JP5592450B2 - Self-propelled cell trap - Google Patents

Self-propelled cell trap Download PDF

Info

Publication number
JP5592450B2
JP5592450B2 JP2012204234A JP2012204234A JP5592450B2 JP 5592450 B2 JP5592450 B2 JP 5592450B2 JP 2012204234 A JP2012204234 A JP 2012204234A JP 2012204234 A JP2012204234 A JP 2012204234A JP 5592450 B2 JP5592450 B2 JP 5592450B2
Authority
JP
Japan
Prior art keywords
self
propelled
propelled cell
cell
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012204234A
Other languages
Japanese (ja)
Other versions
JP2014057710A (en
Inventor
隆徳 山南
伊藤  博
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Original Assignee
Dainichiseika Color and Chemicals Mfg Co Ltd
Ukima Chemicals and Color Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainichiseika Color and Chemicals Mfg Co Ltd, Ukima Chemicals and Color Mfg Co Ltd filed Critical Dainichiseika Color and Chemicals Mfg Co Ltd
Priority to JP2012204234A priority Critical patent/JP5592450B2/en
Publication of JP2014057710A publication Critical patent/JP2014057710A/en
Application granted granted Critical
Publication of JP5592450B2 publication Critical patent/JP5592450B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、自走細胞捕捉具に関する。   The present invention relates to a self-propelled cell trap.

関節リウマチ、クローン病、多発性硬化症、潰瘍性大腸炎、及び全身性エリトマトーデス等の炎症性疾患の病因として、炎症性サイトカイン等の液性因子の関与がよく知られている。そして、これらの液性因子を低分子医薬品や抗体等の生物製剤で不活化して炎症性疾患を治療する試みがなされている。しかしながら、これらの液性因子は単独で炎症部位に作用しているのではなく、複数の液性因子が相乗的に作用して病態を発症及び進行させるものである。このため、最近では、液性因子の供給源である活性化した白血球を生体から除去することで炎症性疾患を治療しようとする試みがなされている。   As the etiology of inflammatory diseases such as rheumatoid arthritis, Crohn's disease, multiple sclerosis, ulcerative colitis, and systemic lupus erythematosus, the involvement of humoral factors such as inflammatory cytokines is well known. Attempts have been made to treat inflammatory diseases by inactivating these humoral factors with biopharmaceuticals such as low molecular weight drugs and antibodies. However, these humoral factors do not act alone on the inflamed site, but a plurality of humoral factors act synergistically to develop and advance the disease state. For this reason, recently, attempts have been made to treat inflammatory diseases by removing activated leukocytes, which are a source of humoral factors, from the living body.

活性化した白血球を生体から除去する方法としては、体外循環カラムを用いて炎症性疾患患者の血液を体外循環させ、白血球を選択的に付着除去する方法が知られている。具体的には、カラム中に不織布を充填して固定した白血球除去フィルターが開示されている(特許文献1参照)。また、図5に示すような、直径30mm程度の酢酸セルロース等の顆粒球吸着用担体34が充填された、流入部27から流入させた血液をろ過して流出部29より流出させる顆粒球吸着部45を備えた顆粒球除去装置50が開示されている(特許文献2参照)。さらに、表面にアミノ基を有する不織布を吸着材として充填してなる、白血球と毒素を同時に除去可能な体外循環用カラムが開示されている(特許文献3参照)。   As a method of removing activated leukocytes from a living body, a method of extracorporeally circulating blood of an inflammatory disease patient using an extracorporeal circulation column and selectively attaching and removing leukocytes is known. Specifically, a leukocyte removal filter in which a nonwoven fabric is packed and fixed in a column is disclosed (see Patent Document 1). Further, as shown in FIG. 5, a granulocyte adsorption part filled with a granulocyte adsorption carrier 34 such as cellulose acetate having a diameter of about 30 mm and filtering the blood flowing in from the inflow part 27 and outflowing from the outflow part 29 There is disclosed a granulocyte removing device 50 having 45 (see Patent Document 2). Furthermore, an extracorporeal circulation column is disclosed that is capable of simultaneously removing leukocytes and toxins, which is filled with a nonwoven fabric having amino groups on the surface as an adsorbent (see Patent Document 3).

特公平2−13587号公報Japanese Patent Publication No. 2-13587 特許第2501500号公報Japanese Patent No. 2501500 特開2002−113097号公報JP 2002-113097 A

特許文献1〜3等で開示されているような、白血球を生体から除去する体外循環カラム等を使用する場合には、強力な血液ポンプを用いてカラムのフィルター構造に血液を通過(フィルタリング)させる必要がある。具体的には、腎不全患者の血液透析に使用されるような、ベッドサイドに設置された血液ポンプを含む大型の白血球除去装置が使用される。このため、白血球除去装置の駆動中には患者は活動抑制されてしまい、ベッド上で長時間過ごさねばならない。このような活動抑制による患者の苦痛や経済的な損失は今日まで解消されていない。   When using an extracorporeal circulation column or the like that removes leukocytes from a living body as disclosed in Patent Documents 1 to 3, etc., blood is passed (filtered) through the filter structure of the column using a powerful blood pump. There is a need. Specifically, a large leukocyte removal apparatus including a blood pump installed at the bedside, which is used for hemodialysis of patients with renal failure, is used. For this reason, the activity of the patient is suppressed while the leukocyte removal device is driven, and the patient must spend a long time on the bed. The patient's pain and economic loss due to such activity suppression have not been resolved to date.

一方、培養細胞等の自走細胞を含む被処理流体から目的とする自走細胞を分離又は濃縮するには、ろ過や遠心分離等の手法が採用されてきた。しかしながら、このような自走細胞を分離又は濃縮手法は、装置が大規模である、或いは操作に要する手間が多大である等の理由から、必ずしも簡便であるとはいえなかった。   On the other hand, techniques such as filtration and centrifugation have been adopted to separate or concentrate target self-running cells from a treated fluid containing self-running cells such as cultured cells. However, such a method for separating or concentrating self-propelled cells has not always been simple because the apparatus is large-scale or the labor required for operation is great.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、血液や培養液等の被処理流体を流通させても圧力損失が小さく、従来の強力な大型ポンプを使用しなくても、或いは携帯可能な程度の小型のポンプを使用するだけで、被処理流体を容易に処理して自走細胞を分離、濃縮、又は除去することが可能な自走細胞捕捉具を提供することにある。   The present invention has been made in view of such problems of the prior art, and the problem is that the pressure loss is small even when a fluid to be treated such as blood or culture fluid is circulated. Without using a powerful large pump or just using a small portable pump, it is possible to easily process the fluid to be processed to separate, concentrate, or remove free-running cells. It is to provide a self-propelled cell trap.

本発明者らは上記課題を達成すべく鋭意検討した結果、その表面に凹凸を有する自走細胞捕捉部の少なくとも一端部を容器の内側に固定するとともに、その最小流路径が所定の大きさ以上の流路を容器内に形成することによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors fixed at least one end of a self-running cell trapping part having irregularities on the surface thereof inside the container, and the minimum flow path diameter is a predetermined size or more. It was found that the above problem can be achieved by forming the flow path in the container, and the present invention has been completed.

すなわち、本発明によれば、以下に示す自走細胞捕捉具が提供される。
[1]容器と、前記容器内に配設された、その表面に凹凸を有する自走細胞捕捉部と、を備え、前記自走細胞捕捉部の少なくとも一端部は前記容器の内側に固定されており、前記容器内には、その内部を流通する自走細胞を含む被処理流体が前記自走細胞捕捉部と接触可能な、最小流路径が100μm以上の流路が形成されており、前記自走細胞捕捉部が、単繊維度1.0dtex以下の繊維及び直径10μm以下の粒子の少なくともいずれかを含む自走細胞捕捉具。
[2]前記流路の最小流路径が1000μm以上である前記[1]に記載の自走細胞捕捉具。
[3]前記自走細胞捕捉部の形状が、糸状、棒状、スポンジ状、帯状、紙片状、又は中空ロール状である前記[1]又は[2]に記載の自走細胞捕捉具。
[4]前記自走細胞捕捉部の材質が、合成高分子材料又は天然高分子材料である前記[1]〜[3]のいずれかに記載の自走細胞捕捉具。
[5]その全体形状が、内径1〜20mm及び全長10cm〜10mの管状である前記[1]〜[4]のいずれかに記載の自走細胞捕捉具。
[6]一以上の血液の出入り口を有する密閉性容器である前記[1]〜[4]のいずれかに記載の自走細胞捕捉具。
[7]前記自走細胞が、線維芽細胞、培養細胞、骨髄細胞、アメーバ細胞、神経細胞、及び白血球からなる群より選択される少なくとも一種である前記[1]〜[6]のいずれかに記載の自走細胞捕捉具。
[8]白血球除去療法又は採取血液の白血球除去に用いられる前記[1]〜[7]のいずれかに記載の自走細胞捕捉具。
[9]前記自走細胞捕捉部の少なくとも一部が抗血栓性を有する前記[8]に記載の自走細胞捕捉具。
That is, according to the present invention, the following self-propelled cell trap is provided.
[1] A container, and a self-propelled cell trapping part having irregularities on the surface thereof disposed in the container, wherein at least one end of the self-propelled cell trapping part is fixed inside the container. cage, the said container, the self cell that can contact with the fluid to be treated the self cell trapping portion comprising the minimum flow path diameter is formed is 100μm or more channels for circulating therein, said self A self-propelled cell capturing device, wherein the migratory cell capturing unit includes at least one of a fiber having a single fiber degree of 1.0 dtex or less and a particle having a diameter of 10 μm or less .
[2] The self-propelled cell trap according to [1], wherein the minimum flow path diameter of the flow path is 1000 μm or more .
[3] The self-propelled cell trap according to [1] or [2], wherein the shape of the self-propelled cell trapping portion is a thread shape, a rod shape, a sponge shape, a strip shape, a paper piece shape, or a hollow roll shape.
[4] The self-propelled cell capturing device according to any one of [1] to [3], wherein the material of the self-propelled cell capturing unit is a synthetic polymer material or a natural polymer material.
[5] The self-propelled cell trap according to any one of [1] to [4], wherein the overall shape is a tubular shape having an inner diameter of 1 to 20 mm and a total length of 10 cm to 10 m.
[6] The self-propelled cell trap according to any one of [1] to [4], which is a hermetic container having one or more blood outlets.
[7] In any one of the above [1] to [6], the self-running cell is at least one selected from the group consisting of fibroblasts, cultured cells, bone marrow cells, amoeba cells, nerve cells, and leukocytes. The self-propelled cell capturing device described.
[8] The self-propelled cell trap according to any one of [1] to [7], which is used for leukocyte removal therapy or leukocyte removal from collected blood.
[9] The self-propelled cell capturing device according to [8], wherein at least a part of the self-propelled cell capturing unit has antithrombotic properties.

本発明の自走細胞捕捉具は、血液や培養液等の被処理流体を流通させても圧力損失が小さい。このため、従来の強力な大型ポンプを使用しなくても、或いは携帯可能な程度の小型のポンプを使用するだけで、被処理流体を容易に処理して自走細胞を分離、濃縮、又は除去することができる。したがって、本発明の自走細胞捕捉具は、ポータブル(携帯型)白血球除去装置に組み込まれる白血球除去手段や、線維芽細胞や培養細胞等の簡便な分離・濃縮手段として好適である。   The self-propelled cell trap of the present invention has a small pressure loss even when a fluid to be treated such as blood or a culture solution is circulated. For this reason, it is possible to easily process the fluid to be processed and separate, concentrate, or remove the free-running cells without using a conventional powerful large pump or using a small pump that is portable. can do. Therefore, the self-propelled cell capture device of the present invention is suitable as a leukocyte removing means incorporated in a portable (portable) leukocyte removing apparatus, or a simple separating / concentrating means such as fibroblasts and cultured cells.

本発明の自走細胞捕捉具の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the self-propelled cell trap of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 本発明の自走細胞捕捉具の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically other embodiment of the self-propelled cell trap of this invention. 本発明の自走細胞捕捉具のさらに他の実施形態を模式的に示す斜視図である。It is a perspective view which shows typically other embodiment of the self-propelled cell trap of this invention. 従来の顆粒球除去装置の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the conventional granulocyte removal apparatus.

本発明の自走細胞捕捉具は、容器と、この容器内に配設された、その表面に凹凸を有する自走細胞捕捉部とを備える。そして、自走細胞捕捉部の少なくとも一端部は、容器の内側に固定されている。また、容器内には、その内部を流通する自走細胞を含む被処理流体が自走細胞捕捉部と接触可能な、最小流路径が100μm以上の流路が形成されている。以下、その詳細について説明する。   The self-propelled cell capturing device of the present invention includes a container and a self-propelled cell capturing unit disposed in the container and having irregularities on the surface thereof. And at least one end of the self-running cell trapping part is fixed inside the container. In addition, a channel having a minimum channel diameter of 100 μm or more is formed in the container so that the fluid to be processed including the free-running cells flowing through the container can come into contact with the free-running cell capturing unit. The details will be described below.

本発明の自走細胞捕捉具は、容器内に自走細胞捕捉部が配設されているとともに、容器内には流路が形成されている。このため、容器内の流路に血液等の被処理流体を流通させると、自走細胞捕捉部に接触した被処理流体中の自走細胞が自走細胞捕捉部に選択的に捕捉(トラップ)される。したがって、自走細胞と、自走細胞の一部又は大部分が除去された処理済み流体とを簡便に分離することができる。   In the self-propelled cell capture device of the present invention, a self-propelled cell capture unit is disposed in the container, and a flow path is formed in the container. For this reason, when a treated fluid such as blood is circulated through the flow path in the container, the free-running cells in the treated fluid that are in contact with the free-running cell trapping portion are selectively captured (trap) by the free-running cell trapping portion. Is done. Therefore, it is possible to easily separate the free-running cells from the treated fluid from which some or most of the free-running cells have been removed.

また、本発明の自走細胞捕捉具は、容器内に形成された流路の最小流路径が十分に大きく、具体的には100μm以上、好ましくは500μm以上、さらに好ましくは1000μm以上、特に好ましくは2000μm以上である。すなわち、本発明の自走細胞捕捉具は、ビーズや不織布等のろ過材料を容器内に密に充填した、いわゆるフィルター構造を有していない。このため、本発明の自走細胞捕捉具は、血液等の被処理流体を流通させても発生する圧力損失が小さく抑えることができる。したがって、本発明の自走細胞捕捉具は、従来の強力な大型ポンプを使用しなくても、被処理流体を容易に流通させて自走細胞を効果的に除去、分離、又は濃縮することができる。或いは、ポンプを使用する場合であっても、携帯可能な程度の小型ポンプを使用するだけで被処理流体を容易に処理することができる。   In addition, the self-propelled cell capture device of the present invention has a sufficiently small minimum channel diameter of the channel formed in the container, specifically 100 μm or more, preferably 500 μm or more, more preferably 1000 μm or more, particularly preferably. It is 2000 μm or more. That is, the self-propelled cell trap of the present invention does not have a so-called filter structure in which a filtering material such as beads or nonwoven fabric is closely packed in a container. For this reason, the self-propelled cell trap of the present invention can suppress the pressure loss that occurs even when a fluid to be treated such as blood is circulated. Therefore, the self-propelled cell capture device of the present invention can easily circulate the treated fluid and effectively remove, separate, or concentrate the self-propelled cells without using a conventional powerful large pump. it can. Or even if it is a case where a pump is used, a to-be-processed fluid can be processed easily only by using the small pump of a portable grade.

ここで、捕捉とは、自走細胞が自走細胞捕捉部に付着し、容易に脱着しない状態をいう。また、自走細胞捕捉部とは、自走細胞を捕捉し、容易に脱着しない状態にする部分をいう。   Here, capture refers to a state in which self-running cells adhere to the free-running cell trapping part and are not easily detached. The self-propelled cell capturing part refers to a part that captures self-propelled cells and does not easily desorb.

自走細胞捕捉部の形状としては、例えば、糸状、棒状、スポンジ状、帯状、紙片状、及び中空ロール状等を挙げることができる。なお、スポンジ状とは、適度な柔軟性を有する多孔質構造をいう。   Examples of the shape of the self-propelled cell trapping part include a thread shape, a rod shape, a sponge shape, a strip shape, a paper piece shape, and a hollow roll shape. Sponge refers to a porous structure having moderate flexibility.

自走細胞捕捉部の形状が、糸状、帯状、紙片状、又は中空ロール状である場合、これらの形状の自走細胞捕捉部は、例えば、織布や不織布によって形成することができる。   When the shape of the self-propelled cell trapping part is a thread shape, a strip shape, a paper piece shape, or a hollow roll shape, the self-propelled cell trapping part having these shapes can be formed by, for example, a woven fabric or a non-woven fabric.

自走細胞捕捉部の材質としては、例えば、合成高分子材料、及び生体由来の天然高分子材料等を挙げることができる。合成高分子材料の具体例としては、ポリウレタン;セグメント化ポリウレタン;ポリスチレン;ポリエーテル;ポリアミド;ポリエチレン、ポリプロピレン、ポリプロピレン−ポリエチレン共重合体、ポリブチレン−ポリプロピレン共重合体等のポリオレフィン;これらをブレンド又はアロイ化したもの等を挙げることができる。これらの合成高分子材料のなかでも、担体表面の修飾容易性等の観点からはポリスチレンが好ましい。一方、耐熱性及び不織布の形状保持等の観点からはポリプロピレン及びポリプロピレン−ポリエチレン共重合体が好ましい。さらに、自走細胞捕捉部を不織布で形成する場合、自走細胞捕捉部の形状を保持するためにポリプロピレン等からなる骨格材繊維を不織布に入れることも好ましい。   Examples of the material for the self-propelled cell trapping part include a synthetic polymer material and a natural polymer material derived from a living body. Specific examples of the synthetic polymer material include: polyurethane; segmented polyurethane; polystyrene; polyether; polyamide; polyolefin such as polyethylene, polypropylene, polypropylene-polyethylene copolymer, polybutylene-polypropylene copolymer; blend or alloy these Can be mentioned. Among these synthetic polymer materials, polystyrene is preferable from the viewpoint of ease of modification of the carrier surface. On the other hand, polypropylene and a polypropylene-polyethylene copolymer are preferred from the viewpoints of heat resistance and shape retention of the nonwoven fabric. Furthermore, when the self-propelled cell trapping part is formed of a nonwoven fabric, it is also preferable to add a skeleton material fiber made of polypropylene or the like to the nonwoven fabric in order to maintain the shape of the self-propelled cell trapping part.

天然高分子材料の具体例としては、コラーゲン、ゼラチン、キチン、キトサン、フィブロイン、ケラチン、及びこれらの誘導体等を挙げることができる。   Specific examples of the natural polymer material include collagen, gelatin, chitin, chitosan, fibroin, keratin, and derivatives thereof.

自走細胞捕捉部は、単繊維度1.0dtex以下の繊維及び直径10μm以下の粒子の少なくともいずれかを含むことが好ましく、これらの繊維及び粒子の少なくともいずれかで実質的に形成されていることがさらに好ましい。   The self-propelled cell trapping part preferably includes at least one of fibers having a single fiber degree of 1.0 dtex or less and particles having a diameter of 10 μm or less, and is substantially formed of at least one of these fibers and particles. Is more preferable.

自走細胞捕捉部が繊維を含む場合、この繊維の単繊維度は0.8dtex以下であることがさらに好ましく、0.5〜0.05dtexであることが特に好ましい。また、繊維の径(繊維径)は、自走細胞の捕捉(付着)能をより効果的に発揮させる観点から0.0001〜20μmであることが好ましい。一方、自走細胞捕捉の捕捉(付着)性能をより安定化する観点からは、0.1〜20μmであることが好ましい。なお、顆粒球をより選択的に除去する観点からは、1〜20μmであることが好ましい。   When the self-running cell trapping part contains fibers, the single fiber degree of the fibers is more preferably 0.8 dtex or less, and particularly preferably 0.5 to 0.05 dtex. Moreover, it is preferable that the diameter (fiber diameter) of a fiber is 0.0001-20 micrometers from a viewpoint of exhibiting the capture | capture (adhesion) ability of a self-propelled cell more effectively. On the other hand, from the viewpoint of further stabilizing the capture (adhesion) performance of capturing self-running cells, it is preferably 0.1 to 20 μm. In addition, it is preferable that it is 1-20 micrometers from a viewpoint of removing a granulocyte more selectively.

前記繊維の繊維径が10μm未満である場合、自走細胞捕捉部の強度を確保する観点から、より太径の繊維を混合してもよい。混合する太径の繊維の繊維径は、10〜50μmであることが好ましい。なお、繊維は、短繊維であっても長繊維であってもよく、さらには中空糸であってもよい。   When the fiber diameter of the fiber is less than 10 μm, a fiber having a larger diameter may be mixed from the viewpoint of securing the strength of the self-propelled cell trapping part. The fiber diameter of the large diameter fiber to be mixed is preferably 10 to 50 μm. The fiber may be a short fiber or a long fiber, and may be a hollow fiber.

繊維の繊維径とは、ランダムに採取した小片サンプル10個につき、走査型電子顕微鏡を用いて1000〜3000倍の写真を撮影し、各写真あたり10箇所(計100箇所)の繊維の直径の平均値をいう。   The fiber diameter of the fiber is taken from 1000 to 3000 times using a scanning electron microscope for 10 randomly sampled small pieces, and the average of the fiber diameters at 10 locations (100 locations in total) for each photo. Value.

自走細胞捕捉部が粒子を含む場合、この粒子の直径は0.001〜10μmであることが好ましい。なお、顆粒球をより選択的に除去する観点からは、0.01〜10μmであることが好ましい。   When the self-propelled cell trapping part contains particles, the diameter of the particles is preferably 0.001 to 10 μm. In addition, it is preferable that it is 0.01-10 micrometers from a viewpoint of removing a granulocyte more selectively.

前記粒子として、例えば、免疫診断用の高分子粒子を用いることが好ましい。このような高分子粒子を用いることで、より効果的に自走細胞を補足することができる。なお、免疫診断用の高分子粒子の具体例としては、ポリスチレン粒子、ポリエチレン粒子、天然ゴムラテックス等を挙げることができる。   For example, polymer particles for immunodiagnosis are preferably used as the particles. By using such polymer particles, it is possible to supplement the self-running cells more effectively. Specific examples of the polymer particles for immunodiagnosis include polystyrene particles, polyethylene particles, natural rubber latex, and the like.

自走細胞捕捉部の少なくとも一部は、抗血栓性を有することが好ましい。抗血栓性とは、血液凝固を惹起させない性質であって、主として血小板の粘着及び/又はフィブリンの粘着を促進させない性質をいう。白血球捕捉部の少なくとも一部に抗血栓性を持たせると、例えば、本発明の自走細胞捕捉具を血液中の白血球を除去するのに用いる場合、患者に投与する抗凝固剤の量を減らすことができる。なお、自走細胞捕捉部の少なくとも一部に抗血栓性を持たせるには、例えば、抗血栓性を有する物質を用いて自走細胞捕捉部を作製すればよい。   It is preferable that at least a part of the self-running cell trapping part has antithrombotic properties. The antithrombogenicity refers to a property that does not cause blood coagulation and mainly does not promote adhesion of platelets and / or fibrin. When anti-thrombogenicity is imparted to at least a part of the leukocyte capturing part, for example, when the self-propelled cell capturing device of the present invention is used to remove leukocytes in blood, the amount of anticoagulant administered to the patient is reduced. be able to. In order to provide at least a part of the self-propelled cell trapping part with antithrombogenicity, for example, the self-propelled cell trapping part may be prepared using a substance having antithrombotic properties.

また、本発明の自走細胞捕捉具を、血液中の白血球を補足して除去するための白血球除去具として用いる場合には、白血球に対して特異的結合親和性を有する認識分子で自走細胞捕捉部の表面を修飾することが好ましい。このような認識分子としては、例えば、アセチル基、エステル結合、及び水酸基のいずれの官能基も有しない、E−セレクチン、抗体、ペプチド、タンパク質、核酸、糖鎖、糖タンパク質、及び低分子化合物等を挙げることができる。   In addition, when the self-propelled cell capturing device of the present invention is used as a leukocyte removing device for capturing and removing leukocytes in blood, the self-propelled cell is recognized by a recognition molecule having specific binding affinity for leukocytes. It is preferable to modify the surface of the capturing part. Examples of such recognition molecules include E-selectin, antibody, peptide, protein, nucleic acid, sugar chain, glycoprotein, and low molecular weight compound that do not have any functional group of acetyl group, ester bond, and hydroxyl group. Can be mentioned.

自走細胞捕捉部の表面は、自走細胞捕捉部の表面へ認識分子を直接又は活性基を介して剥離しない程度に結合させることにより修飾することができる。認識分子は、共有結合、イオン結合、ファンデルワールス結合、水素結合、疎水結合、又はこれらの合力による結合等によって自走細胞捕捉部の表面に結合させることができる。これらの結合のなかでも、認識分子の剥離抑制の観点から、共有結合又は疎水結合が好ましく、共有結合がさらに好ましい。   The surface of the free-running cell trapping part can be modified by binding the recognition molecule to the surface of the free-running cell trapping part directly or through an active group. The recognition molecule can be bound to the surface of the self-propelled cell trapping part by a covalent bond, an ionic bond, a van der Waals bond, a hydrogen bond, a hydrophobic bond, a bond by a resultant force thereof, or the like. Among these bonds, a covalent bond or a hydrophobic bond is preferable, and a covalent bond is more preferable from the viewpoint of suppressing peeling of the recognition molecule.

本発明の自走細胞捕捉具の容器は、例えば、医療器具を構成する一般的な材質によって構成される。容器を構成する材質の具体例としては、塩化ビニル、フッ素樹脂、ポリエステル、ポリエチレン、ポリプロピレン、ポリスチレン、アクリル樹脂、AS樹脂、ポリアミド、ポリカーボネート、ABS樹脂、及びポリ乳酸等の高分子材料を挙げることができる。   The container of the self-propelled cell capturing device of the present invention is made of, for example, a general material constituting a medical instrument. Specific examples of the material constituting the container include polymer materials such as vinyl chloride, fluororesin, polyester, polyethylene, polypropylene, polystyrene, acrylic resin, AS resin, polyamide, polycarbonate, ABS resin, and polylactic acid. it can.

本発明の自走細胞捕捉具の全体的形状は特に限定されないが、例えば、チューブ状(管状)、袋状等を挙げることができる。自走細胞捕捉具の全体的形状が管状である場合、内径は1〜20mmであることが好ましく、3〜10mmであることがさらに好ましい。また、長さは10cm〜10mであることが好ましく、50cm〜5mであることがさらに好ましい。なお、細くするほど及び/又は長くするほど、自走細胞の捕捉効率を上昇させることができる。このため、使用態様に応じて自走細胞捕捉具の長さや太さを適宜変更すればよい。一方、全体的形状が袋状である場合には、一以上の血液の出入り口を有する血液バッグのような密閉性容器とすることができる。   The overall shape of the self-propelled cell capturing device of the present invention is not particularly limited, and examples thereof include a tube shape (tubular shape) and a bag shape. When the overall shape of the self-propelled cell trap is tubular, the inner diameter is preferably 1 to 20 mm, and more preferably 3 to 10 mm. Further, the length is preferably 10 cm to 10 m, and more preferably 50 cm to 5 m. In addition, the capture efficiency of self-propelled cells can be increased as the thickness is reduced and / or lengthened. For this reason, what is necessary is just to change the length and thickness of a self-propelled cell capture tool suitably according to a use aspect. On the other hand, when the overall shape is a bag shape, the container can be a hermetic container such as a blood bag having one or more blood outlets.

本発明の自走細胞捕捉具を用いて自走細胞を含む被処理流体を処理することにより、自走細胞を分離、濃縮、又は除去することができる。自走細胞としては、例えば、線維芽細胞、培養細胞、骨髄細胞、アメーバ細胞、神経細胞、白血球、肝細胞、内皮細胞、中皮細胞、心筋細胞、平滑筋細胞、精巣細胞、神経鞘細胞、グリア細胞、骨膜細胞、骨芽細胞、ケラチノサイト、T細胞、腸上皮細胞、iPS細胞、嗅覚細胞、網膜細胞、口腔粘膜細胞、膵島細胞、遺伝子導入細胞、幹細胞、及び肝細胞等を挙げることができる。そして、これらの自走細胞を含む被処理流体としては、例えば、培養液、骨髄液、アメーバ赤痢患者の糞便希釈液、及び血液等を挙げることができる。   By processing the to-be-processed fluid containing a self-propelled cell using the self-propelled cell capture tool of this invention, a self-propelled cell can be isolate | separated, concentrated, or removed. Examples of self-running cells include fibroblasts, cultured cells, bone marrow cells, amoeba cells, neurons, leukocytes, hepatocytes, endothelial cells, mesothelial cells, cardiomyocytes, smooth muscle cells, testis cells, nerve sheath cells, Examples include glial cells, periosteal cells, osteoblasts, keratinocytes, T cells, intestinal epithelial cells, iPS cells, olfactory cells, retinal cells, oral mucosal cells, islet cells, transgenic cells, stem cells, and hepatocytes. . And as a to-be-processed fluid containing these self-propelled cells, a culture solution, a bone marrow fluid, the feces dilution liquid of an amoeba dysentery patient, blood, etc. can be mentioned, for example.

例えば、本発明の自走細胞捕捉具を用いて培養細胞を含有する培養液を処理する場合を想定する。この場合、培養液に含まれる培養細胞は自走細胞捕捉具の自走細胞捕捉部に捕捉されるので、処理後の自走細胞捕捉部を容器から剥離及び分離させることで、濃縮された培養細胞を簡便に取り出すことができる。また、アメーバ赤痢患者の糞便希釈液を処理する場合を想定する。この場合、糞便希釈液に含まれるアメーバ細胞が自走細胞捕捉部に捕捉されるので、処理後の自走細胞捕捉部を容器から剥離及び分離させることで、濃縮されたアメーバ細胞を簡便に取り出すことができる。   For example, the case where the culture solution containing a cultured cell is processed using the self-propelled cell capturing tool of the present invention is assumed. In this case, since the cultured cells contained in the culture solution are captured by the free-running cell trapping part of the free-running cell trapping device, the cultured cell concentrated by peeling and separating the free-running cell trapping part after processing from the container. Cells can be easily removed. Moreover, the case where the feces dilution liquid of an amoeba dysentery patient is processed is assumed. In this case, the amoeba cells contained in the stool dilution are captured by the free-running cell trapping part, and thus the concentrated amoebial cells can be easily taken out by separating and separating the free-running cell trapping part after the treatment from the container. be able to.

本発明の自走細胞捕捉具を用いれば、流路内を流通させた被処理流体中の自走細胞を、強力な大型ポンプ等を使用しなくても効率的に除去することができる。また、本発明の自走細胞捕捉具を、血液中の白血球を除去するための白血球除去具として使用する場合を想定する。この場合、流路に血液を流通させることで、流出する血液中の白血球数を、流入させた血液の白血球数に比べて、通常5%以上、好ましくは10%以上、さらに好ましくは50%以上、特に好ましくは90%以上減少させることができる。   If the self-propelled cell capturing device of the present invention is used, the self-propelled cells in the fluid to be treated circulated in the flow path can be efficiently removed without using a powerful large pump or the like. Moreover, the case where the self-propelled cell capturing device of the present invention is used as a leukocyte removing device for removing leukocytes in blood is assumed. In this case, by circulating blood through the flow path, the number of leukocytes in the flowing out blood is usually 5% or more, preferably 10% or more, more preferably 50% or more, compared with the number of leukocytes in the blood that has flowed in. Particularly preferably, it can be reduced by 90% or more.

本発明の自走細胞捕捉具は、白血球除去療法又は採取血液の白血球除去に好適に用いることができる。白血球除去療法とは、患者の体内を流れる血液を一時的に体外に導き、白血球除去を行った後に患者の体内に血液を戻すことで疾患の治療を行う治療法をいう。また、採取血液の白血球除去とは、輸血等の目的で採取した血液から白血球除去を行う処置法をいう。   The self-propelled cell capturing device of the present invention can be suitably used for leukocyte removal therapy or leukocyte removal from collected blood. Leukocyte removal therapy refers to a treatment method that treats a disease by temporarily guiding the blood flowing through the patient's body to the outside of the body and then removing the leukocyte and returning the blood to the patient's body. The removal of leukocytes from collected blood refers to a treatment method for removing leukocytes from blood collected for the purpose of blood transfusion or the like.

なお、本発明の自走細胞捕捉具が実際に白血球除去療法等に使用され、優れた効果が発揮されることを臨床的に確認するのは、患者に同意を得た上で実施しなければならないために困難な場合が多い。このため、本発明の自走細胞捕捉具の白血球除去性能については、例えば、動物(ヒトを除く)の体外に導いた血液を本発明の自走細胞捕捉具で処理する、或いは輸血用に採取した血液を本発明の自走細胞捕捉具で処理すること等によって確認することができる。   In addition, clinical confirmation that the self-propelled cell capturing device of the present invention is actually used for leukocyte removal therapy and the like and exhibits an excellent effect must be performed after obtaining consent from the patient. It is often difficult because it does not become. For this reason, with respect to the leukocyte removal performance of the self-propelled cell capturing device of the present invention, for example, blood guided outside the body of an animal (excluding humans) is processed with the self-propelled cell capturing device of the present invention or collected for blood transfusion. The treated blood can be confirmed by processing with the self-propelled cell capturing device of the present invention.

以下、図面を参照しつつ、本発明の自走細胞捕捉具の具体的な実施形態について説明する。図1は、本発明の自走細胞捕捉具の一実施形態を模式的に示す断面図である。また、図2は、図1の部分拡大図である。図1及び2に示すように、本実施形態の自走細胞捕捉具10は、チューブ状(管状)の容器2と、この容器2内に配設された自走細胞捕捉部4とを備える。自走細胞捕捉部4は、例えば極細繊維からなる不織布で構成されている。このため、自走細胞捕捉部4の表面は凹凸を有する。自走細胞捕捉部4の一端部は、容器2の内側に固定されている。また、容器2内には、その内部を流通する被処理流体が自走細胞捕捉部4と接触可能な流路6が形成されている。そして、この流路6の最小流路径は100μm以上である。なお、図2においては、自走細胞15が自走細胞捕捉部4の捕捉された状態が模式的に示されている。   Hereinafter, specific embodiments of the self-propelled cell trap of the present invention will be described with reference to the drawings. FIG. 1 is a cross-sectional view schematically showing an embodiment of the self-propelled cell trap of the present invention. FIG. 2 is a partially enlarged view of FIG. As shown in FIGS. 1 and 2, the self-propelled cell capturing device 10 of the present embodiment includes a tubular (tubular) container 2 and a self-propelled cell capturing unit 4 disposed in the container 2. The self-propelled cell trap 4 is made of a non-woven fabric made of ultrafine fibers, for example. For this reason, the surface of the self-running cell trapping part 4 has irregularities. One end of the self-propelled cell trap 4 is fixed inside the container 2. Further, in the container 2, a flow path 6 is formed in which a fluid to be processed flowing through the container 2 can come into contact with the self-propelled cell capturing unit 4. And the minimum flow path diameter of this flow path 6 is 100 micrometers or more. In FIG. 2, a state in which the self-running cells 15 are captured by the self-running cell capturing unit 4 is schematically illustrated.

自走細胞捕捉部4の一端部を容器2の内側に固定するには、例えば、容器2が塩化ビニル等の合成高分子材料で形成されている場合、この合成高分子材料を適度に溶解させることが可能な有機溶媒を容器2の内側に塗布しておき、有機溶媒を塗布した部分に不織布で形成された自走細胞捕捉部4を圧着すればよい。   In order to fix the one end of the self-propelled cell capturing unit 4 to the inside of the container 2, for example, when the container 2 is formed of a synthetic polymer material such as vinyl chloride, the synthetic polymer material is appropriately dissolved. An organic solvent capable of being applied may be applied to the inside of the container 2, and the self-propelled cell trapping portion 4 formed of a nonwoven fabric may be pressure-bonded to a portion where the organic solvent is applied.

図3は、本発明の自走細胞捕捉具の他の実施形態を模式的に示す断面図である。図3に示す実施形態の自走細胞捕捉具20は、チューブ状(カラム状)の容器12と、この容器12内に配設された糸状(紐状)の複数の自走細胞捕捉部14とを備える。自走細胞捕捉部14は、例えば極細繊維からなる不織布で構成されている。自走細胞捕捉部14の一端部及び他端部は、容器12を構成する蓋部25、35の内側にそれぞれ固定されている。なお、蓋部25には容器12内に被処理流体を流入させる流入部7が形成されている。また、蓋部35には容器12内から処理済み流体を流出させる流出部9が形成されている。そして、糸状(紐状)の複数の自走細胞捕捉部14は、相互に適当な間隔を保った状態で容器12内に収納されているので、容器12内には被処理流体が自走細胞捕捉部14と接触可能な流路16が形成されている。   FIG. 3 is a cross-sectional view schematically showing another embodiment of the self-propelled cell trap of the present invention. The self-propelled cell capturing device 20 of the embodiment shown in FIG. 3 includes a tube-shaped (column-shaped) container 12 and a plurality of thread-shaped (string-shaped) self-propelled cell-capturing units 14 disposed in the container 12. Is provided. The self-propelled cell capturing unit 14 is made of, for example, a nonwoven fabric made of ultrafine fibers. One end portion and the other end portion of the self-propelled cell capturing portion 14 are respectively fixed inside the lid portions 25 and 35 constituting the container 12. The lid portion 25 is formed with an inflow portion 7 for allowing the fluid to be processed to flow into the container 12. Further, the lid portion 35 is formed with an outflow portion 9 through which the treated fluid flows out from the container 12. Further, since the plurality of thread-like (string-like) self-propelled cell trapping portions 14 are stored in the container 12 in a state of keeping an appropriate distance from each other, the fluid to be treated is contained in the container 12 in the self-propelled cells. A flow path 16 that can contact the capturing section 14 is formed.

図4は、本発明の自走細胞捕捉具のさらに他の実施形態を模式的に示す斜視図である。図4に示す実施形態の自走細胞捕捉具30は、チューブ状(カラム状)の容器22と、この容器22内に配設された中空ロール状の複数の自走細胞捕捉部24とを備える。自走細胞捕捉部24は、例えば極細繊維からなる不織布で構成されている。自走細胞捕捉部24の一端部及び他端部は、容器22を構成する上側の蓋部(図示せず)の内側と、下側の蓋部37の内側にそれぞれ固定されている。なお、上側の蓋部(図示せず)には容器22内に被処理流体を流入させる流入部が形成されている。また、蓋部37には容器22内から処理済み流体を流出させる流出部19が形成されている。そして、被処理流体が自走細胞捕捉部24と接触可能な流路26が、中空ロール状の複数の自走細胞捕捉部24の内外に形成されている。   FIG. 4 is a perspective view schematically showing still another embodiment of the self-propelled cell trap of the present invention. The self-propelled cell capturing device 30 of the embodiment shown in FIG. 4 includes a tube-shaped (column-shaped) container 22 and a plurality of self-propelled cell-capturing units 24 arranged in the container 22 in a hollow roll shape. . The self-propelled cell trap 24 is made of a nonwoven fabric made of ultrafine fibers, for example. One end and the other end of the self-propelled cell trap 24 are fixed to the inside of the upper lid (not shown) constituting the container 22 and the inside of the lower lid 37, respectively. Note that an inflow portion for allowing the fluid to be processed to flow into the container 22 is formed in the upper lid portion (not shown). Further, the lid portion 37 is formed with an outflow portion 19 through which the processed fluid flows out from the container 22. And the flow path 26 in which a to-be-processed fluid can contact the self-propelled cell capture part 24 is formed in the inside and outside of the several self-propelled cell capture part 24 of a hollow roll shape.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の「部」及び「%」は、特に断らない限り質量基準である。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples. The following “parts” and “%” are based on mass unless otherwise specified.

(実施例1)
テトラヒドロフラン(THF)をその内周面に塗布した、内径5mm、長さ1mの軟質塩化ビニルチューブに、単繊維度0.1dtexのポリエステル繊維からなる厚み400μmの人工血管を挿入した。さらに、フッ素樹脂製の棒を人工血管内に挿入し、軟質塩化ビニルチューブの内周面に人工血管を押しつけ、軟質塩化ビニルチューブ内に人工血管を固定して、自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は4200μmであった。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は9200/μLであり、流出した血液の白血球数は4700/μLであった。以上のことから、約50%の白血球が動静脈間シャントを流れる間に捕捉されたことが判明した。
Example 1
An artificial blood vessel having a thickness of 400 μm made of polyester fiber having a single fiber degree of 0.1 dtex was inserted into a soft vinyl chloride tube having an inner diameter of 5 mm and a length of 1 m, which was coated with tetrahydrofuran (THF) on the inner peripheral surface thereof. Furthermore, a fluororesin rod was inserted into the artificial blood vessel, the artificial blood vessel was pressed against the inner peripheral surface of the soft vinyl chloride tube, and the artificial blood vessel was fixed in the soft vinyl chloride tube to produce a self-propelled cell trap. . In addition, the minimum flow path diameter of the flow path in the produced self-propelled cell trap was 4200 μm. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. Further, the leukocyte count of blood flowing into the arteriovenous shunt was 9200 / μL, and the leukocyte count of blood flowing out was 4700 / μL. From the above, it was found that about 50% of leukocytes were captured while flowing through the inter-arteriovenous shunt.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、軟質塩化ビニルチューブの内周面からはがした人工血管を用いて光学顕微鏡用の切片を作製した。作製した切片についてヘマトキシリン・エオジン染色を行った後、光学顕微鏡を使用して倍率400倍で観察した。その結果、人工血管壁の1視野(0.15mm2)に平均160個の白血球が捕捉されていることが分かった。 After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Next, a section for an optical microscope was prepared using an artificial blood vessel peeled from the inner peripheral surface of the soft vinyl chloride tube. The prepared sections were stained with hematoxylin and eosin and then observed at 400 times magnification using an optical microscope. As a result, it was found that an average of 160 leukocytes were captured in one visual field (0.15 mm 2 ) of the artificial blood vessel wall.

(実施例2)
THFをその内周面に塗布した、内径5mm、長さ1mの軟質塩化ビニルチューブの内周面の全体にわたって、直径1.5μmの酢酸セルロース製のビーズを付着させて固定し、自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は約4800μmであった。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は9500/μLであり、流出した血液の白血球数は6700/μLであった。以上のことから、約30%の白血球が動静脈間シャントを流れる間に捕捉されたことが判明した。
(Example 2)
A cellulose acetate bead with a diameter of 1.5 μm is attached and fixed over the entire inner peripheral surface of a soft vinyl chloride tube having an inner diameter of 5 mm and a length of 1 m, which is coated with THF on the inner peripheral surface, thereby capturing self-propelled cells. A tool was prepared. In addition, the minimum channel diameter of the channel in the produced self-propelled cell trap was about 4800 μm. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. Further, the leukocyte count of blood flowing into the arteriovenous shunt was 9500 / μL, and the leukocyte count of blood flowing out was 6700 / μL. From the above, it was found that about 30% of white blood cells were captured while flowing through the inter-arteriovenous shunt.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、走査型電子顕微鏡を使用し、自走細胞捕捉具の内周面を倍率100〜3000倍で観察した。その結果、軟質塩化ビニルチューブの内周面には多数のビーズが貼り付いていたとともに、個々のビーズの表面と裏面のいずれにも白血球が無数に付着していることが判明した。また、走査型電子顕微鏡を使用し、倍率を3000倍として観察したところ、一つのビーズあたり平均20個の白血球が付着して捕捉されていることが分かった。   After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Subsequently, the internal peripheral surface of the self-propelled cell trap was observed at a magnification of 100 to 3000 using a scanning electron microscope. As a result, it was found that a large number of beads were adhered to the inner peripheral surface of the soft vinyl chloride tube, and countless leukocytes were attached to both the front and back surfaces of each bead. Moreover, using a scanning electron microscope and observing at a magnification of 3000, it was found that an average of 20 leukocytes were attached and captured per bead.

(実施例3)
単繊維度1.5dtexのポリエステル繊維を使用して作製した編み目の荒い人工血管(厚み400μm)に、エレクトロスピニング技術を用いてキトサンのナノファイバーを吹き付けて、ナノファイバーが繊維間に絡まった人工血管を作製した。なお、ナノファイバーを吹き付ける際、ポリエステル繊維の繊維間隙を通して人工血管の内腔にもナノファイバーが到達するように吸引器を用いて吸引した。また、走査型電子顕微鏡で観察及び計測したところ、ナノファイバーの繊維径は20〜200nm程度であった。THFをその内周面に塗布した、内径5mm、長さ1mの軟質塩化ビニルチューブに、作製したナノフィラメントが繊維間に絡まった人工血管を挿入した。さらに、フッ素樹脂製の棒を人工血管内に挿入し、軟質塩化ビニルチューブの内周面に人工血管を押しつけ、軟質塩化ビニルチューブ内に人工血管を固定して、自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は4200μmであった。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は11000/μLであり、流出した血液の白血球数は3200/μLであった。以上のことから、約70%の白血球が動静脈間シャントを流れる間に捕捉されたことが判明した。
(Example 3)
An artificial blood vessel in which nanofibers of chitosan are sprayed on an artificial blood vessel (thickness 400 μm) made of polyester fiber having a single fiber degree of 1.5 dtex using electrospinning technology, and the nanofibers are entangled between the fibers. Was made. When nanofibers were sprayed, suction was performed using a suction device so that the nanofibers reached the lumen of the artificial blood vessel through the fiber gaps of the polyester fibers. Moreover, when observed and measured with the scanning electron microscope, the fiber diameter of the nanofiber was about 20-200 nm. An artificial blood vessel in which the prepared nanofilaments were entangled between the fibers was inserted into a soft vinyl chloride tube having an inner diameter of 5 mm and a length of 1 m, to which THF was applied on the inner peripheral surface thereof. Furthermore, a fluororesin rod was inserted into the artificial blood vessel, the artificial blood vessel was pressed against the inner peripheral surface of the soft vinyl chloride tube, and the artificial blood vessel was fixed in the soft vinyl chloride tube to produce a self-propelled cell trap. . In addition, the minimum flow path diameter of the flow path in the produced self-propelled cell trap was 4200 μm. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. In addition, the white blood cell count of blood flowing into the arteriovenous shunt was 11000 / μL, and the white blood cell count of the outflow blood was 3200 / μL. From the above, it was found that about 70% of leukocytes were captured while flowing through the inter-arteriovenous shunt.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、軟質塩化ビニルチューブの内周面からはがした人工血管を用いて光学顕微鏡用の切片を作製した。作製した切片についてヘマトキシリン・エオジン染色を行った後、光学顕微鏡を使用して倍率400倍で観察した。その結果、人工血管壁の1視野(0.15mm2)に平均180個の白血球が捕捉されていることが分かった。 After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Next, a section for an optical microscope was prepared using an artificial blood vessel peeled from the inner peripheral surface of the soft vinyl chloride tube. The prepared sections were stained with hematoxylin and eosin and then observed at 400 times magnification using an optical microscope. As a result, it was found that an average of 180 leukocytes were captured in one visual field (0.15 mm 2 ) of the artificial blood vessel wall.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、走査型電子顕微鏡を使用し、軟質塩化ビニルチューブの内周面からはがした人工血管を観察した。その結果、ポリエステル繊維にはナノファイバーが付着していたとともに、ナノファイバーには白血球が無数に付着していることが判明した。また、走査型電子顕微鏡を使用し、倍率を3000倍として観察したところ、1視野(1000μm2)には平均23個の白血球が付着して捕捉されていることが分かった。また、倍率を上げてさらに観察したところ、ナノファイバーの一部が白血球に食い込んだ様な状態、すなわち、白血球がナノファイバーを貪食した状態にあることが分かった。このことから、単に付着している場合に比べて、捕捉された白血球が外れにくい状態にあることが判明した。 After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Subsequently, the artificial blood vessel peeled off from the inner peripheral surface of the soft vinyl chloride tube was observed using a scanning electron microscope. As a result, it was found that nanofibers were attached to the polyester fibers, and countless leukocytes were attached to the nanofibers. Moreover, using a scanning electron microscope and observing at a magnification of 3000, it was found that an average of 23 leukocytes adhered and captured in one field of view (1000 μm 2 ). Further, when the magnification was further increased and further observation was performed, it was found that a part of the nanofibers had engulfed the leukocytes, that is, the leukocytes phagocytosed the nanofibers. From this, it was proved that the captured white blood cells are less likely to come off than when they are simply attached.

(実施例4)
単繊維度1.5dtexのポリエステル繊維を使用して作製した編み目の荒い人工血管(厚み400μm)に、静電気吸着法を用いて免疫診断に用いられる直径2μmの高分子粒子を付着させて、高分子粒子が付着した人工血管を作製した。THFをその内周面に塗布した、内径5mm、長さ1mの軟質塩化ビニルチューブに、作製した高分子粒子が付着した人工血管を挿入した。さらに、フッ素樹脂製の棒を人工血管内に挿入し、軟質塩化ビニルチューブの内周面に人工血管を押しつけ、軟質塩化ビニルチューブ内に人工血管を固定して、自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は4200μmであった。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は9500/μLであり、流出した血液の白血球数は6200/μLであった。以上のことから、約35%の白血球が動静脈間シャントを流れる間に捕捉されたことが判明した。
Example 4
Polymer particles with a diameter of 2 μm used for immunodiagnosis using an electrostatic adsorption method are attached to an artificial blood vessel (thickness: 400 μm) with rough stitches produced using a polyester fiber having a single fiber degree of 1.5 dtex. An artificial blood vessel with particles attached was prepared. An artificial blood vessel having the prepared polymer particles attached thereto was inserted into a soft vinyl chloride tube having an inner diameter of 5 mm and a length of 1 m. Furthermore, a fluororesin rod was inserted into the artificial blood vessel, the artificial blood vessel was pressed against the inner peripheral surface of the soft vinyl chloride tube, and the artificial blood vessel was fixed in the soft vinyl chloride tube to produce a self-propelled cell trap. . In addition, the minimum flow path diameter of the flow path in the produced self-propelled cell trap was 4200 μm. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. Further, the leukocyte count of blood flowing into the arteriovenous shunt was 9500 / μL, and the leukocyte count of blood flowing out was 6200 / μL. From the above, it was found that about 35% of leukocytes were captured while flowing through the arteriovenous shunt.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、軟質塩化ビニルチューブの内周面からはがした人工血管を用いて光学顕微鏡用の切片を作製した。作製した切片についてヘマトキシリン・エオジン染色を行った後、光学顕微鏡を使用して倍率400倍で観察した。その結果、人工血管壁の1視野(0.15mm2)に平均70個の白血球が捕捉されていることが分かった。 After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Next, a section for an optical microscope was prepared using an artificial blood vessel peeled from the inner peripheral surface of the soft vinyl chloride tube. The prepared sections were stained with hematoxylin and eosin and then observed at 400 times magnification using an optical microscope. As a result, it was found that an average of 70 leukocytes were captured in one visual field (0.15 mm 2 ) of the artificial blood vessel wall.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、走査型電子顕微鏡を使用し、軟質塩化ビニルチューブの内周面からはがした人工血管を観察した。その結果、ポリエステル繊維には多数の微細な高分子粒子が付着していたとともに、高分子粒子上には白血球が無数に付着していることが判明した。また、走査型電子顕微鏡を使用し、倍率を3000倍として観察したところ、1視野(1000μm2)には平均13個の白血球が付着して捕捉されていることが分かった。また、倍率を上げてさらに観察したところ、白血球が粒子に覆い被さる様な状態、すなわち、白血球がナノファイバーを貪食した状態にあることが分かった。このことから、単に付着している場合に比べて、捕捉された白血球が外れにくい状態にあることが判明した。 After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Subsequently, the artificial blood vessel peeled off from the inner peripheral surface of the soft vinyl chloride tube was observed using a scanning electron microscope. As a result, it was found that a large number of fine polymer particles were attached to the polyester fiber, and countless leukocytes were attached on the polymer particles. Moreover, using a scanning electron microscope and observing at a magnification of 3000, it was found that an average of 13 leukocytes were attached and captured in one visual field (1000 μm 2 ). Further, when the magnification was increased and further observation was performed, it was found that leukocytes were covered with particles, that is, leukocytes were phagocytosing nanofibers. From this, it was proved that the captured white blood cells are less likely to come off than when they are simply attached.

(実施例5)
4,4’−ジフェニルメタンジイソシアネート(MDI)、数平均分子量1000のポリテトラメチレングリコール(PTMG)、及び1,4−ブタンジオール(1,4−BD)(モル比:MDI/PTMG/1,4−BD=2/1/1)を、N,N−ジメチルアセトアミド(DMAc)と1,4−ジオキサンとの混合溶媒(質量比:DMAc/ジオキサン=7/3)中、プレポリマー法により重合し、セグメント化ポリウレタンを得た。エタノールを用いて得られたセグメント化ポリウレタンを3時間ソックスレー抽出洗浄して精製した。精製したセグメント化ポリウレタンを、DMAcと1,4−ジオキサンとの混合溶媒(質量比:DMAc/ジオキサン=5/5)510部に溶解させた。これに、セグメント化ポリウレタンの2.6倍量(質量比)の粒径約50μmのNaCl結晶を造孔剤として添加し、十分に混合して人工血管製造用ドープ(ポリウレタン濃度:15%)を調製した。調製したドープ中に外径4mmのガラス棒を浸漬した後引き上げ、ガラス棒をドープでコーティングした。ドープでコーティングしたガラス棒を精製水に浸漬し、セグメント化ポリウレタンを凝固析出させた。一晩放置した後にガラス棒を抜き取って、セグメント化ポリウレタン管状体を得た。得られたセグメント化ポリウレタン管状体を精製水で十分に洗浄し、NaClと残存溶媒を除去した。得られたセグメント化ポリウレタン管状体は、内径4mm、外径5mm、厚さ400μmであり、内面から外面へと連通する多数の連通孔が形成された多孔質構造を有する管状体であった。
(Example 5)
4,4′-diphenylmethane diisocyanate (MDI), polytetramethylene glycol (PTMG) having a number average molecular weight of 1000, and 1,4-butanediol (1,4-BD) (molar ratio: MDI / PTMG / 1,4- BD = 2/1/1) is polymerized by a prepolymer method in a mixed solvent of N, N-dimethylacetamide (DMAc) and 1,4-dioxane (mass ratio: DMAc / dioxane = 7/3), A segmented polyurethane was obtained. The segmented polyurethane obtained using ethanol was purified by Soxhlet extraction washing for 3 hours. The purified segmented polyurethane was dissolved in 510 parts of a mixed solvent of DMAc and 1,4-dioxane (mass ratio: DMAc / dioxane = 5/5). To this, 2.6 times the mass of segmented polyurethane (mass ratio) and about 50 μm of NaCl crystal as a pore-forming agent were added and mixed well to prepare a dope for artificial blood vessel production (polyurethane concentration: 15%). Prepared. A glass rod having an outer diameter of 4 mm was immersed in the prepared dope and then pulled up, and the glass rod was coated with the dope. The glass rod coated with the dope was immersed in purified water to solidify and precipitate the segmented polyurethane. After standing overnight, the glass rod was pulled out to obtain a segmented polyurethane tubular body. The obtained segmented polyurethane tubular body was thoroughly washed with purified water to remove NaCl and residual solvent. The obtained segmented polyurethane tubular body was a tubular body having an inner diameter of 4 mm, an outer diameter of 5 mm, and a thickness of 400 μm, and a porous structure in which a large number of communication holes communicating from the inner surface to the outer surface were formed.

THFをその内周面に塗布した、内径5mm、長さ1mの軟質塩化ビニルチューブに、得られたセグメント化ポリウレタン管状体を挿入した。さらに、フッ素樹脂製の棒を人工血管内に挿入し、軟質塩化ビニルチューブの内周面にセグメント化ポリウレタン管状体を押しつけ、軟質塩化ビニルチューブ内に人工血管を固定して、自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は4200μmであった。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は12000/μLであり、流出した血液の白血球数は8200/μLであった。以上のことから、約30%の白血球が動静脈間シャントを流れる間に捕捉されたことが判明した。   The obtained segmented polyurethane tubular body was inserted into a soft vinyl chloride tube having an inner diameter of 5 mm and a length of 1 m, which was coated with THF on the inner peripheral surface thereof. Furthermore, a fluororesin rod is inserted into the artificial blood vessel, the segmented polyurethane tubular body is pressed against the inner peripheral surface of the soft vinyl chloride tube, the artificial blood vessel is fixed in the soft vinyl chloride tube, and a self-propelled cell trap Was made. In addition, the minimum flow path diameter of the flow path in the produced self-propelled cell trap was 4200 μm. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. Further, the white blood cell count of blood flowing into the arteriovenous shunt was 12000 / μL, and the white blood cell count of the outflow blood was 8200 / μL. From the above, it was found that about 30% of white blood cells were captured while flowing through the inter-arteriovenous shunt.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、走査型電子顕微鏡を使用し、軟質塩化ビニルチューブの内周面からはがしたセグメント化ポリウレタン管状体を観察した。その結果、セグメント化ポリウレタン管状体には多数の白血球が付着していることが判明した。また、走査型電子顕微鏡を使用し、倍率を3000倍として観察したところ、1視野(1000μm2)には平均18個の白血球が付着して捕捉されていることが分かった。 After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Subsequently, the segmented polyurethane tubular body peeled off from the inner peripheral surface of the soft vinyl chloride tube was observed using a scanning electron microscope. As a result, it was found that many leukocytes were attached to the segmented polyurethane tubular body. Moreover, using a scanning electron microscope and observing at a magnification of 3000, it was found that an average of 18 leukocytes were attached and captured in one field of view (1000 μm 2 ).

(実施例6)
実施例5で得た精製したセグメント化ポリウレタン95部とジピリダモール5部との混合物を、DMAcと1,4−ジオキサンとの混合溶媒(質量比:DMAc/ジオキサン=5/5)510部に溶解させた。これに、セグメント化ポリウレタンの2.6倍量(質量比)の粒径約50μmのNaCl結晶を造孔剤として添加し、十分に混合して人工血管製造用ドープ(ポリウレタン濃度:15%)を調製した。このようにして調製した人工血管製造用ドープを用いたこと以外は、前述の実施例5と同様にして自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は4200μmであった。作製した自走細胞捕捉具は、抗血小板薬であるジピリダモールを徐放出する機能を有するものである。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり50Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、自走細胞捕捉具への血栓付着は全く認められなかった。この結果から、自走細胞捕捉具に抗血栓性を付与すると、抗凝固薬(ヘパリン)の使用量を低減可能であることが分かる。
(Example 6)
A mixture of 95 parts of the purified segmented polyurethane obtained in Example 5 and 5 parts of dipyridamole was dissolved in 510 parts of a mixed solvent of DMAc and 1,4-dioxane (mass ratio: DMAc / dioxane = 5/5). It was. To this, 2.6 times the mass of segmented polyurethane (mass ratio) and about 50 μm of NaCl crystal as a pore-forming agent were added and mixed well to prepare a dope for artificial blood vessel production (polyurethane concentration: 15%). Prepared. A self-propelled cell trap was produced in the same manner as in Example 5 except that the artificial blood vessel dope thus prepared was used. In addition, the minimum flow path diameter of the flow path in the produced self-propelled cell trap was 4200 μm. The produced self-propelled cell trap has a function of gradually releasing dipyridamole, which is an antiplatelet agent. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 50 U heparin per 10 kg body weight to prevent blood clotting. When the shunt experiment was continued for 4 hours, no thrombus adhesion to the self-propelled cell trap was observed. From this result, it can be seen that the use of anticoagulant (heparin) can be reduced by imparting antithrombogenicity to the self-propelled cell trap.

(実施例7)
THFをその内周面に塗布した、内径5mm、長さ1mの軟質塩化ビニルチューブに、単繊維度1.5dtexのポリエステル繊維からなる厚み400μmの人工血管を挿入した。さらに、フッ素樹脂製の棒を人工血管内に挿入し、軟質塩化ビニルチューブの内周面に人工血管を押しつけ、軟質塩化ビニルチューブ内に人工血管を固定して、自走細胞捕捉具を作製した。なお、作製した自走細胞捕捉具内の流路の最小流路径は4200μmであった。作製した自走細胞捕捉具をエチレンオキサイドガスで滅菌し、動物実験に使用した。全身麻酔下のイヌの右大腿動脈及び左大腿静脈を露出させ、作製した自走細胞捕捉具を用いて動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は8900/μLであり、流出した血液の白血球数は6000/μLであった。以上のことから、約30%の白血球が動静脈間シャントを流れる間に捕捉されたことが判明した。
(Example 7)
An artificial blood vessel having a thickness of 400 μm made of polyester fiber having a single fiber degree of 1.5 dtex was inserted into a soft vinyl chloride tube having an inner diameter of 5 mm and a length of 1 m, to which THF was applied on the inner peripheral surface. Furthermore, a fluororesin rod was inserted into the artificial blood vessel, the artificial blood vessel was pressed against the inner peripheral surface of the soft vinyl chloride tube, and the artificial blood vessel was fixed in the soft vinyl chloride tube to produce a self-propelled cell trap. . In addition, the minimum flow path diameter of the flow path in the produced self-propelled cell trap was 4200 μm. The produced self-propelled cell trap was sterilized with ethylene oxide gas and used for animal experiments. The right femoral artery and left femoral vein of a dog under general anesthesia were exposed, and an arteriovenous shunt was formed using the produced self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. Further, the leukocyte count of blood flowing into the arteriovenous shunt was 8900 / μL, and the leukocyte count of blood flowing out was 6000 / μL. From the above, it was found that about 30% of white blood cells were captured while flowing through the inter-arteriovenous shunt.

(参考例1)
イヌの血液200mLを採取した血液バッグと他の血液バッグを、実施例1で作製した自走細胞捕捉具を介して連結した。この自走細胞捕捉具を通して、他の血液バッグ内へと血液を導入した。他の血液バッグ内に導入する前の血液の白血球数は9200/μLであり、他の血液バッグ内に導入した後の血液の白血球数は100/μLであった。以上の結果から、ほぼ100%の白血球が除去されたことが分かった。
(Reference Example 1)
A blood bag from which 200 mL of dog blood was collected and another blood bag were connected via the self-propelled cell trap produced in Example 1. Blood was introduced into another blood bag through this self-propelled cell trap. The white blood cell count before introduction into the other blood bag was 9200 / μL, and the blood white blood cell count after introduction into the other blood bag was 100 / μL. From the above results, it was found that almost 100% of leukocytes were removed.

(比較例1)
内径5mm、長さ1mの軟質塩化ビニルチューブをそのまま自走細胞捕捉具として使用したこと以外は、前述の実施例1と同様にして動静脈間シャントを形成した。この際、血液ポンプは使用しなかった。また、使用したイヌには、体重10kgあたり100Uのヘパリンを静脈投与して血液凝固を阻止した。4時間継続してシャント実験を行ったところ、動静脈間シャントを流れる血液量は約20mL/分であった。また、動静脈間シャントに流入する血液の白血球数は8900/μLであり、流出した血液の白血球数は8700/μLであった。
(Comparative Example 1)
An arteriovenous shunt was formed in the same manner as in Example 1 except that a soft polyvinyl chloride tube having an inner diameter of 5 mm and a length of 1 m was used as it was as a self-propelled cell trap. At this time, no blood pump was used. The dogs used were intravenously administered with 100 U of heparin per 10 kg of body weight to prevent blood clotting. When the shunt experiment was performed continuously for 4 hours, the amount of blood flowing through the inter-arteriovenous shunt was about 20 mL / min. In addition, the leukocyte count of blood flowing into the arteriovenous shunt was 8900 / μL, and the leukocyte count of blood flowing out was 8700 / μL.

シャント実験終了後の自走細胞捕捉具に生理的食塩水を静かに流した後、10%ホルマリン液を流して付着物を固定した。次いで、走査型電子顕微鏡を使用し、軟質塩化ビニルチューブの内周面を倍率100〜4000倍で観察した。その結果、ほとんどの白血球が捕捉されなかったことが判明した。   After the physiological saline was gently poured into the self-propelled cell trap after completion of the shunt experiment, 10% formalin solution was poured to fix the deposits. Subsequently, the inner peripheral surface of the soft vinyl chloride tube was observed at a magnification of 100 to 4000 using a scanning electron microscope. As a result, it was found that most leukocytes were not captured.

本発明の自走細胞捕捉具は、血液等の被処理流体を流通させても圧力損失が小さいため、例えばポータブル(携帯型)白血球除去装置に組み込まれる白血球除去手段として好適である。   The self-propelled cell capturing device of the present invention is suitable as a leukocyte removing means incorporated into, for example, a portable (portable) leukocyte removing device because the pressure loss is small even when a fluid to be treated such as blood is circulated.

2,12,22:容器
4,14,24:自走細胞捕捉部
6,16,26:流路
7,27:流入部
9,19,29:流出部
10,20,30:自走細胞捕捉具
15:自走細胞
25,35,37:蓋部
34:顆粒球吸着用担体
45:顆粒球吸着部
50:顆粒球除去装置
2, 12, 22: Container 4, 14, 24: Self-propelled cell trapping part 6, 16, 26: Channel 7, 27: Inflow part 9, 19, 29: Outflow part 10, 20, 30: Self-propelled cell capture Tool 15: Autonomous cells 25, 35, 37: Lid 34: Granulocyte adsorption carrier 45: Granulocyte adsorption unit 50: Granulocyte removal device

Claims (9)

容器と、前記容器内に配設された、その表面に凹凸を有する自走細胞捕捉部と、を備え、
前記自走細胞捕捉部の少なくとも一端部は前記容器の内側に固定されており、
前記容器内には、その内部を流通する自走細胞を含む被処理流体が前記自走細胞捕捉部と接触可能な、最小流路径が100μm以上の流路が形成されており、
前記自走細胞捕捉部が、単繊維度1.0dtex以下の繊維及び直径10μm以下の粒子の少なくともいずれかを含む自走細胞捕捉具。
A container, and a self-propelled cell trapping part having irregularities on the surface thereof disposed in the container,
At least one end of the self-propelled cell trapping part is fixed inside the container,
In the container, a flow path having a minimum flow path diameter of 100 μm or more, in which a fluid to be processed including self-propelled cells flowing through the container can come into contact with the self-propelled cell capturing unit, is formed .
The self-propelled cell trapping unit, wherein the self-propelled cell trapping unit includes at least one of a fiber having a single fiber degree of 1.0 dtex or less and a particle having a diameter of 10 µm or less .
前記流路の最小流路径が1000μm以上である請求項1に記載の自走細胞捕捉具。The self-propelled cell trap according to claim 1, wherein a minimum flow path diameter of the flow path is 1000 µm or more. 前記自走細胞捕捉部の形状が、糸状、棒状、スポンジ状、帯状、紙片状、又は中空ロール状である請求項1又は2に記載の自走細胞捕捉具。   The self-propelled cell trapping device according to claim 1 or 2, wherein the shape of the self-propelled cell trapping part is a thread shape, a rod shape, a sponge shape, a strip shape, a paper piece shape, or a hollow roll shape. 前記自走細胞捕捉部の材質が、合成高分子材料又は天然高分子材料である請求項1〜3のいずれか一項に記載の自走細胞捕捉具。   The material of the said self-propelled cell capture part is a synthetic polymer material or a natural polymer material, The self-propelled cell capture device as described in any one of Claims 1-3. その全体形状が、内径1〜20mm及び全長10cm〜10mの管状である請求項1〜4のいずれか一項に記載の自走細胞捕捉具。   The self-propelled cell trap according to any one of claims 1 to 4, wherein the overall shape is a tubular shape having an inner diameter of 1 to 20 mm and a total length of 10 cm to 10 m. 一以上の血液の出入り口を有する密閉性容器である請求項1〜4のいずれか一項に記載の自走細胞捕捉具。   The self-propelled cell trap according to any one of claims 1 to 4, which is a hermetic container having one or more blood outlets. 前記自走細胞が、線維芽細胞、培養細胞、骨髄細胞、アメーバ細胞、神経細胞、及び白血球からなる群より選択される少なくとも一種である請求項1〜6のいずれか一項に記載の自走細胞捕捉具。   The self-propelled cell according to any one of claims 1 to 6, wherein the self-propelled cell is at least one selected from the group consisting of fibroblasts, cultured cells, bone marrow cells, amoeba cells, nerve cells, and leukocytes. Cell trap. 白血球除去療法又は採取血液の白血球除去に用いられる請求項1〜7のいずれか一項に記載の自走細胞捕捉具。   The self-propelled cell trap according to any one of claims 1 to 7, which is used for leukocyte removal therapy or leukocyte removal from collected blood. 前記自走細胞捕捉部の少なくとも一部が抗血栓性を有する請求項8に記載の自走細胞捕捉具。   The self-propelled cell trap according to claim 8, wherein at least a part of the self-propelled cell trap has antithrombotic properties.
JP2012204234A 2012-09-18 2012-09-18 Self-propelled cell trap Expired - Fee Related JP5592450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012204234A JP5592450B2 (en) 2012-09-18 2012-09-18 Self-propelled cell trap

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012204234A JP5592450B2 (en) 2012-09-18 2012-09-18 Self-propelled cell trap

Publications (2)

Publication Number Publication Date
JP2014057710A JP2014057710A (en) 2014-04-03
JP5592450B2 true JP5592450B2 (en) 2014-09-17

Family

ID=50614773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012204234A Expired - Fee Related JP5592450B2 (en) 2012-09-18 2012-09-18 Self-propelled cell trap

Country Status (1)

Country Link
JP (1) JP5592450B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201421013D0 (en) * 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
CN108392232B (en) * 2018-04-11 2023-07-25 苏州大学 In vivo cell capturing device using functional protein silk thread as carrier

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1076004A (en) * 1996-09-05 1998-03-24 Kanegafuchi Chem Ind Co Ltd Adsorbing material for humor treatment and adsorber for humor treatment
JP3810664B2 (en) * 2001-10-10 2006-08-16 株式会社レイテック Method for producing perforated hollow fiber
SE0201257D0 (en) * 2002-04-25 2002-04-25 Medical Invest In Sweden Ab Improved Separation
JP5271781B2 (en) * 2008-11-25 2013-08-21 日機装株式会社 Blood cell removal module and method for manufacturing blood cell removal module
JP5323459B2 (en) * 2008-11-28 2013-10-23 旭化成メディカル株式会社 Blood extracorporeal circulation device and priming method thereof
JP5319341B2 (en) * 2009-03-16 2013-10-16 旭化成メディカル株式会社 Aggregate removal filter material

Also Published As

Publication number Publication date
JP2014057710A (en) 2014-04-03

Similar Documents

Publication Publication Date Title
US6849183B2 (en) Method and apparatus for therapeutic apheresis
JP3881019B2 (en) Extracorporeal blood treatment system for the treatment of inflammatory diseases
JP5135221B2 (en) Method for removing white blood cells from blood
EP3197342B1 (en) Wearable hemoperfusion device
US8926543B2 (en) Immunoactivation blood perfusion filter for the treatment of malignant tumors
CA2786550A1 (en) Removal of virulence factors through extracorporeal therapy
JP5336109B2 (en) Methods for enriching mononuclear cells and platelets
JP5592450B2 (en) Self-propelled cell trap
US20110042313A1 (en) Bioequivalence dialysis
JP2005506134A (en) Plasma export filter device and apparatus for apheresis therapy
JP2005287621A (en) Restoration apparatus and method for damaged epithelium
JP4135894B2 (en) Method, recovery device and recovery system for recovering blood from which leukocytes remaining on the leukocyte removal filter have been removed
JP4833443B2 (en) How to collect hematopoietic stem cells
JP4640991B2 (en) Monocyte selective capture material
JP6285649B2 (en) Method for producing cell concentrate
JPH04236959A (en) Blood component separating system
JP4135892B2 (en) Residual blood recovery method and residual blood recovery device in leukocyte removal filter unit
US20230173147A1 (en) Blood separation system and blood products
JP4135893B2 (en) Method for collecting blood from which leukocytes have been removed from a leukocyte removal filter
JP2006050976A (en) Method for recovering cell
JP2005289837A (en) Method and apparatus for producing marrow cell inducing agent
Saeb Tara Tariverdian*, Payam Zarintaj, Peiman Brouki Milan, Mohammad Reza Saeb, Saeid Kargozar k, Farshid Sefat, Ali Samadikuchaksaraei, Masoud Mozafari
JP3157519B2 (en) Blood component separation system
JPH08103493A (en) Exocirculating blood treating device
JP2005082567A (en) Method for producing cellular composition for treatment by vascularization and system for producing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140116

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140121

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20140121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140116

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140729

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140731

R150 Certificate of patent or registration of utility model

Ref document number: 5592450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees