JP5588146B2 - Marine steam turbine equipment - Google Patents

Marine steam turbine equipment Download PDF

Info

Publication number
JP5588146B2
JP5588146B2 JP2009244169A JP2009244169A JP5588146B2 JP 5588146 B2 JP5588146 B2 JP 5588146B2 JP 2009244169 A JP2009244169 A JP 2009244169A JP 2009244169 A JP2009244169 A JP 2009244169A JP 5588146 B2 JP5588146 B2 JP 5588146B2
Authority
JP
Japan
Prior art keywords
steam
water supply
steam turbine
upstream
ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009244169A
Other languages
Japanese (ja)
Other versions
JP2011089484A (en
Inventor
弘 堀家
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Motors Ltd
Original Assignee
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Jukogyo KK filed Critical Kawasaki Jukogyo KK
Priority to JP2009244169A priority Critical patent/JP5588146B2/en
Publication of JP2011089484A publication Critical patent/JP2011089484A/en
Application granted granted Critical
Publication of JP5588146B2 publication Critical patent/JP5588146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Turbines (AREA)

Description

本発明は、複数の推進プロペラを備えた船舶に搭載される蒸気タービン設備に関するものである。   The present invention relates to a steam turbine facility mounted on a ship provided with a plurality of propellers.

液化天然ガス(LNG)の運搬船であるLNG船においては、積み荷であるLNGを極低温に保つために貯蔵タンクは断熱されているものの、外部からの僅かな侵入熱によって貯蔵タンク内のLNGの一部は自然蒸発してしまう。そこで、従来のLNG船では、この蒸発ガス(ボイルオフガス:BOG)を容易に燃料として利用できる蒸気タービンが主機関として採用されていた(例えば、特許文献1参照)。   In the LNG carrier, which is a LNG carrier, the storage tank is insulated in order to keep the LNG, which is the cargo, at a very low temperature. The part will spontaneously evaporate. Therefore, in a conventional LNG ship, a steam turbine that can easily use the evaporated gas (boil-off gas: BOG) as a fuel has been adopted as a main engine (see, for example, Patent Document 1).

特開2006−349084号公報JP 2006-349084 A

ところで、近年ではLNG需要の増加に対応するためにLNG船の積載容量は増加傾向にあり、輸送効率を上げるべく今後もLNG船は大型化していくといわれている。船舶の大型化が進むと、船舶の推進系統は2つ設けられるようになる。そうすると、蒸気タービンを主機関として用いたLNG船では、給水系統を含む蒸気タービン設備を2式搭載する必要が生じるため、機関室が大きくなるとともにメンテナンスも煩雑となってしまう。このような状況から、近年のLNG船では、蒸気タービン船に代えて、ディーゼルサイクルのDFDE(Dual Fuel Diesel Electric)船やDRL(low speed Diesel + Re-Liquefaction)船などを採用することが多いのが現状である。   By the way, in recent years, the load capacity of LNG ships has been increasing in order to respond to the increase in LNG demand, and it is said that LNG ships will continue to increase in size in order to increase transport efficiency. As ship size increases, two ship propulsion systems are provided. Then, in an LNG ship using a steam turbine as a main engine, it is necessary to mount two sets of steam turbine equipment including a water supply system, so that an engine room becomes large and maintenance becomes complicated. Because of this situation, LNG ships in recent years often use diesel cycle DFDE (Dual Fuel Diesel Electric) ships or DRL (low speed Diesel + Re-Liquefaction) ships instead of steam turbine ships. Is the current situation.

そこで本発明は、蒸気タービンを主機関とした船舶において機関室の省スペース化を図るとともにメンテナンス性を向上させることを目的としている。   SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to save space in an engine room and improve maintainability in a ship using a steam turbine as a main engine.

本発明は前記事情に鑑みてなされたものであり、本発明に係る船舶用蒸気タービン設備は、複数の推進プロペラを備えた船舶に搭載される蒸気タービン設備であって、蒸気を発生させる複数のボイラと、前記複数のボイラからの蒸気により作動して、前記左右一対の推進プロペラをそれぞれ個別に駆動する複数の蒸気タービン装置と、前記複数の蒸気タービン装置から排出される夫々の蒸気を集約して復水する復水器、及び、前記復水器に接続された給水熱器又は脱気器からなり互いに直列接続された複数の給水機器を有し、前記複数のボイラに水を導く給水系統と、を備え、前記給水系統は、前記複数の蒸気タービン装置に対して1系統設けられ、前記蒸気タービン装置は、前記複数のボイラに繋がる蒸気入口と、前記給水系統に繋がる蒸気出口と、前記蒸気入口から前記蒸気出口までの間において互いに流れ方向に間隔をあけて設けられた複数の抽気口とを有し、前記複数の抽気口のうち上流側の抽気口が、前記複数の給水機器のうち下流側の給水機器に接続され、前記複数の抽気口のうち下流側の抽気口が、前記複数の給水機器のうち上流側の給水機器に接続されていることを特徴とする。 This invention is made | formed in view of the said situation, The steam turbine equipment for ships which concerns on this invention is a steam turbine equipment mounted in the ship provided with several propulsion propellers, Comprising: Several steam generating steam A steam, a plurality of steam turbine devices that are operated by steam from the plurality of boilers and individually drive the pair of left and right propulsion propellers, and the steam discharged from the plurality of steam turbine devices are aggregated. condenser for condensing Te, and has a plurality of water supply devices connected in series with each other consists of water pressure reheater or deaerator connected to said condenser, directing water to the plurality of boiler feed water A water supply system is provided for one of the plurality of steam turbine devices, and the steam turbine device is connected to a steam inlet connected to the plurality of boilers and the water supply system. An air outlet and a plurality of bleed ports provided at intervals in the flow direction between the steam inlet and the steam outlet, and the bleed port on the upstream side of the plurality of bleed ports, It is connected to a downstream water supply device among the plurality of water supply devices, and a downstream extraction port of the plurality of extraction ports is connected to an upstream water supply device among the plurality of water supply devices, To do.

前記構成によれば、複数の推進プロペラに夫々対応する複数の蒸気タービン装置が1系統の給水系統を共用するので、推進プロペラの数に応じて給水系統を複数設ける必要がない。したがって、蒸気タービン設備の全体がコンパクトになり、船舶の機関室の省スペース化が図られるとともに、蒸気タービン設備のメンテナンス性も向上する。そして、蒸気タービン装置において多くの仕事をした低温低圧の蒸気が下流側の抽気口から抽出され、低温低圧である上流側の給水機器に供給される一方、蒸気タービン装置において少ない仕事をした高温高圧の蒸気が上流側の抽気口から抽出され、高温高圧である下流側の給水機器に供給される。よって、複数の給水機器の夫々に必要となる適切な条件の蒸気を確保する際のエネルギーロスが少なく、全体として蒸気タービン設備の効率が向上する。   According to the said structure, since the several steam turbine apparatus respectively corresponding to several propulsion propellers shares one water supply system, it is not necessary to provide several water supply systems according to the number of propulsion propellers. Therefore, the entire steam turbine facility is compact, space saving of the engine room of the ship is achieved, and maintainability of the steam turbine facility is improved. Then, the low-temperature and low-pressure steam that has done a lot of work in the steam turbine device is extracted from the extraction port on the downstream side, and is supplied to the upstream water supply equipment that is low-temperature and low-pressure, while the high-temperature and high-pressure that has done little work in the steam turbine device The steam is extracted from the upstream bleed port and supplied to the downstream water supply device that is high temperature and pressure. Therefore, there is little energy loss at the time of ensuring the vapor | steam of the appropriate conditions required for each of several water supply apparatus, and the efficiency of a steam turbine installation improves as a whole.

前記上流側の抽気口から前記下流側の給水機器に導かれる蒸気を分岐して前記上流側の給水機器に導くための分岐通路と、前記分岐通路を開閉する開閉弁とを備えていてもよい。   A branch passage for branching steam led from the upstream bleed port to the downstream water supply device and guiding it to the upstream water supply device, and an opening / closing valve for opening and closing the branch passage may be provided. .

前記構成によれば、蒸気タービン装置の運転状態が変化するなどして、上流側の給水機器に下流側の抽気口以外からも蒸気が必要となった場合には、開閉弁を開くことにより、上流側の給水機器に必要となる適切な条件の蒸気を上流側の抽気口からの蒸気(即ち、蒸気タービンで仕事をした蒸気)から分岐通路を介して得ることができる。よって、ボイラからの蒸気を絞り等により減圧して上流側の給水機器に供給する場合に比べてエネルギーロスが少なく、全体として蒸気タービン設備の効率が向上する。   According to the above configuration, when the operation state of the steam turbine device changes, and when steam is required from other than the downstream bleeder to the upstream water supply device, by opening the on-off valve, It is possible to obtain steam having an appropriate condition required for the upstream water supply device from the steam from the upstream bleed port (that is, steam worked by the steam turbine) through the branch passage. Therefore, compared with the case where the steam from the boiler is depressurized by a throttle or the like and supplied to the upstream water supply device, there is less energy loss, and the efficiency of the steam turbine equipment is improved as a whole.

前記抽気口は、前記給水機器の1つあたりに複数設けられており、これら抽気口のうち上流側の抽気口は開閉弁を介して前記給水機器に接続されていてもよい。   A plurality of the bleed ports are provided per one of the water supply devices, and the bleed ports on the upstream side of these bleed ports may be connected to the water supply device via an on-off valve.

前記構成によれば、蒸気タービン装置の運転状態が変化するなどして、抽気口からの蒸気の条件が変わった場合にも、開閉弁を開くことにより、給水機器に必要となる適切な条件の蒸気を上流側の抽気口からの蒸気(即ち、蒸気タービンで仕事をした蒸気)から得ることができる。給水機器に必要となる適切な条件の蒸気を蒸気タービンで仕事をした蒸気から得ることができる。よって、ボイラからの蒸気を絞り等により減圧して給水機器に供給する場合に比べてエネルギーロスが少なく、全体として蒸気タービン設備の効率が向上する。   According to the above configuration, even when the condition of the steam from the extraction port changes due to a change in the operating state of the steam turbine device, the appropriate condition required for the water supply device can be obtained by opening the on-off valve. Steam can be obtained from steam from the upstream bleed port (i.e., steam worked on the steam turbine). Steam with the proper conditions required for the water supply equipment can be obtained from the steam working on the steam turbine. Therefore, compared with the case where the steam from the boiler is decompressed by a throttle or the like and supplied to the water supply device, the energy loss is small, and the efficiency of the steam turbine equipment as a whole is improved.

以上の説明から明らかなように、本発明によれば、蒸気タービン設備の全体がコンパクトになり、船舶の機関室の省スペース化が図られるとともに、蒸気タービン設備のメンテナンス性も向上する。   As is clear from the above description, according to the present invention, the entire steam turbine facility is compact, space saving of the engine room of the ship is achieved, and maintainability of the steam turbine facility is also improved.

本発明の第1実施形態に係る船舶用蒸気タービン設備の概略系統図である。1 is a schematic system diagram of a marine steam turbine facility according to a first embodiment of the present invention. 本発明の第2実施形態に係る船舶用蒸気タービン設備の概略系統図である。It is a schematic system diagram of the steam turbine equipment for ships concerning a 2nd embodiment of the present invention. 本発明の第3実施形態に係る船舶用蒸気タービン設備の概略系統図である。It is a schematic system diagram of the steam turbine equipment for ships concerning a 3rd embodiment of the present invention. 本発明の第4実施形態に係る船舶用蒸気タービン設備の概略系統図である。It is a schematic system diagram of the steam turbine equipment for ships concerning a 4th embodiment of the present invention.

以下、本発明に係る実施形態を図面を参照して説明する。   Embodiments according to the present invention will be described below with reference to the drawings.

(第1実施形態)
図1は本発明の第1実施形態に係る船舶用蒸気タービン設備1の概略系統図である。図1に示すように、蒸気タービン設備1は、左右一対の推進プロペラ2R,2Lを備えた船舶(例えば、LNG船)に搭載される。蒸気タービン設備1は、複数のボイラ3,4を備えている。ボイラ3,4は、蒸気を発生させるドラム3a,4aと、ドラム3a,4aに導かれる水を予め昇温させるエコノマイザ3b,4bと、ドラム3a,4aから出た蒸気を過熱するスーパーヒータ3c,4cとを有している。ボイラ3,4は、例えば、船舶に搭載されたLNGタンクで生じるボイルオフガスを燃料として利用して高圧の蒸気を発生させる。ボイラ3,4で発生した蒸気は、左右一対の蒸気タービン装置5R,5Lの蒸気入口にそれぞれ導かれる。ボイラ3,4と蒸気タービン装置5R,5Lとの間には、蒸気タービン装置5R,5Lへ導かれる蒸気の流量をそれぞれ制御するための操作部9R,9Lが設けられている。
(First embodiment)
FIG. 1 is a schematic system diagram of a marine steam turbine facility 1 according to a first embodiment of the present invention. As shown in FIG. 1, the steam turbine equipment 1 is mounted on a ship (for example, an LNG ship) provided with a pair of left and right propulsion propellers 2R and 2L. The steam turbine facility 1 includes a plurality of boilers 3 and 4. The boilers 3 and 4 include drums 3a and 4a that generate steam, economizers 3b and 4b that preheat the water guided to the drums 3a and 4a, and superheaters 3c that superheat the steam that has been discharged from the drums 3a and 4a. 4c. For example, the boilers 3 and 4 generate high-pressure steam by using, as fuel, boil-off gas generated in an LNG tank mounted on the ship. The steam generated in the boilers 3 and 4 is guided to the steam inlets of the pair of left and right steam turbine apparatuses 5R and 5L, respectively. Between the boilers 3 and 4 and the steam turbine devices 5R and 5L, operation units 9R and 9L are provided for controlling the flow rates of the steam guided to the steam turbine devices 5R and 5L, respectively.

本実施形態の蒸気タービン装置5R,5Lは、蒸気通路17R,17Lを介して互いに直列接続された高圧蒸気タービン6R,6L及び低圧蒸気タービン7R,7Lを有している。よって、ボイラ3,4で発生した蒸気は、高圧蒸気タービン6R,6Lの蒸気入口6Ra,6Laに導かれることとなる。高圧蒸気タービン6R,6Lは、それぞれボイラ3,4からの蒸気により作動して回転動力を発生する。低圧蒸気タービン7R,7Lは、高圧蒸気タービン6R,6Lの蒸気出口6Re,6Leから蒸気通路17R,17Lを介して蒸気入口7Ra,7Laに供給される蒸気により作動して回転動力を発生する。左右の蒸気タービン装置5R,5Lでそれぞれ発生する回転動力は、減速機8R,8Lを介して各推進プロペラ2R,2Lに個別に伝達される。   The steam turbine devices 5R and 5L according to the present embodiment include high-pressure steam turbines 6R and 6L and low-pressure steam turbines 7R and 7L that are connected in series via the steam passages 17R and 17L. Therefore, the steam generated in the boilers 3 and 4 is guided to the steam inlets 6Ra and 6La of the high-pressure steam turbines 6R and 6L. The high-pressure steam turbines 6R and 6L are respectively operated by steam from the boilers 3 and 4 to generate rotational power. The low-pressure steam turbines 7R and 7L are operated by steam supplied from the steam outlets 6Re and 6Le of the high-pressure steam turbines 6R and 6L to the steam inlets 7Ra and 7La via the steam passages 17R and 17L to generate rotational power. Rotational power generated by the left and right steam turbine apparatuses 5R and 5L is individually transmitted to the propellers 2R and 2L via the speed reducers 8R and 8L.

蒸気タービン装置5R,5Lの蒸気出口、即ち、低圧蒸気タービン7R,7Lの蒸気出口7Rd,7Ldからそれぞれ排出される使用済みの蒸気は、給水系統10に導かれる。給水系統10は、2つの蒸気タービン装置5R,5Lに対して1系統だけ設けられている。給水系統10は、復水器11、復水ポンプ12、第1給水熱器13(給水機器)、第2給水熱器14(給水機器)、脱気器15(給水機器)及び給水ポンプ16を備えており、これらの機器11〜16はこの順番で互いに直列接続されている。 The used steam discharged from the steam outlets of the steam turbine devices 5R and 5L, that is, the steam outlets 7Rd and 7Ld of the low-pressure steam turbines 7R and 7L, is guided to the water supply system 10. Only one system of the water supply system 10 is provided for the two steam turbine apparatuses 5R and 5L. Water System 10, condenser 11, condensate pump 12, first water supply pressure heat sink 13 (water supply device), a second feed water pressure heat sink 14 (water supply device), a deaerator 15 (water supply device) and the water supply pump 16 and these devices 11 to 16 are connected in series with each other in this order.

復水器11は、2つの蒸気タービン装置5R,5Lからそれぞれ排出される使用済みの蒸気を集約して復水する。この復水器11は、左右の蒸気タービン装置5R,5Lの間の船体中央に配置されている。復水ポンプ12は、復水器11で復水された水を吸い出す。第1給水熱器13は、蒸気を利用することにより、復水ポンプ12で吸い出された水を昇温する。第2給水熱器14は、蒸気を利用することにより、第1給水熱器13で昇温された水を更に昇温する。脱気器15は、蒸気を利用することにより、ボイラ3,4の腐食等を防止するために第2給水熱器14からの水に含まれる酸素等を除去する。給水ポンプ16は、脱気器15からの水をボイラ3,4に導く。 The condenser 11 collects used steam discharged from the two steam turbine apparatuses 5R and 5L and condenses them. The condenser 11 is disposed in the center of the hull between the left and right steam turbine apparatuses 5R and 5L. The condensate pump 12 sucks out the water condensed by the condenser 11. First water supply pressure heat sink 13, by utilizing steam, the aspirated water condensate pump 12 to raise the temperature. Second water supply pressure-heater 14, by utilizing the vapor, further raising the temperature of the heating water in the first water supply pressure heat sink 13. Deaerator 15, by utilizing the vapor, to remove oxygen and the like contained in the water from the second water supply pressurized heat 14 in order to prevent corrosion of the boiler 3,4. The feed water pump 16 guides water from the deaerator 15 to the boilers 3 and 4.

蒸気タービン装置5R,5Lは、蒸気入口6Ra,6Laから蒸気出口7Rd,7Ldまでの間において互いに流れ方向に間隔をあけて設けられた複数の抽気口(6Rb,6Rc,6Rd,6Lb,6Lc,6Ld,17Ra,17La,7Ra,7Rb,7Rc,7La,7Lb,7Lc)を有している。具体的には、高圧蒸気タービン6R,6Lには、それぞれ上流から下流に向けて、第1抽気口6Rb,6Lb、第2抽気口6Rc,6Lc及び第3抽気口6Rd,6Ldが設けられている。蒸気通路17R,17Lには、それぞれ第4抽気口17Ra,17Laが設けられている。低圧蒸気タービン7R,7Lには、それぞれ上流から下流に向けて、第5抽気口7Rb,7Lb及び第6抽気口7Rc,7Lcが設けられている。   The steam turbine devices 5R and 5L include a plurality of extraction ports (6Rb, 6Rc, 6Rd, 6Lb, 6Lc, and 6Ld) spaced from each other in the flow direction between the steam inlets 6Ra and 6La and the steam outlets 7Rd and 7Ld. , 17Ra, 17La, 7Ra, 7Rb, 7Rc, 7La, 7Lb, 7Lc). Specifically, the high pressure steam turbines 6R and 6L are provided with first extraction ports 6Rb and 6Lb, second extraction ports 6Rc and 6Lc, and third extraction ports 6Rd and 6Ld from upstream to downstream, respectively. . The steam passages 17R and 17L are provided with fourth extraction ports 17Ra and 17La, respectively. The low pressure steam turbines 7R and 7L are provided with fifth extraction ports 7Rb and 7Lb and sixth extraction ports 7Rc and 7Lc from upstream to downstream, respectively.

第2抽気口6Rc,6Lcで抽気された蒸気は、それぞれ逆止弁18R,18Lを介して蒸気溜となる第1リザーバ19に導かれ、第1リザーバ19からの蒸気が脱気器15に導かれる。第4抽気口17Ra,17Laで抽気された蒸気は、それぞれ逆止弁20R,20Lを介して蒸気溜となる第2リザーバ21に導かれ、第2リザーバ21からの蒸気が第2給水熱器14に導かれる。第6抽気口7Rc,7Lcで抽気された蒸気は、それぞれ逆止弁22R,22Lを介して蒸気溜となる第3リザーバ23に導かれ、第3リザーバ23からの蒸気が第1給水熱器13に導かれる。 The steam extracted from the second extraction ports 6Rc and 6Lc is guided to the first reservoir 19 serving as a steam reservoir via the check valves 18R and 18L, respectively, and the steam from the first reservoir 19 is guided to the deaerator 15. It is burned. Fourth extraction port 17Ra, extracted steam in 17La are check valves 20R, respectively, are guided to the second reservoir 21 as a vapor reservoir through 20L, vapor from the second reservoir 21 and the second water supply pressure reheater 14 leads to. Sixth bleed ports 7Rc, the steam extracted by 7Lc, check valves 22R, respectively, is guided to the third reservoir 23 serving as a steam reservoir through 22L, vapors from the third reservoir 23 first water supply pressure reheater 13 leads to.

つまり、これらの抽気口(6Rc,6Lc,17Ra,17La,7Rc,7Lc)のうち上流側の抽気口は、複数の給水機器13〜15のうち下流側の給水機器に接続され、これらの抽気口(6Rc,6Lc,17Ra,17La,7Rc,7Lc)のうち下流側の抽気口は、複数の給水機器13〜15のうち上流側の給水機器に接続されている。よって、蒸気タービン装置5R,5Lにおいて少ない仕事をした高温高圧の蒸気は、上流側の抽気口(例えば、抽気口6Rc,6Lc)から抽出されて、高温高圧である下流側の給水機器(例えば、脱気器15)に供給される一方、蒸気タービン装置5R,5Lにおいて多くの仕事をした低温低圧の蒸気は、下流側の抽気口(例えば、抽気口7Rc,7Lc)から抽出され、低温低圧である上流側の給水機器(例えば、第1給水熱器13)に供給される。その結果、複数の給水機器13〜15の夫々に必要となる適切な条件の蒸気を確保する際のエネルギーロスが少なく、全体として蒸気タービン設備1の効率が向上する。 That is, an upstream side bleed port among these bleed ports (6Rc, 6Lc, 17Ra, 17La, 7Rc, 7Lc) is connected to a downstream side water supply device among the plurality of water supply devices 13-15, and these bleed ports The extraction port on the downstream side of (6Rc, 6Lc, 17Ra, 17La, 7Rc, 7Lc) is connected to the upstream water supply device among the plurality of water supply devices 13-15. Therefore, the high-temperature and high-pressure steam that has done little work in the steam turbine apparatuses 5R and 5L is extracted from the upstream extraction port (for example, the extraction ports 6Rc and 6Lc), and the downstream high-temperature and high-pressure water supply device (for example, While being supplied to the deaerator 15), the low-temperature and low-pressure steam that has done a lot of work in the steam turbine devices 5R and 5L is extracted from the downstream extraction ports (for example, the extraction ports 7Rc and 7Lc), water equipment is upstream (e.g., the first feed water pressure heat sink 13) is supplied to the. As a result, there is little energy loss at the time of ensuring the vapor | steam of the appropriate condition required for each of the some water supply apparatuses 13-15, and the efficiency of the steam turbine equipment 1 improves as a whole.

このように蒸気タービン装置5R,5Lに複数の抽気口(6Rc,6Lc,17Ra,17La,7Rc,7Lc)を設けることを可能ならしめるのは、蒸気タービン設備1が船舶用だからである。例えば、陸上のコージェネレーションシステム等においてタービンから抽気を行うとすれば、抽気された蒸気を積極的に他のエネルギー源として利用するため、抽気量が多くなってタービン出力が大きく変動してしまい、抽気口の数を増やすことは難しい。しかし、船舶の場合には、蒸気タービンから抽気された蒸気を給水熱器などに利用するだけであって抽気量が少ないため、タービン出力の変動が小さく、抽気口の数を増やすことが可能となる。 The reason why it is possible to provide a plurality of extraction ports (6Rc, 6Lc, 17Ra, 17La, 7Rc, 7Lc) in the steam turbine devices 5R, 5L is that the steam turbine equipment 1 is for ships. For example, if air is extracted from a turbine in an onshore cogeneration system or the like, the extracted steam is actively used as another energy source, so the amount of extraction increases and the turbine output greatly fluctuates. It is difficult to increase the number of extraction holes. However, in the case of a ship, since a small bleed amount merely utilizing steam extracted from the steam turbine, such as the water pressure heat sink, the variation of the turbine output is small, it is possible to increase the number of bleed ports It becomes.

第1リザーバ19には、第1開閉弁24R,24L及び逆止弁25R,25Lを介して第1抽気口6Rb,6Lbも接続されている。第1開閉弁24R,24Lは、通常は閉じている。第2抽気口6Rc,6Lcからの蒸気の圧力が所定圧以下となった場合には、第1開閉弁24R,24Lが開かれるように制御されて、第1抽気口6Rb,6Lbからの蒸気が第1リザーバ19に供給される。つまり、脱気器15に対応する抽気口6Rb,6Lb,6Rc,6Lcは、蒸気タービン装置5R,5Lあたりに複数設けられている。   The 1st extraction port 6Rb and 6Lb are also connected to the 1st reservoir | reserver 19 through 1st on-off valve 24R, 24L and non-return valve 25R, 25L. The first on-off valves 24R and 24L are normally closed. When the pressure of the steam from the second extraction ports 6Rc, 6Lc becomes equal to or lower than a predetermined pressure, the first on-off valves 24R, 24L are controlled to open, and the steam from the first extraction ports 6Rb, 6Lb The first reservoir 19 is supplied. That is, a plurality of extraction ports 6Rb, 6Lb, 6Rc, and 6Lc corresponding to the deaerator 15 are provided for each of the steam turbine devices 5R and 5L.

第2リザーバ21には、第2開閉弁26R,26L及び逆止弁27R,27Lを介して第3抽気口6Rd,6Ldも接続されている。第2開閉弁26R,26Lは、第1開閉弁24R,24Lと同様に通常は閉じている。第4抽気口17Ra,17Laからの蒸気の圧力が所定圧以下となった場合には、第2開閉弁26R,26Lが開かれるように制御されて、第3抽気口6Rd,6Ldからの蒸気が第2リザーバ21に供給される。つまり、第2給水熱器14に対応する抽気口6Rd,6Ld,17Ra,17Laは、蒸気タービン装置5R,5Lあたりに複数設けられている。 Third bleed ports 6Rd and 6Ld are also connected to the second reservoir 21 via second on-off valves 26R and 26L and check valves 27R and 27L. The second on-off valves 26R and 26L are normally closed in the same manner as the first on-off valves 24R and 24L. When the pressure of the steam from the fourth extraction ports 17Ra, 17La becomes equal to or lower than a predetermined pressure, the second on-off valves 26R, 26L are controlled to open, and the steam from the third extraction ports 6Rd, 6Ld It is supplied to the second reservoir 21. That is, the extraction port corresponding to the second water supply pressure heat sink 14 6Rd, 6Ld, 17Ra, 17La, the steam turbine system 5R, multiply provided per 5L.

第3リザーバ23には、第3開閉弁28R,28L及び逆止弁29R,29Lを介して第5抽気口7Rb,7Lbも接続されている。第3開閉弁28R,28Lは、第1開閉弁24R,24L及び第2開閉弁26R,26Lと同様に通常は閉じている。第6抽気口7Rc,7Lcからの蒸気の圧力が所定圧以下となった場合には、第3開閉弁28R,28Lが開かれるように制御されて、第5抽気口7Rb,7Lbからの蒸気が第3リザーバ23に供給される。つまり、第1給水熱器13に対応する抽気口7Rb,7Lb,7Rc,7Lcは、蒸気タービン装置5R,5Lあたりに複数設けられている。なお、第1〜3開閉弁24R,24L,26R,26L,28R,28Lは、オンオフ弁でよいが、制御弁であってもよい。 Fifth extraction ports 7Rb and 7Lb are also connected to the third reservoir 23 via third on-off valves 28R and 28L and check valves 29R and 29L. The third on-off valves 28R and 28L are normally closed in the same manner as the first on-off valves 24R and 24L and the second on-off valves 26R and 26L. When the pressure of the steam from the sixth extraction ports 7Rc, 7Lc becomes equal to or lower than a predetermined pressure, the third on-off valves 28R, 28L are controlled to open, and the steam from the fifth extraction ports 7Rb, 7Lb It is supplied to the third reservoir 23. That is, the extraction port corresponding to the first water supply pressure heat sink 13 7Rb, 7Lb, 7Rc, 7Lc, the steam turbine system 5R, multiply provided per 5L. The first to third on-off valves 24R, 24L, 26R, 26L, 28R, and 28L may be on / off valves, but may be control valves.

よって、蒸気タービン装置5R,5Lの運転状態が変化するなどして、抽気口6Rc,6Lc,17Ra,17La、7Rc,7Lcからの蒸気の条件が変わった場合にも、第1〜3開閉弁24R,24L,26R,26L,28R,28Lを適宜開くことにより、給水装置13〜15に必要となる適切な条件の蒸気を蒸気タービン装置5R,5Lで仕事をした蒸気から得ることができる。その結果、ボイラ3,4からの蒸気を絞り等により減圧して給水装置13〜15に供給する場合に比べてエネルギーロスが少なく、全体として蒸気タービン設備1の効率が向上する。   Therefore, even when the operating conditions of the steam turbine devices 5R, 5L change, and the conditions of the steam from the extraction ports 6Rc, 6Lc, 17Ra, 17La, 7Rc, 7Lc change, the first to third on-off valves 24R , 24L, 26R, 26L, 28R, and 28L can be appropriately opened to obtain steam having appropriate conditions necessary for the water supply apparatuses 13 to 15 from the steam worked by the steam turbine apparatuses 5R and 5L. As a result, the energy loss is reduced compared to the case where the steam from the boilers 3 and 4 is depressurized by a throttle or the like and supplied to the water supply devices 13 to 15, and the efficiency of the steam turbine equipment 1 is improved as a whole.

第1リザーバ19には、第4開閉弁30を介してボイラ3,4も接続されている。第4開閉弁30は、通常は閉じている。第1開閉弁24R,24Lが開いた状態でも第1リザーバ19の蒸気の圧力が所定圧以下である場合には、第4開閉弁30が開かれるように制御されて、ボイラ3,4からの蒸気が第1リザーバ19に供給される。   Boilers 3 and 4 are also connected to the first reservoir 19 via a fourth on-off valve 30. The fourth on-off valve 30 is normally closed. Even when the first on-off valves 24R and 24L are open, if the steam pressure in the first reservoir 19 is equal to or lower than a predetermined pressure, the fourth on-off valve 30 is controlled to open, and the boilers 3 and 4 Steam is supplied to the first reservoir 19.

第2リザーバ21には、第5開閉弁31が設けられた分岐通路33を介して第1リザーバ19も接続されている。第5開閉弁31は、通常は閉じている。第2開閉弁26R,26Lが開いた状態でも第2リザーバ21の蒸気の圧力が所定圧以下である場合には、第5開閉弁31が開かれるように制御されて、第1リザーバ19からの蒸気が第2リザーバ21に供給される。   The first reservoir 19 is also connected to the second reservoir 21 via a branch passage 33 provided with a fifth on-off valve 31. The fifth on-off valve 31 is normally closed. Even when the second on-off valves 26R and 26L are open, if the vapor pressure in the second reservoir 21 is equal to or lower than a predetermined pressure, the fifth on-off valve 31 is controlled to open, and the first reservoir 19 Steam is supplied to the second reservoir 21.

第3リザーバ23には、第6開閉弁32が設けられた分岐通路34を介して第2リザーバ21も接続されている。第6開閉弁32は、通常は閉じている。第3開閉弁28R,28Lが開いた状態でも第3リザーバ23の蒸気の圧力が所定圧以下である場合には、第6開閉弁32が開かれるように制御されて、第2リザーバ21からの蒸気が第3リザーバ23に供給される。なお、第4〜6開閉弁30〜32は、制御弁であり、その開度を適宜制御することができる。   The second reservoir 21 is also connected to the third reservoir 23 via a branch passage 34 provided with a sixth on-off valve 32. The sixth on-off valve 32 is normally closed. Even when the third on-off valves 28R and 28L are open, if the steam pressure in the third reservoir 23 is equal to or lower than a predetermined pressure, the sixth on-off valve 32 is controlled to open, Steam is supplied to the third reservoir 23. In addition, the 4th-6th on-off valves 30-32 are control valves, and can control the opening degree suitably.

よって、蒸気タービン装置5R,5Lの運転状態が変化するなどして、第2リザーバ21に第3抽気口6Rd,6Ld及び第4抽気口17Ra,17La以外からも蒸気が必要となった場合には、第5開閉弁31を適宜開くことにより、上流側に隣接する第1リザーバ19からの蒸気が分岐通路33を介して第2リザーバ21に供給される。また、第3リザーバ23に第5抽気口7Rb,7Lb及び第6抽気口7Rc,7Lc以外からも蒸気が必要となった場合には、第6開閉弁32を適宜開くことにより、上流側に隣接する第2リザーバ21からの蒸気が分岐通路34を介して第3リザーバ23に供給される。その結果、ボイラ3,4からの蒸気を絞り等により減圧して第2リザーバ21や第3リザーバ23に供給する場合に比べてエネルギーロスが少なく、全体として蒸気タービン設備1の効率が向上する。   Therefore, when the operation state of the steam turbine devices 5R, 5L changes, or when steam is required for the second reservoir 21 from other than the third extraction ports 6Rd, 6Ld and the fourth extraction ports 17Ra, 17La. By opening the fifth on-off valve 31 as appropriate, steam from the first reservoir 19 adjacent to the upstream side is supplied to the second reservoir 21 via the branch passage 33. Further, when steam is required for the third reservoir 23 from other than the fifth bleed ports 7Rb, 7Lb and the sixth bleed ports 7Rc, 7Lc, the sixth open / close valve 32 is appropriately opened to adjoin the upstream side. The steam from the second reservoir 21 is supplied to the third reservoir 23 via the branch passage 34. As a result, there is little energy loss compared with the case where the steam from the boilers 3 and 4 is depressurized by throttling or the like and supplied to the second reservoir 21 or the third reservoir 23, and the efficiency of the steam turbine equipment 1 is improved as a whole.

以上に説明した構成によれば、給水系統10が、2つの蒸気タービン装置5R,5Lに対して1系統だけ設けられている。よって、複数の蒸気タービン装置5R,5Lが1系統の給水系統10を共用するので、推進プロペラ2R,2Lの数に応じて給水系統を複数設ける必要がない。その結果、蒸気タービン設備1の全体がコンパクトになり、船舶の機関室の省スペース化が図られるとともに、蒸気タービン設備1のメンテナンス性も向上する。なお、前記した実施形態では、給水熱器を2つ直列接続したものを例示したが、これに限定されず給水熱器を幾つ設けてもよい(以下に説明する各実施形態でも同様)。 According to the configuration described above, only one system of the water supply system 10 is provided for the two steam turbine apparatuses 5R and 5L. Therefore, since the plurality of steam turbine apparatuses 5R and 5L share one water supply system 10, there is no need to provide a plurality of water supply systems according to the number of propellers 2R and 2L. As a result, the entire steam turbine facility 1 becomes compact, space saving of the engine room of the ship is achieved, and maintainability of the steam turbine facility 1 is improved. In the above-described embodiment, (also in the embodiments to be described below), but the water pressure heat sink exemplified those connected two series, which may be provided any number of feed water pressurization reheater is not limited thereto .

(第2実施形態)
図2は本発明の第2実施形態に係る船舶用蒸気タービン設備101の概略系統図である。図2に示すように、本実施形態の蒸気タービン設備101では、蒸気タービン装置105R,105Lの構成が第1実施形態と相違している。蒸気タービン装置105R,105Lは、高圧蒸気タービン106R,106L、中圧蒸気タービン117R,117L及び低圧蒸気タービン107R,107Lを有している。
(Second Embodiment)
FIG. 2 is a schematic system diagram of a marine steam turbine facility 101 according to the second embodiment of the present invention. As shown in FIG. 2, in the steam turbine equipment 101 of the present embodiment, the configurations of the steam turbine apparatuses 105R and 105L are different from those of the first embodiment. The steam turbine devices 105R and 105L include high-pressure steam turbines 106R and 106L, intermediate-pressure steam turbines 117R and 117L, and low-pressure steam turbines 107R and 107L.

ボイラ3,4で発生した蒸気は、高圧蒸気タービン106R,106Lの蒸気入口106Ra,106Laに導かれる。高圧蒸気タービン106R,106Lの蒸気出口106Rd,106Ldから排出された蒸気は、ボイラ3,4にて再加熱されてから中圧蒸気タービン117R,117Lの蒸気入口117Ra,117Laに導かれる。中圧蒸気タービン117R,117Lの蒸気出口117Rd,117Ldから排出された蒸気は、低圧蒸気タービン107R,107Lの蒸気入口107Ra,107Laに導かれる。蒸気タービン装置105R,105Lの蒸気出口、即ち、低圧蒸気タービン107R,107Lの蒸気出口107Rd,107Ldからそれぞれ排出される使用済みの蒸気は、復水器11に導かれる。   The steam generated in the boilers 3 and 4 is guided to the steam inlets 106Ra and 106La of the high-pressure steam turbines 106R and 106L. The steam discharged from the steam outlets 106Rd and 106Ld of the high-pressure steam turbines 106R and 106L is reheated by the boilers 3 and 4 and then guided to the steam inlets 117Ra and 117La of the intermediate-pressure steam turbines 117R and 117L. The steam discharged from the steam outlets 117Rd and 117Ld of the medium pressure steam turbines 117R and 117L is guided to the steam inlets 107Ra and 107La of the low pressure steam turbines 107R and 107L. The used steam discharged from the steam outlets of the steam turbine apparatuses 105R and 105L, that is, the steam outlets 107Rd and 107Ld of the low-pressure steam turbines 107R and 107L, is guided to the condenser 11.

蒸気タービン装置105R,105Lは、蒸気入口106Ra,106Laから蒸気出口107Rd,107Ldまでの間において互いに流れ方向に間隔をあけて設けられた複数の抽気口(106Rb,106Rc,106Lb,106Lc,117Rb,117Rc,117Lb,117Lc,107Rb,107Rc,107Lb,107Lc)を有している。具体的には、高圧蒸気タービン106R,106Lには、それぞれ上流から下流に向けて、第1抽気口106Rb,106Lb及び第2抽気口106Rc,106Lcが設けられている。中圧蒸気タービン117R,117Lには、それぞれ第3抽気口117Rb,117Lb及び第4抽気口117Rc,117Lcが設けられている。低圧蒸気タービン107R,107Lには、それぞれ上流から下流に向けて、第6抽気口107Rb,107Lb及び第6抽気口107Rc,107Lcが設けられている。なお、第1実施形態と共通する構成については同一符号を付して以下の説明を省略する。   The steam turbine apparatuses 105R and 105L include a plurality of extraction ports (106Rb, 106Rc, 106Lb, 106Lc, 117Rb, 117Rc) provided at intervals in the flow direction between the steam inlets 106Ra, 106La and the steam outlets 107Rd, 107Ld. , 117Lb, 117Lc, 107Rb, 107Rc, 107Lb, 107Lc). Specifically, the high pressure steam turbines 106R and 106L are provided with first extraction ports 106Rb and 106Lb and second extraction ports 106Rc and 106Lc from upstream to downstream, respectively. The intermediate pressure steam turbines 117R and 117L are provided with third extraction ports 117Rb and 117Lb and fourth extraction ports 117Rc and 117Lc, respectively. The low pressure steam turbines 107R and 107L are provided with sixth extraction ports 107Rb and 107Lb and sixth extraction ports 107Rc and 107Lc, respectively, from upstream to downstream. In addition, about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

(第3実施形態)
図3は本発明の第3実施形態に係る船舶用蒸気タービン設備201の概略系統図である。図3に示すように、本実施形態の蒸気タービン設備201では、蒸気タービン装置205R,205Lの構成が第1実施形態と相違している。蒸気タービン装置205R,205Lは、それぞれ1つの蒸気タービン205R,205Lで構成されている。ボイラ3,4で発生した蒸気は、蒸気タービン205R,205Lの蒸気入口205Ra,205Laに導かれる。蒸気タービン205R,205Lの蒸気出口205Rh,205Lhから排出される使用済みの蒸気は、復水器11に導かれる。
(Third embodiment)
FIG. 3 is a schematic system diagram of a marine steam turbine facility 201 according to the third embodiment of the present invention. As shown in FIG. 3, in the steam turbine equipment 201 of the present embodiment, the configurations of the steam turbine apparatuses 205R and 205L are different from those of the first embodiment. Each of the steam turbine apparatuses 205R and 205L includes one steam turbine 205R and 205L. The steam generated in the boilers 3 and 4 is guided to the steam inlets 205Ra and 205La of the steam turbines 205R and 205L. The used steam discharged from the steam outlets 205Rh and 205Lh of the steam turbines 205R and 205L is guided to the condenser 11.

蒸気タービン装置205R,205Lは、蒸気入口205Ra,205Laから蒸気出口205Rh,205Lhまでの間において互いに流れ方向に間隔をあけて設けられた複数の抽気口を有している。具体的には、蒸気タービン205R,205Lには、それぞれ上流から下流に向けて、第1抽気口205Rb,205Lb、第2抽気口205Rc,205Lc、第3抽気口205Rd,205Ld、第4抽気口205Re,205Le、第5抽気口205Rf,205Lf及び第6抽気口205Rg,205Lgが設けられている。なお、第1実施形態と共通する構成については同一符号を付して以下の説明を省略する。   The steam turbine apparatuses 205R and 205L have a plurality of extraction ports provided at intervals in the flow direction between the steam inlets 205Ra and 205La and the steam outlets 205Rh and 205Lh. Specifically, in the steam turbines 205R and 205L, from the upstream to the downstream, the first extraction ports 205Rb and 205Lb, the second extraction ports 205Rc and 205Lc, the third extraction ports 205Rd and 205Ld, and the fourth extraction port 205Re, respectively. , 205Le, fifth bleed ports 205Rf, 205Lf and sixth bleed ports 205Rg, 205Lg. In addition, about the structure which is common in 1st Embodiment, the same code | symbol is attached | subjected and the following description is abbreviate | omitted.

(第4実施形態)
図4は本発明の第4実施形態に係る船舶用蒸気タービン設備301の概略系統図である。図4に示すように、本実施形態の蒸気タービン設備301は、第1〜3リザーバ19,21,23(図1参照)が設けられていない点が第1実施形態と相違している。即ち、抽気口6Rc,6Lc,17Ra,17La,7Rc,7Lcから抽気された蒸気は、直接的に給水装置13〜15に供給される。なお、他の構成は前述した第1実施形態と同様であるため以下の説明を省略する。また、第2及び第3実施形態の構成についても同様にリザーバを廃止した構成としてもよい。
(Fourth embodiment)
FIG. 4 is a schematic system diagram of a marine steam turbine facility 301 according to the fourth embodiment of the present invention. As shown in FIG. 4, the steam turbine equipment 301 of this embodiment is different from the first embodiment in that the first to third reservoirs 19, 21, 23 (see FIG. 1) are not provided. That is, the steam extracted from the extraction ports 6Rc, 6Lc, 17Ra, 17La, 7Rc, 7Lc is directly supplied to the water supply devices 13-15. Since other configurations are the same as those of the first embodiment described above, the following description is omitted. Similarly, the configurations of the second and third embodiments may be configured such that the reservoir is eliminated.

以上のように、本発明に係る船舶用蒸気タービン設備は、蒸気タービン設備の全体がコンパクトになる等の優れた効果を有し、この効果の意義を発揮できるLNG船等の船舶に広く適用すると有益である。   As described above, the marine steam turbine equipment according to the present invention has excellent effects such as compactness of the entire steam turbine equipment, and is widely applied to ships such as LNG ships that can demonstrate the significance of this effect. It is beneficial.

1,101,201,301 蒸気タービン設備
2R,2L 推進プロペラ
3,4 ボイラ
5R,5L 蒸気タービン装置
10 給水系統
11 復水器
12 復水ポンプ
13 第1給水熱器(給水機器)
14 第2給水熱器(給水機器)
15 脱気器(給水機器)
16 給水ポンプ
24R,24L 第1開閉弁
26R,26L 第2開閉弁
28R,28L 第3開閉弁
30 第4開閉弁
31 第5開閉弁
32 第6開閉弁
33,34 分岐通路
1,101,201,301 steam turbine system 2R, 2L propeller 3,4 boiler 5R, 5L steam turbine apparatus 10 Water System 11 condenser 12 condensate pump 13 first water supply pressure reheater (water device)
14 second water supply pressure reheater (water device)
15 Deaerator (water supply equipment)
16 Water supply pump 24R, 24L 1st on-off valve 26R, 26L 2nd on-off valve 28R, 28L 3rd on-off valve 30 4th on-off valve 31 5th on-off valve 32 6th on-off valve 33, 34 Branch passage

Claims (3)

複数の推進プロペラを備えた船舶に搭載される蒸気タービン設備であって、
蒸気を発生させる複数のボイラと、
前記複数のボイラからの蒸気により作動して、前記左右一対の推進プロペラをそれぞれ個別に駆動する複数の蒸気タービン装置と、
前記複数の蒸気タービン装置から排出される夫々の蒸気を集約して復水する復水器、及び、前記復水器に接続された給水熱器又は脱気器からなり互いに直列接続された複数の給水機器を有し、前記複数のボイラに水を導く給水系統と、を備え、
前記給水系統は、前記複数の蒸気タービン装置に対して1系統設けられ、
前記蒸気タービン装置は、前記複数のボイラに繋がる蒸気入口と、前記給水系統に繋がる蒸気出口と、前記蒸気入口から前記蒸気出口までの間において互いに流れ方向に間隔をあけて設けられた複数の抽気口とを有し、
前記複数の抽気口のうち上流側の抽気口が、前記複数の給水機器のうち下流側の給水機器に接続され、
前記複数の抽気口のうち下流側の抽気口が、前記複数の給水機器のうち上流側の給水機器に接続されていることを特徴とする船舶用蒸気タービン設備。
A steam turbine facility mounted on a ship equipped with a plurality of propellers,
A plurality of boilers generating steam;
A plurality of steam turbine devices that are operated by steam from the plurality of boilers and individually drive the pair of left and right propulsion propellers;
Condenser for condensing by aggregating each of the steam discharged from the plurality of steam turbine apparatus, and, more connected in series to each other consists of the connected water pressure reheater or deaerator to the condenser And a water supply system for guiding water to the plurality of boilers,
The water supply system is provided for one of the plurality of steam turbine devices,
The steam turbine device includes a steam inlet connected to the plurality of boilers, a steam outlet connected to the water supply system, and a plurality of extractions provided at intervals in the flow direction between the steam inlet and the steam outlet. Having a mouth,
An upstream bleed port of the plurality of bleed ports is connected to a downstream water supply device among the plurality of water supply devices,
A steam turbine facility for ships, wherein a bleed port on the downstream side among the plurality of bleed ports is connected to an upstream water supply device among the plurality of water supply devices.
前記上流側の抽気口から前記下流側の給水機器に導かれる蒸気を分岐して前記上流側の給水機器に導くための分岐通路と、前記分岐通路を開閉する開閉弁とを備えている請求項1に記載の船舶用蒸気タービン設備。   A branch passage for branching steam led from the upstream bleed port to the downstream water supply device and guiding it to the upstream water supply device, and an on-off valve for opening and closing the branch passage. The marine steam turbine equipment according to 1. 前記抽気口は、前記給水機器の1つあたりに複数設けられており、
これら抽気口のうち上流側の抽気口は開閉弁を介して前記給水機器に接続されている請求項1又は2に記載の船舶用蒸気タービン設備。
A plurality of the extraction ports are provided per one of the water supply devices,
3. The steam turbine equipment for a ship according to claim 1, wherein an upstream extraction port among the extraction ports is connected to the water supply device via an on-off valve.
JP2009244169A 2009-10-23 2009-10-23 Marine steam turbine equipment Active JP5588146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009244169A JP5588146B2 (en) 2009-10-23 2009-10-23 Marine steam turbine equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009244169A JP5588146B2 (en) 2009-10-23 2009-10-23 Marine steam turbine equipment

Publications (2)

Publication Number Publication Date
JP2011089484A JP2011089484A (en) 2011-05-06
JP5588146B2 true JP5588146B2 (en) 2014-09-10

Family

ID=44107943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009244169A Active JP5588146B2 (en) 2009-10-23 2009-10-23 Marine steam turbine equipment

Country Status (1)

Country Link
JP (1) JP5588146B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118339366A (en) * 2021-10-19 2024-07-12 天然气运输咨询公司 Conversion method of LNG transport ship steam or hybrid propulsion equipment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4629925B1 (en) * 1968-11-01 1971-08-31
JPS4946152Y1 (en) * 1972-07-05 1974-12-17
JPS5710529B2 (en) * 1972-09-07 1982-02-26
JPS59188004A (en) * 1983-04-09 1984-10-25 Kawasaki Heavy Ind Ltd Power plant with gas turbine combined cycle marine propulsion plant
JP5030710B2 (en) * 2007-08-30 2012-09-19 三菱重工業株式会社 Steam turbine ship

Also Published As

Publication number Publication date
JP2011089484A (en) 2011-05-06

Similar Documents

Publication Publication Date Title
US10066513B2 (en) Method for operating a combined-cycle power plant with cogeneration, and a combined-cycle power plant for carrying out the method
JP2009515092A (en) Power generation method and power plant
CN106907202B (en) Method and system for electric power and steam supply system
JP7316068B2 (en) Floating equipment and manufacturing method for floating equipment
KR101737126B1 (en) Apparatus for supplying vaporized gas fuel of Dual fuel engine type
JP2014085035A (en) Composite boiler
JP5588146B2 (en) Marine steam turbine equipment
CN103201464B (en) There is the steam turbine installation of variable steam feed-in
KR101355146B1 (en) Waste heat recovery system of the ship using the organic rankine cycle
CN102770625B (en) Heat power station and the method for running adjustment type turbo machine wherein
JP5916598B2 (en) Power system
JP7086523B2 (en) A combined cycle power plant and a method for operating this combined cycle power plant
CN103380056A (en) Steam turbine driving machine, and ship and gas liquefaction apparatus each equipped with steam turbine driving machine
KR20180110704A (en) Fuel gas supply system
KR20120015402A (en) System and method for cooling engines
WO2017077718A1 (en) Ship
EP2971653B1 (en) Gas-to-liquid heat exchange system with multiple liquid flow patterns
JP6354923B1 (en) Power generation auxiliary system and thermal power plant
US8776523B2 (en) Steam-driven power plant
KR100896928B1 (en) Apparatus for treating boil-off gas in lng carrier
JP4622714B2 (en) Energy efficient use system
CN221197382U (en) Steam drum system and steam drum water supplementing system
EP2850291B1 (en) Combined cycle plant for energy production and method for operating said plant
KR20180041914A (en) Boiler system
KR102195211B1 (en) Floating marine structure with electric power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140725

R150 Certificate of patent or registration of utility model

Ref document number: 5588146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250