JP5590491B2 - Polymer compound, polymer organic semiconductor material and organic semiconductor device - Google Patents

Polymer compound, polymer organic semiconductor material and organic semiconductor device Download PDF

Info

Publication number
JP5590491B2
JP5590491B2 JP2011047779A JP2011047779A JP5590491B2 JP 5590491 B2 JP5590491 B2 JP 5590491B2 JP 2011047779 A JP2011047779 A JP 2011047779A JP 2011047779 A JP2011047779 A JP 2011047779A JP 5590491 B2 JP5590491 B2 JP 5590491B2
Authority
JP
Japan
Prior art keywords
organic semiconductor
polymer
carbon
polymer compound
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011047779A
Other languages
Japanese (ja)
Other versions
JP2012184310A (en
Inventor
格 尾坂
和男 瀧宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hiroshima University NUC
Original Assignee
Hiroshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hiroshima University NUC filed Critical Hiroshima University NUC
Priority to JP2011047779A priority Critical patent/JP5590491B2/en
Publication of JP2012184310A publication Critical patent/JP2012184310A/en
Application granted granted Critical
Publication of JP5590491B2 publication Critical patent/JP5590491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高分子化合物、高分子有機半導体材料及び有機半導体デバイスに関する。   The present invention relates to a polymer compound, a polymer organic semiconductor material, and an organic semiconductor device.

有機半導体材料は、有機トランジスタ、有機EL、有機薄膜太陽電池等の有機デバイスの製造に欠かせない材料である。特に、近年、プリンタブルエレクトロニクス(スピンコート法、インクジェット法などの塗布プロセスで製造する有機デバイス技術)に適用可能な可溶性有機半導体材料の需要が急速に高まっている。なかでも、高分子材料(半導体ポリマー)は、製膜性、膜質の良さという面で低分子材料よりも優れており、プリンタブルエレクトロニクスにおいて最も注目されている。   Organic semiconductor materials are indispensable materials for manufacturing organic devices such as organic transistors, organic EL, and organic thin-film solar cells. In particular, in recent years, the demand for soluble organic semiconductor materials that can be applied to printable electronics (organic device technology manufactured by a coating process such as a spin coat method or an ink jet method) is rapidly increasing. Among these, polymer materials (semiconductor polymers) are superior to low-molecular materials in terms of film-forming properties and film quality, and are attracting the most attention in printable electronics.

半導体材料には高い電荷移動度が要求される。有機高分子材料の場合、高分子主鎖間のホッピングによる電子の移動が支配的であるため、有機高分子材料には強い分子間相互作用を有することが要求される(非特許文献1)。   Semiconductor materials are required to have high charge mobility. In the case of an organic polymer material, the movement of electrons due to hopping between polymer main chains is dominant, so the organic polymer material is required to have a strong intermolecular interaction (Non-patent Document 1).

近年、顔料に用いられる有機化合物は分子間相互作用が強いことから、有機半導体材料としての利用も検討され始めている。例えば、非特許文献2には、赤色系の顔料に用いられているキナクリドンを利用した有機半導体材料が開示されている。   In recent years, since organic compounds used in pigments have strong intermolecular interactions, their use as organic semiconductor materials has begun to be studied. For example, Non-Patent Document 2 discloses an organic semiconductor material that uses quinacridone that is used in red pigments.

Two−dimensional charge transport in self−organized,high−mobility conjugated polymers;H.Sirringhaus,P.J.Brown,R.H.Friend,M.M.Nielsen,K.Bechgaard,B.M.W.Langeveld−Voss,A.J.H.Spiering,R.A.J.Janssen,E.W.Meijer,P.Herwig,D.M.de Leeuw;Nature 1999,401,685−688.Two-dimensional charge transport in self-organized, high-mobility conjugated polymers; Sirringhaus, P.A. J. et al. Brown, R.A. H. Friend, M .; M.M. Nielsen, K.M. Bechgaard, B.M. M.M. W. Langeveld-Voss, A .; J. et al. H. Spieling, R.M. A. J. et al. Janssen, E .; W. Meijer, P.A. Herwig, D.H. M.M. de Leeuw; Nature 1999, 401, 685-688. Novel White Electroluminescent Single Polymer Derived from Fluorene and Quinacridone;Ju Liu,Baoxiang Gao,Yanxiang Cheng,Zhiyuan Xie,Yanhou Geng,Lixiang Wang,Xiabin Jing,and Fosong Wang;Macromolecules 2008,41,1162−1167Novel White Electroluminescent Single Polymer Derived from Fluorene and Quinacridone; Ju Liu, Baoxiang Gao, Yanxiang Cheng, Zhiyuan Xie, Yanhou Geng, Lixiang Wang, Xiabin Jing, and Fosong Wang; Macromolecules 2008,41,1162-1167

非特許文献1に開示の高分子化合物は、フルオレンを連結基としてキナクリドンを重合して得られた化合物である。フルオレンは両末端にベンゼン環(6員環)を有していることから、ベンゼン環に結合している水素等の張り出しによって立体障害が生じる。この立体障害により分子間相互作用が弱まるので、電荷移動度を向上させることが困難である。   The polymer compound disclosed in Non-Patent Document 1 is a compound obtained by polymerizing quinacridone using fluorene as a linking group. Since fluorene has a benzene ring (6-membered ring) at both ends, steric hindrance occurs due to overhang of hydrogen or the like bonded to the benzene ring. This steric hindrance weakens intermolecular interactions, making it difficult to improve charge mobility.

本発明は上記事項に鑑みてなされたものであり、その目的とするところは、良好な電荷移動度を示す高分子化合物、高分子有機半導体材料及び有機半導体デバイスを提供することにある。   The present invention has been made in view of the above-described matters, and an object thereof is to provide a polymer compound, a polymer organic semiconductor material, and an organic semiconductor device exhibiting good charge mobility.

本発明の第一の観点に係る高分子化合物は、
下記一般式(1)又は(2)で表されることを特徴とする。

Figure 0005590491
(一般式(1)及び(2)中、Rはそれぞれ独立して水素、又はアルキル基であり、X11〜X16及びX21〜X26は、同一又は異なって、炭素若しくは窒素原子を示し、炭素の場合は置換基として水素、ハロゲン原子、又はアルキル基のいずれかを有する。Zは一般式(3)で表される構造である。)
Figure 0005590491
(一般式(3)中X31〜X34は、同一又は異なって、炭素若しくは窒素原子を示し、炭素の場合は置換基として水素、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、又はアルキルカルボニル基のいずれかを有し、Yは2価の複素環基を示し、nは0又は正の整数を表す。) The polymer compound according to the first aspect of the present invention is:
It is represented by the following general formula (1) or (2).
Figure 0005590491
(In General Formulas (1) and (2), each R is independently hydrogen or an alkyl group, and X 11 to X 16 and X 21 to X 26 are the same or different and represent a carbon or nitrogen atom. In the case of carbon, it has any one of hydrogen, a halogen atom, and an alkyl group as a substituent. Z is a structure represented by the general formula (3).)
Figure 0005590491
(In formula (3), X 31 to X 34 are the same or different and each represents a carbon or nitrogen atom, and in the case of carbon, hydrogen, a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or an alkyl as a substituent. Any of carbonyl groups, Y represents a divalent heterocyclic group, and n represents 0 or a positive integer.)

また、下記一般式(4)又は(5)で表されることが好ましい。

Figure 0005590491
Further, it is preferably represented by the following general formula (4) or (5).
Figure 0005590491

本発明の第二の観点に係る高分子有機半導体材料は、
上記の高分子化合物を含有することを特徴とする。
The polymer organic semiconductor material according to the second aspect of the present invention is
It contains the above polymer compound.

本発明の第三の観点に係る有機半導体デバイスは、
上記の有機半導体材料を含有することを特徴とする。
The organic semiconductor device according to the third aspect of the present invention is
It contains the above organic semiconductor material.

本発明に係る高分子化合物は、チオフェン環等の5員環を有する環式化合物を連結基としてキナクリドン類を重合して得られる化合物である。5員環はベンゼン環に比べて立体障害が緩和されるので、良好な分子配列を形成する。このため分子間相互作用が高く、高分子主鎖間にてホッピングによる電子の移動が生じやすい。この高分子化合物を有機半導体材料として用いることで良好な電荷移動度を呈する有機半導体デバイスが得られる。   The polymer compound according to the present invention is a compound obtained by polymerizing quinacridones using a cyclic compound having a 5-membered ring such as a thiophene ring as a linking group. Since the five-membered ring has less steric hindrance than the benzene ring, it forms a good molecular arrangement. For this reason, the intermolecular interaction is high, and the movement of electrons by hopping tends to occur between the polymer main chains. By using this polymer compound as an organic semiconductor material, an organic semiconductor device exhibiting good charge mobility can be obtained.

実施例に用いたFET素子の構成を示す(A)断面図、及び(B)平面図である。It is (A) sectional drawing and (B) top view which show the structure of the FET element used for the Example. 実施例において高分子化合物(P1)を用いたFET素子の伝達特性を示すグラフである。It is a graph which shows the transfer characteristic of the FET element which used the high molecular compound (P1) in the Example. 実施例において高分子化合物(P1)を用いたFET素子の出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET element using the high molecular compound (P1) in the Example. 実施例において高分子化合物(P2)を用いたFET素子の伝達特性を示すグラフである。It is a graph which shows the transfer characteristic of the FET element which used the high molecular compound (P2) in the Example. 実施例において高分子化合物(P2)を用いたFET素子の出力特性を示すグラフである。It is a graph which shows the output characteristic of the FET element which used the high molecular compound (P2) in the Example.

(高分子化合物)
本実施の形態に係る高分子化合物は、一般式(1)又は(2)で表される。

Figure 0005590491
(Polymer compound)
The polymer compound according to the present embodiment is represented by the general formula (1) or (2).
Figure 0005590491

一般式(1)及び(2)中、Rはそれぞれ独立して水素又はアルキル基のいずれかであり、X11〜X16及びX21〜X26は、同一又は異なって、炭素若しくは窒素原子を示し、炭素の場合は置換基として水素、ハロゲン原子、又はアルキル基のいずれかを有する。 In general formulas (1) and (2), each R is independently hydrogen or an alkyl group, and X 11 to X 16 and X 21 to X 26 are the same or different and each represents a carbon or nitrogen atom. In the case of carbon, it has either a hydrogen atom, a halogen atom or an alkyl group as a substituent.

Rがアルキル基の場合、直鎖状又は分岐状いずれのアルキル基でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。   When R is an alkyl group, it may be a linear or branched alkyl group, preferably having 6 to 30 carbon atoms, more preferably 8 to 24 carbon atoms.

11〜X16及びX21〜X26が炭素であり、炭素上の置換基がハロゲン原子の場合、塩素原子又はフッ素原子が好ましく、フッ素原子であることがより好ましい。 X 11 is to X 16 and X 21 to X 26 is a carbon, when the substituent on the carbon of a halogen atom, preferably a chlorine atom or a fluorine atom, more preferably a fluorine atom.

11〜X16及びX21〜X26が炭素であり、炭素上の置換基がアルキル基の場合、直鎖状又は分岐状いずれのアルキル基でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。 When X 11 to X 16 and X 21 to X 26 are carbon and the substituent on the carbon is an alkyl group, it may be either a linear or branched alkyl group, and the number of carbon atoms is 6 to 30 Preferably, it is 8-24.

一般式(1)及び(2)中、Zは一般式(3)で表される構造である。

Figure 0005590491
In the general formulas (1) and (2), Z is a structure represented by the general formula (3).
Figure 0005590491

一般式(3)中、X31〜X34は、同一又は異なって、炭素若しくは窒素原子を示し、炭素の場合は置換基として水素、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、又はアルキルカルボニル基のいずれかを有し、Yは2価の複素環基を示し、nは0又は正の整数を表す。 In the general formula (3), X 31 to X 34 are the same or different and each represents a carbon or nitrogen atom. In the case of carbon, hydrogen, a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or an alkyl as a substituent. It has either a carbonyl group, Y represents a divalent heterocyclic group, and n represents 0 or a positive integer.

31〜X34が炭素であり、炭素上の置換基がハロゲン原子の場合、塩素原子又はフッ素原子が好ましく、フッ素原子であることがより好ましい。 When X 31 to X 34 are carbon and the substituent on the carbon is a halogen atom, a chlorine atom or a fluorine atom is preferable, and a fluorine atom is more preferable.

31〜X34が炭素であり、炭素上の置換基がアルキル基の場合、直鎖状又は分岐状いずれのアルキル基でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。 When X 31 to X 34 are carbon and the substituent on the carbon is an alkyl group, it may be either a linear or branched alkyl group, and preferably has 6 to 30 carbon atoms, and 8 to 24 More preferably.

31〜X34が炭素であり、炭素上の置換基がアルコキシ基の場合、アルキル基の部分は、直鎖状又は分岐状いずれの形状でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。 When X 31 to X 34 are carbon and the substituent on the carbon is an alkoxy group, the alkyl group portion may be either linear or branched, and preferably has 6 to 30 carbon atoms. 8 to 24 is more preferable.

31〜X34が炭素であり、炭素上の置換基がアルコキシカルボニル基の場合、アルキル基の部分は、直鎖状又は分岐状いずれの形状でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。 When X 31 to X 34 are carbon and the substituent on the carbon is an alkoxycarbonyl group, the alkyl group moiety may be linear or branched, and the carbon number is 6 to 30 Preferably, it is 8-24.

31〜X34が炭素であり、炭素上の置換基がアルキルカルボニル基の場合、アルキル基の部分は、直鎖状又は分岐状いずれの形状でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。 When X 31 to X 34 are carbon and the substituent on the carbon is an alkylcarbonyl group, the alkyl group portion may be either linear or branched, and the carbon number is 6 to 30 Preferably, it is 8-24.

式(3)中、Yは特に限定しないが、例えば下記式(6)〜(16)で表される構造が好ましい。   In formula (3), Y is not particularly limited, but for example, structures represented by the following formulas (6) to (16) are preferable.

Figure 0005590491
式(6)〜(16)中、Rは水素またはアルキル基であり、アルキル基は直鎖状又は分岐状のいずれの形状でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。
Figure 0005590491
In the formulas (6) to (16), R is hydrogen or an alkyl group, and the alkyl group may be linear or branched, and preferably has 6 to 30 carbon atoms, and 8 to 24 It is more preferable that

式(3)中、nは0又は1であることが好ましい。   In formula (3), n is preferably 0 or 1.

なかでも高分子化合物は、一般式(4)又は(5)のいずれかで表されることが好ましい。

Figure 0005590491
Especially, it is preferable that a high molecular compound is represented by either General formula (4) or (5).
Figure 0005590491

一般式(4)及び(5)中、Rはアルキル基であり、直鎖状又は分岐状のいずれの形状でもよく、炭素数は6〜30であることが好ましく、8〜24であることがより好ましい。   In general formulas (4) and (5), R is an alkyl group, which may be linear or branched, and preferably has 6 to 30 carbon atoms, and preferably 8 to 24 carbon atoms. More preferred.

一般式(4)及び(5)中、Zは一般式(1)及び(2)のZと同義である。   In general formulas (4) and (5), Z has the same meaning as Z in general formulas (1) and (2).

本実施の形態に係る高分子化合物は、キナクリドン類にチオフェン等の五員環を有する環式化合物が結合し、重合した高分子化合物である。キナクリドン類は主に赤色系の顔料として用いられている化合物であり、分子内で分極するため、分子間相互作用が強い。このため、有機半導体の骨格として有用である。   The polymer compound according to this embodiment is a polymer compound obtained by polymerizing a quinacridone bonded with a cyclic compound having a five-membered ring such as thiophene. Quinacridones are compounds that are mainly used as red pigments and polarize within the molecule, and therefore have strong intermolecular interactions. For this reason, it is useful as a skeleton of an organic semiconductor.

そして、高分子化合物はキナクリドン類の間に五員環を有する環式化合物が結合している形態であるので、キナクリドン類の間にベンゼン環を有する乾式化合物が結合している場合に比べて、立体障害が緩和される。これにより、高配向な分子配列を形成し、高分子主鎖間のホッピングによる電子移動が生じやすく、良好な電荷移動度を示す有機半導体材料として有用である。   And since the high molecular compound is a form in which a cyclic compound having a five-membered ring is bonded between quinacridones, compared to a case where a dry compound having a benzene ring is bonded between quinacridones, Steric hindrance is alleviated. Thereby, a highly oriented molecular arrangement is formed, electron transfer is easily caused by hopping between polymer main chains, and it is useful as an organic semiconductor material exhibiting good charge mobility.

更に、一般式(1)、(2)、(4)及び(5)中の一般式(3)で表されるZ中のYがチアゾロチアゾール、ベンゾビスチアゾール、ベンゾオキサジアゾール、ベンゾチアジアゾール、チアジアゾロピリジン、チアジアゾロピリダジン、チエノピロールジオン、フタルイミド、ジケトピロロピロール、ナフタレンジカルボキシイミドである場合では、これらはアクセプター性であり、一方、キナクリドン類はドナー性であるから、ドナー−アクセプター型の高分子化合物となる。ドナー−アクセプター型では、高分子主鎖内の分極が大きくなるため、より分子間相互作用が大きくなり、より良好な電荷移動度を呈する。   Furthermore, Y in Z represented by the general formula (3) in the general formulas (1), (2), (4) and (5) is thiazolothiazole, benzobisthiazole, benzooxadiazole, benzothiadiazole , Thiadiazolopyridine, thiadiazolopyridazine, thienopyrrole dione, phthalimide, diketopyrrolopyrrole, naphthalene dicarboximide, these are acceptors, while quinacridones are donors -It becomes an acceptor type high molecular compound. In the donor-acceptor type, since the polarization in the polymer main chain is increased, the intermolecular interaction is further increased and a better charge mobility is exhibited.

本実施の形態に係る高分子化合物は、最高被占軌道(HOMO)のエネルギーレベルが、−5.0eV以下である、すなわちイオン化ポテンシャルが5.0eV以上であると、大気中での酸化による劣化を防ぐことができ、安定性が高くなる。   In the polymer compound according to the present embodiment, when the energy level of the highest occupied orbit (HOMO) is −5.0 eV or less, that is, when the ionization potential is 5.0 eV or more, deterioration due to oxidation in the atmosphere. Can be prevented, and stability is increased.

HOMOエネルギーレベルは、高分子化合物の溶液又は薄膜を用いたサイクリックボルタンメトリー測定(Efficient two layer leds on a polymer blend basis; Jorn Pommerehne, Horst Vestweber, Werner Guss, Rainer F. Mahrt, Heinz Bassler, Michael Porsch, Jorg Daub;Advanced Materials 1995, 7, 551-554)や、薄膜を用いた光電子分光測定(例えば理研計器株式会社製大気中光電子分光装置AC−2)により求めることができる。   HOMO energy level is measured by cyclic voltammetry using polymer solution or thin film (Efficient two layer leds on a polymer blend basis; Jorn Pommerehne, Horst Vestweber, Werner Guss, Rainer F. Mahrt, Heinz Bassler, Michael Porsch, Jorg Daub; Advanced Materials 1995, 7, 551-554) or photoelectron spectroscopy using a thin film (for example, atmospheric photoelectron spectrometer AC-2 manufactured by Riken Keiki Co., Ltd.).

高分子有機半導体材料は、上述した一般式(1)、(2)、(3)又は(4)で表される高分子化合物を少なくとも1種以上含むものである。高分子有機半導体材料は、一般式(1)、(2)、(3)又は(4)で表される化合物一種のみ、或いはこれらの化合物を組み合わせた混合物から構成されていてもよいし、一般式(1)、(2)、(3)又は(4)で表される化合物の特性を阻害しない限り、他の物質を含んでいてもよい。また、既知の手法により不純物をドープして電界移動度を調整したものであってもよい。   The polymer organic semiconductor material contains at least one polymer compound represented by the general formula (1), (2), (3) or (4) described above. The polymer organic semiconductor material may be composed of only one compound represented by the general formula (1), (2), (3) or (4), or a mixture obtained by combining these compounds. Other substances may be included as long as the properties of the compound represented by formula (1), (2), (3) or (4) are not impaired. Alternatively, the electric field mobility may be adjusted by doping impurities using a known method.

そして、有機半導体デバイスは、上記高分子有機半導体材料が用いられて形成されたデバイスである。この有機半導体デバイスとして、例えば、有機半導体層を有する薄膜トランジスタや、有機キャリア輸送層及び/又は発光層を有する発光デバイス、上記有機半導体とn型有機半導体との混合薄膜を有機半導体層とする光電変換素子等が挙げられる。   The organic semiconductor device is a device formed using the above-described polymer organic semiconductor material. As this organic semiconductor device, for example, a thin film transistor having an organic semiconductor layer, a light emitting device having an organic carrier transport layer and / or a light emitting layer, and a photoelectric conversion having a mixed thin film of the organic semiconductor and an n-type organic semiconductor as an organic semiconductor layer. An element etc. are mentioned.

光電変換素子の有機半導体層として、本発明に係る高分子化合物と混合されるn型有機半導体としては、フラーレン誘導体が挙げられる。ここで、フラーレンとしてはC60フラーレン、C70フラーレン、C84フラーレンが挙げられ、フラーレン誘導体とは、これらのフラーレンの少なくとも一部が修飾された化合物のことを示し、[6,6]−Phenyl−C61−Butyric Acid Methyl Ester([60]PCBM)や[6,6]Diphenyl−C62−bis(butyric acid methyl ester)(Bis[60]PCBM)、Phenyl−C71−Butyric−Acid−Methyl Ester([70]PCBM)、Phenyl−C85−Butyric−Acid−Methyl Ester([84]PCBM)、[6,6]−Phenyl−C61−Butyric Acid Butyl Ester([60]PCBB)、[6,6]−Phenyl−C61−Butyric Acid Octyl Ester([60]PCBO)、Thienyl−C61−Butyric−Acid−Methyl Ester([60]ThCBO)などが挙げられる。これらのn型半導体との混合薄膜を用いることで、より高効率な光電変換素子が得られる。   As an organic semiconductor layer of the photoelectric conversion element, an n-type organic semiconductor mixed with the polymer compound according to the present invention includes a fullerene derivative. Here, examples of fullerene include C60 fullerene, C70 fullerene, and C84 fullerene. A fullerene derivative indicates a compound in which at least a part of these fullerenes is modified, and [6,6] -Phenyl-C61- Butyric Acid Methyl Ester ([60] PCBM), [6,6] Diphenyl-C62-bis (Butylic acid methyl ester) (Bis [60] PCBM), Phenyl-C71-Butyric-Acid-Meth-Ethyl- [Methyl70] ), Phenyl-C85-Butyric-Acid-Methyl Ester ([84] PCBM), [6,6] -Phenyl-C61-Butylic Acid Butyl Est. er ([60] PCBB), [6,6] -Phenyl-C61-Butyric Acid Octyl Ester ([60] PCBO), Thienyl-C61-Butyric-Acyl-Methyl Ester ([60] ThCBO), and the like. By using a mixed thin film with these n-type semiconductors, a more efficient photoelectric conversion element can be obtained.

上述した本実施形態に係る有機半導体材料を使用する以外は、既知の材料及び構造を採用することができ、特に制限されない。   Except for using the organic semiconductor material according to the present embodiment described above, known materials and structures can be employed and are not particularly limited.

有機半導体デバイスの製造方法としては、特に限定されるものではなく、従来公知の種々の製造方法を用いることができる。その中で、上記高分子有機半導体材料を支持体に配置する方法として、溶液法を用いることができる。溶液法とは、上記高分子有機半導体材料を種々の有機溶媒に溶解させ、塗布法、スピンコート法、インクジェット法等により支持体に有機薄膜を形成し、半導体デバイスを作成する方法である。上記高分子有機半導体材料は上述のように有機溶媒に対し良好な溶解性を示すので溶接法を好適に適応する。   It does not specifically limit as a manufacturing method of an organic semiconductor device, A conventionally well-known various manufacturing method can be used. Among them, a solution method can be used as a method of disposing the polymer organic semiconductor material on a support. The solution method is a method for preparing a semiconductor device by dissolving the polymer organic semiconductor material in various organic solvents and forming an organic thin film on a support by a coating method, a spin coating method, an ink jet method or the like. Since the high molecular organic semiconductor material exhibits good solubility in an organic solvent as described above, the welding method is suitably applied.

このように、溶液法にて半導体層を形成できることから、シリコンや低分子の有機半導体材料を用いる場合における蒸着プロセスを必要とせず、低コストで有機半導体デバイスを製造することができる。   As described above, since the semiconductor layer can be formed by a solution method, an organic semiconductor device can be manufactured at a low cost without requiring a vapor deposition process in the case of using silicon or a low molecular organic semiconductor material.

また、高分子有機半導体材料を用いることから、シリコンを用いた半導体デバイスに比べ、フレキシビリティに優れ、軽量である。これにより、軽量ディスプレイやスマートタグ等への応用にも有効である。   In addition, since a polymer organic semiconductor material is used, it is superior in flexibility and light in weight as compared with a semiconductor device using silicon. This is also effective for application to lightweight displays, smart tags, and the like.

高分子化合物を合成し、得られた高分子化合物を用いてFET(Field Effect Transistor)素子を作成し、トランジスタ特性を検証した。以下、順を追って高分子化合物の具体的な製造方法、並びにFET素子の製造方法を例示するが、これらに限定されるものではない。   A polymer compound was synthesized, an FET (Field Effect Transistor) element was created using the obtained polymer compound, and transistor characteristics were verified. Hereinafter, although the specific manufacturing method of a high molecular compound and the manufacturing method of FET element are illustrated in order, it is not limited to these.

(化合物(1)の合成)
窒素雰囲気下、キナクリドン(3.12g,10mmol)と2−デシル−1−ブロモテトラデカン(33.3g,80mmol)、炭酸カリウム(27.64g,200mmol)をNMP(150mL)と混合し、180℃で12時間撹拌した。室温まで冷却し、クロロホルムを100mL加えて30分撹拌し、沈殿物をろ別した。
(Synthesis of Compound (1))
Under a nitrogen atmosphere, quinacridone (3.12 g, 10 mmol), 2-decyl-1-bromotetradecane (33.3 g, 80 mmol) and potassium carbonate (27.64 g, 200 mmol) were mixed with NMP (150 mL) at 180 ° C. Stir for 12 hours. After cooling to room temperature, 100 mL of chloroform was added and stirred for 30 minutes, and the precipitate was filtered off.

ろ液を2N塩酸(150mL)で洗浄した。塩酸による洗浄は計3回行った。さらに、水(100mL)で洗浄した。水による洗浄は計3回行った。   The filtrate was washed with 2N hydrochloric acid (150 mL). Washing with hydrochloric acid was performed three times in total. Further, it was washed with water (100 mL). Washing with water was performed three times in total.

有機層を無水硫酸マグネシウムで乾燥、濾過後、溶媒を減圧下で留去した。得られた固体を、クロロホルムを展開溶媒としたシリカゲルカラムクロマトグラフィーで精製した後、エタノールで再結晶することで化合物(1)(3.64g)を橙色結晶として得た。   The organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The obtained solid was purified by silica gel column chromatography using chloroform as a developing solvent, and then recrystallized from ethanol to obtain Compound (1) (3.64 g) as orange crystals.

上記の反応式を以下に示す。

Figure 0005590491
The above reaction formula is shown below.
Figure 0005590491

(化合物(2)の合成)
化合物(1)(3.95g,4.02mmol)と酢酸ナトリウム(0.86g,10.45mmol)を酢酸(100mL)と混合し、臭素(0.6mL,11.7mmol)をゆっくりと滴下した。
(Synthesis of Compound (2))
Compound (1) (3.95 g, 4.02 mmol) and sodium acetate (0.86 g, 10.45 mmol) were mixed with acetic acid (100 mL), and bromine (0.6 mL, 11.7 mmol) was slowly added dropwise.

反応液を還流下で3時間撹拌した。室温まで冷却し、飽和炭酸水素ナトリウム水溶液(200mL)を加えた後、有機層をクロロホルム(50mL)で抽出した。クロロホルムによる抽出は計3回行った。さらに抽出した有機層を水(50mL)で洗浄した。水による洗浄は計3回行った。   The reaction was stirred at reflux for 3 hours. After cooling to room temperature and adding saturated aqueous sodium hydrogen carbonate solution (200 mL), the organic layer was extracted with chloroform (50 mL). Extraction with chloroform was performed three times in total. Further, the extracted organic layer was washed with water (50 mL). Washing with water was performed three times in total.

有機層を無水硫酸マグネシウムで乾燥、濾過後、溶媒を減圧下で留去した。得られた固体を、クロロホルムを展開溶媒としたシリカゲルカラムクロマトグラフィーで精製した後、アセトンで再結晶することで化合物(2)(4.02g)を橙色結晶として得た。   The organic layer was dried over anhydrous magnesium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The obtained solid was purified by silica gel column chromatography using chloroform as a developing solvent, and then recrystallized from acetone to obtain Compound (2) (4.02 g) as orange crystals.

上記の反応式を以下に示す。

Figure 0005590491
The above reaction formula is shown below.
Figure 0005590491

(高分子化合物(P1)の合成)
窒素雰囲気下、クロロベンゼン(20ml)を三口フラスコに加え30分間脱気した。Pd(dba)・CHCl(4.1mg,0.004mmol,2mol%)、P(o−tolyl)(4.9mg,0.016mmol,8mol%)、化合物(2)(228mg,0.2mmol)、5,5’−ビス(トリメチルスズ)−2,2’−ビチオフェン(98mg,0.2mmol)を加え、3日間還流、撹拌した。
(Synthesis of polymer compound (P1))
Under a nitrogen atmosphere, chlorobenzene (20 ml) was added to the three-necked flask and degassed for 30 minutes. Pd 2 (dba) 3 .CHCl 3 (4.1 mg, 0.004 mmol, 2 mol%), P (o-tolyl) 3 (4.9 mg, 0.016 mmol, 8 mol%), Compound (2) (228 mg, 0 .2 mmol), 5,5′-bis (trimethyltin) -2,2′-bithiophene (98 mg, 0.2 mmol) was added, and the mixture was refluxed and stirred for 3 days.

反応溶液をメタノール(200mL)と塩酸(5mL)の混合溶液に注ぎ、3時間撹拌した。   The reaction solution was poured into a mixed solution of methanol (200 mL) and hydrochloric acid (5 mL) and stirred for 3 hours.

析出した沈殿物を濾取し、メタノール、ヘキサンで加熱洗浄した後、クロロホルムで抽出した。   The deposited precipitate was collected by filtration, heated and washed with methanol and hexane, and extracted with chloroform.

クロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して高分子化合物(P1)(185mg)を赤褐色の固体として得た。高分子化合物(P1)のポリスチレン換算の数平均分子量は1.2×10、重量平均分子量は3.5×10であった。 The chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (P1) (185 mg) as a reddish brown solid. The number average molecular weight in terms of polystyrene of the polymer compound (P1) was 1.2 × 10 4 , and the weight average molecular weight was 3.5 × 10 4 .

上記の反応式を以下に示す。

Figure 0005590491
The above reaction formula is shown below.
Figure 0005590491

(高分子化合物(P2)の合成)
窒素雰囲気下、クロロベンゼン(20mL)を三口フラスコに加え30分間脱気した。
(Synthesis of polymer compound (P2))
Under a nitrogen atmosphere, chlorobenzene (20 mL) was added to the three-necked flask and degassed for 30 minutes.

Pd(dba)・CHCl(2.1mg,0.002mmol,2mol%)、P(o−tolyl)(2.4mg,0.008mmol,8mol%)、化合物(2)(114mg,0.1mmol)、5,5”−ビス(トリメチルスズ)−2,2’:5’,2”−ターチオフェン(57.4mg,0.1mmol)を加え、3日間還流、撹拌した。 Pd 2 (dba) 3 .CHCl 3 (2.1 mg, 0.002 mmol, 2 mol%), P (o-tolyl) 3 (2.4 mg, 0.008 mmol, 8 mol%), Compound (2) (114 mg, 0 0.1 mmol), 5,5 ″ -bis (trimethyltin) -2,2 ′: 5 ′, 2 ″ -terthiophene (57.4 mg, 0.1 mmol) was added, and the mixture was refluxed and stirred for 3 days.

反応溶液をメタノール(200mL)と塩酸(5mL)の混合溶液に注ぎ、3時間撹拌した。   The reaction solution was poured into a mixed solution of methanol (200 mL) and hydrochloric acid (5 mL) and stirred for 3 hours.

析出した沈殿物を濾取し、メタノール、ヘキサンで加熱洗浄した後、クロロホルムで抽出した。   The deposited precipitate was collected by filtration, heated and washed with methanol and hexane, and extracted with chloroform.

クロロホルム溶液を濃縮し、この溶液をメタノールに流し込み、析出した沈殿物を濾取して高分子化合物(P2)(88mg)を赤褐色の固体として得た。高分子化合物(P2)のポリスチレン換算の数平均分子量は1.2×10、重量平均分子量は2.7×10であった。 The chloroform solution was concentrated, this solution was poured into methanol, and the deposited precipitate was collected by filtration to obtain a polymer compound (P2) (88 mg) as a reddish brown solid. The number average molecular weight in terms of polystyrene of the polymer compound (P2) was 1.2 × 10 4 , and the weight average molecular weight was 2.7 × 10 4 .

上記の反応式を以下に示す。

Figure 0005590491
The above reaction formula is shown below.
Figure 0005590491

(高分子化合物(P1)のトランジスタ特性評価)
高分子化合物(P1)のトランジスタ特性を図1に示すFET素子を作製して測定した。
(Evaluation of transistor characteristics of polymer compound (P1))
The transistor characteristics of the polymer compound (P1) were measured by fabricating the FET device shown in FIG.

ゲート電極となる、200nmのシリコン酸化膜を有する高濃度にドーピングされたn型シリコン基板を十分洗浄した後、パーフルオロデシルトリエトキシシラン(FDTS)を用いて、基板のシリコン酸化膜表面をシラン処理した。   After thoroughly cleaning a highly doped n-type silicon substrate having a 200 nm silicon oxide film to be a gate electrode, the surface of the silicon oxide film on the substrate is treated with silane using perfluorodecyltriethoxysilane (FDTS). did.

高分子化合物(P1)をオルトジクロロベンゼンに溶解して3g/Lの溶液を作製し、メンブランフィルターでろ過した後、上記表面処理した基板上にスピンコート法により約50nmの高分子化合物(P1)薄膜を作製した。この薄膜を窒素雰囲気下にて、150℃で30分加熱した。   The polymer compound (P1) is dissolved in orthodichlorobenzene to prepare a 3 g / L solution, filtered through a membrane filter, and then applied to the surface-treated substrate by spin coating to a polymer compound (P1) of about 50 nm. A thin film was prepared. This thin film was heated at 150 ° C. for 30 minutes in a nitrogen atmosphere.

次に、金を真空蒸着することで、高分子薄膜上にチャネル長50μm、チャネル幅1.5mmのソース電極、ドレイン電極を作製した。   Next, gold was vacuum-deposited to produce a source electrode and a drain electrode having a channel length of 50 μm and a channel width of 1.5 mm on the polymer thin film.

作製した素子に、ゲート電圧Vgを20〜−60V、ソース・ドレイン間電圧Vdを0〜−60Vに変化させてトランジスタ特性を測定したところ、図2に示す伝達特性(可逆的特性)、および図3に示す出力特性を得た。   When the transistor characteristics of the fabricated device were measured by changing the gate voltage Vg to 20 to −60 V and the source-drain voltage Vd to 0 to −60 V, the transfer characteristics (reversible characteristics) shown in FIG. The output characteristics shown in 3 were obtained.

伝達特性でVg=−50V、Vd=−60Vにおいてドレイン電流(Id)−0.10mAが得られた。また、この特性から電界効果移動度は0.27cm/Vsと算出された。 With respect to the transfer characteristics, a drain current (Id) of −0.10 mA was obtained at Vg = −50 V and Vd = −60 V. From this characteristic, the field effect mobility was calculated to be 0.27 cm 2 / Vs.

(高分子化合物(P2)のトランジスタ特性評価)
高分子化合物(P2)のトランジスタ特性を図1に示すFET素子を作製して測定した。
(Evaluation of transistor characteristics of polymer compound (P2))
The transistor characteristics of the polymer compound (P2) were measured by fabricating the FET element shown in FIG.

ゲート電極となる、200nmのシリコン酸化膜を有する高濃度にドーピングされたn型シリコン基板を十分洗浄した後、パーフルオロデシルトリエトキシシラン(FDTS)を用いて、基板のシリコン酸化膜表面をシラン処理した。   After thoroughly cleaning a highly doped n-type silicon substrate having a 200 nm silicon oxide film to be a gate electrode, the surface of the silicon oxide film on the substrate is treated with silane using perfluorodecyltriethoxysilane (FDTS). did.

高分子化合物(P2)をオルトジクロロベンゼンに溶解して3g/Lの溶液を作製し、メンブランフィルターでろ過した後、上記表面処理した基板上にスピンコート法により約50nmの高分子化合物(P2)薄膜を作製した。   The polymer compound (P2) is dissolved in orthodichlorobenzene to prepare a 3 g / L solution, filtered through a membrane filter, and then applied to the surface-treated substrate by spin coating to a polymer compound (P2) of about 50 nm. A thin film was prepared.

この薄膜を窒素雰囲気下にて、150℃で30分加熱した。次に金を真空蒸着することで、高分子薄膜上にチャネル長50μm、チャネル幅1.5mmのソース電極、ドレイン電極を作製した。   This thin film was heated at 150 ° C. for 30 minutes in a nitrogen atmosphere. Next, gold was vacuum-deposited to produce a source electrode and a drain electrode having a channel length of 50 μm and a channel width of 1.5 mm on the polymer thin film.

作製した素子に、ゲート電圧Vgを20〜−60V、ソース・ドレイン間電圧Vdを0〜−60Vに変化させてトランジスタ特性を測定したところ、図4に示す伝達特性(可逆的特性)、および図5に示す出力特性を得た。   When the transistor characteristics of the fabricated device were measured by changing the gate voltage Vg to 20 to −60 V and the source-drain voltage Vd to 0 to −60 V, the transfer characteristics (reversible characteristics) shown in FIG. The output characteristics shown in 5 were obtained.

伝達特性でVg=−50V、Vd=−60Vにおいてドレイン電流(Id)−0.154mAが得られた。また、この特性から電界効果移動度は0.25cm/Vsと算出された。 With respect to the transfer characteristics, a drain current (Id) of -0.154 mA was obtained at Vg = -50 V and Vd = -60 V. From this characteristic, the field effect mobility was calculated to be 0.25 cm 2 / Vs.

本発明に係る高分子化合物は、キナクリドン類とチオフェン環等の5員環を有する環式化合物が重合して得られる化合物である。キナクリドン類は分子内の分極により分子間相互作用が強く、さらに重合連結基として五員環を用いることで、連結基がベンゼン環などの六員環の場合に比べて立体障害が緩和されるので、より分子間相互作用が高まり、高分子主鎖間の電子のホッピングが生じやすい。従って、高分子有機半導体材料として用いることで良好な電荷移動度を呈する有機半導体デバイスへの利用が期待される。   The polymer compound according to the present invention is a compound obtained by polymerizing a quinacridone and a cyclic compound having a 5-membered ring such as a thiophene ring. Quinacridones have strong intermolecular interactions due to intramolecular polarization, and the use of a five-membered ring as a polymer linking group reduces steric hindrance compared to the case where the linking group is a six-membered ring such as a benzene ring. Intermolecular interaction is further increased, and electron hopping between polymer main chains is likely to occur. Therefore, it is expected to be used as an organic semiconductor device exhibiting good charge mobility when used as a polymer organic semiconductor material.

Claims (4)

下記一般式(1)又は(2)で表されることを特徴とする高分子化合物。
Figure 0005590491
(一般式(1)及び(2)中、Rはそれぞれ独立して水素又はアルキル基であり、X11〜X16及びX21〜X26は、同一又は異なって、炭素若しくは窒素原子を示し、炭素の場合は置換基として水素、ハロゲン原子、又はアルキル基のいずれかを有する。Zは一般式(3)で表される構造である。)
Figure 0005590491
(一般式(3)中X31〜X34は、同一又は異なって、炭素若しくは窒素原子を示し、炭素の場合は置換基として水素、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基、又はアルキルカルボニル基のいずれかを有し、Yは2価の複素環基を示し、nは0又は正の整数を表す。)
A polymer compound represented by the following general formula (1) or (2):
Figure 0005590491
(In the general formulas (1) and (2), each R is independently hydrogen or an alkyl group, X 11 to X 16 and X 21 to X 26 are the same or different and represent a carbon or nitrogen atom, In the case of carbon, it has any one of hydrogen, a halogen atom, and an alkyl group as a substituent, and Z is a structure represented by the general formula (3).
Figure 0005590491
(In formula (3), X 31 to X 34 are the same or different and each represents a carbon or nitrogen atom, and in the case of carbon, hydrogen, a halogen atom, an alkyl group, an alkoxy group, an alkoxycarbonyl group, or an alkyl as a substituent. Any of carbonyl groups, Y represents a divalent heterocyclic group, and n represents 0 or a positive integer.)
下記一般式(4)又は(5)のいずれかで表されることを特徴とする請求項1に記載の高分子化合物。
Figure 0005590491
The polymer compound according to claim 1, which is represented by any one of the following general formulas (4) and (5).
Figure 0005590491
請求項1又は2に記載の高分子化合物を含有することを特徴とする高分子有機半導体材料。   A polymer organic semiconductor material comprising the polymer compound according to claim 1. 請求項3に記載の高分子有機半導体材料を含有することを特徴とする有機半導体デバイス。   An organic semiconductor device comprising the polymer organic semiconductor material according to claim 3.
JP2011047779A 2011-03-04 2011-03-04 Polymer compound, polymer organic semiconductor material and organic semiconductor device Expired - Fee Related JP5590491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047779A JP5590491B2 (en) 2011-03-04 2011-03-04 Polymer compound, polymer organic semiconductor material and organic semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047779A JP5590491B2 (en) 2011-03-04 2011-03-04 Polymer compound, polymer organic semiconductor material and organic semiconductor device

Publications (2)

Publication Number Publication Date
JP2012184310A JP2012184310A (en) 2012-09-27
JP5590491B2 true JP5590491B2 (en) 2014-09-17

Family

ID=47014666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047779A Expired - Fee Related JP5590491B2 (en) 2011-03-04 2011-03-04 Polymer compound, polymer organic semiconductor material and organic semiconductor device

Country Status (1)

Country Link
JP (1) JP5590491B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972229B2 (en) * 2013-07-19 2016-08-17 富士フイルム株式会社 Organic thin film transistor, organic semiconductor thin film and organic semiconductor material
WO2015008810A1 (en) * 2013-07-19 2015-01-22 富士フイルム株式会社 Organic film transistor, organic semiconductor film, and organic semiconductor material and use applications thereof
JP5972230B2 (en) * 2013-07-19 2016-08-17 富士フイルム株式会社 Organic thin film transistor, organic semiconductor thin film and organic semiconductor material

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5854999B2 (en) * 1975-06-19 1983-12-07 ぺんてる株式会社 Kannetsei fuchsia palm
FR2328706A1 (en) * 1975-10-23 1977-05-20 Ugine Kuhlmann NEW QUINACRIDONS AND THEIR APPLICATION TO COLORING IN THE MASS OF POLYESTERS AND POLYAMIDES
JPS6426641A (en) * 1987-03-11 1989-01-27 Kanebo Ltd Production of plasma polymerized film of quinacridone
JP2001164141A (en) * 1999-12-10 2001-06-19 Dainippon Ink & Chem Inc Pigment composition
US20040001969A1 (en) * 2002-06-27 2004-01-01 Eastman Kodak Company Device containing green organic light-emitting diode
JP4972288B2 (en) * 2004-08-30 2012-07-11 富士フイルム株式会社 Image sensor
KR101030010B1 (en) * 2004-09-18 2011-04-20 삼성모바일디스플레이주식회사 Blue electroluminescent polymer and organoelectroluminescent device employing the same
JP4904805B2 (en) * 2004-12-27 2012-03-28 住友化学株式会社 Polymer compound and polymer light emitting device using the same
JP4868825B2 (en) * 2005-10-31 2012-02-01 日本化薬株式会社 Organic field effect transistor

Also Published As

Publication number Publication date
JP2012184310A (en) 2012-09-27

Similar Documents

Publication Publication Date Title
Ahmed et al. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides
JP5834014B2 (en) Organic semiconductor material containing chalcogen-containing aromatic compound and organic electronic device
US9809594B2 (en) Non-fullerene electron acceptors for organic photovoltaic devices
JP6208133B2 (en) Heterocyclic compounds and uses thereof
Mikroyannidis et al. Synthesis of a perylene bisimide with acetonaphthopyrazine dicarbonitrile terminal moieties for photovoltaic applications
KR20070106976A (en) Carbonyl-functionalized thiophene compounds and related device structures
Dutta et al. Novel naphtho [1, 2-b: 5, 6-b′] dithiophene core linear donor–π–acceptor conjugated small molecules with thiophene-bridged bithiazole acceptor: design, synthesis, and their application in bulk heterojunction organic solar cells
WO2014061745A1 (en) Novel condensed polycyclic aromatic compound and use thereof
JP6622229B2 (en) N-fluoroalkyl substituted dibromonaphthalenediimides and their use as semiconductors
US20100171108A1 (en) Use of n,n'-bis(1,1-dihydroperfluoro-c3-c5-alkyl)-perylene-3,4:9,10- tetracarboxylic diimides
WO2010098326A1 (en) Novel compounds, process for preparing same, organic semiconductor materials, and organic semiconductor devices
Song et al. New semiconductors based on triphenylamine with macrocyclic architecture: synthesis, properties and applications in OFETs
JP5590491B2 (en) Polymer compound, polymer organic semiconductor material and organic semiconductor device
TWI614254B (en) Novel fused polycycle aromatic compound and use thereof
Um et al. High-performance organic semiconductors for thin-film transistors based on 2, 7-divinyl [1] benzothieno [3, 2-b] benzothiophene
Park et al. A new class of organic semiconductors for solution processed OTFTs: Synthesis and characterization of pyrrolo–perylene derivatives with different end groups
JP5600267B2 (en) Novel compounds and their use
Hangarge et al. Enhancing the efficiency of solution-processable bulk-heterojunction devices via a three-dimensional molecular architecture comprising triphenylamine and cyanopyridone
JP6497560B2 (en) Novel condensed polycyclic aromatic compounds and uses thereof
Chang et al. High-performance semiconductors based on oligocarbazole–thiophene derivatives for solution-fabricated organic field-effect transistors
WO2015111605A1 (en) Organic transistor, compound, organic semiconductor material for non-light-emitting organic semiconductor devices, material for organic transistors, coating solution for non-light-emitting organic semiconductor devices, and organic semiconductor film for non-light-emitting organic semiconductor devices
JP6143257B2 (en) Organic semiconductor material and organic semiconductor device using the same
KR101573568B1 (en) Fullerene derivatives and organic electronic device using the same
TWI811309B (en) 3,7-bis(2-oxoindolin-3-ylidene)benzo[1,2-b:4,5-b']difuran-2,6-dione dicyanide-based materials and uses thereof in organic electronic devices
大塚信彦 et al. The Development of an n-Type Organic Semiconductor with Twisted π-Conjugation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140708

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140718

R150 Certificate of patent or registration of utility model

Ref document number: 5590491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees