胞数を比較し、融合指数(FI、fusion index)を計算した。
FI=1−(共培養細胞ウェルの細胞数÷MOLT-4細胞のみ含有対照ウェル中の細胞数)
投薬共培養細胞および未投薬共培養細胞の融合指数を比較し、融合抑制率(FIR、fusion inhibition rate)を計算した。
FIR (%)=[1-(FIT/FIC)]×100、その中、FITは投薬サンプルの融合指数、FICは、未投薬共培養細胞の融合指数である。
Prepare until the density of MOLT-4 cells and MOLT-4 / IIIB cells grown to logarithmic phase is 1 × 10 6 / ml, take 250 μl of each cell suspension, mix in equal volumes, and prepare 24 well cells culture plates (total number of cells of 5 × a 10 5/500 [mu] l / well) was added to, and CVN, a LCVN and fetal bovine serum and antibiotics RPMI-1640 medium containing that PEG-modified product was 4-fold series dilution, receiving For each drug type, select three concentrations (452nM, 113nM, 28nM) and add them to the cell suspension solution in equal volumes. At the same time, set up various controls, and make all samples in duplicate wells in parallel. The cells were cultured at 37 ° C. and 5% CO 2 for 24 hours. After 24 hours, the cell suspension was taken out, stained with trypan blue, and placed in a cell count plate, and the number of MOLT-4 cells that survived was counted with a microscope. Since MOLT-4 / IIIB cells are not able to tolerate HIV-I / IIIB virus granules, and by fusion with normal MOLT-4 cells, large multinucleated cells (syncytia) are formed, and normal host cells are Since the fused cells do not enter the count plate when the cells are infected and counted, the number of normal size MOLT-4 or MOLT-4 / IIIB cells in the cell count plate is counted, and the formed syncytium The number of cells could be estimated and the fusion index (FI) was calculated by comparing the number of cells in the dosing co-culture group and the number of MOLT-4 cells that were not co-cultured.
FI = 1- (number of cells in co-culture cell well / number of cells in control well containing only MOLT-4 cells)
The fusion index of the medicated co-cultured cells and the non-medicated co-cultured cells were compared, and the fusion inhibition rate (FIR) was calculated.
FIR (%) = [1- (FI T / FI C )] × 100, where FI T is the fusion index of the administered sample, and FI C is the fusion index of the untreated co-cultured cells.

表4から、HIV-1/IIIBに対するLCVNの融合抑制活性は、どの分量の組でも、CVNより高く、また、中分量及び高分量の時、LCVNのPEG修飾物の活性が未修飾のLCVNより高いことが分る。 From Table 4, the fusion inhibitory activity of LCVN against HIV-1 / IIIB is higher than that of CVN in any combination, and the activity of PEG-modified products of LCVN is higher than that of unmodified LCVN at medium and high doses. I find it expensive.

図18(a)は、位相差顕微鏡で、24h培養後の(1)MOLT-4 細胞、(2)MOLT-4/IIIB細胞、(3)共培養後の細胞、(4)仮処理の共培養後の細胞、(5-8)濃度が 113nMであるCVN/LCVN/10kPEG-LCVN/20kPEG-LCVN 処理後の共培養細胞を観察し、黒色矢印で示す場所が融合の巨大細胞であり、未共培養組には融合細胞がなく、共培養組には、典型の融合細胞が見られるのに、投薬組は、殆ど融合細胞が見られない。   Fig. 18 (a) shows the results of (1) MOLT-4 cells, (2) MOLT-4 / IIIB cells, (3) cells after co-culture, (4) co-treatment after 24 h culture using a phase contrast microscope. Cells after culture, (5-8) CVN / LCVN / 10 kPEG-LCVN / 20 kPEG-LCVN-treated co-cultured cells with a concentration of 113 nM were observed. There are no fused cells in the co-culture set, and typical fused cells are found in the co-culture set, but the fused set shows almost no fused cells.

図18(b)は、CNV、LCVN、10kPEG-LCVN、20kPEG-LCVNの融合抑制活性であり、全ての実験は少なくとも、3回独立実験後の統計学の処理結果である。HIV-1/IIIBに対するLCVNの融合抑制活性は、どの分量の組でも、明確にCVNより高く、また、中分量及び高分量の時、LCVNのPEG修飾物が、分子量向上に連れ、活性が高くなるものの、低分量組には、PEG修飾物の活性が分子量の向上に連れ、かえて低下してしまう。   FIG. 18 (b) shows CNV, LCVN, 10 kPEG-LCVN, and 20 kPEG-LCVN fusion inhibitory activities, and all experiments are the results of statistical processing after at least three independent experiments. The fusion inhibitory activity of LCVN against HIV-1 / IIIB is clearly higher than that of CVN in any combination, and LCVN PEG-modified products are more active with increasing molecular weight at medium and high doses. However, the activity of the PEG-modified product decreases with increasing molecular weight in the low fraction group.

応用実施例4 MTT法でLCVNの抗単純ヘルペスウイルス(HSV-1)活性の測定
単純ヘルペスウイルスI型(HSV-I)は、人に広い感染を起す一種類のDNAウイルスであり、人類は、その唯一の宿主となり、健康成人の中には、約90%がHSV-1を感染している。HSV-Iは、口唇疱疹、ヘルペス性角結膜炎、新生児脳炎等の多種類の病気を起し、HSV-I は、神経節内に潜伏して感染することができるため、その症状が繰り返しやくい。本実験は、MTT法を用いて、組換えLCVN及びその修飾物、野生型 CVNのVero 細胞に対する毒性を測定し、CPE法で細胞に対する薬物の活性を観察した。
Application Example 4 Measurement of LCVN anti-herpes simplex virus (HSV-1) activity by MTT method
Herpes simplex virus type I (HSV-I) is a kind of DNA virus that causes widespread infections in humans, and human beings are the only host, and about 90% of healthy adults have HSV-1 Infected. HSV-I causes many types of diseases such as cleft lip, herpetic keratoconjunctivitis, neonatal encephalitis, etc. HSV-I can be latently infected in the ganglia, so its symptoms are often repetitive. . In this experiment, the MTT method was used to measure the toxicity of recombinant LCVN and its modified products, wild type CVN to Vero cells, and the drug activity against the cells was observed by the CPE method.

単層Vero 細胞に、異なる希釈度の受薬物および100TCID50のHSV-1 ウイルス液を各50μl添加し、同時に正常細胞対照及びウイルス対照組を設けた。5% COで48h培養し、ウェル毎に5mg/ml MTT 10μlを入れ、 5% COで引き続き4h培養し、上澄液を捨て、ウェル毎に200μl DMSOを添加し、室温、遮光で30min を放置し、培養プレートを10min程度振動し、マイクロプレートリーダーで比色し(波長570nm 、波長630nmを参照)、吸光度を測定し、サンプルの50%毒性濃度(50% cytotoxic concentration、CC50)を計算した。 Monolayer Vero cells were supplemented with 50 μl each of different dilutions of drug recipient and 100 TCID50 HSV-1 virus solution, and at the same time a normal cell control and virus control set were provided. Incubate for 48 h in 5% CO 2 , add 10 μl of 5 mg / ml MTT per well, continue to incubate for 4 h in 5% CO 2 , discard supernatant, add 200 μl DMSO per well, 30 min at room temperature, protected from light , Shake the culture plate for about 10 min, colorimetrically with a microplate reader (see wavelength 570 nm, wavelength 630 nm), measure absorbance, and determine the 50% cytotoxic concentration (CC 50 ) of the sample. Calculated.

図19は、一回典型実験後の細胞の位相差顕微鏡下での形態であり、細胞に対するウイルスによる細胞変性効果(B)及び細胞に対する保護効果が見られる。その結果は、 LCVN及びその修飾物共に、良好な抗HSV-1活性を有し、質量濃度が近く且つモル濃度が比較的に低い条件下において、LCVN及びそのPEG修飾物は、陽性対照薬物ACVと殆ど近い抗ウイルス活性を示すことがわかる。毒性測定結果から、PEG修飾後は、Vero 細胞に対するLCVNの毒性が明確に低下したことが分る。   FIG. 19 shows a form of a cell under a phase contrast microscope after one typical experiment, and a cytopathic effect (B) by a virus on the cell and a protective effect on the cell are seen. The results show that both LCVN and its modifications have good anti-HSV-1 activity, and under conditions where the mass concentration is close and the molar concentration is relatively low, LCVN and its PEG modification are positive control drugs ACV. It can be seen that the antiviral activity is almost the same. From the toxicity measurement results, it can be seen that the toxicity of LCVN to Vero cells was clearly reduced after PEG modification.

前記実施例は、本発明の好ましい実施形態である。本発明の実施形態は、前記実施例に限定されたものではなく、本発明の基本思想及び原理を逸らさないその他の如何なる変更、修飾、置換、組み合わせ、簡略すべては、同等の置換方式となり、本発明の保護範囲に該当する。   The above examples are preferred embodiments of the present invention. The embodiments of the present invention are not limited to the above-described examples, and any other changes, modifications, substitutions, combinations, and simplifications that do not deviate from the basic idea and principle of the present invention are equivalent substitution methods. It falls within the protection scope of the invention.

Claims (10)

アミノ配列がA配列とB配列からなり、A配列がB配列のN末端に位置し、
A配列が、
シーケンス表のSEQ ID NO: 1のアミノ残基配列であって、親水性でフレキシブルな特性を有するものであり、
B配列が、
シーケンス表のSEQ ID NO: 2のアミノ残基配列であって、特異的な抗HIVウイルス活性を有するものであること、
を特徴とするシアノビリン-N変異体。
The amino sequence consists of an A sequence and a B sequence, the A sequence is located at the N-terminus of the B sequence,
A sequence is
SEQ ID NO: 1 amino residue sequence in the sequence table, which has hydrophilic and flexible properties,
B array is
SEQ ID NO: 2 amino acid residue sequence of the sequence table, having a specific anti-HIV virus activity,
Cyanovirin-N mutant characterized by the above.
請求項1に記載のシアノビリン-N変異体がコードされたポリヌクレオチド。 A polynucleotide encoding the cyanovirin-N variant of claim 1. a.シーケンス表のSEQ ID NO: 3、
b.ストリンジェンシー条件下において、シーケンス表のSEQ ID NO: 3に限定したDNA配列とハイブリダイズできるヌクレオチド配列、
の内何れか一つの配列を含有することを特徴とする請求項2に記載のシアノビリン-N変異体のコードされたポリヌクレオチド。
a. SEQ ID NO of sequence table: 3,
b. A nucleotide sequence capable of hybridizing with a DNA sequence limited to SEQ ID NO: 3 in the sequence table under stringency conditions;
Encoded polynucleotide of cyanovirin -N variant according to claim 2, characterized in that it contains any one sequence of.
請求項2又は3に記載のポリヌクレオチドの配列を含有することを特徴とする発現ベクター。 Expression vector characterized by containing the sequence of a polynucleotide according to claim 2 or 3. 請求項2又は3に記載のポリヌクレオチドの配列を含有することを特徴とする宿主菌。 Host bacterium, characterized in that it contains the sequence of a polynucleotide according to claim 2 or 3. 請求項1に記載のシアノビリン-N変異体のN末端にPEG修飾を行うことを特徴とするシアノビリン-N変異体修飾誘導体。   A modified cyanovirin-N mutant derivative, wherein the N-terminus of the cyanovirin-N mutant according to claim 1 is subjected to PEG modification. 前記PEG修飾の修飾剤がモノメトキシポリエチレングリコールアルデヒド(mPEG-ALD)である請求項6に記載のシアノビリン-N変異体修飾誘導体。   The cyanovirin-N mutant modified derivative according to claim 6, wherein the modifying agent for PEG modification is monomethoxypolyethyleneglycolaldehyde (mPEG-ALD). 前記mPEG-ALDの分子量が10KD〜20KDである請求項に記載のシアノビリン-N変異体修飾誘導体。 The cyanovirin-N mutant-modified derivative according to claim 7 , wherein the molecular weight of the mPEG-ALD is 10 KD to 20 KD. 請求項1に記載のシアノビリン-N変異体の、エイズの予防及び/又は治療用薬物の製造への使用。   Use of the cyanovirin-N mutant according to claim 1 for the manufacture of a drug for preventing and / or treating AIDS. 請求項6〜8のいずれか1項に記載のシアノビリン-N変異体の修飾誘導体の、エイズの予防及び/又は治療用薬物の製造への使用。   Use of the modified derivative of the cyanovirin-N mutant according to any one of claims 6 to 8 for the manufacture of a drug for preventing and / or treating AIDS.
JP2012527184A 2009-09-04 2010-05-24 Cyanovirin-N mutant, modified derivative thereof and application thereof Expired - Fee Related JP5592490B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN200910192063.0 2009-09-04
CN2009101920630A CN101638435B (en) 2009-09-04 2009-09-04 Blue-green algal virus protein N mutant, modified derivative and application thereof
PCT/CN2010/073124 WO2011026351A1 (en) 2009-09-04 2010-05-24 A cyanovirin n mutant, modified derivative and uses thereof

Publications (2)

Publication Number Publication Date
JP2013503609A JP2013503609A (en) 2013-02-04
JP5592490B2 true JP5592490B2 (en) 2014-09-17

Family

ID=41613629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012527184A Expired - Fee Related JP5592490B2 (en) 2009-09-04 2010-05-24 Cyanovirin-N mutant, modified derivative thereof and application thereof

Country Status (4)

Country Link
JP (1) JP5592490B2 (en)
CN (1) CN101638435B (en)
IN (1) IN2012DN02837A (en)
WO (1) WO2011026351A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101638435B (en) * 2009-09-04 2011-11-16 暨南大学 Blue-green algal virus protein N mutant, modified derivative and application thereof
BR112015018444A2 (en) * 2013-02-05 2018-05-08 Agricultural Technology Research Institute composition to prevent mycoplasma spp. infection, and expression vector
CN110903363A (en) * 2019-11-26 2020-03-24 中国药科大学 Preparation method and application of blue algae antiviral protein N
CN111494604B (en) * 2020-05-11 2022-05-06 中国药科大学 Application of blue algae antiviral protein N in preparation of anti-inflammatory drugs
WO2022072469A1 (en) * 2020-09-29 2022-04-07 Drexel University Compositions for inhibiting viral entry and methods using same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5843882A (en) * 1995-04-27 1998-12-01 The United States Of America As Represented By The Department Of Health And Human Services Antiviral proteins and peptides
AU2003221118A1 (en) * 2002-03-22 2003-10-08 Bipha Corporation Immunoglobulin/hydrophilic peptide complexes
ATE425767T1 (en) * 2002-12-19 2009-04-15 Nektar Therapeutics Al Corp CONJUGATES OF CYANOVIRIN VARIANTS AND A POLYALKYLENE OXIDE
CN101705241B (en) * 2008-09-28 2012-06-06 暨南大学 Method for preparing recombined blue algae antiviral protein and application thereof
CN101638435B (en) * 2009-09-04 2011-11-16 暨南大学 Blue-green algal virus protein N mutant, modified derivative and application thereof

Also Published As

Publication number Publication date
CN101638435B (en) 2011-11-16
WO2011026351A1 (en) 2011-03-10
JP2013503609A (en) 2013-02-04
CN101638435A (en) 2010-02-03
IN2012DN02837A (en) 2015-07-24

Similar Documents

Publication Publication Date Title
JP5592490B2 (en) Cyanovirin-N mutant, modified derivative thereof and application thereof
US10208094B2 (en) Multimeric immunoglobulin-binding domain
JP2008507298A5 (en)
CN107226842B (en) PD-1 targeted polypeptide and application thereof
CN106939042B (en) Porcine alpha interferon and application thereof
CN108864292B (en) Interferon recombinant fusion protein and application thereof
US10874745B2 (en) Antimicrobial peptides and methods of treating gram-negative pathogens: polar and non-polar face analogs
WO2014206336A1 (en) A hiv-1 fusion inhibitor with long half-life
CN102131518B (en) Comprise the biopolymer conjugate of interleukin-11 analog
WO2006025536A1 (en) Anti-sars virus agent
CN1980952A (en) Multimerised HIV fusion inhibitors
Morimoto et al. Anti-influenza virus activity of high-mannose binding lectins derived from genus Pseudomonas
EP3266796B1 (en) Trail membrane-penetrating peptide-like mutant mur5, preparation method therefor, and application thereof
CA2348308A1 (en) Rantes-derived peptides with anti-hiv activity
JP2011521648A5 (en)
Mori et al. Construction and Enhanced Cytotoxicity of a [Cyanovirin-N]-[PseudomonasExotoxin] Conjugate against Human Immunodeficiency Virus-Infected Cells
JP2023522423A (en) Interferon alpha 2 variants and their uses
CN110551179B (en) Modified anti-HIV polypeptide and preparation method and application thereof
WO2015003581A1 (en) Bivalent polypeptide inhibiting hiv infection
WO2020150313A1 (en) Amphipathic alpha-helical antimicrobial peptides treat infections by gram-negative pathogens
US20200071357A1 (en) Antimicrobial peptides
Kajiwara et al. Bioorganic synthesis of a recombinant HIV-1 fusion inhibitor, SC35EK, with an N-terminal pyroglutamate capping group
WO2008069290A1 (en) Anti-hiv drug comprising fusion protein containing multimeric actinohivin, polypeptide constituting the same, gene encoding the polypeptide and method for producing the anti-hiv drug
US7691627B2 (en) Nucleic acid sequences encoding D1 and D1/D2 domains of human coxsackievirus and adenovirus receptor (CAR)
JP2023112295A (en) Antiviral agent comprising fucose-binding lectin

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130709

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20131008

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20131016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees