JP5590167B2 - Powder for continuous casting - Google Patents

Powder for continuous casting Download PDF

Info

Publication number
JP5590167B2
JP5590167B2 JP2013025866A JP2013025866A JP5590167B2 JP 5590167 B2 JP5590167 B2 JP 5590167B2 JP 2013025866 A JP2013025866 A JP 2013025866A JP 2013025866 A JP2013025866 A JP 2013025866A JP 5590167 B2 JP5590167 B2 JP 5590167B2
Authority
JP
Japan
Prior art keywords
powder
viscosity
sio
cao
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013025866A
Other languages
Japanese (ja)
Other versions
JP2013099791A (en
Inventor
勝弘 淵上
昌光 若生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2013025866A priority Critical patent/JP5590167B2/en
Publication of JP2013099791A publication Critical patent/JP2013099791A/en
Application granted granted Critical
Publication of JP5590167B2 publication Critical patent/JP5590167B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、例えばブリキ鋼板や自動車用薄鋼板等に用いられる低炭素もしくは極低炭素アルミキルド鋼を連続鋳造する際に使用する連続鋳造用パウダーに関するものである。   The present invention relates to a powder for continuous casting used when continuously casting a low carbon or extremely low carbon aluminum killed steel used for, for example, a tin steel plate or a thin steel plate for automobiles.

低炭素もしくは極低炭素アルミキルド鋼は、ブリキや自動車用薄鋼板など高級な薄鋼板への使用が多い鋼種である。
自動車用薄鋼板においては、近年品質の厳格化が急速に進んでおり、特に連続鋳造時に鋳片への介在物混入を防止する必要がある。介在物としては、脱酸生成物であるアルミナがクラスタリングしたアルミナクラスターと連続鋳造時に鋳型と鋳片の潤滑性を保持するために使用する酸化物を主成分とするパウダーが鋳片に混入したものに大きく分けられる。
Low carbon or extremely low carbon aluminum killed steel is a steel type that is frequently used for high-grade thin steel sheets such as tinplate and automotive steel sheets.
In automotive thin steel sheets, quality has become stricter in recent years, and it is particularly necessary to prevent inclusion inclusions in the slab during continuous casting. Inclusions include alumina clusters clustered with alumina, the deoxidation product, and powder containing oxide as a main component used to maintain the lubricity of the mold and slab during continuous casting. It is roughly divided into

連続鋳造用パウダーの役割は、
(1)鋳型と凝固シェル間の潤滑の担保、
(2)鋳型と凝固シェル間の冷却制御、
(3)鋳型内で浮上してきた介在物(主にアルミナ)の吸収、
(4)溶鋼表面の酸化防止と保温
がある。
鋳型内の溶鋼流動により溶鋼表面に添加されているパウダーが溶鋼内に巻込まれ鋳片に残存すると、表面疵や内部欠陥(プレス割れでの起点)となる。そのため、パウダーに必要な特性としては、上記の4点の役割を満足する特性以外に巻込まれにくいという特性も必要となる。
一般的に、C=0.09〜0.17質量%程度の中炭素鋼では凝固不均一や相変態に伴う収縮などにより鋳片表面割れが発生しやすく、特に鋳型と凝固シェル間の冷却制御(緩冷却化)が指向されている。
このため、パウダーの均一流入と固体パウダー中の結晶化促進(主としてカスピディン)を目的に高塩基度(高CaO/SiO)、低粘性のパウダーが使用されている。
The role of powder for continuous casting is
(1) Guarantee of lubrication between mold and solidified shell,
(2) Cooling control between mold and solidified shell,
(3) Absorption of inclusions (mainly alumina) that have floated in the mold,
(4) There is oxidation prevention and heat retention on the surface of the molten steel.
When the powder added to the molten steel surface by the molten steel flow in the mold is wound into the molten steel and remains in the slab, it becomes a surface flaw and an internal defect (starting point in press cracking). Therefore, as a characteristic required for the powder, a characteristic that it is difficult to be caught other than the characteristic that satisfies the role of the above four points is also required.
In general, medium carbon steel of C = 0.09 to 0.17% by mass tends to cause slab surface cracks due to inhomogeneous solidification or shrinkage due to phase transformation, especially cooling control between mold and solidified shell. (Slow cooling) is aimed at.
For this reason, high basicity (high CaO / SiO 2 ), low-viscosity powder is used for the purpose of uniform inflow of powder and promotion of crystallization in solid powder (mainly caspidine).

一方、低炭素鋼では、中炭素鋼に比較して鋳片表面割れが発生しにくく、パウダー巻込み防止の観点から粘性が高めのパウダーが使用される。
低炭素鋼(極低炭素鋼を含む)の中でも介在物性の欠陥が問題となる介在物厳格材(ブリキや自動車用薄鋼板など)では、特にパウダー巻込み防止の観点からのパウダー設計が必要であり、介在物厳格材以外の低炭素鋼よりもさらなる高粘性化が指向されている(例えば、特許文献1、2参照)。
On the other hand, low carbon steel is less susceptible to slab surface cracking than medium carbon steel, and powder with higher viscosity is used from the viewpoint of preventing powder entrainment.
Among the low carbon steels (including extremely low carbon steels), the inclusion strict materials (such as tinplate and automotive thin steel plates) where defects in the inclusion properties are a problem require a powder design especially from the viewpoint of preventing powder entrainment. There is a trend toward higher viscosity than low carbon steels other than inclusion strict materials (see, for example, Patent Documents 1 and 2).

特開2000−280051号公報JP 2000-280051 A 特開2003−290888号公報JP 2003-290888 A

しかしながら、低炭素鋼や極低炭素鋼の場合であっても、鋳型と凝固シェル間の潤滑のためには鋳型と凝固シェル間にパウダーを流入させる必要があり、流入特性を向上させるためにはパウダーの低粘性化が必要である。
このように、パウダー巻込み防止のための高粘性化と潤滑確保のための低粘性化という相反する特性を具備する必要がある。現状の介在物厳格材の鋳造は、パウダー巻込みに重点化されているために、高粘性パウダーが使用されており、それ故、鋳型と凝固シェル間へのパウダー流入特性が劣り、鋳造速度が遅い低速鋳造で製造しなければならず、連続鋳造の生産性を低下させる要因となっている。
However, even in the case of low carbon steel or extremely low carbon steel, it is necessary to allow powder to flow between the mold and the solidified shell for lubrication between the mold and the solidified shell. It is necessary to reduce the viscosity of the powder.
Thus, it is necessary to have the contradictory characteristics of increasing viscosity to prevent entrainment of powder and decreasing viscosity to ensure lubrication. The current casting of strict inclusion materials is focused on powder entrainment, so highly viscous powders are used. It must be manufactured by slow low-speed casting, which is a factor that reduces the productivity of continuous casting.

本発明の目的は、パウダー巻込み防止と潤滑性を両立させることで、介在物厳格材においてパウダー巻込みを防止しつつ高速鋳造を可能とする連続鋳造用パウダーを提供することである。   An object of the present invention is to provide a powder for continuous casting that enables high-speed casting while preventing powder entrainment in an inclusion-strict material by making both powder entrainment prevention and lubricity compatible.

本発明者らは、上記課題を解決するために基礎的なパウダーの物性の検討を行ない、以下に記載するようにパウダー巻込みを抑制しつつ、潤滑性を担保できる連続鋳造用パウダーを見出した。   In order to solve the above problems, the present inventors have studied basic powder physical properties, and found a powder for continuous casting capable of ensuring lubricity while suppressing powder entrainment as described below. .

第1発明は、鋼の連続鋳造を行なうに当たって鋳型内の溶鋼表面に添加する酸化物系パウダーにおいて、CaO及びSiOを主成分とし、凝固温度が1200℃以下かつ活性化エネルギーE(J/mol)と1300℃の粘性η(Pa・s)が下記式(1)を満足することを特徴とする連続鋳造用パウダーである。
‐0.5108‐0.00000519×E>ln(η)>‐2.303+0.00000862×E・・・(1)
ただし、E>85kJ/mol
The first invention is an oxide-based powder that is added to the surface of molten steel in a mold for continuous casting of steel, mainly composed of CaO and SiO 2 , a solidification temperature of 1200 ° C. or less, and an activation energy E ( J / mol). ) And a viscosity η (Pa · s) at 1300 ° C. satisfy the following formula (1).
-0.5108-0.00000519 × E > ln (η) > -2.303 + 0.00000862 × E (1)
However, E> 85 kJ / mol

発明は、鋼の連続鋳造を行なうに当たって鋳型内の溶鋼表面に添加する酸化物系パウダーにおいて、C分及び揮発成分を除いた酸化物及びフッ化物の合計量に対するCaO、SiO、NaO、CaFの合計量が90mass%以上かつAl、MgO及びLiOが各々3mass%以下であり下記式(3)を満足することを特徴とする第1発明に記載の連続鋳造用パウダー。
15−1.85CaO/SiO≦NaO+CaF≦25−6CaO/SiO
・・・(3)
ただし、0.5≦CaO/SiO≦1、0.7≦NaO/CaF≦1.2であり、CaO(mass%)、SiO(mass%)、NaO(mass%)、CaF(mass%)である。
In the second invention, in the oxide-based powder added to the surface of the molten steel in the mold in continuous casting of steel, CaO, SiO 2 , Na 2 with respect to the total amount of oxide and fluoride excluding C and volatile components The continuous casting according to the first invention, wherein the total amount of O and CaF 2 is 90 mass% or more and Al 2 O 3 , MgO and Li 2 O are each 3 mass% or less and satisfy the following formula (3): Powder.
15-1.85 CaO / SiO 2 ≦ Na 2 O + CaF 2 ≦ 25-6 CaO / SiO 2
... (3)
However, 0.5 ≦ CaO / SiO 2 ≦ 1, 0.7 ≦ Na 2 O / CaF 2 ≦ 1.2, and CaO (mass%), SiO 2 (mass%), Na 2 O (mass%) , CaF 2 (mass%).

本発明の連続鋳造用パウダーを使用すれば、介在物厳格材においてパウダー巻込みを抑制しつつ鋳造速度の向上が可能である。   If the powder for continuous casting of the present invention is used, it is possible to improve the casting speed while suppressing the entrainment of powder in the inclusion strict material.

1300℃の粘性とパウダー巻込み指数の関係を表すグラフ。The graph showing the relationship between the viscosity of 1300 ° C. and the powder entrainment index. 1500℃の粘性とパウダー巻込み指数の関係を表すグラフ。The graph showing the relationship between the viscosity of 1500 ° C. and the powder entrainment index. 1200℃及び1300℃の粘性とパウダー消費量指数の関係を表すグラフ。The graph showing the relationship of the viscosity of 1200 degreeC and 1300 degreeC, and a powder consumption index. 1300℃の粘性と活性化エネルギーの関係を表すグラフ。The graph showing the relationship between 1300 degreeC viscosity and activation energy. CaO/SiOとLiOでの必要特性領域の関係を表すグラフ。Graph showing the relationship between the required characteristic area in CaO / SiO 2 and Li 2 O. CaO/SiOとNaO+CaFでの必要特性領域の関係を表すグラフ。Graph showing the relationship between the required characteristic area in CaO / SiO 2 and Na 2 O + CaF 2. NaOとCaFでの必要特性領域の関係を表すグラフ。Graph showing the relationship between the required characteristic area in Na 2 O and CaF 2. 鋳造速度とBO検知発生率及び内部欠陥探傷結果の関係を表すグラフ。The graph showing the relationship between a casting speed, BO detection incidence, and an internal defect flaw detection result.

本発明者らは、パウダーの基礎物性を検討し、粘性の温度依存性を制御することによりパウダー巻込みを抑制しつつ潤滑性を担保できる連続鋳造用パウダーを見出した。
以下、図表を参照しながら、本発明の好適な実施の形態について詳細に説明する。尚、本発明はこれに限られるものではない。
The inventors of the present invention have studied the basic physical properties of the powder, and found a powder for continuous casting that can ensure the lubricity while suppressing the entrainment of the powder by controlling the temperature dependence of the viscosity.
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. The present invention is not limited to this.

溶鋼を連続鋳造する際に使用されるパウダーの基本特性としては、従来1300℃で測定された粘度と溶融温度及び凝固温度(粘性が急激に上昇する温度)が用いられてきた。
粘性に関しては1300℃を代表温度として評価してきたが、実際にはパウダー組成により粘性の温度依存性が変化し、1300℃での粘性が等しくても、他の温度では粘性が異なることがある。本発明者らは、溶鋼表面上に添加されているパウダーの溶融プールの厚み方向の温度分布に着目した。すなわち、パウダーが溶鋼に巻込まれる界面では溶鋼温度とほぼ同じ1500℃前後であるのに対して、鋳型と凝固シェル間に流入するパウダーの量や均一な流入性には溶融プールの上部、つまりより低温側の溶融パウダーが流入していると考えた。
そのため、パウダー巻込み防止の観点では溶鋼との界面付近での1500℃の粘性が重要である。また、パウダー流入性の観点からは従来評価指標として用いられてきた1300℃よりも低温側の粘性が重要であると考えた。
Conventionally, the viscosity, melting temperature, and solidification temperature (temperature at which the viscosity rapidly increases) measured at 1300 ° C. have been used as the basic characteristics of powder used when continuously casting molten steel.
Although the viscosity has been evaluated with 1300 ° C. as the representative temperature, the temperature dependence of the viscosity actually changes depending on the powder composition, and even if the viscosity at 1300 ° C. is the same, the viscosity may be different at other temperatures. The inventors paid attention to the temperature distribution in the thickness direction of the molten pool of powder added on the molten steel surface. That is, while the temperature at which the powder is wound on the molten steel is about 1500 ° C., which is almost the same as the molten steel temperature, the amount of powder flowing in between the mold and the solidified shell and the uniform inflow property are more The molten powder on the low temperature side was considered to flow in.
Therefore, the viscosity of 1500 ° C. near the interface with the molten steel is important from the viewpoint of preventing powder entrainment. Further, from the viewpoint of powder inflow, it was considered that viscosity at a temperature lower than 1300 ° C., which has been used as a conventional evaluation index, is important.

前述したようにパウダーの溶融プールは溶鋼側の1500℃付近から溶融プール上部の溶融温度までの間で分布を持つ。温度が低くなるほど粘性が高くなるため、溶融温度にできるだけ近い温度での粘性がパウダー流入性に影響を与えると推定される。
通常のパウダーの溶融温度は1200℃以下であるため流入性を評価する上では1200℃の粘性に着目しパウダー設計を行うことを検討した。これまでは、パウダーの粘性の指標としては1300℃の粘性が用いられてきたが、粘性の温度依存性としてアレーニウス型で表記した場合の活性化エネルギーに着目した。
As described above, the molten pool of powder has a distribution from around 1500 ° C. on the molten steel side to the melting temperature at the top of the molten pool. Since the viscosity increases as the temperature decreases, it is estimated that the viscosity at a temperature as close as possible to the melting temperature affects the powder inflow property.
Since the melting temperature of ordinary powder is 1200 ° C. or less, in evaluating the inflow property, it was considered to design the powder by paying attention to the viscosity of 1200 ° C. Until now, the viscosity of 1300 ° C. has been used as an index of the viscosity of the powder, but attention has been paid to the activation energy when expressed in the Arrhenius type as the temperature dependence of the viscosity.

上記の考え方を検証する目的でまず実験室での試験により従来使用しているパウダー(1300℃での粘性が0.1〜0.4Pa・s)を用いて、種々の温度の粘性とパウダー巻込み性及びパウダー流入性の関係を評価した。溶鋼は、低炭Al−K鋼(0.04%C−0.01%Si−0.3%Mn−0.04%Al)を用いた。パウダー巻き込み特性として、20kg真空溶解炉を用いて溶鋼上にパウダーを溶融させ、パウダー/溶鋼界面下部1cm位置から溶鋼を吸引しパウダーの巻込み質量を評価した。吸引した溶鋼中のパウダーをスライム法により分離抽出し、吸引した溶鋼の単位質量当たりのパウダー巻込み質量として評価した。
なお、巻込まれたパウダーは、
(1)実際の連鋳機内での介在物浮上特性から300μm以上のものは浮上すること、
(2)ブリキ用素材で欠陥となる最小サイズが50μm程度であること、
から、スライム法で用いる篩をJIS法で定められている53μmの篩と297μmの篩を使用して53〜297μmの粒径の介在物を評価した。
For the purpose of verifying the above-mentioned concept, first, a powder used in the past (viscosity at 1300 ° C. is 0.1 to 0.4 Pa · s) by a laboratory test is used. The relationship between the embedding property and the powder inflow property was evaluated. As the molten steel, low-carbon Al-K steel (0.04% C-0.01% Si-0.3% Mn-0.04% Al) was used. As a powder entrainment characteristic, powder was melted on the molten steel using a 20 kg vacuum melting furnace, and the molten steel was sucked from a position 1 cm below the powder / molten steel interface to evaluate the mass of the entrained powder. The powder in the sucked molten steel was separated and extracted by the slime method, and evaluated as the powder entrainment mass per unit mass of the sucked molten steel.
The entrained powder is
(1) Due to the floating characteristics of inclusions in an actual continuous casting machine, those with a thickness of 300 μm or more should float.
(2) The minimum size of defects in the tinplate material is about 50 μm.
Thus, inclusions having a particle size of 53 to 297 μm were evaluated using a 53 μm sieve and a 297 μm sieve defined by the JIS method as sieves used in the slime method.

評価指標として、通常の低炭素鋼で使用している1300℃の粘性が0.2Pa・sのパウダーの巻込み量を1として指標化した。
図1に1300℃の粘性とパウダー巻込み指数の関係を、図2に1500℃で推定される粘性とパウダー巻込み指数の関係を示す。
ここで、1500℃の粘性は直接の測定結果ではなく1350℃以下の複数の温度で粘性を測定し温度と粘性の関係から外挿した値である。
As an evaluation index, the amount of entrainment of a powder having a viscosity of 0.2 Pa · s at 1300 ° C. used in ordinary low carbon steel was indexed as 1.
FIG. 1 shows the relationship between the viscosity at 1300 ° C. and the powder entrainment index, and FIG. 2 shows the relationship between the viscosity estimated at 1500 ° C. and the powder entrainment index.
Here, the viscosity at 1500 ° C. is not a direct measurement result, but is a value obtained by extrapolating from the relationship between temperature and viscosity by measuring the viscosity at a plurality of temperatures of 1350 ° C. or lower.

なお、粘性の測定に関しては、回転円筒法を用いた。C分を除くパウダーをカーボン製坩堝の中で1400℃で均一に溶融させ1350℃まで徐冷した後に、E型粘度計のロータを溶融パウダー中に浸漬させ30分保持を行い粘性を測定した。その後、10℃ずつ温度を下げ30分保持した後に粘性を測定するという作業を凝固温度まで続ける。このように求めた粘性と温度の関係から活性化エネルギーを求めている。   Note that the rotating cylinder method was used for the measurement of viscosity. The powder excluding C was uniformly melted at 1400 ° C. in a carbon crucible and slowly cooled to 1350 ° C., and then the rotor of an E-type viscometer was immersed in the molten powder and held for 30 minutes to measure the viscosity. Thereafter, the operation of decreasing the temperature by 10 ° C. and holding it for 30 minutes and then measuring the viscosity is continued up to the solidification temperature. The activation energy is obtained from the relationship between the viscosity and the temperature thus obtained.

外挿した値を用いた理由としては、パウダーに通常含まれるNaOやCaFが高温では蒸発し粘性が変化する可能性があるためである。
パウダーの粘性測定では、溶融パウダーを均一に高温に保持したまま測定するために蒸発の影響が大きいが、実際の鋳造中は溶融プールで温度勾配があり蒸発は抑制される。
図1に示すように、1300℃での粘性が同一でもパウダー巻込み指数にはばらつきが存在し、図2で示したように1500℃での粘性のほうがパウダー巻込み指数とよい相関があることがわかった。つまり、パウダー巻込み性は、1500℃での粘性によりほぼ決定され、ブリキ用素材で使用している1300℃での粘性が0.4Pa・sのパウダーと同等のパウダー巻込み防止特性を持たせるには、1500℃の粘性で0.1Pa・sであれば良いことがわかる。
The reason for using the extrapolated value is that Na 2 O or CaF 2 that is usually contained in the powder may evaporate at high temperatures and change its viscosity.
In the measurement of powder viscosity, the effect of evaporation is large because measurement is performed while the molten powder is kept at a high temperature uniformly, but during actual casting, there is a temperature gradient in the molten pool, and evaporation is suppressed.
As shown in FIG. 1, even if the viscosity at 1300 ° C. is the same, the powder entrainment index varies, and as shown in FIG. 2, the viscosity at 1500 ° C. has a better correlation with the powder entrainment index. I understood. In other words, the powder entrainment property is almost determined by the viscosity at 1500 ° C., and has a powder entrainment preventing property equivalent to the powder having a viscosity at 1300 ° C. of 0.4 Pa · s used for the material for tinplate. It can be seen that the viscosity at 1500 ° C. is 0.1 Pa · s.

次に、パウダー流入特性に関して、小型試験連鋳機を用いて評価した。小型試験連鋳機は、150mm×500mmの鋳型サイズであり、鋳造中のパウダー消費量を評価した。パウダー消費量は、全パウダー投入量から鋳造後に浮遊していたパウダー量を差し引き、溶鋼単位質量当りのパウダー使用量とした。鋳造速度は1m/min一定とし、8tonの溶鋼を鋳造した。なお、鋳造時間は約14分である。   Next, the powder inflow characteristics were evaluated using a small test continuous casting machine. The small test continuous casting machine had a mold size of 150 mm × 500 mm, and evaluated the amount of powder consumed during casting. The amount of powder consumed was the amount of powder used per unit mass of molten steel, by subtracting the amount of powder that had floated after casting from the total amount of powder charged. The casting speed was fixed at 1 m / min, and 8 ton molten steel was cast. The casting time is about 14 minutes.

なお、通常の低炭素鋼で使用している1300℃の粘性が0.2Pa・sのパウダーの消費量を1として指標化した。パウダー消費量指数も溶鋼は、前述と同じ低炭Al−K鋼を用いた。図3にパウダー消費量指数と1300℃及び1200℃での粘性の関係を示す。1300℃の粘性ではパウダー消費量指数にばらつきがあるが、1200℃での粘性が0.6Pa・sを超えると粘性が高くなるに伴ってパウダー消費量指数が急激に低下することがわかる。つまり、1200℃でのパウダー粘性によりパウダー流入特性がほぼ決まっていると考えられる。小型試験連鋳機では高速鋳造の試験を行なうことができないため、後述するように実機の連続鋳造機において試験を行い検証している。   The consumption of powder having a viscosity of 1300 ° C. and a viscosity of 0.2 Pa · s used in ordinary low carbon steel was indexed as 1. The same low-carbon Al-K steel as described above was used as the molten steel for the powder consumption index. FIG. 3 shows the relationship between the powder consumption index and the viscosity at 1300 ° C and 1200 ° C. It can be seen that the powder consumption index varies at a viscosity of 1300 ° C., but when the viscosity at 1200 ° C. exceeds 0.6 Pa · s, the powder consumption index rapidly decreases as the viscosity increases. That is, it is considered that the powder inflow characteristic is almost determined by the powder viscosity at 1200 ° C. Since a small test continuous caster cannot perform a high-speed casting test, the test is performed and verified in an actual continuous casting machine as described later.

上記の結果をもとにパウダー巻き込みを防止しつつ鋳型−凝固シェル間のパウダー流入特性を保持するためには、1500℃の粘性が0.1Pa・sより大きく、1200℃の粘性が0.6Pa・sよりも小さいことが必要である。   Based on the above results, the viscosity at 1500 ° C. is greater than 0.1 Pa · s and the viscosity at 1200 ° C. is 0.6 Pa in order to maintain the powder inflow characteristics between the mold and the solidified shell while preventing the entrainment of powder. -It must be smaller than s.

粘性の温度依存性をアレーニウス型で近似すると、粘性η(Pa・s)は下記式(4)
で示される。
η(T)=ηexp(E/R/T)・・・(4)
R:気体定数、T:絶対温度(K)、η:粘性の頻度因子
ここで、1500℃の粘性を0.1Pa・sより大きく、1200℃での粘性を0.6
Pa・sより小さいとして連立不等式を解くと、下記式(5)に示すような不等式が得ら
れる。
‐0.5108‐0.00000519×E>ln(η)>‐2.303+0.00000862×E・・・(5)
η:1300℃での粘性(Pa・s)、E(J/mol
When the temperature dependence of viscosity is approximated by an Arrhenius type, the viscosity η (Pa · s) is expressed by the following equation (4).
Indicated by
η (T) = η 0 exp (E / R / T) (4)
R: Gas constant, T: Absolute temperature (K), η 0 : Viscosity frequency factor Here, the viscosity at 1500 ° C. is greater than 0.1 Pa · s, and the viscosity at 1200 ° C. is 0.6.
When the simultaneous inequality is solved assuming that it is smaller than Pa · s, the inequality shown in the following equation (5) is obtained.
-0.5108-0.00000519 × E > ln (η) > -2.303 + 0.00000862 × E (5)
η: Viscosity at 1300 ° C. (Pa · s), E ( J / mol )

次に上記で求めた式(5)を満たすパウダー組成について検討した。
図4に式(5)の不等式より求めた必要特性領域と従来パウダーとの関係を示す。図4に示すように、従来パウダーでは必要特性領域に入るものはなくパウダー組成の抜本的な検討が必要であることがわかる。従来パウダーと同一粘性(1300℃)を持ちつつ、活性化エネルギーを低下させることが必要である。活性化エネルギーは、温度変化に対する粘性の変化を規定する因子であり、活性化エネルギーが高いほど温度依存性が大きく、つまり温度上昇とともに急激に粘性が低下することになる。
Next, the powder composition satisfying the formula (5) obtained above was examined.
FIG. 4 shows the relationship between the required characteristic region obtained from the inequality of equation (5) and the conventional powder. As shown in FIG. 4, it can be seen that there is no conventional powder that falls within the necessary characteristic region, and a drastic study of the powder composition is necessary. It is necessary to reduce the activation energy while having the same viscosity (1300 ° C.) as the conventional powder. The activation energy is a factor that defines a change in viscosity with respect to a change in temperature. The higher the activation energy, the greater the temperature dependency. In other words, the viscosity decreases rapidly as the temperature increases.

溶融パウダーの粘性の発現機構から考えた場合、溶融パウダーのSiOのネットワーク構造が重要であり、粘性の温度依存性は温度上昇とともにSiOのネットワーク構造が分断されるためと推定される。そのため、粘性の温度依存性を小さくするにはSiOのネットワーク構造をできるだけ温度上昇により変化させないことが重要である。図4に示すように、種々のパウダーの1300℃の粘性と活性化エネルギーを見ると、粘性が低下するほど活性化エネルギーは低下する傾向が見られる。1300℃の粘性が低いパウダーは一般的にSiOの含有量が少なく(つまり塩基度CaO/SiOが高い)、SiOのネットワークが発達していないため粘性の温度依存性の指標である活性化エネルギーも小さくなっていると考えられる。 Considering the mechanism of manifestation of the viscosity of the molten powder, the SiO 2 network structure of the molten powder is important, and the temperature dependence of the viscosity is presumed to be because the network structure of SiO 2 is divided as the temperature rises. Therefore, in order to reduce the temperature dependence of the viscosity, it is important that the SiO 2 network structure is not changed as much as possible by increasing the temperature. As shown in FIG. 4, when the viscosity at 1300 ° C. and the activation energy of various powders are observed, the activation energy tends to decrease as the viscosity decreases. Powders with low viscosity at 1300 ° C. generally have a low SiO 2 content (ie, high basicity CaO / SiO 2 ), and the activity that is an indicator of temperature dependence of viscosity because the SiO 2 network is not developed. It is thought that the chemical energy is also decreasing.

そこで本発明者らは、温度上昇に伴うSiOのネットワーク構造の変化を最小限にするために、ネットワークモデファイアーと呼ばれるネットワークを分断する成分を適正に配合し、低温側でSiOのネットワーク単位をあらかじめ小さく分断させておくことにより温度上昇に伴う粘性の変化を小さくすることが有効であると考えた。ただし、SiOのネットワーク単位を小さく分断すると粘性の低下が著しいため、SiOの含有量を増やしSiOのネットワーク単位を多数分散させることで粘性の維持を図ることとした。
SiOのネットワーク構造を分断するものとして、CaO、MgO、LiO、NaOなどの塩基性酸化物やCaFなどのフッ化物が代表的なものである。
In order to minimize the change in the network structure of SiO 2 due to a temperature rise, the present inventors appropriately blended a component called a network modifier that divides the network, and the network unit of SiO 2 on the low temperature side. We thought that it was effective to reduce the viscosity change with the temperature rise by dividing it into small pieces in advance. However, the decrease in viscosity when cutting small network units of SiO 2 is significant, it was decided to reduce the maintenance of viscosity by dispersing a large number of network units SiO 2 increases the content of SiO 2.
Representative examples of the network structure of SiO 2 include basic oxides such as CaO, MgO, Li 2 O, and Na 2 O and fluorides such as CaF 2 .

従来パウダーの組成と粘性の温度依存性を代表している活性化エネルギーに関して解析を行なった結果、活性化エネルギーを低下させる作用(温度依存性を小さくする作用)は、LiOが最も大きく、次いでCaF、CaO、NaOの順番であった。LiOが添加されている場合にNaOやCaFを多量に添加すると活性化エネルギーの低下作用よりも粘性低下の影響が大きく、適正な特性を得にくい。また、パウダー中に通常含まれるAlについては、SiO同様に粘性を高める効果があるが、温度依存性に関しては大きくする傾向があり、できるだけAlは少量とする方が良い。 As a result of analyzing the activation energy representing the temperature dependency of the composition and viscosity of the conventional powder, Li 2 O has the largest effect of reducing the activation energy (the effect of reducing the temperature dependency), Next, the order was CaF 2 , CaO, Na 2 O. If a large amount of Na 2 O or CaF 2 is added when Li 2 O is added, the effect of lowering the viscosity is greater than the effect of reducing the activation energy, making it difficult to obtain appropriate characteristics. In addition, Al 2 O 3 usually contained in the powder has an effect of increasing the viscosity like SiO 2, but there is a tendency to increase the temperature dependence, and it is better to make Al 2 O 3 as small as possible. .

まず、LiO添加をベースとしたパウダー組成に関して検討を行なった。その結果、LiOは活性化エネルギーの低下とともに粘性の低下の作用も大きく、LiO添加前のパウダー組成において粘性が高い組成としておく必要があることがわかった。
前述したように粘性を高くするためには、SiOの含有量を増加させること(つまりCaO/SiOで示される塩基度を小さくすること)が必要である。前述したように、LiOを添加した場合には、CaO、SiO、LiO以外のNaOやCaFを多量に含む場合には粘性が下がりすぎて適正なパウダー特性が得にくい。CaO、SiO、LiO以外の残りの成分は溶融温度や凝固温度の調整用として各3mass%以下で、かつ残りの成分の合計質量を10mass%未満の条件とし、CaO/SiOとLiOを変化させて粘性の温度依存性を測定し、必要特性を満足している領域を求めた。
CaO、SiO、LiO以外の成分を各3mass%以下でかつ残りの成分の合計質量を10mass%未満とした理由は、溶融温度や凝固温度の調整用として十分な範囲であること、及び粘性の極端な低下を防止するためである。
First, the powder composition based on Li 2 O addition was examined. As a result, Li 2 O is greater effect of lowering the viscosity with decreasing activation energy, it was found that it is necessary to the high viscosity composition in the Li 2 O before addition of the powder composition.
As described above, in order to increase the viscosity, it is necessary to increase the content of SiO 2 (that is, to decrease the basicity represented by CaO / SiO 2 ). As described above, when Li 2 O is added, when a large amount of Na 2 O or CaF 2 other than CaO, SiO 2 , or Li 2 O is contained, the viscosity is too low to obtain appropriate powder characteristics. . The remaining components other than CaO, SiO 2 and Li 2 O are each 3 mass% or less for adjusting the melting temperature and the solidification temperature, and the total mass of the remaining components is less than 10 mass%, and CaO / SiO 2 and Li The temperature dependency of viscosity was measured while changing 2 O, and a region satisfying the required characteristics was determined.
The reason why the components other than CaO, SiO 2 and Li 2 O are each 3 mass% or less and the total mass of the remaining components is less than 10 mass% is that it is a sufficient range for adjusting the melting temperature and the solidification temperature, and This is to prevent an extreme decrease in viscosity.

図5において、式(5)の条件を満たすものを○、満たさないものを×で示すように、CaO/SiOとLiOとの関係で適正な範囲があり、下記式(6)、(7)に示す範囲となる。
6CaO/SiO+LiO≦11・・・(6)
1.85CaO/SiO+LiO≧6・・・(7)
ただし、0.5≦CaO/SiO≦1.2であり、CaO(mass%)、SiO(mass%)、LiO(mass%)である。
In FIG. 5, there is an appropriate range in relation to CaO / SiO 2 and Li 2 O, as indicated by ◯ when the condition of the expression (5) is satisfied, and by × when not satisfying the expression (5). The range is as shown in (7).
6CaO / SiO 2 + Li 2 O ≦ 11 (6)
1.85CaO / SiO 2 + Li 2 O ≧ 6 (7)
However, 0.5 ≦ CaO / SiO 2 ≦ 1.2, and CaO (mass%), SiO 2 (mass%), and Li 2 O (mass%).

図5に示す適正領域の上側に外れる場合は低温側の粘性が高くなり、下側に外れる場合
は高温側の粘性が低くなりすぎる。また、CaO/SiOが0.5未満の場合には、パ
ウダーの融点が高くなり溶融速度が遅くなるため実際の鋳造には耐えられない。CaO/
SiOが1.2より大きい場合には、LiOを添加しても適正な領域に入ることはない。なお、適正領域に入った組成では、活性化エネルギーが85(J/mol)以
下になることはない。適正なパウダーの粘性を維持しつつ、かつ活性化エネルギーを85
(kJ/mol)以下にするためには、CaO/SiOを0.5未満として、溶融温度を低下させるためにさらにNaOやCaFを添加しなければならない。しかしながら、これ以上のCaO/SiOの低下は、溶鋼中の介在物(特にアルミナ)の吸収効率を下げるとともに、パウダー中のSiOの還元反応により溶鋼中に多量のアルミナを生成させる懸念がある。上記の理由で、活性化エネルギーを85(kJ/mol)以下にするパウダーは実際の鋳造には適さない。
The viscosity on the low temperature side becomes high when it deviates above the appropriate region shown in FIG. 5, and the viscosity on the high temperature side becomes too low when it deviates below. On the other hand, when CaO / SiO 2 is less than 0.5, the melting point of the powder becomes high and the melting rate becomes slow, so that it cannot withstand actual casting. CaO /
When SiO 2 is larger than 1.2, even if Li 2 O is added, it does not enter an appropriate region. In the composition entering the appropriate region, never activation energy falls below 85 (k J / mol). While maintaining proper powder viscosity, the activation energy is 85
In order to make it (kJ / mol ) or less, CaO / SiO 2 should be less than 0.5, and Na 2 O or CaF 2 must be further added to lower the melting temperature. However, a further decrease in CaO / SiO 2 lowers the absorption efficiency of inclusions (particularly alumina) in the molten steel and may cause a large amount of alumina to be generated in the molten steel due to the reduction reaction of SiO 2 in the powder. . For the above reasons, powders having an activation energy of 85 (kJ / mol ) or less are not suitable for actual casting.

LiOは希少なため、パウダー中に大量に使用すると製造コストが非常に大きくなる。そのため、実際に鋳造に使用する場合にはLiOの添加を極力少なくすることが望ましく、LiO削減の検討を行なった。
LiO<3%の条件において、CaO、SiO、NaO、CaFを対象に、LiOの適正組成を検討した際に得られた知見をもとに、CaO/SiOとNaO、CaFの添加量との適正範囲を検討した。LiO添加の条件を求めた際と同様に、CaO、SiO、NaO、CaF以外の残りの成分を各3mass%以下でかつ残りの成分の合計質量を10mass%以下の条件とした。まず、CaO/SiOとNaOとCaFの合計添加量の関係で整理した。なお、F分の取り扱いとしては、F分はCaFとして取り扱っており、CaFとして添加されたCa分は塩基度(CaO/SiO)を計算する場合のCaO分には含まれていない。
Since Li 2 O is rare, the production cost becomes very high when used in large amounts in powder. Therefore, when actually used for casting, it is desirable to reduce the addition of Li 2 O as much as possible, and studies have been made on reducing Li 2 O.
Based on the knowledge obtained when examining the proper composition of Li 2 O for CaO, SiO 2 , Na 2 O, and CaF 2 under the condition of Li 2 O <3%, CaO / SiO 2 and Na 2 O, were studied proper range of the added amount of CaF 2. As in the case of obtaining the conditions for adding Li 2 O, the remaining components other than CaO, SiO 2 , Na 2 O, and CaF 2 are each 3 mass% or less, and the total mass of the remaining components is 10 mass% or less. did. It was first organized in relation CaO / SiO 2 and Na 2 O and the total amount of CaF 2. As the handling of the F content, F min is treated as CaF 2, Ca content added as CaF 2 is not included in the CaO content in the case of calculating basicity (CaO / SiO 2).

図6において、式(5)の条件を満たすものを○、満たさないものを×で示すように、下記式(8)及び式(9)で示す範囲で必要特性を満足する組成があることがわかったが、式(8)及び(9)を満足しても必ずしも必要特性を満足するとは限らない。
6CaO/SiO+NaO+CaF≦25・・・(8)
1.85CaO/SiO+NaO+CaF≧15・・・(9)
ただし、0.5≦CaO/SiO≦1であり、CaO(mass%)、SiO(mass%)、NaO(mass%)、CaF(mass%)である。
In FIG. 6, there is a composition that satisfies the required characteristics in the range represented by the following formula (8) and formula (9), as indicated by ◯ when the condition of the formula (5) is satisfied and by x when the condition is not satisfied. As can be seen, even if the expressions (8) and (9) are satisfied, the required characteristics are not always satisfied.
6CaO / SiO 2 + Na 2 O + CaF 2 ≦ 25 (8)
1.85CaO / SiO 2 + Na 2 O + CaF 2 ≧ 15 (9)
However, 0.5 ≦ CaO / SiO 2 ≦ 1, and CaO (mass%), SiO 2 (mass%), Na 2 O (mass%), and CaF 2 (mass%).

そこで、式(8)及び式(9)の範囲内でNaOとCaFの質量%で整理すると、図7において、式(5)の条件を満たすものを○、満たさないものを×で示すように0.7≦NaO/CaF≦1.2となる範囲で必要特性が得られることがわかった。図6に示す適正領域の上側に外れる場合は低温側の粘性が高くなり、下側に外れる場合は高温側の粘性が低くなりすぎるのはLiO添加で検討した場合と同様である。また、CaO/SiOの適正範囲の上下限の意味合いはLiO添加で検討した場合と同様である。LiO添加に比較して、NaOとCaFの活性化エネルギー低下の作用が小さいため、大量に添加する必要がある。また、NaOとCaFに適切な添加比率が存在する理由としては、CaF過剰側であるとSiOの結晶を生成しやすい作用があり溶融しにくくなるためである。逆にNaO過剰側では活性化エネルギー低下効果が十分ではなく必要とする特性が得られない。
通常使用されるパウダーは、溶融性制御及び保温性のためにCを含んでいるが、本発明例ではパウダーの質量比率からは除外している。また、パウダー原料として炭酸塩が使用される場合があるが、この場合も溶融状態では酸化物となっており、揮発成分は除外している。
パウダー組成は、下記のように決定している。まず、パウダーを完全に溶融させ、C分や炭酸塩の炭酸分を完全に除去した後に、急冷しガラス化させる。ガラス化したパウダーを蛍光X線法を用いて、酸素分を除いて各元素濃度を求める。F分が存在する場合は、CaFとして存在すると仮定し、残りのCa分はCaOとして算出する。その他の金属元素ならびにBなどの元素は各々酸化物と存在するとして、最終的には酸化物及び弗化物のトータルとして100mass%となるように算出する。
Therefore, when arranging by mass% of Na 2 O and CaF 2 within the range of formula (8) and formula (9), in FIG. As shown, it was found that necessary characteristics were obtained in the range of 0.7 ≦ Na 2 O / CaF 2 ≦ 1.2. The viscosity on the low temperature side increases when it falls outside the appropriate region shown in FIG. 6, and the viscosity on the high temperature side becomes too low when it falls below the same as in the case of studying addition of Li 2 O. In addition, the meaning of the upper and lower limits of the appropriate range of CaO / SiO 2 is the same as that studied when Li 2 O is added. Compared to Li 2 O addition, the effect of lowering the activation energy of Na 2 O and CaF 2 is small, so a large amount needs to be added. Further, the reason why there is an appropriate addition ratio between Na 2 O and CaF 2 is that the CaF 2 excess side tends to generate SiO 2 crystals and is difficult to melt. On the contrary, on the Na 2 O excess side, the activation energy lowering effect is not sufficient and the required characteristics cannot be obtained.
Normally used powder contains C for melt control and heat retention, but is excluded from the mass ratio of the powder in the examples of the present invention. Further, carbonate may be used as a powder raw material, but in this case as well, it is an oxide in a molten state and excludes volatile components.
The powder composition is determined as follows. First, after the powder is completely melted and the carbon content of C and carbonate is completely removed, it is rapidly cooled and vitrified. The vitrified powder is subjected to the X-ray fluorescence method, and the concentration of each element is determined by removing the oxygen content. When the F component exists, it is assumed that it exists as CaF 2 and the remaining Ca component is calculated as CaO. Assuming that other metal elements and elements such as B are present as oxides, the total of oxides and fluorides is finally calculated to be 100 mass%.

次に試作したパウダーを用いて実機連鋳機で鋳造試験を行いその効果を検証した。表1に示す特性のパウダー及び表2に示す成分の溶鋼を用いて連続鋳造を行い、パウダー流入特性の指標としてBO(ブレークアウト)検知発生率をパウダー巻込み特性の指標として冷延板の内部欠陥探傷結果(磁粉探傷)を用いて評価した。   Next, a cast test was conducted using a prototype powder with an actual continuous caster to verify the effect. Continuous casting is performed using powder having the characteristics shown in Table 1 and molten steel having the components shown in Table 2, and the BO (breakout) detection occurrence rate is used as an index of powder inflow characteristics and the inside of the cold rolled sheet as an index of powder entrainment characteristics Evaluation was performed using defect inspection results (magnetic particle inspection).

BO検知発生率は、鋳型内に設置された熱電対の温度分布より発報したBO検知の回数を単位鋳造長当たりの回数としたものである。鋳型−凝固シェル間へのパウダー流入が不均一あるいはまったく流入していない位置がある場合、鋳型に凝固シェルが焼きつき鋳片の破断が生じる(いわゆるブレークアウト)。
パウダー流入の不均一に起因するBO検知の発生率がパウダー流入性の指標として最も適しており、実際の鋳造において鋳造速度を決定している因子の一つである。良好な鋳造状態では、BO検知率は0.0001(1/m)以下である。内部欠陥探傷結果は、スラブを熱間圧延及び冷間圧延した後の冷延鋼板を漏洩磁束を用いて欠陥探傷した結果である。内部欠陥探傷結果は、0.03(1/m)以下が良好な範囲となる。
The BO detection occurrence rate is the number of times of BO detection reported from the temperature distribution of the thermocouple installed in the mold as the number of times per unit casting length. When there is a position where the powder inflow between the mold and the solidified shell is not uniform or does not flow at all, the solidified shell is seized on the mold and the slab is broken (so-called breakout).
The occurrence rate of BO detection due to non-uniformity of powder inflow is most suitable as an index of powder inflow property, and is one of factors determining the casting speed in actual casting. In a good casting state, the BO detection rate is 0.0001 (1 / m) or less. The internal defect inspection result is a result of defect inspection using the leakage magnetic flux on the cold-rolled steel sheet after hot rolling and cold rolling of the slab. The internal defect flaw detection result is 0.03 (1 / m 2 ) or less in a favorable range.

鋳造条件は、鋳型サイズを1800mm×280mmとし、鋳造速度を変更して各パウダーでのパウダー流入起因の鋳造限界速度とパウダー巻込み起因の鋳造限界速度を評価した。
図8に鋳造速度に対するBO検知発生率及び内部欠陥探傷指数の関係を示す。内部欠陥探傷指数は、0.03(1/m)を1として指標化したものである。パウダーA(1300℃の粘性が0.2Pa・s)は、鋳造速度が1.7m/minまでほとんどBO検知もなく鋳造性に関しては非常に良好であるが、鋳造速度が1.3m/minを超えると内部欠陥探傷指数が1を大幅に超えることがわかる。
The casting conditions were such that the mold size was 1800 mm × 280 mm, the casting speed was changed, and the casting limit speed due to powder inflow and the casting limit speed due to powder entrainment in each powder were evaluated.
FIG. 8 shows the relationship between the BO detection occurrence rate and the internal defect inspection index with respect to the casting speed. The internal defect inspection index is indexed with 0.03 (1 / m 2 ) being 1. Powder A (viscosity at 1300 ° C. is 0.2 Pa · s) is very good in terms of castability with almost no BO detection up to a casting speed of 1.7 m / min, but the casting speed is 1.3 m / min. If it exceeds, it can be seen that the internal defect inspection index greatly exceeds 1.

パウダーB(1300℃の粘性が0.4Pa・s)では、鋳造速度が1.5m/min以下の領域では内部欠陥探傷結果の悪化は見られないものの、BO検知は鋳造速度が1.3m/min以上で増加し、1.7m/minで安定的な鋳造に耐えられないほどのBO検知が生じている。
それに対して、試作したパウダー(パウダーC)は、1.5m/min以上でのBO検知の増加もほとんどなく、内部欠陥探傷結果も良好な結果が得られた。この結果から、前述した粘性の温度依存性を適正に制御することによりパウダー流入性とパウダー巻込み防止を両立できることが確認された。
With powder B (viscosity at 1300 ° C. of 0.4 Pa · s), although the deterioration of the internal defect flaw detection results is not seen in the region where the casting speed is 1.5 m / min or less, the BO detection is performed at a casting speed of 1.3 m / min. The BO detection is increased at a rate not lower than min and is not able to withstand stable casting at 1.7 m / min.
On the other hand, the prototype powder (powder C) showed almost no increase in BO detection at 1.5 m / min or more, and good internal defect flaw detection results were obtained. From this result, it was confirmed that both the powder inflow property and the prevention of entrainment of powder can be achieved by appropriately controlling the temperature dependency of the viscosity described above.

以下、本発明に係る連続鋳造用パウダーについて、実験を行った結果を詳細に説明する。
表3に示す条件で連続鋳造し、BO検知の発生率と内部欠陥探傷結果を比較した。連続鋳造の形態を以下に記載する。
まず、転炉で脱炭した溶鋼を取鍋に受けて、RH(真空脱ガス装置)を用いて脱炭処理を行う。脱炭後、Alを添加し脱酸し、所定時間の攪拌を加えた後に、成分調整のための合金類を添加した。成分調整が終了した溶鋼は、取鍋から中間容器であるタンディッシュに耐火物製ノズルを介して供給した。鋳造条件は、鋳造幅1800mm、鋳造厚280mm、鋳造速度1.7m/minである。溶鋼の成分を表5に示す。尚、表5では、各水準での成分の範囲を示している。
表4中に示したBO検知発生率は、鋳型内に設置された熱電対の温度分布より発報したBO検知の回数を単位鋳造長当たりの回数としたものである。良好な鋳造状態では、BO検知率は0.0001以下である。表4中に示した内部欠陥探傷結果は、スラブを熱間圧延及び冷間圧延した後の冷延鋼板を漏洩磁束を用いて欠陥探傷した結果である。内部欠陥探傷結果は、0.03(1/m)以下が良好な範囲となる。
尚、表4において、BO検知発生率と内部欠陥探傷結果の両者が良好な場合を総合評価で○とし、一方でも良好でない場合を×とした。
Hereinafter, the results of experiments on the powder for continuous casting according to the present invention will be described in detail.
Continuous casting was performed under the conditions shown in Table 3, and the occurrence rate of BO detection and internal defect inspection results were compared. The form of continuous casting is described below.
First, the molten steel decarburized in the converter is received in a ladle and decarburized using an RH (vacuum degasser). After decarburization, Al was added for deoxidation, and after stirring for a predetermined time, alloys for component adjustment were added. The molten steel whose component adjustment was completed was supplied from a ladle to a tundish, which is an intermediate container, through a refractory nozzle. The casting conditions are a casting width of 1800 mm, a casting thickness of 280 mm, and a casting speed of 1.7 m / min. Table 5 shows the components of the molten steel. Table 5 shows the range of components at each level.
The BO detection occurrence rate shown in Table 4 is the number of BO detections reported from the temperature distribution of the thermocouple installed in the mold as the number per unit casting length. In a good casting state, the BO detection rate is 0.0001 or less. The internal defect inspection results shown in Table 4 are the results of defect inspection of the cold-rolled steel sheet after hot rolling and cold rolling of the slab using leakage magnetic flux. The internal defect flaw detection result is 0.03 (1 / m 2 ) or less in a favorable range.
In Table 4, the case where both the BO detection occurrence rate and the internal defect flaw detection result are good is evaluated as “good”, and the case where it is not good is indicated as “poor”.

実験例3(表3乃至表5におけるNO.3)では、CaO/SiOに対して適正なNaO及びCaF量となっているため、1200℃及び1500℃の粘性が所定の範囲内に入っており、BO検知発生率及び内部欠陥探傷結果とも低位安定となっている。 In Experimental Example 3 (NO. 3 in Tables 3 to 5), the amounts of Na 2 O and CaF 2 are appropriate for CaO / SiO 2 , and thus the viscosity at 1200 ° C. and 1500 ° C. is within a predetermined range. The BO detection occurrence rate and the internal defect flaw detection result are both low and stable.

一方、実験例4(表3乃至表5におけるNO.4)では、CaO/SiOに対するLiO量あるいはNaO及びCaF量が適正でないため、1200℃での粘性が0.720Pa・Sと高く、BO検知発生率が高くなっている。
また、実験例5(表3乃至表5におけるNO.5)では、CaO/SiOに対するLiO量が適正でないため、1500℃での粘性が0.080Pa・sと低く、内部欠陥探傷結果が高くなっている。同様に、実験例6(表3乃至表5におけるNO.6)でも、1500℃での粘性が0.073Pa・sと低く、内部欠陥探傷結果が高くなっている。
On the other hand, in Experimental Example 4 (NO. 4 in Tables 3 to 5), the amount of Li 2 O or the amount of Na 2 O and CaF 2 with respect to CaO / SiO 2 is not appropriate, so the viscosity at 1200 ° C. is 0.720 Pa · S is high and the BO detection rate is high.
In Experimental Example 5 (No. 5 in Tables 3 to 5), the Li 2 O amount with respect to CaO / SiO 2 is not appropriate, so the viscosity at 1500 ° C. is as low as 0.080 Pa · s, and the internal defect flaw detection result. Is high. Similarly, in Experimental Example 6 (NO. 6 in Tables 3 to 5), the viscosity at 1500 ° C. is as low as 0.073 Pa · s, and the internal defect flaw detection result is high.

以上のように、本発明に係る連続鋳造用パウダーを使用して連続鋳造を行うことにより、生産性低下を招くBO発生を抑制しつつ、パウダー巻き込みが少ない高速鋳造が可能である。   As described above, by performing continuous casting using the powder for continuous casting according to the present invention, it is possible to perform high-speed casting with less powder entrainment while suppressing the generation of BO that causes a decrease in productivity.

Claims (2)

鋼の連続鋳造を行なうに当たって鋳型内の溶鋼表面に添加する酸化物系パウダーにおい
て、CaO及びSiOを主成分とし、凝固温度が1200℃以下かつ活性化エネルギー
E(J/mol)と1300℃の粘性η(Pa・s)が下記式(1)を満足することを特徴とする連続鋳造用パウダー。
‐0.5108‐0.00000519×E>ln(η)>‐2.303+0.00000862×E・・・(1)
ただし、E>85kJ/mol
In the oxide-based powder added to the molten steel surface in the mold for continuous casting of steel, CaO and SiO 2 are the main components, the solidification temperature is 1200 ° C or less, and the activation energy
Continuous casting powder characterized in that E ( J / mol ) and viscosity η (Pa · s) at 1300 ° C. satisfy the following formula (1).
-0.5108-0.00000519 × E > ln (η) > -2.303 + 0.00000862 × E (1)
However, E> 85 kJ / mol
鋼の連続鋳造を行なうに当たって鋳型内の溶鋼表面に添加する酸化物系パウダーにおい
て、C分及び揮発成分を除いた酸化物及びフッ化物の合計量に対するCaO、SiO
NaO、CaFの合計量が90mass%以上かつAl、MgO及びLi
が各々3mass%以下であり下記式(3)を満足することを特徴とする請求項1に記載
の連続鋳造用パウダー。
15−1.85CaO/SiO≦NaO+CaF≦25−6CaO/SiO
・・・(3)
ただし、0.5≦CaO/SiO≦1、0.7≦NaO/CaF≦1.2であり、
CaO(mass%)、SiO(mass%)、NaO(mass%)、CaF
mass%)である。
In the oxide-based powder added to the molten steel surface in the mold for continuous casting of steel, CaO, SiO 2 with respect to the total amount of oxide and fluoride excluding C and volatile components,
The total amount of Na 2 O and CaF 2 is 90 mass% or more, and Al 2 O 3 , MgO and Li 2 O
The powder for continuous casting according to claim 1, wherein each is 3 mass% or less and satisfies the following formula (3).
15-1.85 CaO / SiO 2 ≦ Na 2 O + CaF 2 ≦ 25-6 CaO / SiO 2
... (3)
However, 0.5 ≦ CaO / SiO 2 ≦ 1, 0.7 ≦ Na 2 O / CaF 2 ≦ 1.2,
CaO (mass%), SiO 2 (mass%), Na 2 O (mass%), CaF 2 (
mass%).
JP2013025866A 2013-02-13 2013-02-13 Powder for continuous casting Active JP5590167B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013025866A JP5590167B2 (en) 2013-02-13 2013-02-13 Powder for continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013025866A JP5590167B2 (en) 2013-02-13 2013-02-13 Powder for continuous casting

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2009157014A Division JP5246068B2 (en) 2009-07-01 2009-07-01 Powder for continuous casting

Publications (2)

Publication Number Publication Date
JP2013099791A JP2013099791A (en) 2013-05-23
JP5590167B2 true JP5590167B2 (en) 2014-09-17

Family

ID=48620970

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013025866A Active JP5590167B2 (en) 2013-02-13 2013-02-13 Powder for continuous casting

Country Status (1)

Country Link
JP (1) JP5590167B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57164194A (en) * 1981-04-02 1982-10-08 Kawasaki Steel Corp Powder for continuous casting
JPH11170007A (en) * 1997-12-11 1999-06-29 Nkk Corp Method for evaluating continuous casting mold powder of steel for sheet, its mold powder, and continuous casting method of aluminum-killed steel for sheet using it
JPH11291005A (en) * 1998-04-16 1999-10-26 Kawasaki Steel Corp Mold flux for continuously casting steel
JP2000051998A (en) * 1998-08-07 2000-02-22 Shinagawa Refract Co Ltd Method for continuously casting lead-containing steel
JP4773225B2 (en) * 2006-02-15 2011-09-14 株式会社神戸製鋼所 Mold powder for continuous casting of steel and continuous casting method of steel using the same

Also Published As

Publication number Publication date
JP2013099791A (en) 2013-05-23

Similar Documents

Publication Publication Date Title
JP4903622B2 (en) Mold powder for continuous casting of steel and continuous casting method
BRPI0904814B1 (en) method of manufacturing a steel product
JP5246068B2 (en) Powder for continuous casting
JP2014189826A (en) Fe-Ni-Cr-BASED ALLOY EXCELLENT IN SURFACE PROPERTY AND METHOD OF PRODUCING THE SAME
JP4837804B2 (en) Mold powder for continuous casting of steel
TWI765006B (en) Production method of austenitic stainless steel slab
JP4486878B2 (en) Mold powder for continuous casting of steel and continuous casting method
CN106868401B (en) A kind of Low Defectivity bottle cap tinplate base-material and minimizing production technology
JP5590167B2 (en) Powder for continuous casting
JP2016007610A (en) Steel continuous casting method
JP5835153B2 (en) Mold flux for continuous casting of steel and continuous casting method
JP4527693B2 (en) Continuous casting method of high Al steel slab
JPH0833962A (en) Mold powder for continuous casting
JP2675376B2 (en) High speed continuous casting of steel
JP6680320B2 (en) Steel manufacturing method and flux for addition to container containing molten steel
JP5387497B2 (en) Manufacturing method of high alloy steel by continuous casting
JP2017018978A (en) Continuous casting powder for Al-containing steel and continuous casting method
JP7032600B1 (en) Mold powder for continuous casting and continuous casting method used for Fe—Ni based alloys or Ni-based alloys.
JP7158614B1 (en) Exothermic mold powder for continuous casting and continuous casting method
JP7009228B2 (en) Mold flux for continuous casting and continuous casting method
JP4598937B2 (en) Powder for continuous casting of steel
JP3570088B2 (en) Flux for continuous casting of steel
JP2005152973A (en) HIGH SPEED CASTING METHOD FOR HIGH Al STEEL
JP5378108B2 (en) Ladle refining flux
JP5454131B2 (en) Mold powder for continuous casting of steel and continuous casting method of steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140714

R151 Written notification of patent or utility model registration

Ref document number: 5590167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350