JP5589180B2 - High frequency material constant measurement system - Google Patents

High frequency material constant measurement system Download PDF

Info

Publication number
JP5589180B2
JP5589180B2 JP2009044983A JP2009044983A JP5589180B2 JP 5589180 B2 JP5589180 B2 JP 5589180B2 JP 2009044983 A JP2009044983 A JP 2009044983A JP 2009044983 A JP2009044983 A JP 2009044983A JP 5589180 B2 JP5589180 B2 JP 5589180B2
Authority
JP
Japan
Prior art keywords
measured
sample
dielectric
antenna
transmitting antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009044983A
Other languages
Japanese (ja)
Other versions
JP2010197316A (en
Inventor
隆士 駒木根
孝裕 黒澤
浩 井上
和明 宮永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akita Prefecture
Akita University NUC
Original Assignee
Akita Prefecture
Akita University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Prefecture, Akita University NUC filed Critical Akita Prefecture
Priority to JP2009044983A priority Critical patent/JP5589180B2/en
Publication of JP2010197316A publication Critical patent/JP2010197316A/en
Application granted granted Critical
Publication of JP5589180B2 publication Critical patent/JP5589180B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は,高周波誘電率や高周波誘電損失などの高周波材料定数の測定システムに関するものである。   The present invention relates to a measurement system for high-frequency material constants such as high-frequency dielectric constant and high-frequency dielectric loss.

電子情報機器や移動通信機器などの高周波数化が進む電子機器装置では,基本的な部品材料であるコンデンサや配線基板等の性能評価が重要である。高周波信号に対する電気的性能に関わる材料定数の代表例としては誘電率および誘電損失,あるいは複素誘電率があり,これまでに様々な測定評価手法が発明されている。   In electronic equipment devices with higher frequencies such as electronic information equipment and mobile communication equipment, it is important to evaluate the performance of capacitors, wiring boards, etc., which are basic component materials. Typical examples of material constants related to electrical performance for high-frequency signals include dielectric constant and dielectric loss, or complex dielectric constant, and various measurement evaluation methods have been invented so far.

従来のこれら材料特性の評価法の分類としては,平行金属板法,導波管法,共振器法,自由空間法に大別でき,それぞれの測定法上の特徴に合わせ,被評価対象物や評価項目により使い分けが行われている(非特許文献1参照)。すなわちこれらの方法には,測定可能な周波数範囲,測定試料の機械的加工に関する精度要求,得られる測定値の精度,などに関して長短およびトレードオフが存在している。   The conventional methods for evaluating these material properties can be broadly divided into parallel metal plate method, waveguide method, resonator method, and free space method, and according to the characteristics of each measurement method, They are properly used according to the evaluation items (see Non-Patent Document 1). That is, in these methods, there are advantages and disadvantages and trade-offs with respect to the measurable frequency range, the accuracy requirements regarding the mechanical processing of the measurement sample, the accuracy of the measurement values obtained, and the like.

上記方式の中で,自由空間法は,測定可能な周波数範囲が広く,かつ被測定試料の加工精度への要求がそれほど厳しくないという特徴を持つが,放射電磁波を被測定試料に照射し被測定試料からの反射波や透過波の強度または偏波を計測するという原理上,測定波長に対して被測定試料の大きさが十分に大きい必要があった。   Among the above methods, the free space method has the characteristics that the frequency range that can be measured is wide and the requirements for processing accuracy of the sample to be measured are not so strict, but the sample to be measured is irradiated with radiated electromagnetic waves. Based on the principle of measuring the intensity or polarization of the reflected or transmitted wave from the sample, the sample to be measured must be sufficiently large with respect to the measurement wavelength.

本発明は,被測定試料の形状精度要求が緩くまた幅広い周波数に対応できるといった特徴を有する上記自由空間法に分類されるものである。本発明の方法は,従来の他の自由空間法が被測定試料に関する反射波や透過波または偏波を用いるのに対し,被測定試料からの散乱波を計測して材料定数を推定するものである。散乱波を用いる方法では,被測定試料の寸法は測定波長(例えば周波数1GHzでは300mm)の1/10以下であれば良く,さらに,被測定試料の体積が正確に与えられれば被測定試料の形状効果は補正が可能であるという特徴を有する。さらに,液体の誘電率に関しても適切な容器に封入することで容易に測定可能であり,電子部品評価以外にも応用ができる。   The present invention is classified into the above-mentioned free space method having the characteristics that the shape accuracy requirement of the sample to be measured is loose and it can cope with a wide range of frequencies. The method of the present invention estimates the material constant by measuring the scattered wave from the sample to be measured, while other conventional free space methods use reflected waves, transmitted waves, or polarized waves on the sample to be measured. is there. In the method using scattered waves, the size of the sample to be measured should be 1/10 or less of the measurement wavelength (for example, 300 mm at a frequency of 1 GHz), and if the volume of the sample to be measured is given accurately, the shape of the sample to be measured The effect is characterized in that it can be corrected. Furthermore, the dielectric constant of the liquid can be easily measured by sealing it in an appropriate container, and can be applied to applications other than electronic component evaluation.

本発明は,幅広い測定周波数に渡り,被測定試料に精密な機械加工を要求せず,簡便・迅速に誘電率の計測ができるシステムを提供するものである。   The present invention provides a system capable of measuring dielectric constant easily and quickly without requiring precise machining of a sample to be measured over a wide range of measurement frequencies.

これまで,電波源から近傍から遠方に至る任意空間におけるノイズ計測を目的として,誘電体散乱プローブを用いた電界計測手法の開発が行われている(非特許文献2および非特許文献3参照)。この計測手法では,散乱体位置の電界強度と散乱体の誘電率,および散乱波電力の間に一意に定まる関係があることを利用している(駒木根隆士ほか,「誘電体散乱球を用いた電磁界計測手法」,電子情報通信学会技術研究報告,vol.EMCJ2007,no.77,pp.135−139,2007年参照)。そこで,この電界計測とは逆に,既知の電界を未知の誘電率を持つ散乱体に印加したときの散乱波を計測すれば,前記関係から,誘電率を推定できることになる。上記関係の理論的な検討および散乱波電界計測実験結果から,誘電率推定の定量的な妥当性が明らかになっている。   Up to now, an electric field measurement method using a dielectric scattering probe has been developed for the purpose of noise measurement in an arbitrary space from a radio wave source to a distant place (see Non-Patent Document 2 and Non-Patent Document 3). This measurement method uses the unique relationship between the electric field strength at the scatterer position, the dielectric constant of the scatterer, and the scattered wave power (Takashi Komone et al., “Using a dielectric scatter sphere. Electromagnetic field measurement method ", IEICE technical report, vol.EMCJ2007, no.77, pp.135-139, 2007). Therefore, contrary to this electric field measurement, if a scattered wave is measured when a known electric field is applied to a scatterer having an unknown dielectric constant, the dielectric constant can be estimated from the above relationship. From the theoretical investigation of the above relationship and the experimental results of the scattered wave electric field measurement, the quantitative validity of the dielectric constant estimation has been clarified.

橋本修著 「高周波領域における材料定数測定法」森北出版 2003年Osamu Hashimoto "Material Constant Measurement Method in High Frequency Region" Morikita Publishing 2003 A.L.Cullen and J.C.Parr, “A NEW PERTURBATION METHOD FOR MEASURING MICROWAVE FIELDS IN FREE SPACE,” Proc. Inst. Elct. Eng., pt. 3, vol. B, 102, pp. 836−844, 1955年A. L. Cullen and J.M. C. Parr, "A NEW PERTURBATION METHOD FOR MEASURING MICROWAVE FIELDS IN FREE SPACE," Proc. Inst. Elct. Eng. , Pt. 3, vol. B, 102, pp. 836-844, 1955 J. H. RICHMOND, “A Modulated Scattering Technique for Measurement of Field Distributions,” IRE Trans. Microwave Theory and Thechnologies, vol. MTT−3, no. 13−5, pp. 13−15, 1955年J. et al. H. RICHMOND, “A Modulated Scattering Technique for Measurement of Field Distributions,” IRE Trans. Microwave Theory and Technologies, vol. MTT-3, no. 13-5, pp. 13-15, 1955

この発明は電子部品材料や化学材料の高周波における誘電率などの基本的な材料定数の測定法に関するものである。 上述したように,材料定数の測定法の一つである,幅広い測定周波数に対応でき,被測定試料の加工精度および寸法に対する要求が比較的緩やかな自由空間法は,波長に比べて十分大きな寸法の被測定試料が必要であった。   The present invention relates to a method for measuring basic material constants such as dielectric constants of electronic component materials and chemical materials at high frequencies. As described above, the free space method, which is one of the measurement methods for material constants, can handle a wide range of measurement frequencies, and the requirements for processing accuracy and dimensions of the sample to be measured are relatively gentle. The sample to be measured was required.

この発明の目的は,幅広い測定周波数に対応でき,被測定試料の加工精度および寸法への厳しい要求がなく,かつ測定波長に比べて十分に小さな被測定試料により迅速に高周波誘電率等を評価できる高周波材料定数測定システムを提供することにある。   The object of the present invention is to support a wide range of measurement frequencies, without strict requirements on the processing accuracy and dimensions of the sample to be measured, and to quickly evaluate the high-frequency dielectric constant etc. with the sample to be measured is sufficiently smaller than the measurement wavelength It is to provide a high-frequency material constant measurement system.

上記の目的を達成するためにこの発明では,任意の周波数の高周波放射電磁界の発生機構と,前記発生機構により発生した放射電磁界中に設置する被測定試料から散乱する散乱波電磁界を計測するために設置される電磁界受信機構,および前記受信機構から出力される散乱波受信電圧から材料定数を算出する解析処理部(例えば,高周波増幅器および帯域濾波器に接続されたスペクトラムアナライザ)とを備えることを特徴とする高周波材料定数測定システムが提供される。   In order to achieve the above object, the present invention measures a generation mechanism of a high-frequency radiated electromagnetic field having an arbitrary frequency and a scattered wave electromagnetic field scattered from a sample to be measured placed in the radiated electromagnetic field generated by the generation mechanism. An electromagnetic field receiving mechanism installed to perform the analysis, and an analysis processing unit (for example, a spectrum analyzer connected to a high frequency amplifier and a bandpass filter) that calculates a material constant from the scattered wave reception voltage output from the receiving mechanism. A high-frequency material constant measuring system is provided.

前記放射電磁界発生機構において発生する電磁界の周波数および強度並びに偏波を可変できる機構を持つことにより,広帯域の周波数に対応でき,また被測定試料の大きさ由来の感度補償および材料定数の異方性を考慮した測定が可能になる。   By having a mechanism that can vary the frequency, intensity, and polarization of the electromagnetic field generated by the radiated electromagnetic field generating mechanism, it is possible to cope with a wide range of frequencies, and to compensate for the sensitivity derived from the size of the sample to be measured and the material constants. Measurement taking account of the directivity becomes possible.

この発明によれば,放射電磁界の発生機構から発生した放射電磁界中に設置した被測定試料から散乱する散乱波電磁界を計測することにより測定波長に比べて十分に小さい寸法の被測定試料について,高周波材料定数を測定することができる。   According to the present invention, the sample to be measured having a sufficiently small size compared to the measurement wavelength by measuring the scattered wave electromagnetic field scattered from the sample to be measured installed in the radiated electromagnetic field generated from the generation mechanism of the radiated electromagnetic field. The high-frequency material constant can be measured.

この発明の高周波材料定数測定装置において,放射電磁界発生機構は発生する電磁界の周波数および強度並びに偏波を可変できる機構を持つことで広帯域な周波数および被測定試料の異方性など幅広い測定条件に対応できる。   In the high-frequency material constant measuring apparatus according to the present invention, the radiation electromagnetic field generation mechanism has a mechanism capable of varying the frequency and intensity of the generated electromagnetic field and the polarization, thereby allowing a wide range of measurement conditions such as a wide frequency range and anisotropy of the sample to be measured. It can respond to.

高周波材料特性測定システムの実施方法を示した説明図である。(実施例1)It is explanatory drawing which showed the implementation method of the high frequency material characteristic measuring system. Example 1 高周波材料特性測定システムの実施方法を示した説明図である。(実施例2)It is explanatory drawing which showed the implementation method of the high frequency material characteristic measuring system. (Example 2)

本発明に係る高周波材料定数測定システムは,被測定試料を電波暗室内あるいは内部反射を生じないよう電波吸収体等を内部に設置するなどした自由空間とみなせる筐体中に置き,これに被測定試料の設置位置の電界強度が既知である任意の周波数の放射電界を送信アンテナにより印加する。   The high-frequency material constant measuring system according to the present invention places a sample to be measured in an anechoic chamber or a casing that can be regarded as a free space in which an electromagnetic wave absorber or the like is installed so as not to cause internal reflection. A radiated electric field having an arbitrary frequency at which the electric field strength at the sample installation position is known is applied by the transmitting antenna.

放射電界中に置かれた被測定試料はその誘電率等の材料定数に応じた分極を生じ,この分極が印加電界偏波方向に交番して発生することにより被測定試料から散乱電磁界が再放射される。   The sample to be measured placed in the radiated electric field generates polarization according to the material constant such as its dielectric constant, and this polarization is generated alternately in the direction of polarization of the applied electric field, so that the scattered electromagnetic field is regenerated from the sample to be measured. Radiated.

再放射された散乱電磁波は,被測定試料との距離が当該周波数において遠方界となる既知の距離に設置された受信アンテナにより受信される。   The re-radiated scattered electromagnetic wave is received by a receiving antenna installed at a known distance where the distance from the sample to be measured is a far field at the frequency.

受信された散乱波による電界成分は,送信アンテナからの直接波成分の重畳の影響を排除するため,被測定試料を置いた場合の受信電界の自乗値から置かない場合の受信電界の自乗値を減じた値の平方根を得るなどして求まる。   In order to eliminate the effect of superimposition of the direct wave component from the transmitting antenna, the electric field component due to the received scattered wave is the square value of the received electric field when not placed from the square value of the received electric field when the sample to be measured is placed. Obtained by obtaining the square root of the reduced value.

求まった散乱波受信電界強度値は,被測定試料の寸法が照射電磁波長に比べて十分に小さい場合,誘電分極効果項と波長関連項と試料形状項と試料位置の電界強度値および試料から受信アンテナまでの距離の逆数の積と等しく,この関係から誘電分極効果項の値が分かり,さらに誘電率と誘電分極項の関係式から誘電率が求まる。   The obtained scattered wave reception field strength value is received from the sample when the dimension of the sample to be measured is sufficiently smaller than the length of the electromagnetic wave to be irradiated, the dielectric polarization effect term, the wavelength related term, the sample shape term, the sample field strength value, and the sample position. It is equal to the product of the reciprocal of the distance to the antenna, and the value of the dielectric polarization effect term can be found from this relationship, and the dielectric constant can be obtained from the relational expression between the dielectric constant and the dielectric polarization term.

このように,本発明を適用すれば,被測定試料からの散乱波による電界強度を測定することで,試料の誘電率を計測することが可能となる。   As described above, by applying the present invention, it is possible to measure the dielectric constant of the sample by measuring the electric field strength caused by the scattered wave from the sample to be measured.

図1は本発明システムの一実施例の配置図であって,1は測定場である電波暗室,2は送信用アンテナ,3は受信用アンテナ,4は被測定試料,5は被測定試料支持体,6は信号解析装置,7は高周波信号発生器,8は電波吸収体である。   FIG. 1 is a layout view of an embodiment of the system of the present invention, wherein 1 is an anechoic chamber as a measurement field, 2 is a transmitting antenna, 3 is a receiving antenna, 4 is a sample to be measured, and 5 is a sample to be measured. , 6 is a signal analyzer, 7 is a high-frequency signal generator, and 8 is a radio wave absorber.

電波暗室1内において被測定試料4として半径40mmの非導電性容器に封入した純水の誘電率を測定した結果について説明する。電波暗室1は金属性の床面以外の壁および天井の五面に電波吸収体が設置されているCISPR国際標準の3m法電波暗室であり,これに床面に据え置き型電波吸収体を敷設して自由空間を模擬した。   The result of measuring the dielectric constant of pure water sealed in a non-conductive container having a radius of 40 mm as the sample 4 to be measured in the anechoic chamber 1 will be described. The anechoic chamber 1 is a CISPR international standard 3m method anechoic chamber in which electromagnetic wave absorbers are installed on the walls and ceiling other than the metal floor, and a stationary electromagnetic wave absorber is laid on the floor. And simulated free space.

送信アンテナ2および受信アンテナ3として二分の一波長ダイポールアンテナを用い,送信アンテナ2には周波数1GHzの正弦波信号を高周波信号発生器7から印加した。受信アンテナ3は,送信アンテナ2から直接的に伝わる電磁波成分が小さくなるようにダイポールアンテナの指向性の極小方向を向けるとともに電波吸収体8により送受信アンテナ間の電磁遮蔽を行い,送信および受信アンテナの素子中心を1.5mの間隔として設置した。   A half-wave dipole antenna was used as the transmission antenna 2 and the reception antenna 3, and a sine wave signal having a frequency of 1 GHz was applied to the transmission antenna 2 from the high-frequency signal generator 7. The receiving antenna 3 directs the minimum direction of the directivity of the dipole antenna so that the electromagnetic wave component directly transmitted from the transmitting antenna 2 is reduced, and performs electromagnetic shielding between the transmitting and receiving antennas by the radio wave absorber 8. The element centers were installed with an interval of 1.5 m.

送信アンテナ2および受信アンテナ3の中心線上の,アンテナ素子中心から3.1mの距離の位置の送信アンテナから放射される電磁波2’による電界強度が,0.0095V/mとなるように高周波数信号発生器7の出力を調整した。この地点に球の中心がくるように半径40mmのアルミナ球の被測定試料4を試料支持体5を介して置いた。   A high-frequency signal such that the electric field strength due to the electromagnetic wave 2 ′ emitted from the transmitting antenna at a distance of 3.1 m from the center of the antenna element on the center line of the transmitting antenna 2 and the receiving antenna 3 is 0.0095 V / m. The output of generator 7 was adjusted. An alumina sphere sample 4 having a radius of 40 mm was placed through a sample support 5 so that the center of the sphere came to this point.

被測定試料4を置いた場合の信号解析装置6による測定電圧値E1および置かない場合の測定電圧値E2から,(E1×E1−E2×E2)の平方根を求めることで,試料支持体5等の影響を排除して被測定試料4により再放射される散乱電磁波4’のみによる受信アンテナ3の位置の電界強度Erとして81マイクロV/mを得た。   By obtaining the square root of (E1 × E1-E2 × E2) from the measured voltage value E1 by the signal analyzer 6 when the sample 4 to be measured is placed and the measured voltage value E2 when the sample 4 is not placed, the sample support 5 or the like is obtained. 81 μV / m was obtained as the electric field intensity Er at the position of the receiving antenna 3 only by the scattered electromagnetic wave 4 ′ re-radiated by the sample 4 to be measured.

散乱波による電界強度と誘電率の関係式(駒木根隆士,「誘電体散乱球を用いた電磁界計測手法」,電子情報通信学会技術研究報告,vol.EMCJ2007,no.77,pp.135−139,2007年参照)から,距離3.1m,波長0.3m,被測定試料の半径40mm,試料位置の電界強度0.0095V/m,散乱波の電界強度81マイクロV/mを用いて,被測定試料の誘電率は,真空の誘電率に対する比率である比誘電率として約70と計算により推定された。   Relational expression between electric field intensity and dielectric constant due to scattered wave (Takashi Komone, “Electromagnetic field measurement technique using dielectric scattering sphere”, IEICE technical report, vol.EMCJ2007, no.77, pp.135-139 , 2007) using a distance of 3.1 m, a wavelength of 0.3 m, a radius of the sample to be measured of 40 mm, an electric field intensity of the sample position of 0.0095 V / m, and an electric field intensity of the scattered wave of 81 μV / m. The dielectric constant of the measurement sample was estimated by calculation as about 70 as the relative dielectric constant, which is the ratio to the vacuum dielectric constant.

本発明による半径40mmの非伝導性容器中の純水の周波数1GHzにおける比誘電率70は,水の標準的な比誘電率の値80と10%程度の差で一致している。   The relative permittivity 70 at a frequency of 1 GHz in pure water in a non-conductive container having a radius of 40 mm according to the present invention matches the standard relative permittivity value 80 of water with a difference of about 10%.

図2の実施例は、小型の電波暗箱内に設置した広帯域送信アンテナ9と広帯域受信アンテナ10によって被測定試料11から再放射する散乱電磁波11’を検出して材料定数を推定するものである。広帯域送信アンテナ9から発生する電磁波は直接広帯域受信アンテナ10に達しない構造となっており,散乱電磁波11’のみを広帯域受信アンテナ10で受信することができる。この構造によれば,小型の装置により測定が可能であり,測定の利便性向上に役立つ。   In the embodiment of FIG. 2, the material constant is estimated by detecting the scattered electromagnetic wave 11 ′ re-radiated from the sample 11 to be measured by the broadband transmitting antenna 9 and the broadband receiving antenna 10 installed in a small anechoic box. The electromagnetic wave generated from the broadband transmitting antenna 9 has a structure that does not directly reach the broadband receiving antenna 10, and only the scattered electromagnetic wave 11 ′ can be received by the broadband receiving antenna 10. According to this structure, measurement is possible with a small device, which is useful for improving the convenience of measurement.

1 電波暗室
2 送信アンテナ
2’ 送信アンテナから放射される電磁波
3 受信アンテナ
4 被測定試料
4’ 被測定試料から再放射される散乱電磁波
5 被測定試料支持体
6 信号解析装置
7 高周波信号発生器
8 電波吸収体
9 広帯域送信アンテナ
10 広帯域受信アンテナ
11 被測定試料
11’ 被測定試料から再放射する散乱電磁波
12 電波暗箱
DESCRIPTION OF SYMBOLS 1 Electromagnetic anechoic chamber 2 Transmitting antenna 2 'Electromagnetic wave radiated | emitted from transmitting antenna 3 Receiving antenna 4 Sample to be measured 4' Scattered electromagnetic wave re-radiated from sample to be measured 5 Measured sample support 6 Signal analyzer 7 High-frequency signal generator 8 Radio wave absorber 9 Broadband transmitting antenna 10 Wideband receiving antenna 11 Sample to be measured 11 'Scattered electromagnetic wave re-radiated from sample to be measured 12 Electromagnetic anechoic box

Claims (1)

誘電体の散乱波強度が誘電率と一意の関係にあることを利用し、波長に比べて十分に小さな寸法の被測定誘電体試料の材料定数を測定するための材料定数測定システムにおいて、
周波数を可変できる信号発生器と、
前記信号発生器に接続された送信アンテナと、
信号解析装置と、
前記信号解析装置に接続された受信アンテナと、
電波暗箱と、
を備え、
前記電波暗箱は、該電波暗箱内部に被測定誘電体試料が前記受信アンテナと前記送信アンテナとの間になる関係で前記受信アンテナと前記送信アンテナと被測定誘電体試料とをそれぞれ設置した場合に、前記送信アンテナから送信される電磁波が前記受信アンテナに対して直接達しない形状であって、
前記電波暗箱内に、前記受信アンテナと前記送信アンテナと被測定誘電体試料とを前記関係でそれぞれを配置し、前記信号発生器からの電磁波を前記送信アンテナから前記被測定誘電体試料に照射し、前記被測定誘電体試料からの散乱波を前記受信アンテナで受信して、前記被測定誘電体試料の材料定数を測定することを特徴とする材料定数測定システム。
In the material constant measurement system for measuring the material constant of a dielectric sample to be measured having a dimension sufficiently smaller than the wavelength, utilizing the fact that the scattered wave intensity of the dielectric has a unique relationship with the dielectric constant,
A signal generator with variable frequency,
A transmitting antenna connected to the signal generator;
A signal analyzer;
A receiving antenna connected to the signal analyzer;
An anechoic box,
With
The anechoic box is provided when the receiving antenna, the transmitting antenna, and the measured dielectric sample are installed in the anechoic box so that the measured dielectric sample is between the receiving antenna and the transmitting antenna. The electromagnetic wave transmitted from the transmitting antenna has a shape that does not reach the receiving antenna directly,
In the anechoic box, the receiving antenna, the transmitting antenna, and the dielectric sample to be measured are respectively arranged in the above relationship, and the dielectric sample to be measured is irradiated from the transmitting antenna with the electromagnetic wave from the signal generator. A material constant measurement system, wherein a scattered wave from the dielectric sample to be measured is received by the receiving antenna, and a material constant of the dielectric sample to be measured is measured.
JP2009044983A 2009-02-27 2009-02-27 High frequency material constant measurement system Expired - Fee Related JP5589180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009044983A JP5589180B2 (en) 2009-02-27 2009-02-27 High frequency material constant measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009044983A JP5589180B2 (en) 2009-02-27 2009-02-27 High frequency material constant measurement system

Publications (2)

Publication Number Publication Date
JP2010197316A JP2010197316A (en) 2010-09-09
JP5589180B2 true JP5589180B2 (en) 2014-09-17

Family

ID=42822168

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009044983A Expired - Fee Related JP5589180B2 (en) 2009-02-27 2009-02-27 High frequency material constant measurement system

Country Status (1)

Country Link
JP (1) JP5589180B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764172B2 (en) 2010-09-03 2014-07-01 Seiko Epson Corporation Printing apparatus, printing material cartridge, adaptor for printing material container, and circuit board
JP5628857B2 (en) * 2012-03-30 2014-11-19 日本電信電話株式会社 Two-dimensional image reconstruction method
CN111868511B (en) 2018-03-23 2023-05-16 松下控股株式会社 Radio wave measuring method
CN113945764B (en) * 2021-10-15 2023-11-21 中国人民解放军国防科技大学 System and method for measuring dielectric constant of substance under composite field condition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3531893A1 (en) * 1985-09-06 1987-03-19 Siemens Ag METHOD FOR DETERMINING THE DISTRIBUTION OF DIELECTRICITY CONSTANTS IN AN EXAMINATION BODY, AND MEASURING ARRANGEMENT FOR IMPLEMENTING THE METHOD
JPH08292253A (en) * 1995-04-20 1996-11-05 Asia Kosoku Kk Microwave scatterometer
JP2003287506A (en) * 2002-03-27 2003-10-10 Fujita Corp Free-space electromagnetic wave measuring system and its evaluating method
JP5169124B2 (en) * 2007-03-23 2013-03-27 日本軽金属株式会社 Test box for electronic equipment

Also Published As

Publication number Publication date
JP2010197316A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
Hill et al. Aperture excitation of electrically large, lossy cavities
JP5589180B2 (en) High frequency material constant measurement system
Ryu et al. A square patch capacitive voltage divider for measuring high-voltage ultrawideband pulses in a coaxial pulse forming line
Karami et al. Efficient analysis of shielding effectiveness of metallic rectangular enclosures using unconditionally stable time-domain integral equations
Yoshimura et al. Propagation properties of electromagnetic wave through T-branch in GIS
Cerri et al. A theoretical feasibility study of a source stirring reverberation chamber
Barowski et al. Millimeter wave material characterization using FMCW-transceivers
JP2011064535A (en) Method and apparatus for measuring dielectric constant
Bozzetti et al. Shielding performance of an expanded copper foil over a wide frequency range
Aftab et al. A parallel plate dielectric resonator as a wireless passive strain sensor
Ning et al. The comparison of frequency domain method and time domain method in absorber reflectivity measurement
Moradi et al. Measuring the permittivity of dielectric materials using STDR approach
KR102200662B1 (en) Non-invasive plasma process diagnostic method and apparatus
Zhang et al. Extraction of dielectric properties of building materials from free-space time-domain measurement
Szalay et al. Performance analysis of an open ended coaxial resonator based displacement sensor
Kim et al. Numerical analysis of the impulse-radiating antenna
Daniel et al. Shielding Efficiency Measuring Methods and Systems
Harm et al. Calibration of loop antennas using a contactless vector network analysis method
EP2442096B1 (en) Determination of electromagnetic properties of samples
Zhang et al. Research on ultrasonic-electromagnetic wave simultaneous sensing sensors
RU2721472C1 (en) Method of determining dielectric permeability of anisotropic dielectrics
Gizatullin et al. Research the Radiated Electromagnetic Interference from Power Converters under Operating Conditions
Liao et al. An accurate equivalent circuit method of open ended coaxial probe for measuring the permittivity of materials
Zhou et al. Measurement Methods of Electromagnetic Selective Structures
Matsukawa et al. Novel specification method for electromagnetic wave leak point of the shielding enclosure using time domain analysis

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20120221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140702

R150 Certificate of patent or registration of utility model

Ref document number: 5589180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees